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Lipids orchestrate immune signaling beyond structure and energy. In
autoimmune diseases (ADs), immune cells rewire fatty-acid and cholesterol
pathways under microenvironmental pressures, creating pharmacologically
actionable dependencies. This metabolic dysregulation is not merely a passive
consequence of immune activation but is a key driver of disease progression. This
review synthesizes evidence from human and preclinical studies to systematically
outline the core regulatory networks of lipid metabolism. It further dissects the
role of lipid metabolism in reshaping the functions of T cells, B cells,
macrophages, and dendritic cells, and delineates its organ-specific
dysregulation in various ADs (e.g., synovium, skin, central nervous system, gut).
Rather than blanket immunosuppression, we propose “immune-metabolic
normalization”: titrating hyperactive nodes to physiological set-points while
preserving host defense. We prioritize targets with high translational potential
and evaluate corresponding targeted strategies, including drug repurposing,
novel agents in clinical development, and innovative interventional concepts.
Our work aims to bridge descriptive immunometabolic research with verifiable,
patient-centered interventions, laying the groundwork for precision medicine in
autoimmune diseases.

KEYWORDS

lipid metabolism, immunometabolism, autoimmune diseases, T cells, B cells,
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1 Introduction

Autoimmune diseases (ADs) are chronic inflammatory conditions characterized by a
loss of immune tolerance to self-antigens, leading to immune-mediated attack on the
body’s own tissues and organs (1). Affecting approximately 3-5% of the global population
with rising incidence, ADs pose a significant public health challenge (2). Current clinical
management primarily relies on glucocorticoids, broad-spectrum immunosuppressants,
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and biologics (3). However, these therapies often lack specificity;
while suppressing aberrant immune responses, they concurrently
impair normal host defense mechanisms, increasing the risk of
infections and malignancies. Furthermore, many patients
experience treatment resistance, disease relapse, or drug
intolerance, highlighting the limitations of current strategies and
underscoring the urgent need for more precise, safe, and durable
interventions (3).

The emergence of the immunometabolism field has provided a
revolutionary perspective for understanding and treating immune-
mediated diseases. This discipline has revealed that cellular
metabolism is not merely a passive process supplying energy post-
activation (4) but is a decisive factor actively dictating immune cell
fate and function (5, 6). Immune cells undergo precise metabolic
reprogramming during different stages—quiescence, activation,
differentiation, and memory formation—to meet specific
bioenergetic and biosynthetic demands. For instance, effector T
cells rely on glycolysis (7), whereas regulatory T cells (Tregs) and
memory T cells prefer oxidative phosphorylation (OXPHOS) (8).
This tight coupling between metabolic signatures and cellular
functions implies that metabolic pathways themselves can be
targeted to modulate immune responses. By intervening at
metabolic vulnerabilities specific to pathogenic immune cell
subsets, it may be possible to selectively suppress deleterious
immunity while sparing protective functions, enabling more
precise immunomodulation.

Within the broad landscape of immunometabolism, lipid
metabolism is moving from the background to the forefront.
Traditionally viewed primarily as structural membrane
components and energy stores, lipids are now recognized for their
complex and central regulatory functions. They act as diverse
signaling molecules (e.g., sphingosine-1-phosphate [S1P],
specialized pro-resolving mediators [SPMs]) (9, 10), directly
regulating cell survival, migration, and activation. They form the
basis of key signaling platforms—lipid rafts—where minor
compositional changes can influence the signaling efficiency of
immune receptors like the T-cell receptor (TCR) and B-cell
receptor (BCR) (11-13). Furthermore, lipid metabolites serve as
substrates for post-translational modifications (e.g., palmitoylation)
or ligands for nuclear receptors (e.g., Peroxisome Proliferator-
Activated Receptors [PPARs], Liver X Receptors [LXRs]), thereby
reshaping the gene expression profiles of immune cells at the
transcriptional level (11, 14). Metaflammation represents a core
link connecting metabolic dysregulation and autoimmunity (15).
Growing evidence strongly indicates that lipid metabolic
dysregulation is a central pathological feature of numerous ADs,
including systemic lupus erythematosus (SLE), rheumatoid arthritis
(RA), multiple sclerosis (MS), inflammatory bowel disease (IBD),
and psoriasis (16). Metabolically derived harmful products can
activate immune cells, while inflammatory cytokines released
during immune responses exacerbate metabolic imbalance,
creating a vicious cycle that drives AD pathogenesis (17).

This review aims to systematically elaborate on the role of
immunocyte lipid metabolic reprogramming in ADs and its
potential as a therapeutic target. We will first overview the
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fundamental biochemical processes, key regulatory networks, and
organellar basis of lipid metabolism. Subsequently, we will detail how
lipid metabolism finely regulates the differentiation and function of
key immune cells, including T cells, B cells, and antigen-presenting
cells (APCs). Then, we will delve into the specific manifestations and
pathogenic mechanisms of lipid metabolic dysregulation in five
representative ADs: SLE, RA, MS, IBD, and psoriasis. Finally, we
will comprehensively evaluate therapeutic strategies targeting lipid
metabolism. These strategies encompass drug repurposing, novel
agents under clinical development, promising preclinical targets,
and non-pharmacological interventions. This work is intended to
provide a theoretical basis and direction for future research and
clinical translation in this field.

2 Dual roles of lipid metabolism in
immune regulation

Lipids are chemically and functionally diverse molecules,
including fatty acids (FAs), triglycerides, cholesterol, and
sphingolipids (18, 19). Their functions extend far beyond energy
storage and biomembrane constitution (20-42; Supplementary
Table 1). FAs are not only energy sources and precursors for
complex lipids but also give rise to potent inflammatory
mediators like prostaglandins (PGs) and leukotrienes (10).
Sphingolipid metabolites, such as ceramide and S1P, are
important second messengers regulating apoptosis, proliferation,
and migration (43). Cholesterol is crucial for maintaining
membrane fluidity and integrity and serves as a precursor for
steroid hormones and bile acids (44). The dynamic balance
among these molecules collectively determines cellular structural
integrity, signaling efficiency, and metabolic status. This section
outlines the core components of lipid metabolism to provide a
foundation for understanding its cell-specific reprogramming in
immune cells.

2.1 Coordination of key metabolic
pathways and organelles

The fate and function of immune cells depend on the
reprogramming of key lipid metabolic pathways, particularly the
balance between de novo lipogenesis (DNL) and fatty acid B-
oxidation (FAO) (Figure 1).

Lipid metabolism depends on a highly coordinated network of
organelles. DNL, which initiates from acetyl-CoA, occurs primarily
in the endoplasmic reticulum (ER) (45, 46), whereas FAO takes
place in mitochondria. Mitochondrial fitness—encompassing
membrane potential, respiratory capacity, and dynamics (fusion
and fission)—is critical for immune cell function (47, 48).
Mitochondria also establish close contact with the endoplasmic
reticulum (ER) via structures known as mitochondria-associated
membranes (MAMs). These MAMs play a key role in multiple
cellular processes: they mediate lipid transport, regulate calcium
signaling, and help maintain cellular homeostasis (49).
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Key pathways of intracellular lipid metabolism. Cellular uptake of fatty acids (FAs) occurs via CD36, FABPs, and FATPs, while LDL enters through
LDLR. Fas are activated to acyl-CoA by ACSL1 and can either undergo mitochondrial import via CPT1/2 for B-oxidation (producing acetyl-CoA, ATP,
ROS, and citrate) or serve as substrates for de novo lipogenesis involving ELOVLs, SCD, and FASN to generate palmitate and triacylglycerol (TAG).
Glucose-derived pyruvate also contributes to Acetyl-CoA production. TAG stored in lipid droplets is hydrolyzed by ATGL and HSL under PLIN5
regulation, releasing Diacylglycerol (DAG) and acyl-CoA, which may be re-esterified by DGAT1. Acetyl-CoA is also utilized for cholesterol synthesis
via the mevalonate pathway (catalyzed by HMGCR). Key transcription factors including PPARs, Sterol Regulatory Element-Binding Proteins (SREBPs),
and Liver X Receptors (LXRs) coordinate these processes by regulating lipid metabolic genes. Created in BioRender. Yu, Y (2025). https://
BioRender.com/havvjba Abbreviations: CD36,Cluster of Differentiation 36; FABPs, Fatty Acid-Binding Proteins; FATPs, Fatty Acid Transport Proteins; LDL,
Low-Density Lipoprotein; LDLR, Low-Density Lipoprotein Receptor; ACSL1, Acyl-CoA Synthetase Long-Chain Family Member 1; CPT1/2, Carnitine
Palmitoyltransferase 1 and 2; ROS, Reactive Oxygen Species; ELOVLs, Elongation of Very Long Chain Fatty Acids Proteins; SCD, Stearoyl-CoA
Desaturase; FASN, Fatty Acid Synthase; TAG, Triacylglycerol; ATGL, Adipose Triglyceride Lipase; HSL, Hormone-Sensitive Lipase; PLINS5, Perilipin 5; DAG,
Diacylglycerol; DGATL, Diacylglycerol O-Acyltransferase 1;HMGCR, 3-Hydroxy-3-Methylglutaryl-CoA Reductase; PPARs, Peroxisome Proliferator-

Activated Receptors.

