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Chemokines in the
resolution of inflammation:
key players and targets for
therapeutic modulation
Vivian Louise Soares Oliveira*, Paul Proost and Sofie Struyf*

Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation,
Rega Institute, KU Leuven, Leuven, Belgium
The resolution of inflammation is an active, tightly regulated process essential for

restoring tissue homeostasis after an inflammatory process. While chemokines

are classically recognized for their roles in leukocyte recruitment and immune

cell positioning during the onset of inflammation, emerging evidence highlights

their pivotal functions in orchestrating the resolution phase, as well. The

chemokine system contributes to inflammation resolution through several

complementary mechanisms, including the depletion of pro-inflammatory

chemokines, the generation of autoantibodies, the promotion of neutrophil

reverse migration, the recruitment and polarization of pro-resolving immune

cells such as macrophages and regulatory T cells, and the induction of tissue

repair and disease recovery. Modulating chemokine-receptor interactions,

enhancing the activity of pro-resolving chemokines, or blocking detrimental

chemokine signaling pathways represent promising strategies for the treatment

of excessive inflammation or chronic inflammatory diseases. In addition,

modulation of glycosaminoglycan interactions or chemokine-modifying

enzymes, might also be useful in this context. In this review, we explore the

roles of chemokines in resolution, with a focus on their mechanistic

contributions to immune modulation and their potential as therapeutic targets

for restoring immune balance.
KEYWORDS

chemokines, chemokine receptors, resolution of inflammation, immune modulation,
leukocyte recruitment
Introduction

Resolution of inflammation

Resolution of inflammation is a highly coordinated process that restores tissue

homeostasis after an inflammatory response. This process is not a passive stop of

inflammation but involves a dynamic shift in cellular and molecular mechanisms to

counterbalance the pro-inflammatory phase (1). Effective resolution requires the
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1717666/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1717666/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1717666/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1717666/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1717666&domain=pdf&date_stamp=2025-11-19
mailto:vivian.oliveira@kuleuven.be
mailto:sofie.struyf@kuleuven.be
https://doi.org/10.3389/fimmu.2025.1717666
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1717666
https://www.frontiersin.org/journals/immunology


Oliveira et al. 10.3389/fimmu.2025.1717666
termination of inflammatory signaling, the removal of pro-

inflammatory immune cells and debris, and the initiation of

tissue repair pathways. Failure in the resolution of inflammation

can lead to chronic inflammation, fibrosis, and/or autoimmunity

(2). One of the first steps in resolution is the decrease in production

of pro-inflammatory mediators, including cytokines such as tumor

necrosis factor alpha (TNF-a), interleukin (IL)-1b, and IL-6, as well
as lipid mediators such as leukotrienes and prostaglandins.

Simultaneously, neutrophil recruitment is ceased. Those

neutrophils already present in inflamed tissues either go into

apoptosis or may acquire anti-inflammatory properties, due to the

production of vesicles that suppress complement activation,

decreasing further neutrophil recruitment and reducing tissue

damage (3). Eventually, apoptotic neutrophils in the tissue are

cleared by macrophages in a process called efferocytosis, which

not only removes cellular debris but also actively promotes the

transition to a pro-resolving environment by triggering macrophage

reprogramming toward an anti-inflammatory and tissue-repair

phenotype (4–7). The subsequent cascade of pro-resolving

responses involves a coordinated network of signaling events that

collectively suppress inflammation and restore tissue homeostasis.

Upon engulfing apoptotic neutrophils, macrophages undergo

metabolic and transcriptional reprogramming characterized by

increased production of anti-inflammatory cytokines such as IL-

10 and transforming growth factor beta (TGF-b), as well as the

downregulation of pro-inflammatory mediators (8, 9). This

reprogramming not only limits further leukocyte recruitment but

also fosters tissue regeneration by stimulating fibroblast activation,

angiogenesis, and matrix remodeling (10, 11). In this way, the

clearance of apoptotic neutrophils serves as a central turning point

that transforms the inflammatory environment into one conducive

to resolution and repair.

Among the cells involved in the resolution of inflammation,

macrophages play an essential and multifaceted role. They originate

from two major ontogenic sources: tissue-resident macrophages,

arising from embryonic hematopoietic progenitors, and monocyte-

derived macrophages, which develop from circulating monocytes

during inflammation. This distinction is crucial, as tissue-resident

macrophages are generally anti-inflammatory, maintaining

homeostasis by constantly clearing apoptotic cells, which imprints

a tolerogenic and anti-inflammatory phenotype (12, 13). In

contrast, monocyte-derived macrophages are typically pro-

inflammatory during the acute phase of inflammation, but can

transition toward a pro-resolving phenotype as the inflammatory

response subsides (14).

Besides the already mentioned efferocytosis, macrophages

contribute to the production of pro-resolving mediators, including

specialized pro-resolving lipid mediators (SPMs) such as resolvins,

maresins, and protectins. Their synthesis can be stimulated by

apoptotic bodies, extracellular vesicles from the microenvironment

or through trans-cellular biosynthesis in cooperation with other cells.

These mediators collectively facilitate the resolution of inflammation

and promote tissue repair (4, 15–18). Additionally, by responding to

signals from the environment, macrophages undergo polarization

toward an anti-inflammatory and pro-resolving phenotype,
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feature of M2 macrophages is their expression of scavenger

receptors such as CD163, CD206, and MerTK, which enhance their

ability to clear apoptotic cells and diminish inflammation (4–6).

Although the M1/M2 classification is widely used, it presents clear

limitations. Transcriptomic analyses of murine macrophages revealed

that macrophages associated with resolution exhibit a distinct genetic

signature compared to conventional M2 macrophages. For instance,

ccl5 transcripts are enriched, suggesting a specific role for this

chemokine in the resolution process. This study also highlighted

the differences between the cells polarized in vitro with defined

cytokine stimuli and in situ macrophages (22). Thus, the proposed

subdivision of M2 macrophages into additional subtypes remains

controversial, and studies examining chemokines and their receptors

in the context of macrophage polarization and resolution often fail to

differentiate among various pro-resolving populations (23, 24).

Therefore, we chose to maintain the simplified M1/M2

nomenclature, as further subdivision into M2 subtypes could

introduce unnecessary complexity and potential confusion.

Besides macrophages, other cell types contribute to resolution of

inflammation. Regulatory T cells (Tregs) secrete IL-10 and TGF-b,
further dampening inflammation and supporting tissue repair. Innate

lymphoid cells (ILCs), B cells and mesenchymal stromal cells also

release pro-resolving mediators that modulate immune responses

and prevent chronic inflammation (25–27). Additionally, endothelial

cells and fibroblasts play a role in restoring vascular integrity and

extracellular matrix homeostasis.

In summary, resolution of inflammation is a well-orchestrated

process involving not only the cessation of pro-inflammatory

responses but also the active engagement of cellular and

molecular pathways that promote healing. The balance between

pro-inflammatory and pro-resolving signals is crucial, making the

study of resolution mechanisms highly relevant for the development

of therapeutic strategies for treatment of inflammatory and

autoimmune diseases.
Chemokine system

Chemokines, or chemotactic cytokines, are a family of relatively

small secreted proteins that signal through G protein-coupled

receptors (GPCRs) and are structurally characterized by the

presence of four conserved cysteine residues (28, 29). The hallmark

function of chemokines is to induce and guide the directional

movement of cells, especially leukocytes. Additionally, chemokines

trigger the activation of integrins and initiate effector functions in the

target cells, e.g., the release of granules by polymorphonuclear cells, or

influence cell survival (30). Therefore, chemokines are important in

inflammation, but specific chemokines also act in homeostasis,

angiogenesis, and embryogenesis (31–33). Based on the position of

the cysteine residues in the N-terminal region of their sequence,

chemokines are classified into 4 subfamilies (1): CC chemokines have

two adjacent N-terminal cysteines (2), CXC chemokines present one

amino acid between the two first cysteines (3), the CX3C chemokine

has 3 amino acids between the two first cysteines, and (4) C
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chemokines possess only one of the usually conserved N-terminal

cysteines. The CXC chemokine subfamily can be further subclassified

into Glu-Leu-Arg (ELR)+ and ELR- CXC chemokines. The ELR+

CXC chemokines are associated with neutrophil recruitment, signal

through chemokine receptors CXCR1 and/or CXCR2 and in humans

include CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and

CXCL8 (34, 35).

