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Background: Pancreatic ductal adenocarcinoma (PDAC) exhibits profound

resistance to immunotherapy due to its highly immunosuppressive tumor

microenvironment (TME).

Objective: This review aims to elucidate the key mechanisms of TME-mediated

immune evasion in PDAC and explore therapeutic strategies to overcome

these barriers.

Methods: A comprehensive analysis of recent studies was conducted, focusing

on the cellular, stromal, and metabolic components of the PDAC TME, alongside

emerging technologies for TME reprogramming.

Results: Dense extracellular matrix, CAF-driven fibrosis, myeloid-derived

suppressor cells (MDSCs), tumor-associated macrophages (TAMs), Tregs, and

metabolic competition collectively impair immune cell infiltration and activation.

Novel interventions—including ECM remodeling, CAF modulation, metabolic

reprogramming, and myeloid cell targeting—show promise in restoring

immune responsiveness.

Conclusion: TME reprogramming represents a critical strategy to enhance

immunotherapy efficacy in PDAC, offering new opportunities for overcoming

immune exclusion and resistance.
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1 Introduction

Despite the groundbreaking success of immune checkpoint

blockade (ICB) therapies in various solid tumors, their efficacy

remains severely limited in a subset of immunologically “cold”

tumors (1–3). An increasing body of evidence indicates that the

tumor microenvironment (TME) constitutes a major barrier to

effective immunotherapy, playing a central role in immune

resistance and tumor immune evasion (4–6). The TME is

composed not only of malignant tumor cells but also a wide array

of non-malignant components, including cancer-associated

fibroblasts (CAFs), immunosuppressive myeloid cells—such as

tumor-associated macrophages (TAMs) and myeloid-derived

suppressor cells (MDSCs)—regulatory T cells (Tregs), abnormal

vasculature, extracellular matrix (ECM), and a distinct metabolic

milieu (7, 8). These elements synergistically establish a profoundly

immunosuppressive landscape that hinders immune cell

infiltration, activation, and antitumor functionality (9).

Among all malignancies that heavily rely on immune evasion

within the TME, pancreatic ductal adenocarcinoma (PDAC) stands

out as one of the most representative and challenging models (10).

PDAC is characterized by an exceptionally high mortality rate and a

dismally low five-year survival rate—less than 9%. It is widely

recognized as an “immune desert” tumor, notoriously unresponsive

to immunotherapy (11).

A major contributor to this poor prognosis is the difficulty of

early detection. Most PDAC cases are diagnosed at an advanced or

metastatic stage, largely due to the lack of specific symptoms and

reliable biomarkers during early tumor development (12, 13).

Recent advances in multi-omics profiling, liquid biopsy, and

artificial intelligence–assisted imaging have shown promise in

identifying early molecular signatures and circulating tumor

components that could enable earlier diagnosis and intervention

(14). However, despite these technological breakthroughs, the

translation of such diagnostic strategies into clinical practice

remains limited, underscoring the urgent need for effective early

detection tools that can complement therapeutic innovation.

The TME of PDAC exhibits a densely fibrotic stroma, primarily

orchestrated by activated CAFs, which secrete excessive amounts of

collagen and hyaluronic acid (15, 16). This creates a formidable

physical barrier that severely impedes the infiltration of immune

effector cells. Moreover, the PDAC TME is enriched with

immunosuppressive cell populations such as TAMs, myeloid-

derived suppressor cells (MDSCs), and Tregs (17). These cells

continuously release inhibitory cytokines—including interleukin-

10 (IL-10) and transforming growth factor-beta (TGF-b)—as well

as immunosuppressive metabolic byproducts, collectively driving

the functional exhaustion of CD8+ T cells (18, 19). Simultaneously,

hypoxia, elevated lactate levels, and an acidic microenvironment

further compromise the viability and cytotoxic activity of immune

cells, reinforcing immune tolerance and facilitating relentless tumor

progression (20, 21).

Conventional ICB strategies have shown limited efficacy in

PDAC, as monotherapeutic immune activation is insufficient to

overcome the profoundly immunosuppressive TME (22). In
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contrast, therapeutic approaches targeting the TME have emerged

as a promising avenue to overcome the immunotherapy resistance

observed in PDAC (11, 23). By strategically modulating key

components of the TME—such as inhibiting CAF activation,

dismantling the dense ECM, reprogramming the function of

myeloid-derived immune cells, correcting aberrant metabolic

states, and restoring vascular normalization—it is possible to

alleviate both physical and immunological barriers (10, 24). These

interventions can facilitate the infiltration and reinvigoration of

effector immune cells, thereby enhancing the efficacy of ICB and

other immunotherapeutic modalities.

Accordingly, this review centers on the theme of “tumor

microenvironment reprogramming,” with the aim of

systematically elucidating the pivotal mechanisms by which the

TME contributes to immune evasion in pancreatic cancer. We

provide an in-depth analysis of the current therapeutic strategies

and research advances targeting various components of the TME,

and explore the potential of TME-directed combination

immunotherapies in overcoming resistance in PDAC and other

immunologically cold tumors. Through this comprehensive

synthesis, we seek to offer a conceptual framework and

translational insights that may guide the development of more

effective and durable immunotherapeutic approaches.
2 The Immunosuppressive TME in
PDAC

Among solid tumors, PDAC exemplifies the archetype of an

immunologically “cold” malignancy, defined by a deeply

immunosuppressive TME that presents formidable barriers to

effective immunotherapy (25). Similar to other “cold” tumors

such as glioblastoma and prostate cancer, PDAC exhibits

profound immune exclusion and myeloid-driven suppression;

however, it is uniquely distinguished by an exceptionally dense

desmoplastic stroma and rigid metabolic landscape that further

restrict immune infiltration. Glioblastoma is dominated by

microglial-mediated immunosuppression and the protective

constraints of the blood–brain barrier, whereas prostate cancer

demonstrates androgen-driven immune modulation and regional

T cell exclusion. The TME in PDAC is composed of a diverse array

of immunosuppressive cell populations and is further distinguished

by extensive stromal remodeling, metabolic dysregulation, and

aberrant activation of cytokine networks (10, 26, 27). Collectively,

these elements converge to create a microenvironment that is

deeply hostile to antitumor immune responses.
2.1 Immunosuppressive cellular
constituents within the TME

2.1.1 Cancer-associated fibroblasts
CAFs represent one of the most abundant stromal cell

populations within the PDAC tumor microenvironment (28).

Single-cell transcriptomic profiling has revealed substantial
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functional and spatial heterogeneity among CAFs, which can be

broadly categorized into three subtypes: myofibroblastic CAFs

(myCAFs), inflammatory CAFs (iCAFs), and antigen-presenting

CAFs (apCAFs) (29, 30). myCAFs, located adjacent to tumor

epithelial cells, express high levels of a-smooth muscle actin (a-
SMA) and are primarily responsible for extracellular matrix (ECM)

deposition, producing collagen and hyaluronic acid that form a

dense desmoplastic stroma (31). This fibrotic barrier restricts

immune cell infiltration and contributes to the hypoxic, high-

pressure microenvironment typical of PDAC.

In contrast, iCAFs, which reside farther from tumor nests,

secrete large quantities of pro-inflammatory mediators, including

IL-6, CXCL12, and LIF (32, 33). These cytokines not only promote

tumor proliferation and survival but also attract and activate

immunosuppressive immune cells such as MDSCs and Tregs,

thereby amplifying local immune suppression. apCAFs,

characterized by the expression of MHC class II but lacking co-

stimulatory molecules CD80 and CD86, fail to properly activate

CD4+ T cells and instead induce tolerance and exhaustion (34).