Furthermore, lipid droplets (LDs) store neutral lipids to buffer
lipotoxicity and supply energy via lipolysis (50, 51). LDs also
function as docking sites for signaling proteins and serve as
platforms for the synthesis of inflammatory lipid mediators such
as eicosanoids, thereby directly linking lipid storage to
inflammatory responses (52, 53).

Different immune cells exhibit distinct preferences for
metabolic pathways depending on their functional status. DNL
supplies membrane constituents and modulates signaling in rapidly
proliferating activated immune cells (54). In contrast, FAO serves as
a crucial energy source required for the maintenance and survival of
long-lived cells such as memory T cells and Tregs, thereby
supporting their persistence and capacity for rapid responses (55).
In these cells, fully functional mitochondria are indispensable (56,
57). FAO exerts diverse roles across immune cell types, and
metabolic preferences evolve during cellular differentiation and in
response to varying physiological contexts (55).

Cholesterol homeostasis is maintained through a balance of
synthesis, uptake (via LDLR), and efflux (via ABCA1/ABCG1) (58).
Together with sphingolipids, cholesterol forms specialized plasma
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membrane microdomains known as lipid rafts. These rafts act as
signaling platforms that enrich the T-cell receptor (TCR), co-
stimulatory molecules (e.g., CD28), and downstream signaling
proteins (e.g., Lck). Upon antigen stimulation, lipid rafts facilitate
the aggregation of these molecules, effectively initiating and
amplifying TCR signaling (59, 60). Increased membrane cholesterol
content lowers the activation threshold of T cells, a key mechanism
underlying T cell hyperactivation in SLE patients (61, 62).

Under pathological conditions such as autoimmune disease, this
precise metabolic coordination becomes disrupted. When immune
cells encounter high protein synthesis demands (e.g., antibody
secretion in plasma cells) or experience lipid imbalance,
endoplasmic reticulum (ER) stress is triggered, activating the
unfolded protein response (UPR) (63). Although the UPR attempts
to mitigate stress by upregulating lipid synthesis genes to expand ER
membrane capacity, persistent ER stress disrupts lipid metabolism
and can trigger inflammatory or apoptotic signaling (64). In activated
immune cells such as macrophages and neutrophils, the number and
size of LDs increase significantly, representing a hallmark feature of
immunometabolic reprogramming (65).
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2.2 The lipid regulatory network modulates
immune functions

A sophisticated molecular network within cells senses lipid and
energy status to adjust metabolic pathways and thereby regulate
immune function. Key sensory and signaling pathways include:

2.2.1 Sterol regulatory element-binding proteins

SREBPs are master transcription factors regulated by cellular
sterol levels (66). SREBP-2 primarily activates genes in the
cholesterol synthesis pathway (e.g., HMG-CoA reductase
[HMGCR], LDLR), while SREBP-1c mainly regulates genes
involved in FA and triglyceride synthesis (e.g., acetyl-CoA
carboxylase [ACC], fatty acid synthase [FASN]) (67). Studies have
shown that the regulation of lipid synthesis can directly drive the
functions of various effector immune cells. For instance, the SREBP
signaling pathway in B cells is essential for antibody responses, as
well as for the formation of germinal centers, memory B cells, and
bone marrow plasma cells (68). In DCs, lipid metabolism regulates
their antigen presentation and maturation processes (69).

2.2.2 Peroxisome proliferator-activated receptors
PPARs are a family of nuclear receptors (PPARo, PPARR/S,
PPARY) acting as intracellular lipid sensors (70). PPARo and
PPARP/S promote FAO and energy expenditure, whereas PPARy
drives lipogenesis and storage (71). PPARs play pivotal roles in
integrating lipid metabolism with inflammation; for instance,
PPARY exerts potent anti-inflammatory effects and is a key
determinant in the fate of Tregs, memory T cells, and M2
macrophages (72, 73). However, it is crucial to note this: PPARY’s
effects on immune cells are highly context-dependent (74).
Additionally, they can vary substantially across species (75).

2.2.3 Liver X receptors

LXRs (LXRo and LXRp) are nuclear receptors activated by
oxysterols, sensing cholesterol levels (76). They promote cholesterol
efflux by upregulating ABCA1/G1 to prevent cellular cholesterol
overload. Additionally, LXRs possess significant anti-inflammatory
functions, inhibiting the expression of inflammatory genes in
macrophages (77) and modulating T cell and dendritic cell (DC)
function, relevant to ADs (78-80).

2.2.4 AMPK/mTOR axis

AMP-activated protein kinase (AMPK) and the mechanistic
target of rapamycin complex 1 (mTORCI) are central kinases
sensing cellular energy and nutrient status, exerting antagonistic
yet coordinated effects on lipid metabolism (73). AMPK, an energy
sensor, activates under low energy conditions (high AMP/ATP
ratio). Activated AMPK phosphorylates and inhibits synthases
like ACC. This action shuts down energy-consuming anabolic
processes while promoting energy-producing catabolism, thereby
reprogramming cellular energy metabolism to support cell function.
In regulatory T cells (Tregs), this metabolic reprogramming
combines with AMPK-mediated Foxp3 phosphorylation and
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stabilization. Together, they maintain the suppressive capacity of
Tregs. Defects in this process can lead to autoimmune liver disease
(81). mTORCI, a nutrient sensor, activates when signals like amino
acids, glucose, and growth factors are abundant. Activated
mTORCI1 promotes anabolic processes necessary for growth and
proliferation, including protein synthesis and lipid synthesis (partly
via SREBP activation) (82). The balance of the AMPK/mTOR axis
determines whether a cell is in an anabolic or catabolic mode,
crucially influencing immune cell fate (83).

Cellular lipid metabolic status is determined not by a single
pathway but by the interconnected network of these pathways at the
organellar, metabolic, and signaling levels (84) (Supplementary
Figure S1). For example, LXRs can induce SREBP-1c expression,
forming a feed-forward loop connecting cholesterol clearance to FA
synthesis, facilitating the esterification and storage of free
cholesterol as cholesterol esters in LDs, which is vital for lipid
homeostasis but can contribute to pathology when dysregulated
(85). This networked regulation provides metabolic plasticity but
also means dysfunction at any node can trigger cascades leading to
complex metabolic disturbances. In ADs, persistent inflammatory
signals and altered nutrient environments impact multiple nodes
simultaneously, disrupting homeostasis and driving pathological
metabolic reprogramming. We will now explore how these
principles are implemented across different immune cell subsets.
This metabolic programming ultimately shapes their unique
immune functions.

3 Lipid metabolic preferences and
functional remodeling in key immune
cells

Building upon the foundational framework of lipid metabolism,
we have observed that immune cells exhibit functionally specific
lipid metabolic preferences (Figure 2), which directly shape the
intensity and type of immune response (55). This section will
provide an in-depth analysis of how key immune cells—such as T
cells, B cells, macrophages, and dendritic cells—leverage distinct
lipid metabolic patterns to support their activation, differentiation,
and functional execution (Table 1). Furthermore, it aims to
elucidate the intrinsic link between metabolic reprogramming and
the remodeling of immune functions.

3.1Tcells

As central players in adaptive immunity, T cell differentiation
and function are tightly controlled by their metabolic state. Lipid
metabolism acts as a checkpoint determining T cell fate (113, 114).