Chemokine receptors
In addition to GPCRs, chemokines can bind to atypical

chemokine receptors (ACKR) (36) and glycosaminoglycans

(GAGs) (37). Chemokine-binding GPCRs are classified as CCR,

CXCR, CX3CR, and XCR according to the cysteine motif in their

ligands (38, 39). Interestingly, one chemokine sometimes binds

different receptors and one receptor may transduce signals upon

engagement of distinct ligands. These interactions elucidate

apparent bias in the chemokine system, which allows us to
Frontiers in Immunology 03
understand how one chemokine might promote different

responses in different contexts (40, 41). A GPCR consists of a

single polypeptide chain that is folded into a globular shape and

anchored in the cell’s membrane. These receptors possess seven

transmembrane helices, three extra-cellular and three intra-cellular

loops. Chemokines typically interact with two interaction sites on

their receptors. One being the extracellular N-terminal part of the

receptor and a second in a pocket more buried inside the receptor.

The extracellular loops together with residues in the

transmembrane domains form these chemokine binding pockets.

Binding of chemokines in those pockets induces intracellular

signaling by second messengers such as calcium, cyclic adenosine

monophosphate, and GTPases (42, 43).

Currently, there are 20 identified conventional chemokine

receptors, and they are widely expressed in leukocytes (Figure 1)

(39, 44, 45). During inflammation, chemokines orchestrate

leukocyte trafficking, guiding cells to sites of injury or infection.
FIGURE 1

Chemokine receptors and their ligands. The outer ring of the wheel is composed of representations of the known chemokine receptors from each
of the chemokine families (C, CC, CXC, and CX3C), with the chemokine agonists along the wheel spokes (39, 44, 45). The colors assigned to the
receptors are arbitrary and serve to distinguish the families visually. Chemokine receptors are generally classified as either homeostatic or
inflammatory based on their predominant roles. However, this distinction is not absolute, as their activity and function depend strongly on the
cellular and inflammatory context. In the figure, receptors associated with inflammation are shaded in red, those linked to homeostasis in blue, and
receptors with dual functionality in yellow. Notably, other inflammatory receptors may also contribute to homeostatic processes, given their role in
tissue repair, although this remains to be further explored. In the center, there are some leukocytes that express chemokine receptors. Created in
BioRender; Proost, P (2025).
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Although often discussed in simplified terms, most chemokine

receptors exhibit pleiotropic and context-dependent functions

that extend beyond mere recruitment. Briefly, CXCR1 and

CXCR2 for instance, are predominantly associated with

neutrophil recruitment and activation, yet they also participate in

angiogenesis, epithelial regeneration, and tumor biology; CXCR3 is

largely expressed on activated T cells and NK cells, where it

mediates effector cell migration to inflamed tissues. However, the

ligands of CXCR3 have been shown to downregulate angiogenic

processes (46). CXCR4 plays multifaceted roles including

progenitor cell retention in the bone marrow, T and B cell

homing to secondary lymphoid organs, regulation of dendritic

cell migration, and guidance of hematopoietic and endothelial

precursors. Similarly, CXCR5 is critical for the positioning of B

cells within germinal centers and for T follicular helper cell

localization (34, 39).

CCR receptors are highly versatile and collectively govern the

migration of monocytes, various lymphocyte subsets, NK cells,

eosinophils, basophils, and dendritic cells. In particular, CCR2

and CCR7 are essential for monocyte egress from the bone

marrow and dendritic cell trafficking to lymph nodes, respectively

(28, 45). CX3CR1, on the other hand, mediates adhesion and

migration of monocytes, macrophages, dendritic cells, T cells, and

NK cells, contributing to both immune surveillance and tissue

homeostasis (47).

As previously mentioned, chemokines and their receptors may

have multiple functions or bind differently according to the context.

Thus, it is important to notice that they can recruit other cells and can

be involved in different processes (48). For instance, CCL3, CCL4, and

CCL5 bind to CCR5 to recruit immune cells during inflammation,

but also play a role in HIV suppression by competing with viral gp120

for binding to CCR5, resulting in reduction of viral entry in the target

cells (49, 50). Similarly, CXCL12, which is essential for hematopoietic

stem cell homing, is also exploited by tumor cells for metastasis and

competes with HIV-1 gp120 for binding to CXCR4 (51). CXCL8, as

main human neutrophil chemoattractant, directs neutrophil

migration during acute inflammation, but also promotes tumor

growth through stimulation of angiogenesis and epithelial-to-

mesenchymal transition (52). As shown in Figure 1, chemokines

may be associated with general inflammation or homeostasis, but are

not commonly described as being implicated in the resolution of

inflammation. Nevertheless, evidences indicate that both their

presence and absence can affect immune cell accumulation and

activation during resolution.
Role of chemokines in resolution of
inflammation

Depletion of inflammatory chemokines

One of the initial steps in resolving inflammation is to reduce

neutrophil accumulation at the inflammatory site, mainly by

abrogating their recruitment, but potentially also through

stimulation of reverse migration (53). Therefore, the depletion of
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active inflammatory chemokines in the inflammation site is crucial

to reduce the inflammatory response, facilitating tissue repair, and

restoring homeostasis. Various mechanisms contribute to reducing

levels of active chemokines, including enzymatic processing,

capture by neutrophil extracellular traps (NETs), and

sequestration by receptors without activation of G proteins

(Figure 2). Besides depletion, recent studies have shown that

chemokines are neutralized by autoantibodies, and this may

modulate inflammation and promote its resolution (54, 55).

Depletion of inflammatory chemokines by
enzymatic processing

Different enzymes can affect the function of chemokines,

inducing several post-translational modifications such as site

specific proteolytic cleavage, citrullination, nitration and

glycosylation. In this context, proteolytic processing has been

shown, primarily in vitro, to play a crucial role in the activity

regulation of chemokines. Several enzymes can cleave chemokines,

including matrix metalloproteinases (MMPs), dipeptidyl peptidase

IV (DPP4/CD26), and aminopeptidases such as aminopeptidase N

(ANP/CD13) (29). These modifications can significantly influence

the inflammatory response, not only by inactivating chemokines

but also by producing more potent chemokines, altering their

receptor specificity or modifying their chemotactic properties (56).

MMPs are a large family of calcium-dependent, zinc-containing

endopeptidases that were initially identified through their role in

degradation of extracellular matrix components. However, they

participate in various biological and physiological processes (57–

61). MMPs can cleave chemokines at their N- or C-terminus,

modulating their activity and altering leukocyte recruitment. For

instance, macrophage-secreted MMP-12 cleaves CXC chemokines

at the ELR motif, which is essential for receptor binding, abolishing

the ability to recruit neutrophils, and illustrating how chemokine

processing can be a pro-resolving mechanism (62). Beyond

neutrophils, MMP-processing modifies the activity of several CC-

chemokines, thereby influencing the recruitment of a broader range

of leukocytes, including monocytes, macrophages, lymphocytes,

dendritic cells, and eosinophils. For example, MMP-2 and MMP-

9 cleave CCL2 and CCL7, leading to the loss of their chemotactic

activity for monocytes and lymphocytes (63, 64). The truncated

CCL7 form retains the capacity to bind CCR1, CCR2, and CCR3,

but without inducing migration, thus serving as a functional

antagonist that dampens inflammation (62, 65). Similarly, MMP-

processing of other CC-chemokines, such as CCL8, CCL13, CCL15,

and CCL23, has been shown to alter their ability to attract

leukocytes (62, 64, 66), further contributing to the fine-tuning of

cell trafficking. Notably, although CC chemokines are involved in

the recruitment of various leukocyte subsets, most studies have

predominantly focused on their role in monocyte attraction,

highlighting a knowledge gap that remains to be addressed.

