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Candida albicans resides as a commensal within the oral mucosa but becomes
pathogenic when epithelial or immune equilibrium collapses. Neutrophils
constitute the dominant effector population controlling this transition,
integrating pathogen- and host-derived cues into a coordinated antimicrobial
program. Fungal B-glucan recognition through Dectin-1 and complement
receptor 3 (CR3) activates spleen tyrosine kinase (SYK)—phosphoinositide 3-
kinase (PI3K)—extracellular signal-regulated kinase (ERK) pathways and drives
microtubule-associated protein 1 light chain 3B-Il (LC3B-Il) accumulation and
NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome
assembly, thereby coupling phagocytosis with oxidative burst and neutrophil
extracellular trap (NET) formation. Caspase recruitment domain-containing
protein 9 (CARD9)-dependent interleukin (IL)-17 and tumor necrosis factor-o
(TNF-a) circuits sustain chemokine (C-X-C moitif) ligand 1/2 (CXCL1/2)-directed
neutrophil recruitment and granulocyte colony-stimulating factor (G-CSF)-
mediated granulopoiesis, while tissue matrix components determine site-
specific antigen handling and NETosis thresholds. Hypha-restricted peptide toxin
Candidalysin links epithelial injury to NLRP3 activation and release of IL-1B, IL-6,
and G-CSF, establishing an oropharyngeal candidiasis (OPC)-specific neutrophil
regulatory loop critical for pathogen clearance but also for mucosal inflammation.
Conversely, fungal morphogenesis, biofilm organization, and metabolic rewiring
dampen reactive oxygen species (ROS) generation and promote immune
tolerance and drug resistance. Clinically, G-/granulocyte-macrophage colony-
stimulating factor (GM-CSF) adjuvants and G-CSF-mobilized granulocyte
transfusion offer context-dependent benefits yet pose toxicity risks,
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underscoring the need for precise intervention in neutrophil activation. Advances
in single-cell and spatial multi-omics approaches are uncovering the metabolic
and functional heterogeneity of neutrophils within mucosal environments,
providing mechanistic insight for targeted immunomodulation.

neutrophil, oral candidiasis, Candida albicans, neutrophil extracellular trap (NET),
immune regulatory networks

1 Introduction

Oral candidiasis is one of the most common human fungal
infections, primarily caused by the opportunistic pathogen Candida
albicans. Studies have shown that in immunocompetent
populations, approximately 45% may be colonized by Candida
albicans, while in immunocompromised patients, such as HIV-
infected individuals and organ transplant recipients, the risk of
infection significantly increases (1). More importantly, oral
infections can become a crucial source of deep and disseminated
infections, particularly in severely immunocompromised
patients (2).

As one of the most important effector cells in the innate
immune system, neutrophils play a vital role in resisting Candida
infections. Research indicates that deficiencies in neutrophil count
or function are closely associated with infection occurrence and
prognosis (3). Recent studies reveal that neutrophils participate in
anti-Candida immune responses through multiple mechanisms,
including phagocytosis, release of reactive oxygen species (ROS),
and formation of neutrophil extracellular traps (NETSs) (4, 5).

Notably, neutrophil activation and function exhibit distinct
tissue specificity. Studies have found that at different infection
sites, neutrophils are recruited and activated through specific
signaling pathways and display unique functional characteristics
(6-10). However, Candida albicans has evolved complex immune
evasion strategies. Studies show that clinical isolates can interfere
with neutrophil function through various mechanisms, including
biofilm formation, morphological transition regulation, and
secretion of specific factors (11-14). Particularly in biofilm-
associated infections, Candida not only demonstrates enhanced
immune evasion capabilities but often exhibits significant
antifungal drug resistance. Recent research has also discovered
that Candida albicans can influence neutrophil metabolic
reprogramming, thereby interfering with their immune
function (15).