Across CAF subsets, TGF-b secretion plays a central role in

sustaining immunosuppression by inhibiting cytotoxic T cell

function, enhancing Treg differentiation, and impairing dendritic

cell activation (35). Collectively, CAFs construct both a structural

and biochemical niche that enforces immune exclusion and sustains

the “cold” phenotype of PDAC.

2.1.2 Tumor-associated macrophages
TAMs constitute another dominant immunosuppressive

population in the PDAC TME. They are predominantly polarized

toward an M2-like phenotype that facilitates tumor progression (36).

M2-TAMs secrete high levels of IL-10, TGF-b, and VEGF, which

suppress effector T cell activity while promoting angiogenesis and

ECM remodeling (18, 37). This dual role reinforces both the physical

and immunological barriers that protect the tumor from immune

attack (10). In addition, TAMs express immunosuppressive surface

molecules such as PD-L1, CD206, and Arginase-1 (Arg1) (38, 39).

PD-L1 engagement with PD-1 on T cells induces exhaustion, while

Arg1-mediated arginine depletion limits T cell proliferation and

effector function (40). Under hypoxic conditions, hypoxia-inducible

factor-1a (HIF-1a) further enhances TAM polarization toward the

M2 state and upregulates VEGF, exacerbating immunosuppression

and vascular abnormalities (41, 42). Moreover, TAMs coordinate

closely with other stromal components, recruiting Tregs and

monocytes through chemokines (e.g., CCL2, CCL5) and

stimulating CAFs via TGF-b-dependent feedback loops, thereby

reinforcing the immunosuppressive ecosystem (43, 44).

2.1.3 Regulatory T cells
Tregs are markedly enriched within PDAC lesions and display

an activated phenotype characterized by high FoxP3 and CD25

expression (45, 46). They suppress antitumor immunity through

multiple mechanisms, including IL-2 consumption, CTLA-4–

mediated competition with effector T cells for co-stimulatory

signals, and secretion of IL-10 and TGF-b, which collectively

inhibit T cell activation and cytotoxicity (43, 47). Furthermore,
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Tregs impair dendritic cell maturation and antigen presentation,

thereby blunting adaptive immune priming (48, 49). In the

nutrient-deprived PDAC TME, Tregs exhibit metabolic plasticity,

relying on enhanced fatty acid oxidation and mitochondrial

oxidative phosphorylation to sustain their suppressive functions

under hypoxic stress (50, 51). Through metabolic and cytokine-

mediated crosstalk with TAMs and CAFs, Tregs help maintain a

self-reinforcing immunoregulatory network that sustains immune

tolerance and therapeutic resistance.

2.1.4 Myeloid-derived suppressor cells
MDSCs are highly enriched in PDAC and function as potent

inhibitors of antitumor immunity (52, 53). They suppress T cell

function through metabolic competition and redox-mediated stress.

MDSCs express elevated levels of arginase-1 (ARG1) and inducible

nitric oxide synthase (iNOS), which respectively deplete arginine

and generate nitric oxide (NO) (54). Arginine depletion limits T cell

proliferation, while NO and reactive oxygen species (ROS) disrupt

T cell receptor signaling and induce apoptosis (55, 56). In addition,

MDSCs sequester cysteine, further impairing T cell redox balance

(57). At the immunoregulatory level, MDSCs release IL-10 and

TGF-b to promote Treg expansion, and interact with TAMs

through reciprocal cytokine loops to amplify immune suppression

(58). Together, these mechanisms establish a highly coordinated

network that underpins PDAC’s profound resistance to immune-

based therapies (Figure 1).
2.2 Non-cellular barriers and metabolic
dysregulation within the TME of PDAC

From a non-cellular perspective, the ECM in PDAC is

abnormally abundant and densely structured, constituting a

central component of the physical immune barrier (59). The

ECM is primarily composed of an extensive network of collagen

types I, III, and IV, hyaluronic acid, and fibronectin, forming a

highly cross-linked and mechanically rigid matrix that defines the

structural landscape of the TME (60). This fibrotic matrix is

predominantly secreted and remodeled by activated CAFs, which

play a pivotal role in ECM homeostasis (61). CAFs not only

synthesize large quantities of ECM components but also regulate

their degradation and spatial organization through the secretion of

matrix metalloproteinases (MMPs), thereby maintaining elevated

matrix tension characteristic of PDAC (62). The excessive

deposition of ECM components significantly elevates interstitial

pressure, which in turn compresses the tumor vasculature, leading

to vascular collapse, impaired perfusion, and the establishment of

widespread and chronic hypoxia within the tumor tissue (63, 64).

Such hypoxic conditions exert profound immunosuppressive effects

by dampening the metabolic activity and functional integrity of

immune effector cells. Furthermore, hypoxia promotes the

recruitment and polarization of immunosuppressive cell

populations—such as MDSCs, TAMs, and Tregs—further

reinforcing the immune-refractory state of the TME (65). In

addition to its biomechanical role, the ECM actively participates
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in immunomodulation by engaging with cell surface receptors on

immune cells, including integrins and CD44 (66). These

interactions initiate a cascade of downstream immunosuppressive

signaling pathways, such as focal adhesion kinase (FAK), PI3K-Akt,

and TGF-b signaling, which collectively impair T cell trafficking,

survival, and cytotoxic function (67).
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Moreover, the dense ECM architecture impedes the mobility and

spatial positioning of DCs and T cells within the tumor, thereby

compromising antigen presentation and immune synapse formation

(68). This spatial restriction hinders the initiation and execution of

effective antitumor immune responses (69) (Figure 2). Collectively,

the ECM in PDAC is not merely a passive scaffold but rather a
FIGURE 1

Immunosuppressive cellular constituents within the TME.
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dynamic and active regulator of immune suppression. Its abnormal

accumulation and remodeling create a dual barrier—both physical

and molecular—that shields tumor cells from immune surveillance

(70, 71). Targeting ECM components or CAF-mediated matrix

remodeling has thus emerged as a promising strategy to

decompress the stroma, restore vascular perfusion, enhance

immune cell infiltration, and ultimately improve the efficacy of

immunotherapy in this notoriously treatment-refractory malignancy.
2.3 Hypoxia, metabolic stress, and
chemokine signaling as key factors shaping
immune suppression in the PDAC tumor
microenvironment

Hypoxia and metabolic stress represent another critical axis of

immunosuppression within the TME of PDAC (72). Owing to

pronounced desmoplastic stroma and continuous deposition of

ECM components—such as collagen and hyaluronic acid—by

CAFs, the interstitial pressure in PDAC tissue markedly increases

(73). This heightened mechanical stress compresses tumor

vasculature, resulting in perfusion deficits and the establishment

of widespread, persistent hypoxia (74).

Under hypoxic conditions, HIF-1a and HIF-2a are stabilized

and initiate a broad transcriptional program that includes the

upregulation of VEGF and other pro-angiogenic mediators (75).

However, the resulting neovasculature is often structurally aberrant

and functionally leaky, further exacerbating local hypoxia and

impeding immune cell trafficking. In parallel, HIF signaling also
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induces the expression of multiple immune checkpoint molecules,

including programmed death-ligand 1 (PD-L1) and CD47—the

latter serving as a “don’t eat me” signal that suppresses macrophage

phagocytosis—thereby directly impairing T cell function and

fostering an immunosuppressive milieu (76, 77).