Besides MMPs, CD26/DPP4 is present as a membrane-bound

serine protease on various immune and non-immune cells, and also

in a soluble shed form in plasma. This specific enzyme removes the

two most N-terminal amino acids from a broad list of chemokines,

including CCL3L1, CCL4, CCL5, CCL11, CCL14, CCL22, CXCL2,
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CXCL6, CXCL9, CXCL10, CXCL11, and CXCL12 (56). CD26/

DPP4-mediated cleavage of chemokines often significantly

impacts their activity, either enhancing or diminishing chemokine

activity or altering the receptor specificity depending on the

substrate. While some chemokines such as CCL3L1 are activated

by CD26/DPP4, CCL5 becomes a specific CCR5 agonist and others

including CXCL10, CXCL12, CCL11, and CCL22 are inactivated

following truncation (67). For instance, CXCL12 cleavage by CD26/

DPP4 decreases its affinity for CXCR4, significantly reduces

downstream calcium signaling and CXCL12-driven cell migration

(68, 69).

Aminopeptidase N (APN)/CD13 is another membrane-bound

protease with a wide range of functions, including chemokine

processing (70). Together with CD26/DPP4, APN/CD13

generates truncated forms of CXCL11 with reduced binding,

signaling, and chemotactic properties. This proteolytic process

dampens the immune response (71) and, consequently, promotes

tissue repair. In contrast, CXCL8 appears to be resistant to cleavage

by APN/CD13, highlighting the complexity of chemokine-protease

interactions. This resistance emphasizes the need to investigate

chemokine - protease interactions in different biological contexts, as

their effects may vary depending on the specific chemokine and the

tissue environment (71, 72).

In addition to proteolytic cleavage, citrullination, nitration and

glycosylation may affect chemokine activity. For instance,

citrullination of CXCL12 reduces its biological function, with fully

citrullinated CXCL12 being inactive (73). Similarly, citrullinated

CXCL8 displays reduced chemoattractant and signaling capacity
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through CXCR2, as well as reduced affinity for GAGs (74). Similar

functional impairments have been reported for CXCL10 and

CXCL11, which, despite maintaining their ability to bind CXCR3,

show reduced signaling activity following citrullination (75).

Nitration also reduces the activity of CCL2 (76), CXCL8 (77) and

CXCL12 (78). Although glycosylation has been reported on only a

few chemokines (e.g. on CCL2, CCL14 and CX3CL1) and may affect

protein stability (as evidenced for CCL14), limited information is

available on its biological effects. Reports up to now rather point

towards fine tuning rather than abolishing chemokine activity. For

instance, CX3CL1 is a membrane-bound and highly glycosylated

chemokine and the extend of its glycosylation regulates the

presentation of the chemokine domain to the receptor CX3CR1

(79). In addition, evidence is accumulating for a regulatory role for

glycosylation and tyrosine sulfation of a large number, if not almost

all chemokine receptors (80–86). However, the fact that

glycosylation is regulated by about 200 glycosyltransferase

enzymes of which the expression differs between cells and alters

depending on the activation of cells further complicates the study of

the impact of glycosylation (87).

Importantly, the spatial and temporal expression and activity of

these chemokine and chemokine receptor processing enzymes is

tightly regulated, ensuring that chemokine activity is fine-tuned

according to the inflammatory stage and tissue environment (88–

92). Dysregulation of this processing system has been associated

with chronic inflammatory diseases, such as chronic obstructive

pulmonary disease (COPD) (93), cystic fibrosis (CF) (94), and

rheumatoid arthritis (95). Furthermore, since a number of these
FIGURE 2

Mechanisms of chemokine depletion/inactivation during resolution. Multiple mechanisms contribute to the clearance or inactivation of chemokines
as inflammation resolves. MMPs and other proteases cleave CC and CXC chemokines, generating inactive fragments or molecules with altered
receptor specificity. ACKRs function as scavengers by internalizing chemokines without triggering G protein-coupled signaling but resulting in ligand
internalization and degradation. Classical receptors may transiently adopt a decoy-like role under specific conditions. Specifically, CCR2 has been
shown to act as a chemokine sink, internalizing excess CCL2 to limit inflammatory signaling and promote resolution. Additionally, NETs can capture
and immobilize cytokines and chemokines, reducing their bioavailability and facilitating the transition toward resolution. Autoantibodies that
neutralize chemokines can also contribute to their inactivation. Created in BioRender; Proost, P (2025).
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enzymes also process cytokines, hormones, receptors, and/or

extracellular matrix components, they participate in a broader

regulatory network that coordinates immune responses and

tissue remodeling.

Depletion of inflammatory chemokines by NETs
Another mechanism of chemokine depletion involves the

release of NETs. These are net-like structures composed of DNA,

histones and antimicrobial proteins. Notably, there are several

enzymes associated to NETs that are released by activated

neutrophils such as proteases and peptidylarginine deiminases

that citrullinate proteins (96). These structures were first

identified as a defense mechanism against pathogens, trapping

and neutralizing bacteria, fungi, and viruses and facilitating their

phagocytosis (97). It is known that recruited neutrophils release

NETs to constrain the infection, but additionally to propagate the

inflammation (98, 99). However, subsequent research has revealed

that NETs also play a significant role in modulating inflammation.

After the initial influx of neutrophils, the NETs aggregate, forming

AggNETs, which sequester and degrade inflammatory mediators,

dismantling chemokine and cytokine tissue gradients and inhibiting

further neutrophil recruitment (100). This was demonstrated in a

model of monosodium urate (MSU) crystal-induced gout, where

NETs interrupt the inflammatory cycle by stimulating degradation

of chemokines and proinflammatory cytokines, thus bringing

recruitment of cells and NETosis to a halt and contributing to

resolution of inflammation (101).

Depletion of inflammatory chemokines by decoy
receptors

Chemokine receptors play a crucial role in regulating

chemokine activity, and among them, atypical chemokine

receptors (ACKRs) are especially important for fine-tuning

chemokine availability. These seven-transmembrane spanning

receptors differ from classical chemokine receptors in their broad

ligand-binding profiles, and their inability to trigger conventional G

protein-dependent signaling pathways (102, 103). Structurally and

functionally diverse, the atypical chemokine receptor family

includes five members: ACKR1, also called Duffy antigen receptor

for chemokines (DARC); ACKR2, also called D6; ACKR3, also

called CXCR7; ACKR4, previously called CCRL1 or Chemocentryx

chemokine receptor (CCX-CKR); and ACKR5, also called GPR182

(36). These receptors have different roles and are mostly known to

bind and constitutively internalize their ligands. Acting like decoy

receptors, the ACKRs lack the DRYmotif in the second intracellular

loop, which is involved in coupling to G proteins and is essential to

initiate these classical signaling cascades. While the receptor is

recycled back to the plasma membrane, the ligand is directed

toward lysosomal degradation. Notably, this internalization and

recycling may occur independently of ligand presence. It is known

that the absence of ACKRs leads to dysregulated accumulation of

leukocytes and has different consequences (104, 105).