Neutrophil responses to Candida albicans are dynamic and
highly context dependent, particularly within the oral mucosa,
where epithelial integrity, microbial composition, and local
immune tone collectively shape host resistance. Acting as both
indispensable effectors and potential mediators of tissue injury,
neutrophils mount rapid antifungal activity while at times

Frontiers in Immunology

amplifying inflammation and collateral damage. Recent evidence
indicates that their roles extend beyond direct fungal killing to
encompass metabolic coordination, antigen presentation, and
reciprocal communication with epithelial cells that influence
mucosal immune homeostasis (16, 17). Distinguishing protective
from pathological neutrophil responses remains challenging
because of spatial heterogeneity within mucosal tissues, the
limited translational relevance of existing murine models, and the
complexity of microbial-immune interactions (16). Increasing use
of single-cell and spatial multi-omics approaches has begun to
define context-specific neutrophil programs and their evolution
during Candida infection (18, 19). At the same time, therapeutic
strategies targeting neutrophil metabolism, reactive oxygen species
production, or extracellular trap clearance are showing promise in
enhancing antifungal efficacy while limiting tissue injury (20).
Collectively, these advances provide a framework for developing
precision immunotherapies that strengthen epithelial barrier
defense and restore immune balance in oropharyngeal and other
mucosal forms of candidiasis.

Elucidating the mechanisms of neutrophil function in anti-
Candida infections is crucial for developing new therapeutic
strategies. Currently, individualized treatment options for patients
with immune dysfunction remain limited. With increasing drug
resistance, traditional antifungal treatments face severe challenges
(21). Developing immunomodulatory strategies targeting enhanced
neutrophil function has become an important research direction in
this field. This article will systematically review the progress in
molecular mechanism research of neutrophil involvement in anti-
Candida infections, focusing on their regulatory networks in
different tissue microenvironments, and discuss the translational
prospects of related research in clinical applications (Figure 1).

2 Basic defense mechanisms of
neutrophils

Neutrophils are key innate immune cells in defending against
Candida albicans infections, exerting antifungal effects through a
complex and precise defense network. This defense system
primarily comprises three major effector mechanisms:

phagocytosis, neutrophil extracellular trap (NET) formation, and
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Neutrophil functional network in antifungal immunity. Schematic overview of neutrophil-mediated immune mechanisms during Candida infection,
summarizing key molecular interactions, effector responses, and signaling pathways, together with a panel of OPC-related cytokines.

reactive oxygen species (ROS) production. These mechanisms work
in coordination and close cooperation to form an important barrier
against Candida infections (4, 22, 23).

In terms of phagocytosis, neutrophils rely on various pattern
recognition receptors (PRRs) to recognize pathogen-associated
molecular patterns of Candida albicans (24). Complement
receptor 3 (CR3, consisting of CD11b/CD18) recognizes -
glucans through its unique lectin-like domain (25), Dectin-1
specifically recognizes B-1,3-glucans, while mannose receptors
recognize cell wall mannan components (26). Neutrophil
phagocytosis of Candida exhibits marked functional
heterogeneity, encompassing at least two complementary effector
programs. The first is a phagocytic-oxidative pathway coupled to
the respiratory burst: upon activation, the NADPH oxidase complex
assembles at the plasma and phagosomal membranes to generate
superoxide, which is rapidly dismutated to H,O,; myeloperoxidase
(MPO) then converts H,O, to hypochlorous acid (HOCI) and,
through reactions with amines, forms chloramines with additional
microbicidal activity, thereby achieving potent oxidative killing
within phagosomes and at adjacent extracellular sites (27-29).
The second is a recently established extracellular mechanism—
NETs: during the specialized program NETosis, chromatin
decondenses and the nuclear and granule membranes are
reorganized, culminating in the release of an expanded DNA-
histone meshwork whose surface is decorated with microbicidal
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factors derived from granules and cytosol, including serine
proteases and antimicrobial peptides (e.g., calprotectin). This
enables the capture, confinement, and direct damage of both yeast
and hyphal forms of Candida; NETs are particularly advantageous
when pathogen burden is high, hyphae/biofilms are formed, or
targets are poorly phagocytosed (30, 31). Functionally, NETosis
corresponds to a “rapid-release” phenotype that establishes an
immediate extracellular barrier within a short time, whereas the
respiratory burst-phagocytic pathway provides sustained, primarily
intracellular killing. Together, these programs coordinate across
time and space to constitute a dual, complementary defense
against Candida.