Simultaneously, hypoxia augments aerobic glycolysis (the

Warburg effect), leading to significant accumulation of lactate

within the TME and the formation of a locally acidic

environment (72, 78). This drop in pH directly suppresses the

cytotoxic activity of CD8+ T cells, promoting their functional

exhaustion and impairing proliferative capacity (79). Lactate also

acts on tumor-associated macrophages, skewing their polarization

toward the M2-like phenotype, which is associated with enhanced

immunoregulatory activity and tumor progression (42). In addition,

intense metabolic competition between tumor and immune cells for

critical nutrients—including glucose, glutamine, and tryptophan—

further restricts the metabolic plasticity of T cells, diminishing their

capacity to sustain the energetically demanding antitumor

response (80).

Beyond hypoxia and metabolic stress, PDAC TME harbors a

tightly regulated immunosuppressive signaling network

orchestrated by soluble factors, chemokines, and tumor-derived

extracellular vesicles (81). CAFs play a central role by secreting

CXCL12, which forms a chemokine barrier at the tumor periphery

that restricts CD8+ T cell infiltration into the tumor core and

impairs their spatial positioning (82). CCL2 is abundantly expressed

in PDAC and engages the CCR2 receptor on circulating myeloid

cells, promoting the recruitment of immunosuppressive MDSCs

and TAMs (83). Simultaneously, cytokines such as IL-10 and
FIGURE 2

ECM-mediated physical and immunosuppressive barriers in PDAC.
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TGF-b are widely distributed throughout the TME, contributing to

the maintenance of immune tolerance by inhibiting DCmaturation,

impairing antigen presentation, and reinforcing the suppressive

function of Tregs (84).

In addition, tumor-derived exosomes have emerged as potent

mediators of immune modulation (85, 86). These nanoscale vesicles

are enriched in diverse immunoregulatory cargo—including

microRNAs (e.g., miR-21, miR-146a), immune checkpoint proteins

(e.g., PD-L1, TGF-b), and bioactive lipids—that exert systemic effects

on hematopoietic organs (87). By reprogramming myeloid

progenitors in the bone marrow, exosomes facilitate the preferential

differentiation of MDSCs and other immunosuppressive lineages,

thereby reinforcing systemic immune tolerance from its origin.

Collectively, hypoxia, metabolic stress, and inflammatory

chemokine signaling coalesce in the PDAC TME to construct a

multidimensional and progressively layered immunosuppressive

network (Figure 3). This network not only constrains the

functionality of effector immune cells but also interferes with

nutrient availability, spatial immune cell distribution, and long-range

immunoregulatory signaling. These integrated mechanisms underlie

the profound resistance of PDAC to current immunotherapeutic
Frontiers in Immunology 06
strategies and have become critical focal points for the development

of TME-targeted therapeutic interventions.
3 Mechanisms of immune exclusion
and resistance to immunotherapy

Building upon the multifaceted cellular, stromal, and metabolic

barriers described above, it becomes evident that the

immunosuppressive TME of PDAC is not merely a passive

consequence of tumor progression but rather an actively organized

defense system that enforces immune exclusion and fosters therapeutic

resistance. In this context, monotherapy with immune checkpoint

blockade has consistently yielded minimal clinical benefit, with

objective response rates rarely exceeding 5% (88). Such pronounced

refractoriness cannot be attributed to a single molecular lesion but

instead reflects a highly orchestrated, multidimensional network of

immunological and stromal barriers within the TME (81). Acting in

concert, these barriers establish a systemic and resilient architecture of

immune evasion and therapeutic resistance, posing a formidable

challenge to current immunotherapeutic paradigms (89).
FIGURE 3

Hypoxia, metabolic stress, and chemokine signaling as key factors shaping immune suppression in the pdac tumor microenvironment.
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3.1 Physical barriers: fibrotic stroma–driven
immune exclusion

The uniquely dense fibrotic stroma of PDAC forms one of the

most formidable physical barriers to effective antitumor immunity

(90). Within the tumor microenvironment (TME), cancer-

associated fibroblasts (CAFs) are highly activated and act as the

primary source of extracellular matrix (ECM) components,

including collagen, hyaluronic acid, and fibronectin (91). The

excessive deposition of these ECM elements increases interstitial

fluid pressure and compresses intratumoral blood vessels, resulting

in poor perfusion and hypoxia. These mechanical and structural

alterations create a hostile physical landscape that limits the

penetration of effector immune cells—particularly CD8+ cytotoxic

T lymphocytes and dendritic cells—into the tumor core (92).

In addition to structural impediments, CAFs contribute to

spatial immune exclusion through the secretion of chemokines

such as CXCL12, which activates the CXCR4 signaling axis and

creates a chemotactic barrier that restricts immune cell localization

to the tumor periphery. Furthermore, CAFs secrete high levels of

TGF-b, which exacerbates ECM deposition while simultaneously

exerting potent immunosuppressive effects by inhibiting T cell

activation and cytotoxicity (93). The interplay between these

mechanical and biochemical signals establishes a dual-layered

barrier—both physical and immunological—that represents a

primary obstacle to effective immune infiltration and antitumor

immunity in PDAC (92).

Beyond the physical barrier, CAFs actively modulate immune

exclusion through paracrine signaling. They secrete chemokines

such as CXCL12, which activates the CXCR4 signaling axis and

spatially confines immune cells to the tumor periphery. In parallel,

CAF-derived TGF-b amplifies ECM production while suppressing

T cell activation and cytotoxic function (108). Together, these

mechanical and biochemical mechanisms form a dual-layered

defense system—structural and immunological—that collectively

prevents effective immune infiltration and sustains immune evasion

in PDAC (107).
3.2 Myeloid cell–dominated
immunosuppression

Concurrently, the TME of PDAC is heavily infiltrated by

immunosuppressive myeloid populations, which collectively

establish a profoundly immune-tolerant ecosystem (94). TAMs in

PDAC predominantly exhibit an M2-like immunosuppressive

phenotype and secrete high levels of IL-10 and TGF-b (95). These

factors suppress antigen presentation capacity, upregulate

inhibitory molecules such as PD-L1 and arginase-1 (ARG1), and

directly impair the cytotoxic function of CD8+ T cells (96).

MDSCs contribute to immune evasion through metabolic

competition, depleting key amino acids such as arginine and

cysteine that are essential for T cell proliferation and function

(85). In addition, MDSCs produce ROS and NO, which disrupt
Frontiers in Immunology 07
TCR signaling pathways and induce T cell dysfunction

and exhaustion.

Tregs further amplify the immunosuppressive landscape

through multiple mechanisms. These include competing with

effector T cells for co-stimulatory signals by engaging CTLA-4 on

antigen-presenting cells, secreting IL-10 and TGF-b to directly

suppress effector T cell activity, and consuming IL-2 to restrict

the proliferative capacity of conventional T cells (97).

Together, TAMs, MDSCs, and Tregs form a highly coordinated

immunosuppressive network. This multilayered inhibitory system

ensures that even if a limited number of effector T cells manage to

infiltrate the tumor parenchyma, they are rapidly rendered

dysfunctional or exhausted, thereby severely limiting the efficacy

of immunotherapeutic interventions in PDAC.
3.3 Metabolic competition and immune
exhaustion

Metabolic competition represents a central barrier to effective

antitumor immunity in PDAC, constituting a core mechanism of

immune exclusion (98). Within the PDAC tumor microenvironment,

tumor cells and immune cells engage in intense competition for

metabolic substrates, establishing an energy-deprived niche that

favors immune tolerance (99). PDAC tumor cells exhibit high

glycolytic activity—even in the presence of oxygen—through a

strongly activated Warburg effect, consuming vast amounts of

glucose and thereby depriving infiltrating T cells of the essential

energy required for their activation, proliferation, and effector

functions (100).