For instance, the absence of ACKR2 exacerbates inflammatory

responses in several murine models. In the skin, ACKR2-deficient

mice exhibit heightened inflammation following phorbol ester
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administration or complete Freund’s adjuvant (CFA) injection

(105, 106). Similarly, these mice show increased sensitivity to

carbon tetrachloride-induced acute liver injury (107). In lung

models, the absence of ACKR2 leads to increased recruitment of

eosinophils and dendritic cells in allergic asthma (108), and, after

Mycobacterium tuberculosis infection, results in abnormal leukocyte

accumulation in the lungs, kidneys, liver, and lymph nodes,

eventually decreasing survival (109). In human disease, ACKR2

expression is found to be elevated in unaffected skin regions of

patients with psoriasis (110) and in alveolar macrophages of

individuals with chronic obstructive pulmonary disease (111),

potentially due to a compensatory mechanism to excessive

leukocyte recruitment (112). In another context, the lack of

ACKR3 in murine embryos results in an increased number of

natural killer and dendritic cells in the placenta, which in turn leads

to an abnormal cytotoxic response and inefficient trophoblast

invasion (113). Interestingly, reduced expression of ACKR3 has

been observed in trophoblast cells from pregnancies affected by

preeclampsia, suggesting a critical role for this receptor in placental

development (114).

In addition to structural decoy receptors, functional decoy

receptors have been identified within the chemokine system (115,

116). These receptors are structurally identical to signaling

chemokine receptors. However, under specific environmental

conditions, they become uncoupled from intracellular signaling

pathways and do not induce cellular activation or migration.

Nonetheless, they still bind and sequester their ligands, effectively

functioning as decoy receptors. The expression of chemokine

receptors that naturally fail to trigger intracellular signaling has

long been observed in several cell types, such as monocytes and

dendritic cells (117). This is observed when the cells are

simultaneously exposed to a classical inflammatory signal such as

lipopolysaccharide (LPS) together with the anti-inflammatory

cytokine IL-10. Under these conditions, IL-10 prevents the typical

downregulation of CCR1, CCR2, and CCR5 that LPS induces in

monocytes and dendritic cells. Despite high surface expression of

these receptors, the cells are unable to migrate in response to

chemokines such as CCL2, CCL3, CCL4, or CCL5 (116). Besides

the silencing, the expression of these receptors can be increased in

apoptotic neutrophils to sequester more chemokines and lead to

chemokine depletion and resolution of inflammation (118).

Notably, recent findings revealed that CCR2 can act as both a

signaling and scavenging receptor, highlighting that even classical

chemokine receptors may dynamically switch between these

functions depending on the cellular context and inflammatory

environment (119).
Neutralization of inflammatory chemokines by
autoantibodies

Emerging evidence suggests that autoantibodies targeting

chemokines may assist in the resolution of inflammation. These

naturally occurring or infection-induced antibodies can selectively

neutralize pro-inflammatory chemokines, thereby reducing

leukocyte recruitment and dampening excessive immune

activation. Elevated levels of such neutralizing antibodies have
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been observed in individuals recovering from COVID-19, where

higher titers correlated with milder disease and faster recovery,

supporting their protective, inflammation-limiting function (55,

120). In cancer and autoimmune contexts, they are increasingly

recognized as endogenous regulators of inflammation, potentially

contributing to immune homeostasis and preventing chronic

inflammatory responses (54, 121, 122). Collectively, these findings

reveal an additional regulatory layer within the chemokine network,

suggesting that the adaptive immune system itself can aid in

resolving inflammation through the generation of chemokine-

specific autoantibodies.
Reverse migration

Besides the classical cell migration, chemokines may be

involved in regulating the reverse migration of neutrophils, and

this might be important for resolving inflammation. Neutrophils

are typically the first responders recruited to an inflammatory site,

and their prompt clearance from the tissue is vital to prevent

excessive tissue damage. Although the apoptosis of neutrophils is

considered a hallmark of resolution of inflammation, some studies

have shown that neutrophils at the site of the inflammation may

return to the main circulation and do not undergo apoptosis locally

(53, 123, 124).

In the reverse migration process, the plasma levels of certain

chemokines, such as CXCL1 and CXCL2, or other chemokine

receptor ligands, are increased, creating a gradient from the

inflammation site to the blood circulation, in other words, the

classical chemotactic gradient is inverted. In turn, the endothelial

cells capture these chemokines and present them to neutrophils in

the inflammation site, inducing the reverse migration (125–127). It

has been show that, in a murine air pouch model, neutrophils that

regress to the blood vessels have increased expression of CCRL2 and

the level of chemerin, a CCRL2 ligand, in plasma is increased in late

stages of inflammation. In the same study, the neutralization of

chemerin led to a reduction in reverse migration, suggesting that

circulating chemerin attracts neutrophils to leave inflammatory

sites by interacting with CCRL2 (128). In zebrafish, reverse

migration has been shown to depend on CXCL8a and its receptor

CXCR2. Within this model, CXCR2 regulates neutrophil behavior

in inflamed tissues and contributes to the resolution of

inflammation by limiting neutrophil accumulation at the wound

site (129). After returning to the blood vessels, neutrophils can stay

in circulation as a distinct population of long-lived cells, as observed

in peripheral blood of patients with chronic inflammatory arthritis

and atherosclerosis (130). Alternatively, neutrophils can return to

the bone marrow (126) or migrate to remote organs, such as lungs,

where they may have pathological effects (127). These findings

highlight the dual nature of reverse migration: while it may

contribute to the resolution of local inflammation, it might also

lead to inflammatory responses in remote tissues. Despite its

importance in experimental models, the clinical relevance of

reverse migration in humans remains under investigation, as
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zebrafish studies (127–129, 131).

Together with the depletion of chemokines and the clearance of

apoptotic cells by macrophages, the increase of chemokines in the

blood circulation in late stages of inflammation leads to the

reduction of local neutrophil accumulation and allows the return

of homeostasis. Further studies are needed to explore the

consequences of reverse migration and potential strategies to

manipulate this process, in which the chemokine system plays a

key role.
Recruitment and polarization of pro-
resolving cells

The recruitment of pro-resolving leukocytes by chemokines is

an essential step for transitioning from inflammation to tissue

repair and homeostasis. This recruitment involves a shift in the

type of cells present in the tissue, replacing pro-inflammatory cells

with pro-resolving ones, such as pro-resolving macrophages, Tregs,

ILCs, and others (1, 26). Certain chemokines, such as CCL2, CCL5,

and CXCL12, are known to attract monocytes and macrophages to

sites of inflammation, where they can contribute to the resolution

process by clearing apoptotic cells and debris (132). Similarly, CCR4

and its ligands, CCL17 and CCL22, are essential for the recruitment

of Tregs, that contribute to immune suppression by releasing anti-

inflammatory cytokines such as IL-10 and by directly interacting

with other immune cells to dampen their activity (133–137).

Interestingly, engulfment of apoptotic cells by CD169+

macrophages induces expression of CCL22 that, in turn, recruits

Tregs via CCR4, showing once more how efferocytosis triggers

several events linked to resolution (138). In addition to CCR4, Treg

migration is regulated by several other chemokine receptors,

including CCR7, which guides Tregs to lymph nodes in response

to CCL19 and CCL21 (139), and CCR5, which facilitates their

homing to inflamed tissues via CCL3 and CCL4 (140). CXCR3 has

also been implicated in directing Tregs to sites of Th1-type

inflammation through CXCL9, CXCL10, and CXCL11 (141),

while CCR8 and its ligand CCL1 have been shown to mediate

Treg accumulation in tumor microenvironments (142).