NET formation represents another crucial defense mechanism,
with its structure composed of decondensed chromatin scaffolds
and various antimicrobial proteins (such as elastase, MPO, and
lactoferrin) (32). Studies have demonstrated two parallel but
interconnected pathways for NET formation: NADPH oxidase-
dependent and independent pathways. The former operates
primarily through Fcy receptors and protein kinase C (PKC),
requiring ROS participation, while the latter proceeds through the
Dectin-2-SYK-Ca2+-PKC3-protein arginine deiminase 4 (PAD4)
signaling cascade (33). Particularly noteworthy is the important
regulatory role of extracellular matrix fibronectin (FN) in NET
release, providing new insights into how tissue microenvironments
modulate immune responses (34). Furthermore, hyphal forms of
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fungal filaments induce stronger NET release compared to yeast
forms, reflecting the host immune system’s differential response to
pathogens at various invasion stages (32).

The generation of reactive oxygen species (ROS) constitutes the
third fundamental defense mechanism. Studies have demonstrated
that neutrophils predominantly produce ROS through the
activation of the NADPH oxidase complex, a process essential for
antifungal immunity (35). Indeed, multiple stimuli can initiate
NADPH oxidase complex activation, including phagocytic
processes and the recognition of pathogen-associated molecular
patterns (PAMPs) (36). Significantly, ROS demonstrates
bifunctional properties in antifungal immunity: it serves both as a
direct antimicrobial agent through oxidative damage and as a
critical signaling molecule to regulate various immune processes,
including NET formation (35, 37, 38).

3 Neutrophil immune regulatory
networks

Candida albicans infection can initiate a multi-layered immune
regulatory network: as central effectors, neutrophils integrate signals
from Dectin-1/PRR-SYK, integrins, and complement/FcyR.
Through canonical kinase and inflammasome pathways,
neutrophils spatiotemporally coordinate the progression of
phagocytosis, oxidative burst, and NETs. Meanwhile, cytokine
networks including IL-17, IL-1, and TNF shape granulopoiesis,
recruitment, and effector thresholds, ensuring precise defense
against mucosal and invasive infections (39-42).

At the molecular level, these defense mechanisms are controlled
by sophisticated regulatory networks. The B-1,3-glucan/CR3/SYK
axis (39), similarly, the Dectin-1/SYK pathway (40), Mannan-
binding lectin (MBL)/complement receptor 1 (CRI1, CD35)
signaling system (26) constitute essential molecular foundations
of antifungal immunity, participating in Candida albicans
recognition and signal transduction. These pathways regulate
neutrophil functions, including phagocytosis, autophagy, and the
production and regulation of ROS, through classical signaling
cascades (such as PI3K/AKT and ERK (34)) and the newly
discovered SYK-dependent LC3B-II accumulation mechanism
(39). Furthermore, these molecular pathways activate key
transcriptional regulatory pathways, such as NOD-like receptor
signaling pathways, particularly the NLRP3 inflammasome (35),
which further amplifies the immune response. These upstream
signaling events and molecular regulation provide a solid
foundation for the downstream cytokine network (26). Notably,
these molecular recognition pathways exhibit distinct functional
hierarchies in different infection contexts.

Neutrophil responses to Candida albicans differ markedly
between systemic and mucosal tissues, shaped by distinct receptor
repertoires and microenvironmental cues. In systemic candidiasis,
recognition of fungal B-glucans by the C-type lectin receptor
Dectin-1 (encoded by Clec7a) is pivotal for the activation of
SYK-CARDY-NF-kB signaling, which induces pro-inflammatory
cytokines such as TNF and IL-1P and promotes the generation of
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reactive oxygen species critical for fungal control (43, 44).
Accordingly, Dectin-1-deficient mice are unable to restrict
systemic fungal dissemination (45). In contrast, during
oropharyngeal candidiasis, epithelial recognition of C. albicans
depends primarily on EphA2- and TLR-driven pathways that
(16). While Dectin-1

expression on resident oral macrophages contributes to immune

coordinate early neutrophil recruitment

signaling, its loss does not impair immediate neutrophil infiltration
(46). At later stages, the adaptor CARD9 becomes indispensable for
sustaining IL-17-mediated mucosal immunity and long-term
protection. CARD9-deficient mice—and patients carrying
deleterious CARDY variants—exhibit susceptibility to chronic
mucocutaneous candidiasis due to impaired Thl7 cytokine
responses and persistent fungal colonization (40, 47). These
findings demonstrate that Dectin-1 governs early innate sensing
of fungal B-glucans, whereas CARDY serves as the essential
signaling node linking pattern recognition to durable IL-17-
dependent mucosal protection.