Glucose depletion impairs the mammalian target of rapamycin

(mTOR) signaling pathway in T cells, resulting in reduced

proliferation, diminished cytotoxic activity, and early onset of

functional exhaustion. In parallel, both tumor cells and

immunosuppressive myeloid populations, such as MDSCs, highly

express indoleamine 2,3-dioxygenase (IDO), which catalyzes the

degradation of tryptophan into immunosuppressive metabolites like

kynurenine (101). Kynurenine activates the aryl hydrocarbon receptor

(AhR) pathway, promoting apoptosis of CD8+ T cells and the expansion

of Tregs, further reinforcing an immunosuppressive TME (102).

In the context of elevated aerobic glycolysis, lactate

accumulation within the TME further exacerbates immune

dysfunction (103). Acidification of the local environment not only

suppresses the cytotoxic function of CD8+ T cells and NK cells but

also facilitates the polarization of macrophages toward the M2

immunosuppressive phenotype, thereby amplifying immune

evasion mechanisms (104).

Moreover, dysregulated lipid metabolism plays a critical role in

maintaining the suppressive function of TME-resident immune

cells. Immunosuppressive cells such as Tregs, MDSCs, and TAMs

upregulate lipid transporters and scavenger receptors—such as

CD36 and fatty acid-binding proteins (FABPs)—to enhance fatty

acid uptake and sustain their function under metabolic stress (105).

In contrast, CD8+ T cells subjected to lipid peroxidation undergo
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oxidative stress–induced dysfunction, losing their cytotoxic

potential and failing to sustain effective immune surveillance.

Collectively, this hostile metabolic landscape—characterized by

glucose deprivation, amino acid catabolism, lactate accumulation,

and aberrant lipid metabolism—drives progressive T cell

exhaustion and establishes a metabolically repressive environment

that severely limits the efficacy of immunotherapies in PDAC.
3.4 Checkpoint-independent mechanisms
of immune tolerance

A crucial yet often overlooked dimension of immune evasion in

PDAC extends beyond the well-characterized PD-1/PD-L1

checkpoint axis (106). Emerging evidence reveals that PDAC

harnesses a network of alternative, checkpoint-independent

immunosuppressive mechanisms to maintain its profoundly

immune-resistant TME (106). These non-canonical pathways

provide functional redundancy and compensation, helping to

explain the consistently poor clinical response to ICB monotherapy

in this disease.

One such mechanism involves the CD47/SIRPa axis. CD47 is

commonly overexpressed on PDAC tumor cells and interacts with

SIRPa on macrophages, transmitting a potent “don’t eat me” signal

that inhibits phagocytosis and suppresses subsequent antigen

presentation. This immune evasion tactic effectively dampens

innate immune activation and limits downstream T cell priming.

Another key pathway is the Galectin-9/TIM-3 axis, which is also

upregulated in PDAC. TIM-3, expressed on dysfunctional T cells,

NK cells, and myeloid populations, engages with Galectin-9

produced by tumor and stromal cells, leading to CD8+ T cell

exhaustion or apoptosis and further impairing dendritic cell

function and interferon-g secretion (107).

In addition, the IDO–kynurenine–aryl hydrocarbon receptor

pathway represents a metabolically integrated form of

immunoregulation. Elevated IDO expression by tumor and antigen-

presenting cells catalyzes the degradation of tryptophan into

kynurenine, a metabolite that not only suppresses effector T cell

function but also activates the AhR pathway, reinforcing the

expansion and suppressive function of regulatory T cells (108).

Together, these PD-1/PD-L1-independent mechanisms form a

complex and layered immunosuppressive architecture that allows

PDAC to resist immunotherapeutic pressure. Their presence

underscores the urgent need for rational combinatorial approaches

that simultaneously target both canonical and non-canonical immune

escape pathways—such as CD47, TIM-3, and IDO—in order to restore

immune responsiveness in this therapeutically recalcitrant malignancy.
3.5 Clinical failures and mechanistic
summary of immunotherapy resistance in
PDAC

Clinically, numerous immunotherapeutic approaches targeting

PDAC have failed to yield meaningful outcomes. Monotherapies
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using PD-1/PD-L1 inhibitors, as well as combinatorial strategies

involving dual blockade of PD-1 and CTLA-4, have consistently

shown disappointing results in PDAC patients (109). Major clinical

trials—including KEYNOTE-158 and CheckMate 032—have

reported objective response rates below 5% in microsatellite-stable

(MSS) PDAC, which represents the vast majority of cases (110).

Moreover, attempts to enhance antitumor immunity by co-

administering myeloid-targeted agents, such as CSF1R inhibitors,

have also failed to overcome the profound immunosuppression

characteristic of the PDAC tumor microenvironment (111).

These clinical failures underscore the fact that immune

resistance in PDAC is not driven by isolated activation of the PD-

1/PD-L1 axis alone. Rather, it reflects a complex and multifactorial

resistance program in which spatial barriers, immunosuppressive

cell populations, metabolic constraints, and non-canonical immune

checkpoints interact to sustain a highly suppressive ecosystem. This

systemic model of immune evasion highlights the inadequacy of

conventional checkpoint blockade strategies when applied to such

an immunologically hostile tumor.

In summary, immune exclusion in PDAC should not be viewed

as a standalone phenomenon, but as an emergent property of a

highly interconnected and dynamic immunosuppressive landscape.

The convergence of physical ECM barriers, a dense network of

immunosuppressive cells, metabolic competition, and redundant

immunoregulatory signaling pathways collectively constitutes the

biological foundation underlying the universal failure of

immunotherapy in PDAC. A comprehensive understanding of

these mechanisms is not only essential for elucidating the root

causes of therapeutic resistance, but also forms a critical theoretical

framework for the development of next-generation combination

immunotherapies—particularly those aimed at reprogramming the

TME to restore effective antitumor immunity.
4 TME-targeting therapies currently
applied in clinical cancer treatment

Given the intricate network of immune exclusion mechanisms

delineated above, it has become increasingly clear that overcoming

PDAC’s profound immunoresistance requires not only immune

activation but also strategic reprogramming of its tumor

microenvironment. In this context, modulation of the TME has

emerged in recent years as a clinically relevant strategy to enhance

the efficacy of cancer therapies. While many TME-directed agents

remain under investigation, several therapeutic modalities have

already entered clinical practice or are approved for specific

malignancies. These clinically established strategies mainly target

stromal remodeling, angiogenesis inhibition, immune checkpoint

blockade, and CAF regulation. In PDAC, a cancer characterized by

a highly desmoplastic and immunosuppressive TME, these

approaches are often used in combination with chemotherapy to

improve drug delivery and immune responsiveness.

Clinically validated TME-targeting therapies have become

integral to cancer treatment paradigms. Immune checkpoint

inhibitors (ICIs) such as pembrolizumab and nivolumab have
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demonstrated durable efficacy across multiple malignancies;

however, their benefit in PDAC remains limited due to the highly

immunosuppressive stroma. Anti-angiogenic therapies like

bevacizumab and ramucirumab are established components of

treatment for colorectal and lung cancers, and have shown

potential to improve TME perfusion and immune infiltration in

PDAC when combined with ICIs.

Additionally, chemotherapeutic agents, especially gemcitabine-

based combinations, exert indirect TME-modifying effects by

depleting stromal components and inducing immunogenic cell

death. Losartan, an anti-fibrotic agent, and CSF1R inhibitors are

being clinically repurposed to normalize the desmoplastic

microenvironment and modulate tumor-associated macrophages,

respectively, thereby enhancing immune responsiveness (Table 1).