In contrast, CCR2 plays a major role in monocyte recruitment

but shows context-dependent roles. For instance, the recruitment of

monocytes, or rather its reduction, does not affect the resolution of

acute respiratory distress syndrome (ARDS) induced by either

malaria (143) or LPS (144) in mice. Although the absence of

monocytes does not directly affect disease progression or

resolution, likely due to compensatory mechanisms such as

alveolar macrophage proliferation (144), the lack of CCR2 might

disrupt the restoration of homeostasis, since it impairs the

reappearance of eosinophils and interstitial macrophages during

recovery (143). Nonetheless, in a model of lung injury induced by

infection with influenza A or treatment with bleomycin, as well as in

a model of lung injury induced by acetaminophen, a subpopulation

of macrophages, dependent on CCR2, was discovered and

associated with tissue repair and regeneration (145). In a context
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of wound healing, CCR2 has also been described as essential given

that, once the CCR2/CCL2 axis is disrupted by stimulator of

interferon genes (STING) deficiency, the recruitment of

monocytes and the accumulation of macrophages in the wound is

significantly reduced. In other words, CCR2/CCL2 signaling, in

particular, facilitates the recruitment of Ly6Chigh monocytes from

the bone marrow and their migration to the wound site, which is

essential for replacing neutrophils and promoting wound healing.

In the absence of proper chemokine signaling, monocyte

recruitment is impaired, leading to prolonged inflammation and

delayed resolution (146).

The effects of chemokines on macrophages, however, goes

beyond their recruitment. They also participate in the regulation

of apoptosis and recognition and clearance of apoptotic cells. CCL1

signaling through its receptor CCR8 on lymphocytes inhibits

apoptosis (30). On the other hand, CX3CL1 (fractalkine)

functions as a “find-me” signal released by apoptotic cells,

attracting phagocytes such as macrophages to the site of cell

death and facilitating the initiation of efferocytosis (147). Also in

hepatic ischemia-reperfusion injury models, the CX3CL1/CX3CR1

axis plays a regulatory role in macrophage-mediated recovery.

Specifically, CX3CR1 signaling modulates the expression of

MerTK, a receptor tyrosine kinase essential for efferocytosis.

Interestingly, CX3CR1 deficiency enhances the capacity of

macrophages to clear apoptotic cells and leads to compensatory

upregulation of other chemokine receptors such as CCR1 and

CCR5. This results in increased immigration of monocytes, that

differentiate locally to macrophages to replenish the Kupffer cell

population and contribute to tissue homeostasis (148).

Besides recruitment and modulation of macrophage activity,

chemokines play a key role in guiding macrophage polarization

toward either the pro-inflammatory M1 or the pro-resolving M2

phenotype (149). For instance, Li et al. (150) have demonstrated

that knocking down CCR1 or CCR5 can impair CCL5-induced

MAPK and NF-kB activation. This, in turn, decreases M1

polarization while simultaneously enhancing IL-4-induced M2

polarization. On the other hand, certain chemokines facilitate the

polarization of macrophages into the M2 phenotype, which is

associated with anti-inflammatory responses and tissue repair.

Specifically, CCL22 has been shown to induce the polarization of

tumor-associated macrophages into the M2 subtype in the context

of cervical cancer. This process may significantly contribute to

progression and increased aggressiveness of a tumor (151, 152).

Also in the context of cancer, CXCL13 has been implicated in

promoting M2 macrophage polarization and facilitating tumor

progression in myeloma osteolytic disease. Similarly, but in other

circumstances, CCL24 plays a fundamental role in angiotensin II-

induced heart failure by promoting the polarization of macrophages

toward the M2 phenotype (152). Taken together, these data indicate

that chemokines play an important and multifaceted role in the

context of the localization of specific subpopulations of

macrophages, as they are not only involved in the selective

recruitment of cells but also actively contribute to their polarization.

It is important to recognize that, while chemokines are

considered important co-factors, they are not the primary drivers
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of macrophage polarization. Cytokines such as interferon (IFN)-g
and IL-4/IL-13 are well-established as crucial regulators in this

process (23, 153). Thus, the interplay between chemokines and the

production of these cytokine mediators must be taken into

consideration when evaluating macrophage polarization.

In addition to macrophages, neutrophils have increasingly been

recognized for their pro-resolving functions. The most studied role

of neutrophils in resolution is that they become apoptotic and are

cleared by macrophages, leading to a cascade of anti-inflammatory

and tissue-repair responses. However, as already discussed,

neutrophils contribute to resolution through mechanisms beyond

their own death (154, 155). These cells may participate in

dampening complement activation and inflammation (3),

promote cytokine scavenging (101), remove tissue debris (156),

induce matrix remodeling (157), and support angiogenesis and

tissue regeneration (158, 159).

Although several studies highlight neutrophil phenotypic

heterogeneity and functional plasticity, the link between different

phenotypes and specific neutrophil subpopulations is not completely

understood, particularly outside the context of cancer. Currently,

neutrophils may be classified into N1, with pro-inflammatory or

anti-tumor functions, and N2, with pro-resolving or pro-tumor

functions. For instance, the number of N2 neutrophils is increased

after myocardial infarction which may help to prevent further wall

thinning of the ventricle (160). Moreover, a study about resolution of

liver injury has shown that, following the phagocytosis of cellular

debris, neutrophils underwent a shift in gene expression towards an

anti-inflammatory and pro-resolving profile. This includes the

upregulation of receptors such as CXCR2 and CXCR4, which

mediate reverse migration and homing to the bone marrow, as well

as the expression of anti-inflammatory and pro-resolving mediators

such as IL-10 and annexin A1 (ANXA1) (161). Similarly, a pro-

resolving population of neutrophils has been identified in late stages of

mouse acute liver injury (162). This population was characterized by

the downregulation of pro-inflammatory genes and is associated with

modulation of macrophage activity and polarization, as well as

promotion of angiogenesis. CXCR4, whose expression in neutrophils

has been linked to angiogenesis and tissue repair, is among the surface

markers of this subset (163, 164). In contrast, the pro-inflammatory

neutrophil subpopulation expresses CXCR5, highlighting how the

expression of specific chemokine receptors plays a pivotal role in

guiding the recruitment of functionally distinct neutrophil subsets to

the liver (162). Interestingly, another study has shown that the

activation of the CCL20-CCR6 axis via TNF-a recruits

proangiogenic VEGFA+ neutrophils to sites of ischemic injury

leading to initiation of angiogenesis and tissue regeneration (165).

More about the different subtypes of neutrophils in vivo and the role of

the chemokine system in this process is yet to be discovered.
Promotion of disease recovery and tissue
repair

Chemokines are traditionally known for their role in initiating

and amplifying inflammatory responses, but growing evidence
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highlights their importance in resolving inflammation and

promoting recovery across various pathological contexts. Once

the inflammatory phase subsides, chemokines contribute to the

restoration of tissue homeostasis by orchestrating the clearance of

apoptotic cells, recruiting reparative leukocytes, and directing

stromal, epithelial, and progenitor cells to damaged areas. This

spatiotemporal regulation ensures that immune responses are

terminated efficiently, preventing chronic inflammation

and fibrosis.

In COVID-19, for instance, chemokines and their receptors

modulate the mucosal immune response, promoting viral clearance

while facilitating symptom resolution. According to Cass et al.

(166), increased levels of the chemokines CCL13, CCL17, and

CCL26 are associated with the development of a Th2-like

immune response in the upper respiratory tract. These

chemokines recruit and activate key immune players such as

ILCs, B cells, and eosinophils, which contribute to virus control

and tissue integrity recovery. Interestingly, therapeutic intervention

with budesonide, a corticosteroid commonly used for asthma and

early COVID-19 treatment (167), can enhance the expression of

CCL17. This upregulation was associated with improved clinical

outcomes, without a demonstrable direct antiviral effect (166).