Molecular recognition and signal transduction processes often
work in conjunction with cytokine networks to jointly amplify the
effector functions of neutrophils in the inflammatory environment.
Among these, the IL-17 signaling pathway is a core component of
anti-Candida immunity, exhibiting multiple functions (41, 42).
Candida albicans infection triggers Dectin-1 to activate dendritic
cells and macrophages through caspase recruitment domain 9
(CARDY)-dependent signaling, which subsequently induces IL-17
production (48). The effects of IL-17 release regulatory signals
through two major pathways: firstly, by inducing the secretion of
chemokines such as C-X-C motif chemokine ligand 1 (CXCL1) and
C-X-C motif chemokine ligand 2 (CXCL2) to form chemotactic
gradients that recruit neutrophils to infection sites (49, 50);
secondly, by promoting the production of granulocyte colony-
stimulating factor (G-CSF) to enhance neutrophil generation and
activation(32). Both genetic and acquired defects leading to IL-17
signaling abnormalities are directly associated with neutrophil
dysfunction, representing one of the key pathogenic mechanisms
for susceptibility to mucosal candidiasis (51). Beyond classical
Th17-driven adaptive immunity, early innate IL-17 responses
have emerged as key determinants of neutrophil recruitment
during oropharyngeal candidiasis (OPC). In the oral mucosa,
innate-like lymphocytes—including Y8 T cells, natural Th17 cells,
and group 3 innate lymphoid cells (ILC3s)—produce IL-17A and
IL-17F within hours of C. albicans exposure, preceding
conventional Th17 polarization (52, 53). These cells respond to
epithelial-derived IL-1B and IL-23, stimulating G-CSF release and
neutrophil-attracting chemokines CXCL1 and CXCL5 (54). Mice
lacking ¥8 T cells or ILC3s exhibit delayed neutrophil infiltration
and increased fungal burden (49, 55), highlighting the importance
of the innate IL-17 axis in the early containment of infection. At the
same time, epithelial sensing of pathogen-derived virulence factors
provides an additional layer of neutrophil activation. Among these,
the hypha-associated peptide toxin Candidalysin—encoded by
ECEl—serves as a crucial epithelial trigger bridging fungal
morphogenesis with host inflammation (56, 57). Upon hyphal
contact, Candidalysin induces epithelial membrane damage and
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Ca’" influx, activating EGFR-MAPK and NLRP3 inflammasome
signaling, followed by IL-1f, IL-6, and G-CSF release that drives
neutrophil recruitment (58, 59). In corticosteroid-induced OPC
models, C. albicans ecelA/A mutants lacking Candidalysin fail to
elicit these cytokines, resulting in impaired neutrophil infiltration
and attenuated disease (56). Together, these findings establish
Candidalysin as a central virulence determinant linking epithelial
injury, cytokine induction, and neutrophil activity—thereby
integrating fungal morphogenesis with innate and adaptive
antifungal responses in the oral mucosa.

Furthermore, the TNF-a signaling pathway plays an equally
important role in immune defense against Candida albicans (60).
Following recognition of Candida albicans through pattern
recognition receptors (such as Dectin-1), neutrophils release TNF-
o, which acts on surrounding tissues through autocrine and paracrine
mechanisms, activating NF-kB and mitogen-activated protein kinase
(MAPK) signaling pathways. This further enhances neutrophil
effector functions, including increased phagocytic rate, enhanced
ROS production through NADPH oxidase, and stimulation of NET
(neutrophil extracellular trap) formation (61). The TNF-o. signaling
pathway forms a synergistic network with the IL-17 pathway, jointly
regulating neutrophil-driven antipathogen effector functions.

IL-1ot and IL-1B from the IL-1 family also play crucial roles in
neutrophil regulation. For instance, in early infection, Candida-
stimulated keratinocytes release IL-1o, which stimulates local
endothelial cells to secrete G-CSF, thereby establishing a “tissue-
blood axis” between local tissues and bone marrow for rapid
mobilization of neutrophil proliferation and migration.
Additionally, IL-1-related signaling can precisely control
neutrophil recruitment and directed migration through regulation
of chemokine CXCL1/2 expression (62).