Overall, the integration of TME-modulating therapies into

established treatment regimens represents a clinically relevant

approach for improving therapeutic outcomes, particularly in

refractory malignancies such as PDAC.
5 Emerging technologies and novel
therapeutic platforms for TME
reprogramming in PDAC

Building upon the clinical advances and recognized limitations of

current TME-targeting therapies, emerging technologies are now

reshaping the landscape of PDAC treatment by enabling more precise

and effective reprogramming of the tumor microenvironment. These

innovations—spanning nanotechnology, single-cell and spatial multi-

omics, synthetic biology, and artificial intelligence—are redefining how
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the PDAC microenvironment can be analyzed, targeted, and

therapeutically manipulated.
5.1 Nanotechnology enables targeted
delivery into PDAC’s dense stroma

The dense desmoplastic stroma of PDAC remains one of the

most formidable obstacles to effective drug delivery and immune

infiltration. Nanotechnology provides a versatile platform to

overcome these barriers through both passive accumulation and

active targeting strategies.

Passive targeting relies on the enhanced permeability and

retention (EPR) effect, which enables nanoparticles (typically 50–

150 nm) to preferentially accumulate within tumor tissues due to

leaky vasculature and impaired lymphatic drainage (123). However,

the highly fibrotic and poorly vascularized nature of PDAC limits

EPR efficiency, necessitating the development of actively

targeted nanocarriers.

Active targeting can be achieved by functionalizing nanoparticle

surfaces with ligands, antibodies, or peptides that recognize specific

components of the TME. For instance, hyaluronic acid (HA)-coated

nanoparticles selectively bind to CD44-overexpressing CAFs,

enabling targeted delivery of TGF-b inhibitors to disrupt stromal

fibrosis and enhance T cell infiltration (124). Similarly, lipid

nanoparticles encapsulating colony-stimulating factor 1 receptor

(CSF1R) inhibitors or CD40 agonists have been shown to

reprogram TAMs from an M2-like immunosuppressive

phenotype toward a pro-inflammatory M1 state, thereby restoring

antitumor immune activity (125).
TABLE 1 Clinically used TME-targeting therapeutic strategies in cancer, with emphasis on PDAC.

Therapeutic
category

Representative
agents

Mechanism of action
Approved/clinical

use
Clinical relevance in

PDAC
Ref.

Immune Checkpoint
Inhibitors

Pembrolizumab,
Nivolumab, Ipilimumab

Blockade of PD-1/PD-L1 or
CTLA-4 pathways to restore T-
cell activation

FDA-approved for multiple
cancers (e.g., melanoma,
NSCLC, MSI-high CRC)

Limited efficacy as monotherapy in
PDAC; ongoing combination trials
with chemotherapy or stromal
modifiers

(112–114)

Anti-Angiogenic
Therapy

Bevacizumab,
Ramucirumab

Inhibit VEGF/VEGFR signaling
to normalize tumor vasculature
and improve immune infiltration

Approved for colorectal,
lung, renal, and
hepatocellular carcinoma

May enhance chemotherapy
delivery and T-cell infiltration in
PDAC; explored in combination
with ICBs

(115, 116)

Stromal Remodeling
Agents

Pegylated recombinant
human hyaluronidase
(PEGPH20)

Degrades hyaluronic acid to
reduce stromal density and
improve perfusion

Investigated in PDAC
(Phase III HALO-301); not
yet approved due to limited
survival benefit

Demonstrated improved drug
penetration; conceptually relevant
for future TME modulation

(117)

Chemotherapy-
Induced TME
Modulation

Gemcitabine, Nab-
paclitaxel, FOLFIRINOX

Indirectly remodel immune and
stromal components; reduce
tumor fibrosis

Standard-of-care for
advanced PDAC

Induces immunogenic cell death
and transiently reduces
desmoplasia

(118)

Anti-Inflammatory
and Myeloid-
Targeting Agents

CCR2 inhibitor (PF-
04136309), CSF1R
inhibitor

Reduce tumor-associated
macrophage recruitment and
reprogram immunosuppressive
myeloid cells

Evaluated in PDAC clinical
trials (Phase I/II)

Improve T-cell infiltration and
response to immunotherapy

(119, 120)

Anti-Fibrotic/CAF-
Targeting Therapy

Losartan (angiotensin II
receptor blocker)

Inhibits TGF-b–mediated fibrosis
and normalizes extracellular
matrix

Clinically used
antihypertensive;
repurposed in PDAC trials

Enhances drug delivery and
immune access; used with
FOLFIRINOX or ICBs

(121, 122)
fro
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Beyond biochemica l target ing , s t imul i-respons ive

nanoplatforms provide spatially and temporally controlled drug

release in response to tumor-specific cues such as acidic pH,

elevated ROS, or overexpressed matrix metalloproteinases

(MMPs). For example, pH-sensitive nanocarriers can deliver

cyclic dinucleotide (CDN) STING agonists specifically within the

acidic PDAC microenvironment to activate dendritic cells and

enhance cytotoxic T cell responses. Likewise, ROS-responsive

nanozymes can neutralize oxidative stress, restore redox

homeostasis, and improve T cell survival and function within the

hostile TME (126).

A recent Nature Nanotechnology study demonstrated the

potential of multifunctional nanoplatforms: a DNA-origami-based

system was engineered to co-deliver a CXCR4 antagonist and anti–

PD-1 antibody, effectively disrupting CAF-mediated immune

exclusion and enhancing CD8+ T cell infiltration in murine

PDAC models, leading to significant survival benefits (127).

Together, these advances illustrate that nanotechnology not

only facilitates drug penetration through PDAC’s physical and

immunological barriers but also enables precise modulation of

stromal and immune interactions, making it a powerful adjunct

to immunotherapy and targeted therapy in PDAC.
5.2 Single-cell and spatial multi-omics
reveal high-resolution immune and stromal
landscapes in PDAC

Single-cell and spatial multi-omics technologies have

revolutionized our understanding of the PDAC tumor

microenvironment by enabling high-resolution mapping of cellular

heterogeneity, functional states, and spatial organization. Single-cell

RNA sequencing has delineated distinct CAF subpopulations—

myofibroblastic CAFs, inflammatory CAFs, and antigen-presenting

CAFs—each contributing uniquely to immune evasion and stromal

remodeling (29). Spatial transcriptomics further revealed that iCAFs

preferentially localize near vasculature, secreting chemokines (e.g.,

CXCL12, IL-6) to form chemotactic “fences” that hinder effector T

cell infiltration, while myCAFs cluster around tumor nests, producing

ECM components that reinforce fibrotic encapsulation and restrict

drug diffusion (128).

Beyond fibroblasts, integrated spatial multi-omics studies have

uncovered the coordinated spatial arrangement of immunosuppressive

cells. A landmark study in Cell demonstrated that TAMs, MDSCs, and

exhausted CD8+ T cells co-localize within hypoxic and metabolically

deprived niches, which correspond to sites of poor immune checkpoint

blockade (ICB) efficacy (129). These findings highlight how metabolic

and spatial cues converge to create localized “immune cold zones.”

Epigenetic profiling via scATAC-seq further complements

transcriptomic data by uncovering chromatin-level determinants of

T cell dysfunction. Exhausted CD8+ T cells exhibit closed chromatin

states at lipid metabolism and mitochondrial biogenesis loci,

constraining their metabolic adaptability. Interestingly,

pharmacologic activation of AMPK or inhibition of HDAC3 has
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been shown to restore chromatin accessibility and reinvigorate

effector functions (130).