Aberrant chemokine signaling can, however, impair resolution

and delay healing. In WHIM (warts, hypogammaglobulinemia,

infections, and myelokathexis) syndrome, gain-of-function

mutations in CXCR4 prevent receptor desensitization, leading to

immune cell retention in the bone marrow and contributing to

osteopenia and defective tissue regeneration (168). In this context,

diminishing CXCR4 activity is beneficial (169). Mice treated with

plerixafor (AMD3100), a CXCR4 antagonist, showed a restored

osteogenic capacity, highlighting the importance of a proper

balance in the chemokine system (170, 171).

Besides leukocytes, chemokines regulate the migration of

fibroblasts and endothelial cells, both of which are crucial for

wound healing and tissue remodeling. Importantly, angiogenesis

and lymphangiogenesis are not restricted to the resolution phase.

They also occur during inflammation, where they contribute to

leukocyte recruitment and nutrient supply to inflamed tissues (172).

However, as inflammation resolves, these same processes become

essential for tissue repair and restoration of homeostasis (173).

Chemokines such as CCL2 and CXCL8, as well as other CXCR2

ligands, recruit fibroblasts and endothelial cells to sites of injury,

promoting extracellular matrix (ECM) production and angiogenesis

(174–176). CCR7 and its ligands CCL19 and CCL21 also participate

in fibroblast recruitment in inflammatory conditions such as

rheumatoid arthritis (177) and idiopathic pulmonary fibrosis

(178). These fibroblasts display enhanced migration and

proliferation capacities and secrete vascular endothelial growth

factor (VEGF), which further promotes angiogenesis (177).

Beyond VEGF secretion, the CCR7/CCL21 axis influences

macrophage polarization and Th17 cell differentiation, leading to

osteoclast activation and subsequent vascular remodeling (179).

Similarly, in skin wounds infected with Enterococcus faecalis,

CXCL2 acts together with SPP1 (osteopontin) to coordinate

pathogen control and tissue regeneration. In this context, CXCL2
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not only recruits neutrophils to limit infection but also promotes

angiogenesis, highlighting the dual role of certain chemokines in

both inflammation and tissue repair (180, 181).

Another important chemokine in the angiogenesis context is

CXCL12. Although VEGF is the most studied and recognized factor

for migration and proliferation of endothelial cells (182), CXCL12

coordinates the migration of endothelial cells through the spatially

restricted activation of ACKR3 and CXCR4b (183), promoting

angiogenesis. In ischemic injury, CXCL12-CXCR4 signaling

promotes endothelial progenitor cell (EPC) recruitment and

vascular regeneration, facilitating angiogenesis and restoring

perfusion (184). Furthermore, CXCL12 is essential for promoting

tissue regeneration in organs such as the lungs and liver by

enhancing cell survival, proliferation, and differentiation (185,

186). Although CXCL12 classically binds CXCR4, it also interacts

with ACKR3 that is involved in angiogenesis and cell proliferation

(187, 188). Treatment with ACKR3 antagonists suppressed

symptoms of collagen-induced arthritis in DBA/1 mice, reducing

the number of blood vessels in inflamed joints. These findings

suggest that disease suppression may be mediated, at least in part,

by the inhibition of pathological angiogenesis. Consistently, strong

expression of ACKR3 has been found on endothelial cells in the

synovium of rheumatoid arthritis patients, suggesting a similar

mechanism in human disease (112, 189).

Chemokines also promote lymphangiogenesis, a process

essential during both inflammation and resolution. In inflamed

tissues, lymphangiogenesis facilitates the drainage of edema and the

trafficking of immune cells, whereas in the resolution phase, it

contributes to clearing interstitial fluid, apoptotic cells, and

inflammatory mediators. CCL21, via its receptor CCR7, promotes

the formation of new lymphatic vessels, an essential step in

resolving tissue edema and removing cellular debris (190). This

has been demonstrated in patients with idiopathic diffuse alveolar

damage, in which CCR7+ macrophages were found around the

newly formed lymphatics, suggesting they may participate in

lymphangiogenesis, facilitated by CCL19 from the lymphatic

endothelium (191). This contributes to immune homeostasis and

ensures that the inflammatory response resolves efficiently,

preventing further tissue damage (173). Further along the

resolution process, chemokines regulate the migration, retention,

and activation of progenitor and stem cells, which are crucial for

tissue regeneration and remodeling. For instance, CXCL12 plays a

central role in maintaining hematopoietic stem and progenitor cells

(HSPCs) in the bone marrow niche via CXCR4 signaling, and its

gradient guides the mobilization of these cells into peripheral tissues

during repair (192, 193). Moreover, CCL11 regulates the trafficking

of neural progenitor cells in models of brain injury, suggesting that

chemokine-mediated progenitor mobilization extends beyond

classical immune repair mechanisms (194).

In addition to the many chemokines implicated in angiogenesis

and lymphangiogenesis, CCL5 produced by pro-resolving

macrophages appears to contribute to tissue repair by promoting

wound healing (195). This effect appears to be partially mediated

through the recruitment of stromal cells via CCR1 (196). Other

chemokines, such as CXCL12 and CCL2, play crucial roles by
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promoting stromal cell homing, proliferation, and differentiation

within damaged tissues, thereby supporting angiogenesis and tissue

remodeling (197, 198).

Importantly, the ability of chemokines to promote tissue repair

appears to depend on the surrounding microenvironment. When

acting alongside anti-inflammatory mediators, chemokines may

support tissue regeneration and recovery, whereas their

association with pro-inflammatory factors can hinder healing. In

line with this, a pro-resolving macrophage secretome rich in anti-

inflammatory cytokines and chemokines such as CCL5, CXCL2,

and CCL22 has shown therapeutic efficacy in experimental models

of inflammation (199–201). Conversely, increased CCL5

production together with type IFN-I has been associated with

defective mucosal repair in Crohn’s disease (202).
The chemokine system as a
therapeutic target

Several chemokines and their receptors are under investigation

as therapeutic targets (203). In the context of cancer, the chemokine

receptors CCR4 and CXCR4 have been extensively investigated. An

anti-CCR4 monoclonal antibody, mogamulizumab, has been

approved for the treatment of mycosis fungoides and Sézary

syndrome, and is under evaluation for use in other types of

cancer (204–206). Given that CCR4 is highly expressed in effector

Tregs but not in naïve Tregs, mogamulizumab selectively depletes

effector Tregs without affecting naïve Tregs, which remain essential

for autoimmune suppression (207). Due to its overexpression in

multiple cancer types and its well-established role in tumor

progression via the CXCR4/CXC12 axis, CXCR4 is another

therapeutic target, with inhibitors such as plerixafor being used

for autologous transplantation of bone marrow in patients with

Non-Hodgkin’s lymphoma or multiple myeloma and as a

chemosensitizer (208, 209). Also other antagonists of CXCR4 are

being explored in this context. Among them, the CXCR4 antagonist

mavorixafor enhances CD8+ cell infiltration and decreases

immunosuppressive cells in the tumor microenvironment (210).

In 2024 the FDA approved mavorixafor for patients from 12

years of age on with WHIM syndrome to increase the number of

circulating mature neutrophils and lymphocytes, highlighting the

clinical potential of chemokine receptor targeting beyond oncology

(211). Additionally, CXCR4 blockade with plerixafor has shown

promising results in controlling osteoporosis in WHIM syndrome,

although these studies are still at the preclinical stage (170, 171).

Furthermore, drugs targeting CCR5, such as maraviroc, have been

approved for the treatment of HIV infection, demonstrating how

chemokine receptor blockade can be translated into effective

therapies for infectious diseases.