Moreover, some emerging cytokines further enhance neutrophil
functions by working in conjunction with traditional mechanisms.
For instance, IL-33 not only enhances phagocytic capacity by
upregulating complement receptor CR3 expression but also
increases neutrophil fungicidal activity through elevated ROS
generation(41). IL-33 further modulates the Dectin-1/TLR
signaling mechanism, promoting CXCL1/2 secretion, which
strengthens neutrophil migration and activation(41). Animal
experiments have demonstrated that IL-33 pretreatment
significantly reduces Candida albicans infection-related mortality,
indicating its potential clinical application value (63).

Beyond classic molecular recognition and cytokine networks,
recent research has revealed novel regulatory mechanisms of
neutrophils. For instance, NADPH oxidase not only serves as the
primary pathway for ROS generation but also participates in more
complex immune responses through signal regulation functions.
Similarly, neutrophils” adaptive adjustment of glucose metabolism
plays a crucial supporting role in their efficacy. For example, the key
role of glucose transporter-1 (Glutl) in neutrophil local energy
metabolism contributes to efficient immune responses in the lesion
microenvironment (26). These new functions integrate with
classical receptor mechanisms (such as Dectin-1/SYK and CR3/
SYK axes) to further enhance the flexibility and adaptability of
neutrophils in anti-Candida immunity (39).
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4 Current clinical treatment strategies

Current clinical treatment for Candida infections primarily
encompasses two strategies: antifungal drug therapy and immune
function modulation. Antifungal drugs mainly include azoles,
echinocandins, and polyenes. Echinocandins (such as
caspofungin), which inhibit 3-1,3-D-glucan synthase in fungal cell
walls, are the first-line treatment for invasive candidiasis in
neutropenic patients (64, 65). For non-neutropenic patients,
fluconazole remains the empirical treatment of choice due to its
favorable bioavailability and safety profile (66). Polyene drugs (such
as amphotericin B) are primarily used for severe and refractory
infections, though their application is limited by significant
nephrotoxicity (67).

However, antifungal therapy faces significant challenges.
Clinical studies have shown that among patients with prolonged
azole exposure and during hospital outbreaks—particularly those
involving fluconazole—resistant Candida parapsilosis—clinical
isolates often exhibit elevated resistance to fluconazole,
itraconazole, and ketoconazole (68-70). Biofilm formation further
compromises therapy by limiting drug penetration and conferring
marked tolerance, leading to higher risks of treatment failure and
relapse than in non-biofilm infections (71, 72). Mechanistically,
Candida biofilms suppress neutrophil extracellular trap (NET)
release and blunt ROS—dependent Kkilling; these effects are
conserved across clinical isolates with clear strain-dependent
variation in ROS and NET responses (38, 73). In addition,
clinically relevant drug-drug interactions and hepatorenal
toxicities constrain antifungal selection and dosing, complicating
management (71, 74).

Immune function modulation therapy primarily focuses on
hematopoietic growth factor treatment and cytokine regulation
(75, 76). G—CSF is the most commonly used immunomodulator
in clinical practice, promoting neutrophil production and release
while enhancing chemotaxis and phagocytic functions (77, 78). In
neutropenic patients with invasive candidiasis, adjunctive use of G
—CSF or G-CSF-mobilized granulocyte transfusions alongside
antifungal therapy has been associated with improved clearance
and survival, although the quality of evidence is low and
recommendations are conditional (79, 80). Granulocyte
—macrophage colony—stimulating factor (GM—-CSF) has shown
promising results as adjunctive therapy in refractory Candida
infections by augmenting neutrophil phagocytic and fungicidal
activity, including pilot and cohort studies of sargramostim in
fluconazole-refractory disease and refractory invasive fungal
infections (81-83).