Emerging single-cell metabolomics and spatial proteomics now

provide an additional layer of insight, allowing researchers to map

metabolic flux and cytokine gradients across the TME. Integrating

these modalities offers a systems-level view of immune-stromal-

metabolic crosstalk, paving the way for precision immunotherapy

that targets specific suppressive niches or reprograms dysfunctional

immune subsets.
5.3 Synthetic biology and engineered
immune cells enable programmable
immunomodulation

Synthetic biology introduces a powerful paradigm for

programmable immune intervention in PDAC, enabling immune

cells to sense, adapt, and remodel the TME in real time. Engineered

immune cells—including macrophages, T cells, DCs, and Tregs—are

now being designed as dynamic “living drugs” capable of integrating

environmental cues into controlled therapeutic responses.

Chimeric antigen receptor macrophages (CAR-Ms) exemplify

this approach. CD47-targeted CAR-Ms combine tumor

phagocytosis with secretion of IL-12 and GM-CSF, leading to

TAM repolarization and promoting CD8+ T cell infiltration

(131). Advanced CAR-M designs integrate metabolic support

circuits (e.g., IL-12–STAT4 or NF-kB–driven modules),

maintaining macrophage activity even within the hypoxic,

nutrient-depleted PDAC TME.

Logic-gated CAR-T cells enhance therapeutic precision through

dual-input sensing of tumor-specific antigens (e.g., mesothelin,

Claudin18.2) and suppressive signals (e.g., TGF-b, PD-L1) (132).
These Boolean circuit-based constructs activate only under defined

TME conditions, improving on-target efficacy while reducing

systemic toxicity.

In parallel, CRISPR/Cas-based immune engineering enables

immune cells to self-regulate cytokine secretion (e.g., STING

agonists, IL-2, IL-15), providing localized immune amplification

without inducing systemic cytokine storms (133). Additionally,

CAR-DC platforms are being developed to strengthen antigen

cross-presentation, while CAR-Treg depletion systems selectively

eliminate immunosuppressive Tregs—together establishing a

tunable immune balance in PDAC models (134).

Collectively, these synthetic biology innovations move beyond

cytotoxic enhancement toward adaptive immune reprogramming,

positioning engineered immune cells as next-generation precision

therapeutics capable of navigating and reshaping PDAC’s

immunosuppressive architecture.
5.4 Artificial intelligence catalyzes tme-
targeted therapy design

Artificial intelligence (AI) serves as the integrative layer linking

data, design, and therapeutic prediction across these platforms. By
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analyzing multidimensional datasets—including single-cell, spatial,

metabolic, and histopathological information—AI models identify

dominant immunosuppressive drivers and simulate rational

intervention strategies (135).

For example, a DeepMind–Memorial Sloan Kettering model

identified NOX4 as a key CAF effector and proposed dual

inhibition of FAK and VEGFR2 to disrupt fibroblast–vascular

crosstalk (129). AI-based combinatorial screening predicted that a

triple regimen of STING agonist, LDHA inhibitor, and anti-PD-1

could overcome lactic-acid-driven MDSC accumulation and T-cell

exhaustion (136).

Beyond drug design, generative algorithms now expedite the

discovery of small-molecule immunomodulators, next-generation

lipid nanoparticles, and nanobodies with optimized pharmacokinetic

and immune-targeting profiles (137). Digital pathology platforms

incorporating deep learning dynamically track TME remodeling,

correlate spatial immune metrics with patient outcomes, and guide

real-time therapeutic adjustment (138).

By transforming heterogeneous biological datasets into predictive

and actionable models, AI closes the loop between mechanistic

insight and clinical translation—accelerating the discovery,

optimization, and personalization of TME-targeted therapies.

In summary, nanotechnology penetrates physical and biological

barriers; multi-omics delivers spatially resolved insights; synthetic

biology engineers precision immune effectors; and AI drives
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rational design and real-time optimization (Figure 4). Together,

these innovations create a next-generation framework for

mechanistic TME reprogramming in PDAC, forming a blueprint

for future immunotherapeutic breakthroughs.
6 Clinical trials involving TME-directed
combination immunotherapies

Recent clinical trials have explored the efficacy of TME-directed

combination immunotherapies, aiming to enhance the antitumor

immune response by targeting multiple components of the TME.

These strategies typically combine immune checkpoint inhibitors

(ICBs) with agents that modify the TME to overcome

immunosuppressive barriers.
6.1 MORPHEUS-PDAC (atezolizumab +
PEGPH20 vs. chemotherapy)

The MORPHEUS-PDAC Phase Ib/II trial evaluated the PD-L1

antibody atezolizumab combined with PEGPH20, a pegylated

recombinant human hyaluronidase that degrades hyaluronic acid

in the extracellular matrix (139). The combination achieved an

objective response rate (ORR) of 8.3% and disease control rate
FIGURE 4

Emerging technologies for TME reprogramming in PDAC.
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(DCR) of 41.7%, compared with ORR of 5% in the chemotherapy

control arm. While the treatment was well tolerated, no significant

survival advantage was observed (median progression-free survival,

3.6 vs. 3.4 months), highlighting the difficulty of translating stromal

remodeling into durable immune activation.
6.2 CXCR4 antagonist + PD-1 inhibitor
(plerixafor/AMD3100 + cemiplimab)

A Phase II trial investigated the CXCR4 antagonist plerixafor

(AMD3100) combined with the PD-1 antibody cemiplimab in

metastatic PDAC patients (140). The dual blockade disrupted the

CXCL12–CXCR4 axis, enhancing CD8+ T-cell infiltration. The

regimen achieved stable disease in 36% of patients, with a median

PFS of 2.8 months and OS of 6.9 months. Although no objective

responses were observed, correlative analyses revealed reduced

MDSC frequency and increased effector T-cell signatures,

suggesting partial immunologic reprogramming.
6.3 PAAG regimen (penpulimab + anlotinib
+ chemotherapy)

In a multicenter Phase II study, the PD-1 inhibitor penpulimab

was combined with the anti-angiogenic agent anlotinib and

standard chemotherapy (nab-paclitaxel plus gemcitabine) as first-

line therapy for metastatic PDAC (141). The triplet regimen

achieved an ORR of 31.6%, DCR of 73.7%, and median PFS of

6.8 months, exceeding historical benchmarks for chemotherapy

alone (ORR ≈ 23%, PFS ≈ 5.5 months). These results support the

notion that TME normalization through vascular modulation

enhances immune accessibility and checkpoint efficacy.
6.4 Anti-PD-L1 antibody + CSF1R inhibitor
(durvalumab + pexidartinib)

An ongoing Phase I study (NCT02777710) is evaluating

durvalumab (anti–PD-L1) in combination with pexidartinib

(CSF1R inhibitor) in advanced pancreatic and colorectal cancers.

Interim analyses indicate a manageable safety profile with partial

responses in 2 of 25 PDAC patients (8%) and disease stabilization in

40%, accompanied by reductions in circulating M2-like TAMs and

increased intratumoral CD8+ T-cell density. These findings provide

early evidence that selective myeloid reprogramming can synergize

with ICB to reshape the immunosuppressive milieu.