3.1.1 CD4+T cells
3.1.1.1Metabolic regulation of Th17/Treg balance

Upon antigen activation, naive T cells rapidly initiate metabolic
reprogramming, shifting to aerobic glycolysis to support rapid
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clonal expansion. Their eventual differentiation into different
effector subsets is closely linked to lipid metabolic pathway
choices. Pathogenic Th17 cells heavily rely on the DNL/fatty acid
synthesis (FAS) pathway (involving enzymes like ATP-citrate lyase
[ACLY], ACC, FASN) to convert glucose-derived carbons into FAs
(115). Inhibiting ACCI or FASN pharmacologically (e.g., with
TOFA or soraphen A) or genetically can effectively block Th17
differentiation and promote Treg generation, ameliorating disease
in autoimmune models (8, 115). Conversely, immunosuppressive
Treg cells depend on FAO to maintain their stability and function
(116, 117). Early studies using the carnitine palmitoyltransferase 1a
(CPT1a) inhibitor Etomoxir suggested that FAO is crucial for Treg
cell function. This interpretation, however, was complicated by
subsequent findings that questioned Etomoxir’s specificity and
indicated CPTla-independent effects (118). More definitive
support comes from genetic studies. For example, disrupting the
Acyl-CoA Synthetase Bubblegum Family Member 1(Acsbgl) gene
in Treg cells has shown that their functional maintenance relies on
intact mitochondrial fatty acid metabolism (119). This distinct
metabolic preference makes the Th17/Treg axis an attractive
therapeutic target; modulating the FAS/FAO balance may reshape
immune responses and suppress autoimmune inflammation (113).
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3.1.1.2 Metabolic profiles of Thl and Th2 cells

The differentiation and function of Thl and Th2 cells are
regulated by distinct lipid metabolic pathways. In Thl cells, the
cholesterol biosynthesis pathway and its precursor mevalonate
promote differentiation and enhance IFN-y production (120).
Consistent with this, inhibition of this pathway using statins
selectively suppresses the production of IFN-y and IL-10 without
affecting cell viability, underscoring the specificity of metabolic
regulation in Thl function (121). Moreover, fatty acid
metabolism profoundly influences Thl functional states. For
instance, loss of the monounsaturated fatty acid Scd2 activates
type I interferon signaling in Th1 cells. This finding offers a novel
metabolic-immune perspective for understanding the role of Thl
cells in antiviral defense and autoimmune inflammation (122).

In contrast, Th2 cell differentiation and function exhibit a
stronger reliance on fatty acid metabolism. PPARY is highly
expressed during Th2 differentiation, and both PPARY antagonism
and inhibition of FAS significantly impair Th2 proliferation,
differentiation, and secretion of signature cytokines such as IL-5
and IL-13 (123). Additionally, Th2 cells display high tolerance to
lactate-rich environments, suggesting a metabolic preference for fatty
acid oxidation(FAO) over glycolysis as an energy source (124, 125).
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TABLE 1 Lipid metabolic features of major immune cell subsets.

10.3389/fimmu.2025.1713148

Cell type Major Key metabolic Key Immune function Association with References
metabolic regulator(s) differentiation/ autoimmune diseases
pathway(s) activation signal(s)

Th17 cells FAS PI3K/Akt/mTORC1 STAT3 Produces IL-17/22, drives = Linked to RA (synovial (229, 230)

tissue inflammation inflammation), MS (CNS
inflammation), IBD (intestinal
inflammation), and psoriasis
(keratinocyte
hyperproliferation).

Treg cells FAO AMPK/PPARa/B TGF-B/Smad3 Maintains immune Frequently impaired in SLE, (231, 232)

tolerance, suppresses IBD, RA
effector T cells

Memory T FAO AMPK/PPARS IL-7/1L-15 Supports long-term Contribute to MS relapses (148, 149, 233)

cells survival and rapid recall (central memory T cells),

response sustain chronic inflammation
in RA (synovial memory T
cells), and cooperate in
pathogenesis in SLE (alongside
memory B cells).

Plasma cells | FAS/cholesterol = SREBP-1¢/mTORC1 BLIMP1 Large-scale antibody Key contributors through (233)

synthesis synthesis and secretion autoantibody production: anti-
nuclear/anti-dsDNA antibodies
in SLE, anti-CCP antibodies in
RA, and anti-SSA/Ro
antibodies in Sjogren’s
syndrome.

M1 Glycolysis/FAS HIF-1ou NF-kB/TLR4/MyD88 Releases Enriched in RA synovium (140, 234)

macrophages pro-inflammatory (promoting joint destruction),

cytokines, enhances promote lupus nephritis in SLE

bactericidal activity kidneys, and enhance
keratinocyte proliferation in
psoriasis.

M2 FAO PPARY IL-4/STAT6 Tissue repair, secretes Contribute to disease through (235)

macrophages IL-10/STAT3 anti-inflammatory factors  loss of function: deficient

intestinal barrier repair in IBD,
impaired remyelination in MS,
and weakened anti-
inflammatory activity in RA.

Activated Glycolysis/FAS mTORCI1/HIF-1a TLR2/4-TRIF Expresses co-stimulatory | Critical in initiating localized (136, 236, 237)

DC cells molecules, initiates T cell = autoimmunity: activate Th17

response cells and promote CNS
infiltration in MS, stimulate
pathogenic T cells in psoriatic
skin, and disrupt tolerance in
IBD via excessive immune
activation.

3.1.2 CD8+T cells

Lipid metabolism serves as a central regulator of CD8" T cell
fate and function, profoundly influencing their efficacy in antitumor
immunity (126). To meet the demands of proliferation and effector
functions, activated CD8" T cells not only uptake exogenous lipids
but also engage in de novo lipogenesis (DNL) to sustain optimal
effector responses (127, 128).

However, in the tumor microenvironment (TME), cholesterol
can upregulate Cluster of Differentiation 36(CD36) on CD8" T cells,
leading to intracellular lipid accumulation, lipid peroxidation, and
ferroptosis. These changes ultimately impair cytotoxicity and
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promote tumor progression (129). Notably, targeting CD36 can
restore cytotoxic T lymphocyte (CTL) function and synergize with
anti-PD-1 therapy (129).

On the other hand, memory CD8" T cell (Tmem) persistence
relies on highly efficient catabolic metabolism, particularly FAO, to
maintain their quiescent state and metabolic flexibility. Similar to
Treg cells, this process is independent of CPTla (118, 130).
Interestingly, Tmem cells depend less on extracellular fatty acid
uptake. Instead, they utilize glucose taken up from the extracellular
environment to support FAO and oxidative phosphorylation
(OXPHOS) (131).
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3.1.3 ydTcells

Beyond the previously emphasized Th17 cells, IL-17-producing
YO T (8 T17) cells are increasingly recognized for their pivotal role
in autoimmunity. As a major subset of innate-like lymphocytes, Y5
T17 cells can rapidly and abundantly produce IL-17 within hours
upon stimulation by IL-1f and IL-23, independent of conventional
T cell receptor signaling (132). In various models, including
experimental autoimmune encephalomyelitis (EAE), psoriasis,
and arthritis, y0 T17 cells have been identified as a critical early
source of IL-17, often preceding the activation of Th17 cells (133).

Recent studies reveal that the differentiation and function of Yo
T17 cells are highly lipid-dependent. In inflammatory settings such
as psoriasis, these cells shift toward aerobic glycolysis and
lipogenesis. They also uptake free fatty acids, such as palmitate,
via the CD36 receptor, which further stimulates IL-17A production
(134). Importantly, inhibiting acetyl-CoA carboxylase ACCl1
disrupts de novo fatty acid synthesis in Y T17 cells, reducing
their lipid storage and IL-17A secretion capacity. This metabolic
intervention has been shown to markedly ameliorate inflammation
in a psoriasis model (135).

3.2 B cells and plasma cells

B cell activation and proliferation also require substantial lipids for
membrane expansion. Specifically, sterol (cholesterol) and fatty acid
synthesis, regulated by the SREBP pathway, are crucial for B cell
activation, germinal center (GC) formation, memory B cell generation,
and ultimate differentiation into antibody-secreting plasma cells (PCs)
(22, 68). Genetic deletion of SCAP, a key protein in the SREBP
signaling pathway, in B cells abolishes effective proliferation and
reduces lipid raft structures, indicating the necessity of SREBP-
mediated lipogenesis for B cell responses (68). During the GC
reaction, B cells undergo intense proliferation and affinity
maturation, a process also dependent on mitochondrial metabolism
and FAO for energy (23). Differentiated PCs significantly upregulate
DNL and cholesterol synthesis to provide phospholipids and
cholesterol needed for constructing the extensive ER membrane
system required for high-rate antibody secretion (24). Inhibiting
fatty acid synthesis severely impedes PC differentiation and antibody
secretion capacity (166). Thus, lipid metabolic reprogramming is
fundamental to the high antibody production function of PCs.

3.3 Dendritic cells

When DCs are activated via pattern recognition receptors such
as Toll-like receptors (TLRs), they undergo metabolic
reprogramming. This process upregulates glycolysis and de novo
lipogenesis (DNL), leading to lipid droplet accumulation. These
changes enhance their immunogenicity, enabling efficient initiation
of immune responses (136).