Regarding the resolution of inflammation, inhibitors of

chemokine receptors are being developed to limit the recruitment

of inflammatory cells to affected tissues in diseases such as

rheumatoid arthritis, multiple sclerosis, and inflammatory bowel

disease. For instance, CCR5 and CCR2 antagonists are being

evaluated for their potential to reduce excessive immune cell
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infiltration and promote Treg cell generation in inflammatory

conditions (212, 213). Moreover, given that chemokines play a

role in tissue regeneration, modulating these pathways could

promote repair of damaged tissue or prevent fibrosis (214). More

specifically, the modulation of the CXCL12-CXCR4 axis is being

vastly explored (52). Enhancing the effects of CXCL12 to promote

stem cell differentiation and revascularization could be beneficial for

organ repair and wound healing (215, 216). Conversely, in

pathological conditions where angiogenesis is harmful, such as

retinopathies and cancers, targeting and blocking CXCL12-

CXCR4 signaling may have therapeutic advantages (217–219).

Thus, the development of strategies aimed at either promoting or

inhibiting CXCL12-driven pathways holds significant therapeutic

potential but needs to be tailored to the specific context of interest

(220). For instance, blocking CXCR4 with plerixafor has

demonstrated pro-healing effects related to stem cell mobilization.

In diabetic mice, a single topical application of plerixafor

significantly accelerated wound healing by mobilizing bone

marrow–derived endothelial progenitor cells and promoting

fibroblast migration and proliferation (221).

Given its crucial role in maintaining homeostasis, various

approaches are being explored to optimize the therapeutic use of

CXCL12 while minimizing side effects, such as utilizing local

administration to precisely target specific tissues (186, 216). In

addition to directly targeting chemokine signaling, modulating

chemokine degradation may also offer therapeutic opportunities,

and both approaches can be combined, as demonstrated by Vågesjö

and colleagues (222). In their study, the authors employed a

CXCL12-delivering Lactobacillus strain that simultaneously

lowered the local pH, thereby inhibiting CD26/DPP4, while

producing CXCL12. This strategy significantly accelerated wound

healing and the bacteria are currently in advanced stages of clinical

testing as a therapeutic approach (223, 224). Furthermore, CD26/

DPP4 is implicated in various inflammatory diseases due to its role

in cleaving several chemokines. Therefore, inhibiting this enzyme

could extend the lifespan of chemokines and, consequently,

enhance their activity (225–227). In turn, the increase of

chemokine activity might recruit specific cells with pro-resolving

effects, such as Tregs (141). Nonetheless, despite its promise,

modulation of CD26/DPP4 activity should be approached with

caution, as this enzyme also processes neuropeptides, peptide

hormones, vasoactive peptides, growth factors, and various

cytokines (67).

Another promising therapeutic approach targeting the

chemokine system is the use of glycosaminoglycan (GAG)-

binding molecules. GAGs play a crucial role in the recruitment of

immune cells by retaining chemokines on the endothelium and

presenting them to circulating leukocytes, thereby facilitating the

interaction between chemokines and their respective receptors (228,

229). Recent studies have highlighted the potential of GAG-binding

peptides derived from chemokines, such as CXCL9 (74–103), as a

therapeutic intervention. In murine models of inflammatory

diseases, such as COVID-19 and antigen-induced arthritis, the

administration of these peptides has been shown to reduce

leukocyte recruitment to the sites of inflammation, likely due to
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the impairment of GAG-chemokine interactions (230–233). This

reduction prevents excessive inflammatory responses and, as a

result, tissue damage is decreased. While the specific impact on

resolution of inflammation requires further investigation, it is

reasonable to suggest that better regulation of leukocyte

recruitment may contribute to a more effective resolution

of inflammation.

Targeting the chemokine system is a promising strategy for

both dampening inflammation and promoting resolution and tissue

repair. Different approaches (Figure 3) have shown positive results

in preclinical models. However, these outcomes are highly

dependent on the specific context, including the tissue, disease

stage, immune cell population, and timing of intervention. Despite

the significant potential of molecules that target the chemokine

network, the underlying mechanisms of this network and the effects
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of inhibiting or stimulating one member are not fully understood,

and the therapeutic window remains to be explored. Much is yet to

be discovered to ensure that chemokine-targeting therapeutic

strategies are both effective and safe across different

pathological settings.
Future directions

The chemokine system has emerged as a critical regulator not

only of immune cell recruitment during inflammation but also of its

resolution. In addition, chemokine receptors, being GPCRs, make

chemokines and their receptors therapeutic targets (203). While

most current strategies focus on inhibiting pro-inflammatory

chemokine signaling to limit immune cell infiltration, future
FIGURE 3

The chemokine system as a therapeutic target. Overview of current and emerging therapeutic strategies aimed at modulating chemokine activity.
These include antagonizing chemokine receptors (e.g., CCR2, CCR5). Fine-tuning the CXCL12-CXCR4 axis may involve use of CXCR4 antagonists to
reduce angiogenesis and tumor growth or to counteract gain-of-function mutations in WHIM syndrome. Alternatively, retaining CXCL12 signaling
results in faster wound healing. Inhibiting the activity of chemokine modifying enzymes, such as DPP4/CD26, may stimulate recruitment of pro-
resolving cells and disrupting interactions of inflammatory chemokines with GAGs through competition with potent GAG-binding peptides showed
beneficial effects in preclinical models of lung and joint inflammation. Such interventions can modulate immune cell infiltration, promote
inflammation resolution, and enhance tissue repair. The clinical outcomes of these strategies are highly context-dependent, varying with disease
type, affected tissue, and timing of the intervention. Created in BioRender; Proost, P (2025).
frontiersin.org

https://BioRender.com
https://doi.org/10.3389/fimmu.2025.1717666
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Oliveira et al. 10.3389/fimmu.2025.1717666
research must deepen our understanding of how chemokines

contribute to the later phases of inflammation, particularly in

driving its resolution and promoting tissue repair.

One promising direction lies in the selective modulation of

chemokine pathways that actively promote resolution, such as those

involved in neutrophil reverse migration, macrophage polarization,

and recruitment of regulatory and tissue-repairing cells. Future

interventions in the chemokine system may focus on modulating

the activity or availability of chemokines also by targeting enzymes

responsible for posttranslational modifications. Similarly, precise

temporal control over chemokine inhibition or enhancement,

targeting specific phases of the inflammatory response, could

minimize tissue damage while preserving essential immune

defense mechanisms. The CXCL12-CXCR4 axis exemplifies this

dual potential, where both the enhancement and inhibition of

signaling may yield therapeutic benefits depending on the timing

and the specific disease context (186).

Moreover, targeting the interactions between chemokines and

GAGs is an emerging strategy with potential to regulate immune

cell recruitment and gradient formation without directly interfering

with receptor signaling (230, 232). As studies already have shown

how GAG-binding peptides can modulate leukocyte recruitment,

further investigation is needed to clarify their role in supporting

inflammation resolution and limiting fibrosis.

Ultimately, translating chemokine-targeting therapies into

effective clinical interventions requires a more nuanced

understanding of their context-dependent roles in inflammation

and the chemokine system redundancy. Integrating single-cell and

spatial transcriptomics with functional studies may help identify

precise chemokine signatures associated with resolution and repair

across tissues and disease models. In parallel, expanding our

knowledge on chemokine modifications, such as proteolytic

modification, citrullination, glycosylation and nitration, and how

they affect biological function may reveal new therapeutic

opportunities, especially in the context of resolution (74, 77).