Collectively, these clinical trials underscore both the promise and

the limitations of TME-directed combination immunotherapies in

PDAC. While targeted modulation of stromal, vascular, and immune

compartments has yielded modest improvements in clinical

endpoints, durable responses remain elusive. The heterogeneous

and dynamically evolving nature of the TME continues to
Frontiers in Immunology 12
constrain therapeutic efficacy, emphasizing that successful

translation will depend on overcoming biological and technological

barriers that limit immune reprogramming.
7 Challenges and future perspectives

Building upon the clinical findings summarized above, it has

become increasingly evident that reprogramming the TME in

PDAC remains a formidable challenge. Despite encouraging

preclinical and early clinical signals, most TME-targeted strategies

have yielded only modest and transient benefits in patients. This

translational gap highlights the multifactorial resistance

mechanisms that operate within the PDAC microenvironment—

ranging from profound stromal desmoplasia and immune exclusion

to metabolic and spatial heterogeneity—that collectively restrain

durable antitumor immunity.

To achieve meaningful and lasting therapeutic responses, future

research must move beyond single-target interventions toward an

integrated understanding of the dynamic crosstalk among stromal,

immune, and metabolic networks. Such progress will depend not

only on refining the biological rationale for TME reprogramming

but also on improving the technological platforms that enable

precise modulation of the tumor milieu in vivo. In this context,

addressing key challenges—including spatial and functional

heterogeneity, therapeutic timing and sequencing, biomarker-

driven patient stratification, and the rational design of multi-

targeted personalized strategies—will be crucial to advancing the

next generation of TME-directed immunotherapies (Figure 5).
7.1 Addressing spatial and functional
heterogeneity of the TME: precisely
redefining the “therapeutic target”

One of the most formidable barriers to precision

immunotherapy in PDAC is the spatial and functional

heterogeneity of the TME. Distinct subpopulations of CAFs,

TAMs, MDSCs, and Tregs exhibit markedly different spatial

distributions and immune-modulatory functions within the

tumor mass. For instance, iCAFs often localize around

vasculature and form chemokine-mediated exclusion zones,

whereas myCAFs predominantly cluster around epithelial

compartments to construct rigid ECM barriers (29). Similarly,

metabolic gradients—including hypoxia and acidity—are spatially

heterogeneous, directly shaping immune cell infiltration and

effector functionality (142).

To effectively overcome the complex barriers posed by the

PDAC tumor microenvironment, continued innovation in spatial

multi-omics technologies is essential. Techniques such as spatial

transcriptomics and proteomics are now making it possible to

generate high-resolution, spatially resolved maps of immune

architecture within tumors (143). When integrated with single-
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cell analyses, these tools can construct detailed “immuno-

architectural atlases”, offering a new framework for understanding

and targeting the immune landscape of PDAC. At the same time,

progress in nanomedicine is enabling more precise therapeutic

interventions. Advanced drug delivery systems—particularly

nanoparticles engineered to respond to specific biochemical cues

like hypoxia, reactive oxygen species, or acidic pH—can release

their payloads in a site-selective manner, focusing treatment within

the most immunosuppressive regions of the tumor. Further

refinements, such as the incorporation of externally triggered
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release mechanisms (e.g., light, magnetic fields, or ultrasound),

add another layer of spatial and temporal control, offering a

promising strategy to address the heterogeneity of the PDAC

microenvironment and improve therapeutic efficacy.

From a theoretical perspective, these efforts may converge into a

novel conceptual framework termed “Spatial Immuno-Oncology”

representing a next-generation subdiscipline that integrates spatial

biology with immune modulation to inform the design of

topologically tailored immunotherapies. As spatial resolution

becomes an indispensable layer in understanding and treating
FIGURE 5

Challenges and future perspectives.
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cancer, this approach is poised to fundamentally reshape how we

identify targets, deliver therapies, and measure responses in highly

complex malignancies like PDAC.
7.2 Optimizing the timing and dosing of
TME reprogramming and immune
checkpoint blockade

A major translational bottleneck in integrating TME

reprogramming with immune checkpoint blockade (ICB) lies in

defining the temporal and quantitative parameters that govern

synergistic efficacy. Conventional concurrent administration

strategies often fail to achieve durable immune activation and

may paradoxically heighten immune-related adverse events

(144, 145). This limitation reflects the temporal heterogeneity and

adaptive plasticity of the TME, in which immune, stromal, and

metabolic compartments evolve continuously in response to

therapeutic pressure.

During the course of therapy, TME components undergo

dynamic state transitions that critically determine the success of

subsequent immune interventions. For instance, TAMs can be

epigenetically reprogrammed from an immunosuppressive M2-

like phenotype toward a pro-inflammatory M1-like state, thereby

enhancing antigen presentation and T cell recruitment (146).

Likewise, cancer-associated fibroblasts display remarkable

phenotypic elasticity, with shifts between myofibroblastic and

inflammatory subtypes that modulate extracellular matrix

stiffness, vascular permeability, and T cell infiltration (147).

Simultaneously, restoration of immune metabolic homeostasis—

such as normalization of glucose, tryptophan, or lactate flux—can

recalibrate local nutrient competition and redox balance, enabling

sustained effector T cell function within the metabolically hostile

tumor milieu (148).

These dynamic and interdependent processes suggest that the

immunologic readiness of the TME is a moving target, and that ICB

efficacy depends on administering therapy at an optimal immune-

activation window. Conceptually, this has prompted a “sequential

or staged” immunotherapy paradigm, wherein TME-targeted

reprogramming acts as a priming phase to dismantle

immunosuppressive barriers before checkpoint blockade is

introduced (149). For example, CSF1R inhibition or CCR2/CCL2

axis blockade may be used transiently to deplete or reprogram

immunosuppressive myeloid subsets, generating a time-sensitive

“window of opportunity” characterized by reduced myeloid-derived

suppressor cell burden and enhanced antigen-presenting capacity.

Within this permissive interval, PD-1/PD-L1 or CTLA-4 blockade

can be administered to amplify T cell priming and effector

expansion, maximizing the therapeutic impact whi le

minimizing toxicity.

Moreover, metabolic preconditioning of the TME—through

interventions such as lactate dehydrogenase A (LDHA) inhibition,

arginase blockade, or IDO1 suppression—can function as a

preparatory step that reverses T cell exhaustion, reestablishes
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mitochondrial fitness, and restores cytokine responsiveness,

thereby sensitizing tumors to subsequent ICB exposure (150).

Looking ahead, the temporal optimization of combination

immunotherapies is expected to move beyond empirical trial

design toward data-driven personalization. Computational

modeling, multi-omics time-course profiling, and AI-guided

treatment simulation can be harnessed to predict individualized

therapeutic trajectories—identifying when and how to modulate

distinct TME compartments for maximal synergy. Such integrative

strategies represent a conceptual shift from static combination

therapy to adaptive, phase-specific immunomodulation,

embodying the next frontier in precision immuno-oncology.
7.3 Patient heterogeneity and personalized
immunotherapy in PDAC

One of the major obstacles to effective immunotherapy in

PDAC is the pronounced heterogeneity among patients at

genomic, epigenetic, and microbial levels. Unlike highly

immunogenic tumors such as melanoma or lung cancer, PDAC

typically exhibits a low tumor mutational burden (TMB), resulting

in fewer neoantigens and limited immune recognition (151).

However, a small subset of PDACs (~1–2%) harbor microsatellite

instability–high (MSI-H) or deficient mismatch repair (dMMR)

phenotypes, which are associated with increased TMB, higher PD-

L1 expression, and greater responsiveness to immune checkpoint

blockade (152). Clinical trials have demonstrated durable responses

to pembrolizumab in MSI-H/dMMR PDAC, leading to FDA

approval of PD-1 blockade for this molecularly defined

subgroup (153).

Beyond genomic variability, the tumor microbiome has

emerged as a critical determinant of immunotherapy response.