Immune function modulation therapy primarily includes
hematopoietic growth factor support and cytokine—pathway
targeting; G—CSF, produced by endothelial and other stromal/
immune cells, promotes neutrophil production and release while
enhancing chemotaxis and phagocytic functions (80, 84). In
invasive candidiasis with profound or prolonged neutropenia,
clinicians may add G-CSF to antifungals to hasten neutrophil
recovery, and consider GM-CSF (sargramostim) in selected
refractory cases to augment phagocyte function; observational
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cohorts report improved responses with GM-CSF, although
evidence quality remains low and use is case—selected (80, 85, 86).
In practice, G-CSF (filgrastim) is administered by subcutaneous or
intravenous injection once daily until a higher absolute neutrophil
count (ANC) recovery, pegfilgrastim is given as a single
subcutaneous dose in prophylaxis contexts, and GM-CSF
(sargramostim) is typically delivered by subcutaneous injection in
short adjunctive courses; in persistent, severe neutropenia,
granulocyte transfusions from G-CSF-mobilized donors can
serve as a short—term bridge while definitive antifungals and
source control proceed (80, 84, 86). At mucosal surfaces, IL-17
and IL-22 cooperate to reduce oral fungal burden and enhance host
defense by inducing epithelial antimicrobial programs, including
S100A8/A9 and the chemokine CCL20, although contributions are
context—dependent (53, 87, 88). IL-33 primes neutrophils for
antifungal activity by tuning TLR and Dectin-1 signaling,
promoting C-X-C motif chemokine receptor 2 (CXCR2)-axis
chemokine responses, upregulating complement receptor 3 (CR3),
and enhancing ROS—dependent killing in experimental models (63,
89, 90). These cytokines currently inform pathogenesis rather than
routine therapy; recombinant IL-17, IL-22, or IL-33 are not
established treatments for candidiasis outside research settings, so
clinical immunomodulation in candidiasis relies on G—-/GM~-CSF
alongside optimized antifungal therapy and source control (80, 88).

However, immunomodulatory therapy has limitations.
Neutrophils can actively tune inflammation via neutrophil serine
proteases (neutrophil elastase, proteinase-3, cathepsin G), which
proteolytically process and can degrade pro-inflammatory
cytokines such as interleukin-1 3 (IL-1B) and tumor necrosis
factor oo (TNF-01); this immune “fine—tuning” helps explain inter
—patient heterogeneity in responses to cytokine— or growth factor—
based therapies (91, 92). Clinically, growth—factor-based
immunotherapy is constrained by adverse effects: G—CSF
commonly causes bone pain and leukocytosis; rare but serious
complications include splenic rupture and capillary-leak
phenomena, warranting careful dosing and monitoring, especially
in patients at pulmonary risk (93, 94). GM—-CSF (sargramostim)
can induce flu-like symptoms, fever, edema, injection-site
reactions, and leukocytosis, with dose—related increases in adverse
events reported and risks detailed in regulatory labeling, including
hypersensitivity and fluid retention in susceptible patients (95).
More broadly, augmenting myeloid cytokine signaling (for example,
with GM-CSF) can be a double—edged sword that skews
inflammatory milieus and, context—dependently, may exacerbate
disease processes, underscoring the need for individualized risk-
benefit assessment and close clinical monitoring when using these
agents as adjuncts to antifungal therapy (96). Recent research has
revealed several important advances. The B-1,3-glucan/CR3/SYK
pathway-dependent LC3B-II accumulation can enhance neutrophil
fungicidal activity (97, 98). Single-cell sequencing has identified
neutrophil subpopulations with distinct functional characteristics
(17,99, 100). Additionally, studies have confirmed that neutrophils
upregulate glucose metabolism through selective expression of
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glucose transporter Glutl to meet antifungal demands (40, 101,
102). These findings provide important clues for developing novel
therapeutic strategies, although their clinical application value still
requires further validation. Building on these advances, recent
single-cell and spatial multi-omics investigations have provided
unprecedented insight into the transcriptional and functional
diversity of neutrophils residing in the oral and periodontal
mucosa. These studies reveal that neutrophils are not a uniform
antimicrobial population but instead encompass transcriptionally,
metabolically, and developmentally distinct subsets that adapt to
specific tissue niches and phases of inflammation.