Specifically, the maturation of cDCls, their expression of co-
stimulatory molecules, and production of pro-inflammatory
cytokines like IL-12 are crucial for initiating Thl-type immune
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responses (136). Furthermore, membrane cholesterol enrichment in
cDCls is key for forming effective antigen presentation platforms.
Impaired cholesterol efflux specifically enhances the immunogenicity
of ¢cDCls (137). Conversely, LXR agonists inhibit the maturation of
cDC2s by promoting cholesterol efflux (80). However, excessive lipid
accumulation, such as that induced by a high-fat diet, impairs the
antigen presentation capacity and lymph node migration of CD11b+
cDC2s. This shifts their function towards inducing immune tolerance
rather than immune activation (138, 139).

3.4 Macrophages

Macrophages can polarize into pro-inflammatory M1 or anti-
inflammatory M2 phenotypes, a balance often disrupted in ADs
(140). The classical model posits that M1 macrophages are
characterized by high aerobic glycolysis and a disrupted TCA
cycle, coupled with FAS activation, while M2 macrophages rely
on an intact TCA cycle and OXPHOS fueled by FAO. Activation of
nuclear receptors like PPARy and LXR is key for driving M2
polarization (141, 142). However, recent studies challenge this
clear dichotomy, suggesting human M2 macrophages may also
rely on glucose metabolism, and highlighting potential off-target
effects of commonly used FAO inhibitors like etomoxir, indicating a
more complex metabolic landscape for macrophages than
previously thought (143-145).

It is evident that the lipid metabolic preferences of adaptive
immune cells form the metabolic basis for their functional
specialization. From FAS-dependent pathogenic Th17 cells to FAO-
preferring Treg cells, and from plasma cells requiring extensive lipid
synthesis to support antibody production to dendritic cells whose
antigen-presenting capacity is influenced by lipid accumulation,
metabolic characteristics directly determine the nature and intensity
of immune responses. However, the metabolic programs of immune
cells do not exist in isolation; they are profoundly shaped by their
tissue microenvironment. Variations in lipid abundance and
composition across different tissues shape distinct T cell
communities. For instance, the intestinal environment, rich in
dietary lipids and microbially derived bile acids, promotes the
differentiation and functional maintenance of Treg cells to sustain
immune tolerance (146). The skin, abundant in ceramides (CER),
cholesterol (CHOL), and free fatty acids (FFA), serves as a key
reservoir for resident memory T cells (147). Nevertheless, when this
lipid environment undergoes quantitative or qualitative alterations, it
can transform into a pathological foundation that drives chronic
inflammation and autoimmunity (148, 149). In the following
section, we will explore how lipid metabolism is altered in the
pathological context of autoimmune diseases.

4 Landscape of lipid metabolic
dysregulation in autoimmune diseases
Lipid metabolic dysregulation is a common pathological feature

of various autoimmune diseases (16). However, distinct immune
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Dysregulated lipid metabolism in autoimmune diseases. This figure illustrates dysregulated lipid metabolism in key immune cells across five
representative autoimmune diseases (1) MS: microglia, T cells, and B cells exhibit altered fatty acid oxidation (FAO), while oligodendrocytes show
impaired cholesterol synthesis, contributing to neuronal demyelination (2) psoriasis: keratinocytes, T helper 17 (Th17) cells, plasmacytoid dendritic
cells (pDCs), and macrophages display dysregulated arachidonic acid metabolism and reactive oxygen species (ROS) production, with reduced
omega-3 polyunsaturated fatty acids (PUFAs), driving psoriatic skin lesion formation (3) SLE: autoreactive B cells, plasma cells, dendritic cells, and
macrophages undergo abnormal FAO and interact with oxidized lipoproteins, facilitating autoantibody generation (4) IBD: effector T cells (Teff),
regulatory T cells (Treg), and macrophages show disrupted FAO; coupled with gut microbiota dysbiosis (impacting short-chain fatty acids, SCFAs)
and increased intestinal permeability, this fuels the inflammatory cycle (5) RA: fibroblast-like synoviocytes (FLS), osteoclasts, macrophages, T cells,
and B cells exhibit dysregulated lipid metabolism (e.g., lactic acid accumulation, oxidized low-density lipoprotein (ox-LDL) involvement), leading to
bone erosion and cartilage degradation. The legend depicts innate immune cells, activated macrophages, neutrophils, regulatory T cells, T helper
subsets, effector T cells, and bacteria. “Created in BioRender. yu, Y (2025). https://BioRender.com/21li3ok.

cell subsets and tissue microenvironments in different diseases
exhibit unique patterns of lipid metabolic reprogramming
(Figure 3). As previously discussed, this reprogramming is not
merely a passive consequence but actively contributes to disease
pathogenesis. In this section, we will systematically outline the
specific landscape of lipid metabolic dysregulation in five
representative autoimmune diseases: SLE, RA, MS, IBD, and
psoriasis. Furthermore, we will clarify how unique patterns of
metabolic disturbance in different disease contexts contribute to
their specific immunopathological characteristics (Table 1).

4.1 Systemic lupus erythematosus
SLE is a systemic autoimmune disease characterized by

abundant autoantibody production and multi-organ involvement
(150, 151). Its pathogenesis involves dysfunction of various immune

Frontiers in Immunology

08

cells, including T cells, B cells, and APCs, closely linked to profound
lipid metabolic abnormalities (152).

CD4+ T cells, central drivers in SLE, exhibit significant lipid
metabolic abnormalities (153, 154). Given the crucial role of
mTORCI-driven lipogenesis in promoting Th17 cell differentiation
(82), its dysregulation is particularly relevant to the pathogenesis of
SLE. Concurrently, the immunoregulatory function of Treg cells is
suppressed (151-153). Studies have confirmed that activation of
mTORCI precedes the onset of SLE and related comorbidities,
indicating that this metabolic reprogramming acts as a key
upstream event driving T cell functional imbalance (86).
Concurrently, T cells in SLE commonly exhibit mitochondrial
dysfunction. This includes hyperpolarized mitochondrial
membrane potential, increased production of reactive oxygen
species (ROS), abnormal morphology (such as enlargement), and
reduced ATP generation (155). These alterations impair energy
supply and affect epigenetic modifications like DNA methylation,
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leading to aberrant expression of autoreactive genes. Reducing lipid
peroxidation/ROS and inhibiting T cell oxidative stress can alleviate
lupus nephritis (LN) (156-158). Furthermore, lipid rafts contribute to
SLE pathogenesis (159). Increased synthesis of cholesterol and
glycosphingolipids (GSLs) in SLE T cells leads to excessive lipid
raft aggregation on the plasma membrane, enhancing TCR signaling
and lowering the activation threshold for autoreactive T cells (160,
161). Downregulating the transcription factor FLI1 reduces GSL
synthesis, affecting SLE progression (79, 87, 162, 163). Recent
studies confirm increased CD38 expression in SLE CD4+ T cells
correlates with increased lipid rafts, and targeting CD38 to modulate
ganglioside GM2 distribution alleviates SLE pathology (161).

Autoreactive B cells in SLE upregulate the scavenger receptor
CD36 to increase exogenous lipid uptake (164), enhancing
mitochondrial OXPHOS to fuel B cell activation, proliferation,
and differentiation, thereby exacerbating disease (165). B cell
differentiation into PCs depends on SREBP-mediated lipogenesis
to support massive ER expansion. Inhibiting fatty acid synthesis
ameliorates disease in lupus-prone mice (166, 167). Conversely,
regulatory B cells (Bregs) in SLE are reduced in number and
functionally impaired, exhibiting metabolic abnormalities like
mitochondrial depolarization and elevated ROS (168).

Macrophages and DCs also play significant roles in SLE,
particularly LN (169). In LN models, renal macrophages exhibit
impaired phagocytic function, failing to clear apoptotic cells and
immune complexes effectively. Excess lipid peroxides can activate
macrophage inflammation (170), while their phagocytic capacity is
impaired due to downregulated CPT1o and reduced fatty acid
metabolism (171, 172). Additionally, high levels of type I interferon
persistently induce upregulation of the scavenger receptor SR-Al
on macrophages, promoting uptake of oxidized low-density
lipoprotein (oxLDL) and foam cell formation, accelerating
atherosclerosis—a mechanism underlying the high cardiovascular
risk in SLE patients (169). Research on DCs in SLE is less extensive.
In LN, DCs infiltrate the kidney and amplify inflammation (173).
Recent studies show that accumulated cholesterol metabolite
farnesyl pyrophosphate (FPP) within DCs of SLE model mice
promotes their activation via mitochondrial remodeling (174).