Distinct microbial communities within PDAC can modulate

immune infiltration and drug metabolism. For instance,

Gammaproteobacteria have been shown to metabolize

gemcitabine into inactive forms, contributing to chemoresistance

(154). More importantly, specific commensal bacteria such as

Bifidobacterium and Akkermansia muciniphila can enhance

antitumor immunity by promoting dendritic cell activation and

improving the efficacy of PD-1 blockade (155, 156). Conversely,

dysbiotic microbial signatures rich in Fusobacterium nucleatum or

Enterobacteriaceae are linked to immunosuppressive myeloid

infiltration and poor clinical outcomes (157).

Furthermore, epigenetic and metabolic heterogeneity within the

TME introduces additional complexity. For example, differential

activation of KRAS downstream pathways or variations in CAF-

derived cytokine profiles can reshape local immune composition,

resulting in variable sensitivity to immunomodulatory agents

(29, 158). Integrating multi-omics profiling—including genomics,

metabolomics, and microbiome sequencing—will be essential for

identifying patient-specific immunological landscapes and

optimizing therapeutic combinations. Ultimately, understanding

and stratifying PDAC patients based on these heterogeneity
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factors may enable precision immunotherapy and improve clinical

response rates.
7.4 Core challenges in clinical translation

Despite the growing promise of TME reprogramming strategies

in enhancing antitumor immunity across various cancer models,

their clinical translation remains hampered by three major barriers

—safety, efficacy heterogeneity, and emerging resistance

mechanisms—each necess i ta t ing deeper mechanis t ic

understanding and refined therapeutic design.

First, safety concerns remain paramount. TME modulation

often involves targeting multiple signaling axes in parallel,

particularly when combined with immune checkpoint blockade

(91). Such multifaceted interventions can provoke systemic

immune activation, resulting in severe immune-related adverse

events such as cytokine release syndrome (CRS), autoimmune

organ injury, and hematologic or hepatic toxicity. Of particular

concern is the risk of off-target immunotoxicity, where broad

myeloid or stromal reprogramming may inadvertently perturb

normal tissue immune homeostasis. For example, inhibition of

CSF1R or CCR2 pathways can disrupt macrophage balance,

leading to excessive inflammatory responses and systemic

toxicity (159).

Moreover, excessive stromal depletion represents a key

controversy in TME-targeted therapy. Although degradation of

the extracellular matrix or depletion of cancer-associated

fibroblasts can enhance immune cell infiltration and drug

delivery, preclinical evidence indicates that over-disruption of

stromal architecture may paradoxically promote tumor invasion

and metastasis (160). Stromal components such as aSMA+

fibroblasts and collagen networks not only restrict tumor spread

but also maintain vascular integrity and mechanical containment.

Their loss may lead to vascular leakiness, hypoxia, and epithelial–

mesenchymal transition (EMT), ultimately accelerating tumor

progression. These risks underscore the need for selective and

reversible stromal reprogramming rather than complete ablation.

Second, pronounced inter-patient and intra-tumoral

heterogeneity in therapeutic response remains a substantial

challenge. Even under standardized treatment regimens, patient

responses can vary dramatically—not only due to intrinsic genomic

differences but also as a result of spatiotemporal dynamics within

the TME. Currently, the lack of reliable, real-time biomarkers

capable of capturing TME remodeling constrains the clinician’s

ability to adjust therapy based on mechanistic feedback, leaving

treatment decisions heavily reliant on empirical judgment rather

than data-driven precision. This severely limits the implementation

of truly personalized TME-based strategies.

Third, the emergence of acquired resistance mechanisms is

becoming a new frontier in the field. The plasticity of the TME—

especially in immunologically “cold” tumors such as PDAC—enables

rapid adaptation in response to targeted interventions (81). When a

dominant immunosuppressive axis (e.g., CSF1/CSF1R) is effectively
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inhibited, compensatory immune escape pathways such as Galectin-

9/TIM-3 or CD47/SIRPa are frequently upregulated (161).

Moreover, metabolic rewiring—such as a shift from lactate

fermentation to fatty acid oxidation—allows both tumor and

stromal cells to circumvent metabolic blockade while sustaining an

immunosuppressive milieu (162).

Finally, therapeutic balance is essential. Tumor adaptation and

plasticity may enable malignant cells to restore immune suppression

over time, while uncoordinated or excessive immune activation

during TME reprogramming can lead to unintended systemic or

local immune perturbations (163). Maintaining stromal integrity and

immune equilibrium therefore represents a central challenge—

requiring precision delivery systems, temporal control of

therapeutic dosing, and integration of multi-omic biomarkers to

guide dynamic adjustment. Collectively, these considerations

highlight that successful clinical translation of TME-targeted

strategies will depend not only on overcoming immunosuppressive

barriers but also on preserving the homeostatic balance of the tumor–

stroma–immune ecosystem.
7.5 Future directions: toward multi-target
synergy and personalized TME remodeling

Addressing these challenges requires a balanced, adaptive

approach. Integrating real-time biomarkers, spatial multi-omics, and

computational modeling can guide dynamic modulation of therapeutic

intensity, maximizing durable antitumor immunity while minimizing

adverse effects. The convergence of TME-targeted interventions with

AI-assisted diagnostics, digital twin modeling, and programmable

therapeutic platforms is expected to enable context-aware, patient-

specific immunological reprogramming, extending beyond PDAC to

other immunologically “cold” malignancies such as prostate cancer

and glioblastoma.

Digital Twin Tumor models are poised to transform precision

medicine in PDAC. By integrating spatial transcriptomics, single-cell

RNA sequencing, proteomics, metabolomics, and longitudinal

imaging, these models reconstruct dynamic, patient-specific

representations of the TME (164). Advanced computational

frameworks—including graph neural networks, multi-omics

integration algorithms, and reinforcement learning—allow

simulation of tumor evolution, capture of cellular interactions, and

iterative updating of model parameters based on patient-derived data.

Digital twins can thus predict therapeutic outcomes under different

interventions, supporting rational design of personalized drug

combinations, dosing regimens, and treatment sequences.

Synthetic biology and nanotechnology further expand TME-

targeted strategies. Next-generation CAR-T cells engineered with

environmental sensing modules can dynamically modulate

cytotoxic programs in response to key TME cues such as TGF-b,
lactate, and ROS (165, 166). Meanwhile, AI-guided nanorobots may

enable spatially precise delivery of immunostimulatory agents,

metabolic inhibitors, or gene-editing tools within specific TME

regions, enhancing both specificity and therapeutic efficacy.
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Ultimately, these approaches converge toward an adaptive,

context-aware immunological intervention paradigm, shifting

from standardized treatments to highly responsive, patient-

tai lored therapies . Such an integrated strategy holds

transformative potential for PDAC and other immunologically

“cold” tumors, establishing a framework for precision TME

remodeling in future cancer therapy.
8 Conclusion

Future therapeutic strategies will need to move away from

simplistic, single-target approaches toward more dynamic,

multidimensional interventions that tackle the complex layers of

immune suppression within the TME. This requires not only the

modulation of immune cells, such as CAFs, TAMs, and MDSCs, but

also the correction of metabolic imbalances, remodeling of the

vasculature, and targeted delivery of therapies to specific TME

regions . The advent of technologies such as spatia l

transcriptomics, nanomedicine, and AI-driven models will

provide unprecedented opportunities for real-time monitoring

and personalized treatment strategies. Ultimately, TME

reprogramming represents a shift in how we conceptualize

PDAC, viewing it not just as a malignant epithelial disease, but as

a product of persistent immune dysregulation. As such, TME

remodeling has the potential to become the cornerstone of

effective PDAC therapy, ultimately overcoming the long-held

perception of PDAC as an immunologically “untreatable” cancer.
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