5 Neutrophil heterogeneity and
single-cell insights

Recent advances in single-cell and spatial multi-omics
technologies have profoundly reshaped the current view of
neutrophil heterogeneity in the oral mucosa (19). Rather than
representing a uniform antimicrobial population, neutrophils
display extensive transcriptional, metabolic, and functional diversity
that reflects their adaptation to specific mucosal niches and
inflammatory contexts. In human gingival tissue, single-cell RNA
sequencing delineates at least two major neutrophil trajectories: (i)
tissue-resident neutrophils, which persist under steady-state
conditions and express high levels of survival and regulatory
molecules such as BCL2A1 and ILIRN, relying primarily on
oxidative phosphorylation; and (ii) inflammation-recruited
neutrophils, characterized by enhanced glycolytic flux and elevated
expression of NADPH oxidase subunits, enabling vigorous reactive
oxygen species (ROS) production and robust NETosis (103). This
metabolic divergence defines distinct effector thresholds—resident
cells contribute to epithelial homeostasis through restrained ROS and
NET release, whereas recruited neutrophils generate strong fungicidal
activity at the expense of potential collateral tissue injury (103, 104).
In chronically inflamed oral lesions, polymorphonuclear myeloid-
derived suppressor cells (PMN-MDSC)-like cells with
immunosuppressive transcriptional signatures (ARG1, S100A8/A9,
PD-L1) have been identified, acting to curtail excessive inflammation
and support tissue repair (105, 106). Trajectory analyses further
indicate that emergency granulopoiesis driven by G-CSF signaling
contributes to the emergence of these subsets, which exhibit
metabolic and phenotypic plasticity—transitioning between
antimicrobial and suppressive states in response to local cytokine
and metabolic cues (105). The integration of single-cell
transcriptomics with metabolic and spatial profiling thus reveals a
continuum of neutrophil differentiation along a protective—
regulatory-pathogenic axis. This multidimensional landscape
provides a mechanistic basis for understanding how neutrophil
diversity governs NETosis and ROS thresholds within oral tissues
and informs precision therapeutic approaches that modulate
neutrophil metabolism and differentiation to sustain antifungal
defense while minimizing mucosal injury.
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6 Conclusions and future directions

Neutrophils represent pivotal yet paradoxical regulators of oral
mucosal immunity, acting as both essential effectors in antifungal
defense and potential mediators of inflammatory injury. Recent
findings demonstrate that their functions in Candida-associated
infection extend beyond pathogen killing to encompass antigen
presentation, metabolic cross—talk, and epithelial crosstalk
that determine infection outcomes (107, 108). However,
distinguishing protective from pathological neutrophil programs
in the oral environment remains challenging due to spatial and
temporal heterogeneity, limited model fidelity, and the complexity
of local microbial-immune interactions (103). Integrative multi
—omics and single—cell profiling are expected to delineate these
context—dependent neutrophil trajectories (109, 110), while
interventions targeting metabolic rewiring, ROS modulation, or
NET clearance are emerging as strategies to enhance antifungal
efficacy without exacerbating mucosal injury (111, 112). Translating
these mechanistic insights into precise immunotherapies that
reinforce barrier protection while restraining collateral
inflammation will be crucial for future management of oral
epithelial disease and periodontitis. Although considerable
progress has been made in uncovering how neutrophil responses
are regulated during Candida infection, important gaps remain
when linking these findings to human biology. Much of our
understanding comes from murine OPC models—most
commonly cortisone-induced or Card9-deficient systems—that,
while highly informative mechanistically, only partially
recapitulate the architecture, microbiota, and immunoregulatory
environment of the human oral mucosa (113, 114). Differences in
epithelial keratinization, salivary composition, and microbial
ecology all shape neutrophil recruitment and antifungal
thresholds (115, 116). As a result, insights from animal studies
regarding pattern-recognition receptor hierarchies (for example,
limited Dectin-1 dependence), cytokine interactions (IL-17, IL-33),
or metabolic remodeling may not fully reflect human physiology
(117, 118).

In humans, OPC in otherwise healthy individuals is typically
mild or self-resolving, suggesting a balanced relationship between
C. albicans and epithelial-neutrophil homeostasis . Clinical disease
tends to emerge under defined immunologic vulnerabilities—such
as HIV infection, iatrogenic immunosuppression, or monogenic
CARDY deficiency—highlighting the challenge of extrapolating
murine data to the wider population. Variation in fungal strain
traits, epithelial signaling capacity, and the surrounding
microbiome further complicates translation (119-121).

Bridging these differences will require experimental systems
that more closely model human tissues, including three-
dimensional oral mucosal co-cultures, microfluidic infection
platforms, and longitudinal immune profiling in patient cohorts.
Integrating these approaches with single-cell and spatial multi-
omics analyses will be key to validating mechanisms defined
in rodents and to developing precision strategies that
harness neutrophil function against mucosal Candida infection
(122-126).
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