In summary, in SLE, mTOR-driven metabolic anomalies in T
cells, excessive lipid uptake by B cells, and macrophage dysfunction
drive premature immune cell activation, amplifying metabolic
disturbances and providing the basis for autoantibody production
and multi-organ inflammatory damage.

4.2 Rheumatoid arthritis

RA is an autoimmune disease characterized by chronic synovial
inflammation and joint cartilage/bone erosion (175).The
pathological core lies in the pathogenic interaction between
immune and stromal cells within the synovial microenvironment,
wherein lipid metabolism serves a dual role as both an energy
source and a signaling mechanism.

The inflamed RA synovium constitutes a unique metabolic
microenvironment characterized by hypoxia and high lactate
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concentrations (176). High lactate is taken up by synovial CD4+
T cells via the transporter Solute Carrier Family 5 Member 12
(SLC5A12), which inhibits their glycolysis and paradoxically drives
FAS (177, 178). This lactate-induced increase in FAS is a key
metabolic basis for T cell differentiation towards the pathogenic
Th17 phenotype and IL-17 production. This mechanism directly
links accumulated this local metabolite (lactate) to T cell
pathogenicity (179, 180). Concurrently, excess FAs lead to LD
deposition and upregulate T cell migration programs, facilitating
immune cell infiltration and exacerbating synovitis and joint
destruction (91, 176). Fibroblast-like synoviocytes (FLS) are major
effectors of joint destruction in RA. RA-FLS exhibit upregulated
FASN expression leading to fatty acid accumulation (181, 182).
These excess FAs enhance phosphorylation of DRP1 protein,
inducing mitochondrial fission, which increases ROS production
and activates pro-inflammatory and pro-survival pathways like
PI3K/mTOR/NF-xB, ultimately conferring the aggressive,
cartilage-destructive phenotype to FLS (92). The RA synovium is
infiltrated by numerous macrophages. Active RA is dominated by
MerTK-negative (MerTK-) macrophages secreting pro-
inflammatory cytokines, while remission phases enrich MerTK-
positive (MerTK+) macrophages with repair functions (93). The
latter can effectively produce SPMs (e.g., resolvins), inducing FLS
repair responses and maintaining joint homeostasis (93). A
hallmark pathological change in RA is bone erosion caused by
excessive osteoclast activation. Osteoclast differentiation is
regulated by cytokines like Receptor Activator of Nuclear Factor
Kappa-B Ligand(RANKL) (183). It is also closely linked to
cholesterol metabolism (184). Statins, besides lowering lipids, can
inhibit RANKL expression and inhibit osteoclast precursor
differentiation, suggesting potential value for bone protection in
RA (185). The hypoxic synovial microenvironment in RA initially
induces lipid synthesis in T cells, and this metabolic reprogramming
in turn drives their pathogenic phenotype and tissue infiltration
capacity, illustrating the vicious cycle between metabolic
abnormality and immune activation.

In the hypoxic joint microenvironment of RA, lactate
accumulation drives lipid metabolic reprogramming in T cells
and FLS. This reprogramming promotes the differentiation of
pathogenic Th17 cells, enhances the invasiveness of FLS, and
disrupts bone homeostasis, thereby synergistically exacerbating
synovial inflammation and joint destruction. Hypoxia and lipid
signaling act cooperatively within the RA joint microenvironment
to jointly drive disease progression. Specifically, the hypoxic
synovial milieu initially induces lipid synthesis in T cells, and this
metabolic reprogramming in turn drives pathogenic T cell
phenotypes and enhances tissue infiltration capacity. This process
exemplifies a vicious cycle between metabolic dysregulation and
immune activation.

4.3 Multiple sclerosis

MS is an autoimmune disease characterized by chronic central
nervous system (CNS) inflammation, demyelination, and
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neurodegeneration (186). Patients with MS exhibit significant
alterations in lipid metabolism, including changes in levels of
low-density lipoprotein (LDL), high-density lipoprotein (HDL),
apolipoproteins, and oxysterols. These metabolic abnormalities
correlate with clinical disease activity, although their causal
relationship remains incompletely defined (187). Given that
myelin itself is a lipid-rich structure, lipid metabolic disturbances
occupy a central position in MS pathogenesis; lipid molecules are
both targets of myelin destruction and inflammatory mediators
affecting immune function.

Myelin, formed by extensions of oligodendrocyte membranes
wrapping around axons, is rich in lipids (constituting ~70-80% of
dry weight) (188). Therefore, oligodendrocytes must maintain high
lipogenic capacity for myelination during development and effective
remyelination after damage (189). The failure of remyelination in
MS is partly due to impaired differentiation of oligodendrocyte
precursor cells into mature oligocytes. Consequently, these cells face
a severe deficit in their lipid synthesis capacity, which is required for
producing the vast amounts of lipids essential for myelin
production (189). Altered myelin composition due to lipid
dysmetabolism may affect its stability and increase its
immunogenicity, potentially triggering immune attack (190). In
MS demyelinating lesions, microglia and infiltrating macrophages
phagocytose myelin debris, leading to lipid overload and foam cell
formation (191). This lipid accumulation triggers sustained
inflammation and inhibits transition to a pro-repair phenotype,
hindering remyelination. The transcription factor Interferon
Regulatory Factor 5(IRF5) is key for regulating myelin debris
degradation and cholesterol homeostasis; IRF5 deficiency leads to
inadequate degradation in lysosomes, causing abnormal
accumulation of LDs and cholesterol crystals, exacerbating disease
(191). Activity of the fatty acid elongase ELOVL6 has also been
found to promote inflammatory foam cell formation (192).
Changes in mitochondrial lipid metabolism have been identified
in CD4+ T cells from MS patients (193). In the experimental
autoimmune encephalomyelitis (EAE) mouse model, Treg cells
infiltrating the CNS heavily rely on CPTlo-mediated FAO to
maintain their function; enhancing Treg FAO capacity is
considered a potential therapeutic strategy (194). Furthermore,
the lipid mediator maresin-1 (MaR1) can reduce Thl cells,
increase Tregs, and suppress pro-inflammatory cytokines (98,
195), also reducing immune cell infiltration, accelerating
inflammation resolution, and delaying disease progression in EAE
models (102). CD4+ T cells from relapsing-remitting MS (RRMS)
patients exhibit dysregulated LXR-mediated lipid metabolism.
While LXRp expression is upregulated, downstream target gene
expression is downregulated, leading to increased membrane
cholesterol and decreased GSLs. This altered lipid raft
composition is thought to enhance T cell reactivity, promote IL-
17 production, and exacerbate neuroinflammation (99). Recently, a
lipid kinase was found to promote Th17 differentiation via the
mTORCI1/STAT3 pathway, contributing to EAE progression (103).
A clinical study profiling lipid metabolic reprogramming in
immune cells of MS patients is ongoing (NCT04053374).
Metabolic reprogramming endows pathogenic T cells with strong
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migratory and pathogenic capacity, enabling CNS invasion and
inflammatory cytokine release; these cytokines, in turn, exacerbate
lipid metabolic reprogramming in CNS immune cells and damaged
cells, leading to myelin and neuronal injury.

4.4 Inflammatory bowel disease

IBD, including Crohn’s disease (CD) and ulcerative colitis
(UC), involves a loss of tolerance to intestinal microbiota in
genetically susceptible individuals, resulting in chronic gut
inflammation. A nationwide study suggests abnormal lipid
profiles in CD and UC patients (196). Lipid metabolism plays
multifaceted roles in IBD, regulating intestinal barrier function,
microbial homeostasis, and immune responses (197).