In summary, the next generation of chemokine-modulating

therapies should move beyond inflammation suppression toward

the fine-tuned orchestration of resolution. Exploring the full

spectrum of chemokine functions and other molecules associated

with that holds great promise for restoring immune balance and

promoting recovery in inflammatory diseases.
Concluding remarks

The chemokine system plays a critical role in both the

inflammatory and resolution phases. During inflammation,

chemokines mediate cellular recruitment to inflammation sites,

and later, during resolution, chemokine depletion is the first step

for limiting inflammation (28). Proteolytic processing by enzymes

such as MMPs and CD26/DPP4, and the activity of atypical

chemokine receptors, play a major role in modulating chemokine

levels and activity (62, 234). However, chemokines appear to have a

more complex role in resolving the inflammatory response than

previously understood.
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One of the mechanisms through which chemokines promote the

resolution of inflammation is by facilitating the recruitment and

polarization of pro-resolving cells, such as M2 macrophages and

Tregs (149). These cells play critical roles in clearing apoptotic cells

and dampening the immune response, thereby contributing to the

restoration of tissue homeostasis and the resolution of inflammation.

Furthermore, certain chemokines, such as CXCL1 and CXCL2, are

implicated in reverse migration of neutrophils back to the circulation,

thus preventing excessive tissue damage (53, 125, 126). Finally,

chemokines are also important for tissue repair by recruiting

fibroblasts, endothelial cells, and progenitor cells to damaged tissue.

This facilitates extracellular matrix production, angiogenesis, and

tissue regeneration, ensuring effective recovery. Chemokines such as

CXCL12 and CCL21 are particularly important for stem cell

recruitment and lymphangiogenesis, highlighting their complex

role in inflammation and homeostasis (186, 190, 220).

In conclusion, the chemokine system plays a crucial dual role in

both promoting and resolving inflammation by modulating cell

recruitment, polarization, and tissue repair. Regarding the clinical

implications, there are several options for therapeutically targeting

the chemokine system and some are already being explored (203).

Nevertheless, despite its vast potential, challenges remain in terms

of specificity and balancing immune modulation without

compromising host defense mechanisms. Future research should

focus on further elucidating the precise mechanisms by which

chemokines regulate the resolution of inflammation, possibly

leading to new therapeutic strategies for controlling inflammation

and enhancing tissue repair.
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Recruited atypical Ly6G+ macrophages license alveolar regeneration after lung injury.
Sci Immunol. (2024) 9:eado1227. doi: 10.1126/sciimmunol.ado1227

146. Chen C, Cai X, Liu Z, Zhang W, Yang J, Tang Y, et al. STING coordinates
resolution of inflammation during wound repair by modulating macrophage trafficking
through STAT3. J Leukoc Biol. (2025) 117:qiae175. doi: 10.1093/jleuko/qiae175

147. Truman LA, Ford CA, PasikowskaM, Pound JD,Wilkinson SJ, Dumitriu IE, et al.
CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage
chemotaxis. Blood. (2008) 112:5026–36. doi: 10.1182/blood-2008-06-162404

148. Zhang H, You G, Yang Q, Jin G, Lv G, Fan L, et al. CX3CR1 deficiency
promotes resolution of hepatic ischemia-reperfusion injury by regulating homeostatic
function of liver infiltrating macrophages. Biochim Biophys Acta BBA - Mol Basis Dis.
(2024) 1870:167130. doi: 10.1016/j.bbadis.2024.167130

149. Ruytinx P, Proost P, Van Damme J, Struyf S. Chemokine-induced macrophage
polarization in inflammatory conditions. Front Immunol. (2018) 9:1930. doi: 10.3389/
fimmu.2018.01930

150. Li M, Sun X, Zhao J, Xia L, Li J, Xu M, et al. CCL5 deficiency promotes liver
repair by improving inflammation resolution and liver regeneration through M2
macrophage polarization. Cell Mol Immunol. (2020) 17:753–64. doi: 10.1038/s41423-
019-0279-0

151. Little AC, Pathanjeli P, Wu Z, Bao L, Goo LE, Yates JA, et al. IL-4/IL-13
stimulated macrophages enhance breast cancer invasion via rho-GTPase regulation of
Frontiers in Immunology 16
synergistic VEGF/CCL-18 signaling. Front Oncol. (2019) 9:456. doi: 10.3389/
fonc.2019.00456

152. Wang Q, Sudan K, Schmoeckel E, Kost BP, Kuhn C, Vattai A, et al. CCL22-
polarized TAMs to M2a macrophages in cervical cancer in vitro model. Cells. (2022)
11:2027. doi: 10.3390/cells11132027

153. Orecchioni M, Ghosheh Y, Pramod AB, Ley K. Macrophage polarization:
Different gene signatures in M1(Lps+) vs. Classically and M2(LPS-) vs. Alternatively
activated macrophages. Front Immunol . (2019) 10:1084. doi: 10.3389/
fimmu.2019.01084

154. Rizo-Téllez SA, Filep JG. Beyond host defense and tissue injury: the emerging
role of neutrophils in tissue repair. Am J Physiol-Cell Physiol. (2024) 326:C661–83.
doi: 10.1152/ajpcell.00652.2023

155. Wang J. Neutrophils in tissue injury and repair. Cell Tissue Res. (2018) 371:531–
9. doi: 10.1007/s00441-017-2785-7

156. Forbes SJ, Rosenthal N. Preparing the ground for tissue regeneration: from
mechanism to therapy. Nat Med. (2014) 20:857–69. doi: 10.1038/nm.3653

157. Harty MW, Muratore CS, Papa EF, Gart MS, Ramm GA, Gregory SH, et al.
Neutrophil depletion blocks early collagen degradation in repairing cholestatic rat
livers. Am J Pathol. (2010) 176:1271–81. doi: 10.2353/ajpath.2010.090527

158. Nishio N, Okawa Y, Sakurai H, Isobe K. Neutrophil depletion delays wound
repair in aged mice. AGE. (2008) 30:11–9. doi: 10.1007/s11357-007-9043-y

159. Paris AJ, Liu Y, Mei J, Dai N, Guo L, Spruce LA, et al. Neutrophils promote
alveolar epithelial regeneration by enhancing type II pneumocyte proliferation in a
model of acid-induced acute lung injury. Am J Physiol-Lung Cell Mol Physiol. (2016)
311:L1062–75. doi: 10.1152/ajplung.00327.2016

160. Ma Y, Yabluchanskiy A, Iyer RP, Cannon PL, Flynn ER, Jung M, et al.
Temporal neutrophil polarization following myocardial infarction. Cardiovasc Res.
(2016) 110:51–61. doi: 10.1093/cvr/cvw024

161. Vandendriessche S, Mattos MS, Bialek EL, Schuermans S, Proost P, Marques
PE. Complement activation drives the phagocytosis of necrotic cell debris and
resolution of liver injury. Front Immunol. (2024) 15:1512470. doi: 10.3389/
fimmu.2024.1512470

162. Maali Y, Flores Molina M, Khedr O, Abdelnabi MN, Dion J, Hassan GS, et al.
Two transcriptionally and functionally distinct waves of neutrophils during mouse
acute l iver injury. Hepatol Commun . (2024) 8:e0459. doi : 10.1097/
HC9.0000000000000459

163. Capucetti A, Albano F, Bonecchi R. Multiple roles for chemokines in neutrophil
biology. Front Immunol. (2020) 11:1259. doi: 10.3389/fimmu.2020.01259

164. Tulotta C, Stefanescu C, Chen Q, Torraca V, Meijer AH, Snaar-Jagalska BE.
CXCR4 signaling regulates metastatic onset by controlling neutrophil motility and
response to Malignant cells. Sci Rep. (2019) 9:2399. doi: 10.1038/s41598-019-38643-2
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