A healthy gut microbiota ferments dietary fiber to produce
short-chain fatty acids (SCFAs), notably butyrate (198). Butyrate is
a primary energy source for colon epithelial cells and a potent
histone deacetylase (HDAC) inhibitor (199).Through this
epigenetic mechanism, it promotes Treg cell differentiation while
suppressing pro-inflammatory responses, ultimately maintaining
intestinal immune tolerance (146). Patients with IBD commonly
exhibit gut microbiota dysbiosis, characterized particularly by a
reduction in butyrate-producing bacteria. This leads to decreased
levels of butyrate, which is recognized as a key driver of
inflammation in IBD (200). In ulcerative colitis, lipidomic
analyses have revealed that alterations in triglyceride and
phospholipid levels are closely linked to the pathogenesis,
progression, and treatment response of the disease (201).
CD patients exhibit a unique “creeping fat” phenomenon:
mesenteric adipose tissue abnormally proliferates and wraps
around the intestine (202). Creeping fat is infiltrated by immune
cells and secretes high levels of adipokines like pro-inflammatory
leptin. Interestingly, macrophages in CD creeping fat often exhibit
M2 polarization promoting tissue remodeling, but the hyperplastic
fat itself becomes a reservoir for inflammatory cells (203). Intestinal
lamina propria macrophages are sentinels for mucosal immune
homeostasis. In inflamed IBD gut, their metabolic reprogramming
is characterized by significant downregulation of the anti-
inflammatory nuclear receptor PPARY and FAO pathways (204).
This impairs their ability to polarize towards an M2 phenotype,
preventing effective inflammation suppression and repair, thereby
exacerbating gut damage. The probiotic Fecalibacterium prausnitzii
can reprogram macrophage energy metabolism, guiding them
towards M2 polarization and alleviating intestinal fibrosis in CD
patients (205). Another study found Fatty Acid-Binding Protein 5
(FABP5) upregulated in IBD macrophages, potentially exerting
anti-inflammatory effects by preventing M1 polarization (206).
IBD patients have impaired intestinal barrier function, associated
with sphingolipid metabolism abnormalities, such as potentially
elevated pro-inflammatory S1P and imbalances in ceramides
necessary for barrier integrity (207). Furthermore, bile acids,
synthesized by the liver and modified by microbiota, regulate
intestinal immunity by activating receptors like Farnesoid X
Receptor (FXR) and Takeda G protein-coupled Receptor 5
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(TGR5); their dysregulation also contributes to IBD pathogenesis
(208, 209). In summary, immune cells in IBD exhibit significant
metabolic reprogramming, including abnormalities in glucose/lipid
metabolism and imbalanced microbiota-immune cell interactions,
collectively driving and sustaining pathological gut inflammation.

4.5 Psoriasis

Psoriasis is a chronic inflammatory skin disease characterized by
hyperproliferation of keratinocytes and immune cell infiltration
(210). Its core pathological mechanism involves overactivation of
the IL-23/Th17 axis (210). IL-17 production in psoriasis is not
restricted to Th17 cells. Within psoriatic lesions, IL-17-producing
skin ¥8 T cells are also pivotal in driving psoriasiform dermatitis.
Moreover, the IL-36 signaling pathway plays a central and unique
role in amplifying the IL-23/IL-17/IL-22 inflammatory axis and
promoting disease progression (211). The pathogenesis of psoriatic
lesions involves not only dysregulated immune-keratinocyte crosstalk
but also cellular metabolic reprogramming. Critically, Th1/Th17 and
Th2 cytokines exert divergent influences on lipid metabolism in
differentiating keratinocytes. This metabolic influence is proposed as
a key mechanism underlying the dysfunction of the skin barrier in
psoriasis (212).Concurrently, cytokines from DCs prompt
keratinocyte hyperproliferation and production of more
chemokines/cytokines, further attracting immune cell infiltration,
forming a vicious cycle (213, 214). Lipid metabolic abnormalities in
psoriasis manifest at both local (skin) and systemic levels, accelerating
disease progression by altering immune cell phenotypes and
functions (215).

Healthy skin barrier function relies on a precise ratio of lipids
(ceramides, cholesterol, free fatty acids) in the stratum corneum
(108). Psoriatic lesions exhibit significant barrier defects and
abnormal lipid profiles (216, 217), characterized by reduced levels
of anti-inflammatory omega-3 polyunsaturated fatty acids (PUFAs)
and elevated levels of pro-inflammatory arachidonic acid (AA). AA
is the precursor for potent pro-inflammatory eicosanoids (e.g.,
prostaglandins, leukotrienes), which directly drive skin
inflammation (218). Supplementing omega-3 PUFAs to modulate
skin inflammation may have clinical significance (219, 220).

Moreover, psoriasis is a systemic inflammatory disease. A recent
study suggests a significant association between elevated triglyceride
levels and the risk of psoriasis (221). Furthermore, patients with
psoriasis have a markedly increased risk of cardiovascular diseases,
including atherosclerosis (109). A key link underlying this
comorbidity is lipid metabolic dysregulation. Systemic
inflammation causes dyslipidemia (222) and promotes monocyte/
macrophage infiltration into vessel walls. In the inflammatory
microenvironment, these macrophages avidly take up oxidized
lipids, transforming into foam cells that initiate and accelerate
atherosclerosis, a mechanism similar to that in SLE (223). Similarly,
immune cells in psoriasis patients exhibit significant oxidative stress,
leading to lipid peroxidation and the production of pro-inflammatory
mediators (224, 225) (see Section 3.1). Moreover, these ROS-
dependent lipid mediators activate pro-inflammatory signaling,
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promote Th1/Th17 differentiation, and stimulate keratinocytes
(110). Simultaneously, Th17/Treg cells display a functional
imbalance analogous to that observed in SLE, which disrupts a
critical immunoregulatory equilibrium (88).Meanwhile, pathogenic
Th17 cells favor aerobic glycolysis and lipogenesis, while Treg FAO is
suppressed in the inflammatory environment, leading to insufficient
immunosuppressive function (88).In psoriasis patients, levels of Th2-
related cytokines or cell populations are reduced and negatively
correlate with disease severity (226). Diagnostically, the
combination of Th2+Treg cell ratio and adiponectin levels enables
high-precision prediction of psoriasis (227). Mechanistically, recent
research identifies Th2 immunity as a key tissue checkpoint that
suppresses skin autoimmunity and maintains lipid homeostasis,
conferring resistance to psoriasis by sustaining LXR/PPARY-
mediated fatty acid metabolism via STAT6 signaling (228).

A unifying theme across these diseases is the central role of
“metaflammation” within target organs. In summary, although
shared features of lipid metabolic dysfunction—such as hyperactive
mTOR signaling and mitochondrial dysfunction—exist across
autoimmune diseases, each disorder exhibits unique metabolic
characteristics shaped by its specific tissue microenvironment. This
spectrum ranges from lipid raft aggregation in T cells in SLE, to
lactate-driven fatty acid synthesis in the RA synovium, and from
imbalanced myelin lipid metabolism in MS to disrupted host-
microbiota interactions in IBD. Critically, in affected tissues—be it
the synovium in RA, the CNS in MS, the gut in IBD, or the skin and
vasculature in psoriasis—the local metabolic milieu (e.g., lactate,
lipids, and microbial metabolites) is not a passive backdrop but an
active participant. It shapes the metabolic programs and functional
phenotypes of immune cells, which in turn secrete inflammatory
factors that further worsen the local metabolic environment,
establishing a self-sustaining and amplifying pathological circuit
(Table 2). This understanding underscores that effective therapeutic
strategies may need to target not only the immune cells themselves
but also strive to normalize the metabolic microenvironment of
diseased tissues, thereby breaking this vicious cycle.

5 Therapeutic strategies targeting lipid
metabolism: from drugs to clinic

Given the central driving role of lipid metabolism in ADs,
targeting related pathways has become an highly attractive new
therapeutic direction. Strategies can be broadly categorized into
three groups: repurposing approved drugs for immunomodulatory
effects, developing new drugs against emerging metabolic targets,
and modulation via dietary and microbial interventions.

5.1 Novel immunomodulatory uses of
marketed drugs

Some metabolic modulators already widely used in the clinic

possess unexpected immunomodulatory effects, offering a
promising path for “drug repurposing”.
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TABLE 2 Summary of dysregulated lipid metabolism in major autoimmune diseases. @ Preclinical: Studies conducted before human clinical trials (e.g.,
pharmacology, toxicology); @ Clinical: Trials in human subjects for safety and efficacy evaluation.

Disease Key immune Core lipid metabolic = Pathological Preclinical & clinical evidence References
cell(s) abnormalities consequences
SLE T cells, B cells, T cells: Enhanced mTOR- i Preclinical: Rapamycin improves mouse models; (86-90)
. } Broken immune . .
Macrophages, driven glycolysis & FAS; tolerance: CD36 knockout alleviates disease.
Dendritic Cells B cells: Enhanced CD36- olera C?’
. o Autoantibody .. . . .
mediated lipid uptake; roduction: Clinical: Fluvastatin reduces disease activity;
Macrophages: Impaired FAO; P iy Sirolimus effective.
R X Accelerated
DCs: Altered mitochondrial i
) atherosclerosis
metabolism
RA T cellf, Fibroblast-like T cells/FLS: Enhanced fatty . N Preclinical:: FASN inhibition alleviates joint (91-97)
synoviocytes (FLS), ) . Chronic synovitis; damage.
Macrophages acid synthesis; Cartilage destruction
iw:::e’i ?ages: Deficient SPM & bone erosion Clinical:: Inhibiting T cell FAS reverses
4 pathogenicity; Statins improve outcomes.
MS Microglia/Macrophages, | Myelin lipids: Overload & Preclinical:: LPA1 antagonist, PIKFYVE (98-102)
T cells impaired degradation; CNS demyelination; | inhibition, MaR1 effective in EAE.
Cholesterol efflux: Impaired; Failed remyelination;
T cells: Dysregulated LXR Neurodegeneration Clinical:: LXR agonist inhibits Th17; Oleic acid
signaling, enhanced FAS restores Treg function.
IBD Macrophages, T cells, Gut microbiota: Reduced Intestinal barrier Preclinical:: FABP5 inhibitor, PPARY agonists (103-107)
Epithelial cells SCFA production; dysfunction; ameliorate colitis.
Macrophages: Impaired FAO; Chronic
Epithelial barrier: Ceramide inflammation; Clinical:: T cell lipid raft abnormalities in CD;
deficiency Treg impairment Enhancing FAO reverses pathogenic Trm cells.
Psoriasis Keratinocytes, T cells, Keratinocytes: Altered Skin barrier defects Precl‘inical:: SuPpressed Treg FAO; ACC1 (108-112)
Macrophages . . . K deficiency ameliorates model.
epidermal lipid synthesis; Keratinocyte
Systemic: Dyslipidemia; h liferation;
ystemic: Dysiipicemia YPELpro fieration: Clinical:: Cholesterol efflux capacity (CEC)
Immune cells: Increased pro- Increased . . .
. . . . . inversely correlates with activity; LXR/PPARy
inflammatory eicosanoids cardiovascular risk o i
activation beneficial.

Bold terms highlight key categorical elements within the table, including specific immune cell types, pivotal lipid pathways or components, critical anatomical structures, and the categories of

scientific evidence.

Immune cells (e.g., T cells, DCs) and disease-specific cell types (e.g., FLS, Keratinocytes).Core lipid components and pathways (e.g., Myelin lipids, Cholesterol efflux).Critical anatomical

structures (e.g., Epithelial barrier).Categories of research evidence (Preclinical, Clinical).

5.1.1 Statins

Statins are HMGCR inhibitors primarily used for cholesterol
lowering. However, their potential in treating ADs stems largely
from pleiotropic anti-inflammatory effects (238). By inhibiting the
mevalonate pathway, statins not only reduce cholesterol synthesis
but, importantly, reduce the production of isoprenoid intermediates
(e.g., FPP, GGPP). These intermediates are required for the
prenylation of small GTPases (e.g., Rho, Ras), which are key
nodes in inflammatory signaling pathways (239). Thus, statins
can inhibit T cell activation, skew them from pro-inflammatory
Th1/Th17 towards anti-inflammatory Th2 phenotypes (212), and
inhibit DC maturation and antigen presentation capacity (240). In
the realm of clinical trials, statins such as simvastatin (MS-STAT2
trial, NCT03896217) for MS and atorvastatin (NCT00356473,
NCT04177173) for RA have demonstrated the potential to reduce
disease activity and slow progression (241, 242). However, the
results are inconsistent across studies, with some failing to
observe significant beneficial effects (243). Efficacy in SLE is also
debated. A retrospective study found adding atorvastatin to
standard therapy improved immune function and disease activity
indices in mild-to-moderate active SLE patients (244), while
another found atorvastatin had no significant effect in MRL/Ipr
mice. However, in vitro experiments confirmed statins inhibit
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splenic B cell proliferation, suggesting potential for SLE (245).
This indicates statin efficacy may be disease- and patient-specific.

5.1.2 S1P receptor modulators

Fingolimod, siponimod, and ozanimod are functional
antagonists of S1P receptors (246). SIP binding to its receptor
S1PRI is necessary for lymphocyte egress from lymph nodes into
circulation. These drugs, by binding S1PRI and inducing its
internalization and degradation, sequester lymphocytes in lymph
nodes, preventing autoreactive lymphocytes from migrating to
target organs like the CNS (43). Fingolimod, the first oral drug
approved for MS, significantly reduces relapse rates and delays
disability progression (247). Later-developed siponimod and
ozanimod have higher receptor selectivity (248). Given their
broad immunomodulatory effects, the potential of S1P receptor
modulators in other ADs is being actively explored. For example,
ozanimod is under investigation for UC (NCT05369832). Trial
criteria sometimes mention RA and SLE, hinting at potential
applications (249).

5.1.3 Fibrates
Fibrates like fenofibrate are PPAR agonists used primarily for
hypertriglyceridemia. By activating PPAR«, these agents drive
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metabolic reprogramming in T cells. This metabolic shift enhances
FAOQ, thereby alleviating inflammation associated with ADs (250).
Although research in ADs is early-stage, a trial plans to explore
fenofibrate’s role in preventing chemotherapy-induced neuropathy
(NCT07025005), indirectly suggesting potential utility in
neuroinflammatory diseases like MS.

5.1.4 PPARYy agonists

Thiazolidinediones (TZDs) like pioglitazone are potent PPARY
agonists. They promote macrophage polarization to the M2
anti-inflammatory phenotype, inhibit inflammatory pathways, and
may improve skin barrier function, offering theoretical benefits in
RA, IBD, and psoriasis. However, first-generation TZDs, affecting
systemic lipid/glucose metabolism, have side effects (weight gain,
edema) limiting use in non-diabetic populations (251). Research
focuses on developing newer, more selective PPARY agonists with
better safety. A drug interaction study assessed pioglitazone
pharmacokinetics in IBD patients (NCT02371603). Oral pioglitazone
significantly improved clinical measures in secondary progressive MS
patients without serious adverse events (NCT00242177) (252).
Pioglitazone treatment in young female SLE patients significantly
decreased inflammatory markers (NCT01322308) (253). In RA
patients, pioglitazone significantly reduced disease activity and CRP
levels, improved lipid profiles, and was well-tolerated (NCT00554853)
(254), supported by other studies (NCT00763139; NCT02338899)
(255, 256).

5.2 Emerging targets and drugs in clinical
development

A range of new drugs targeting more specific nodes in
immunometabolic pathways are under development, showing
great therapeutic promise.

5.2.1 mTOR inhibitors

Sirolimus (rapamycin) and its analog everolimus are specific
inhibitors of mTORCI. As mentioned, mTORCI is hyperactivated
in pathogenic T cells in SLE and RA. By inhibiting mTORCI, these
drugs can reshape T cell balance: inhibiting Thl and Th17 cell
differentiation while promoting Treg cell expansion and function
(257, 258). Several clinical trials are currently evaluating mTOR
inhibitors. A Phase II trial (SIRIUS, NCT04582136) for active SLE
is ongoing. Another early-phase trial at the US NIH explores sirolimus
use in pediatric patients with autoimmune cytopenias related to SLE
and RA, among others (NCT00392951). A Phase II trial for
IgG4-related disease (IgG4-RD, NCT05746689) is not yet recruiting.

5.2.2 PCSKO9 Inhibitors

PCSK9 is a key protein regulating cholesterol metabolism by
mediating LDLR degradation. Initially developed for lipid lowering,
PCSK9 inhibitors are being explored for ADs due to anti-
inflammatory effects. A Mendelian randomization study suggested
PCSK9 inhibition significantly lowers SLE risk but may increase
asthma and CD risk, with effects differing from HMGCR inhibitors
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(245). A phase II trial is assessing PCSK9 inhibitor effects on islet
function and inflammation markers (e.g., hs-CRP, IL-6) in type 1
diabetes (NCT05641753), results pending.

5.3 Frontier directions in preclinical
research

At the basic research level, numerous novel lipid metabolic
targets are being discovered and validated (Table 3).

5.3.1 Fatty acid synthesis inhibitors (FASN/ACC
inhibitors)

Directly targeting the upregulated FAS pathway (e.g., FASN or
ACC1) in pathogenic Th17 cells is a direct strategy to inhibit these
cells (263). Various FASN and ACC inhibitors are in development,
primarily for cancer and metabolic dysfunction-associated
steatohepatitis (MASH). Inhibiting FASN-mediated lipid
metabolism in B cells alleviates lupus in mice (166). The FASN
inhibitor TVB-2640 can activate macrophages and DCs and
significantly ameliorate imiquimod (IMQ)-induced lupus in mice
(264), showing great potential, particularly in SLE.

5.3.2 Lipid uptake and transport modulators
(CD36, FATP modulators)

Targeting the scavenger receptor CD36 may prevent lipid overload
in macrophages and B cells, blocking key steps in SLE-related
atherosclerosis and autoreactive B cell activation (164, 285). PPARy
activation can upregulate CD36-mediated FAO, enhancing Treg
responses, potentially beneficial for treating inflammation and ADs
(290). In the RA synovium, CD36 promotes pro-inflammatory
macrophage polarization and IL-1B3/TNF-o. release via lipid uptake.
An observational study is analyzing whether plasma from SLE/RA
patients affects CD36 expression on monocytes (NCT01180361),
providing basis for intervention studies. In EAE, CD36 is required for
myelin debris uptake by macrophages/microglia; its pharmacological
inhibition worsened neuroinflammation and disease severity (286).

5.3.3 Specialized pro-resolving mediators

SPMs, including resolvins, protectins, and maresins, are
endogenous lipid mediators derived from omega-3 PUFAs. They do
not passively suppress inflammation but actively initiate and coordinate
the resolution of inflammation (10). SPMs restore tissue homeostasis by
inhibiting neutrophil infiltration, enhancing macrophage clearance of
apoptotic cells (efferocytosis), and promoting tissue repair (291). This
“pro-resolution pharmacology” represents a novel therapeutic concept,
shifting from anti-inflammatory to pro-resolving. Furthermore, SPM
levels correlate with RA disease activity, and they directly inhibit
pathogenic T cell proliferation by precisely regulating the Th17/Treg
balance (254). This regulatory effect may involve the antagonism of key
pro-inflammatory signals. For instance, in RA, Y0 T cells represent a
significant source of IL-17, and their function can conversely be
enhanced by mediators such as prostaglandin E2 (PGE2) (267). This
marks a transition in lipid metabolism research from correlative
observation to functional target development. Exogenous
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TABLE 3 Targeting lipid metabolism: a summary of therapeutic strategies for autoimmune diseases.

10.3389/fimmu.2025.1713148

Therapeutic Representative  Primary Key immunomodulatory Targeted Development stage & key clinical
class agents metabolic = effects disease(s) trial ID(s)
target(s)
HMG-CoA Simvastatin, HMGCR/ Inhibits T cell protein prenylation; MS, RA, SLE Phase II (MS - NCT03896217); Phase 11
Reductase Atorvastatin Mevalonate reduces Th1/Th17 differentiation (Graves’ Disease - NCT03110848); Phase II
Inhibitors Pathway (RA - NCT00555230); Phase IV (RA -
NCT04177173); Phase IV (RA -
NCT00356473); Phase II (SLE -
NCT00519363); Phase II (SLE -
NCT00432354);
Observational (RA/SLE - NCT01180361,
recruiting).
S1P Receptor Fingolimod, S1PReceptorl Sequesters lymphocytes in lymph MS, UC Approved for MS (Fingolimod, Ozanimod,
Modulators Ozanimod (S1PR1) nodes, preventing migration to Siponimod) and UC (Ozanimod, Etrasimod);
inflammatory sites Hundreds of completed/ongoing trials (Phases
II-1V, post-marketing surveillance).
mTOR Inhibitors Sirolimus mTORC1 Inhibits Th1/Th17 differentiation; SLE,ALPS, Phase II (SLE, NCT04582136, recruiting);
(Rapamycin) promotes Treg expansion and 1gG4-RD Phase II (ALPS - NCT00392951);
function Phase II (IgG4-RD, NCT05746689, not yet
recruiting).
Nuclear Receptor Pioglitazone (PPARY), = PPARYy, PPARo. = Promotes M2 macrophage RA, IBD, MS = Phase II (SLE - NCT02338899); Phase IV (SLE
Agonists (PPAR) Fenofibrate (PPAR) polarization; enhances FAQO; exerts - NCT01322308); Phase III (RA -
anti-inflammatory effects NCT00554853); Phase II (RA -
NCT00763139); Phase I (MS - NCT00242177);
Phase ITa (IBD - NCT0594058)
Nuclear Receptor T0901317 LXRa, LXRB Promotes macrophage cholesterol SLE, MS Preclinical (259-262)
Agonists (LXR) (Preclinical), RGX-104 efflux; inhibits pro-inflammatory
gene expression
FAS/ACC TVB-2640 (FASN FASN, ACC1 Inhibits pathogenic Th17 RA,SLE, Preclinical (8, 115, 181, 263-265)
Inhibitors inhibitor), TOFA differentiation and autoantibody Psoriasis
(ACC inhibitor) production by autoreactive B cells/
plasma cells
Pro-Resolving Resolvins, Protectins GPCRs(e.g., Actively promote inflammation SLE,RA, IBD | Preclinical (98, 266-283)
Mediators (SPMs) GPR32) resolution; enhance efferocytosis
Lipid Uptake CD36 inhibitors CD36Scavenger  Blocks lipid uptake in SLE, RA, MS Observational Study (NCT01180361) (284);
Modulators Receptor macrophages and B cells, Preclinical (164, 285-289)
preventing foam cell formation/
activation

administration of specialized pro-resolving mediators (SPMs) has
demonstrated potent therapeutic efficacy in preclinical studies across
various autoimmune disease models, including RA and MS, suggesting
significant potential for clinical translation (98).

5.3.4 LXR agonists

LXR agonists effectively promote macrophage cholesterol efflux
and exert potent anti-inflammatory effects, making them ideal
candidates for inflammatory diseases like atherosclerosis (292).
Targeting T cell LXRp improved disease severity in an MS model
(259). An LXR inverse agonist, SR9243, alleviated RA by
modulating macrophage metabolism (260). However, a major
challenge is that LXR agonists induce SREBP-1c, leading to
increased hepatic lipogenesis and steatosis (293). This off-target
effect hinders clinical translation. Research focuses on developing
tissue-specific or pathway-selective LXR agonists to avoid liver side
effects while retaining anti-inflammatory benefits (294). An LXR
agonist, RGX-104, has undergone Phase I trials in advanced cancer
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(NCT02922764), proving druggability and providing experience for
future AD applications.

5.4 Therapeutic potential of dietary and
microbial interventions

5.4.1 Omega-3 PUFA supplementation

Dietary intervention is a direct means to modulate lipid
metabolism. Diets rich in omega-3 PUFAs (e.g., EPA, DHA from
fish oil) alter the body’s fatty acid profile, shifting eicosanoid
synthesis from the pro-inflammatory omega-6 pathway towards
producing anti-inflammatory or pro-resolving SPMs (295). Omega-
3 supplementation modulates B cell differentiation in lupus-prone
mice (296), reduces autoantibody production and immune complex
deposition, and blocks interferon and chemokine gene expression in
lupus (297, 298). Numerous clinical studies (including the large
VITAL trial) have evaluated omega-3 supplements for preventing/
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treating RA, SLE, psoriasis, CD, etc., generally showing benefits in
reducing disease activity (220, 299).

5.4.2 Gut microbiota modulation

Targeting the gut microbiota is another frontier for modulating
host metabolism and immunity. Strategies like probiotics, prebiotics,
or fecal microbiota transplantation (FMT) can reshape gut microbial
structure, increasing abundance of beneficial bacteria like butyrate
producers, showing great promise in IBD treatment (300). Butyrate
enhances gut barrier function and promotes Treg differentiation,
significantly improving joint inflammation in the collagen-induced
arthritis (CIA) model (301-303). Gut microbiota metabolites are key
mediators linking nutrition and immunity: SCFAs promote Treg
differentiation and enhance the gut immune barrier (304), while
bacterially modified bile acids influence immune cell differentiation
via receptor-mediated mechanisms (305-307). These findings
promote integrated intervention strategies, e.g., using traditional
Chinese medicine active components to modulate gut microbiota
metabolism, potentially enabling multi-target immunometabolic
regulation for chronic diseases.

5.5 Emerging therapeutic platforms and
metabolic intersections

The convergence of emerging technologies with metabolic
regulation is opening new avenues for modulating immunometabolic
homeostasis to treat complex diseases. CAR-T therapy is being
enhanced by metabolic reprogramming techniques to promote an
FAO-dependent memory-like phenotype, preventing T cell exhaustion
and enabling long-term survival/function in nutrient-poor, hypoxic
environments, significantly improving efficacy. CAR-T cell therapy for
ADs like SLE has entered clinical investigation (308). For example,
CD19-CAR T cell therapy substantially inhibits key pathways in SLE,
upregulating lipid metabolism-related pathways compared to
rituximab and belimumab (309). In synthetic immunology,
engineered probiotics designed to exploit APC metabolism, activating
HIF-1o in DCs to produce lactate and inhibit autoreactive T cells, have
been developed (310). In IBD models, pH-sensitive nanoparticle
carriers can target butyrate delivery to inflamed gut areas, promoting
Treg differentiation and barrier repair while reducing systemic side
effects (311). These innovative cross-disciplinary technologies hold
promise to revolutionize immunotherapy.

6 Conclusion

This review systematically elucidates the central role of lipid
metabolism in immune regulation. The research paradigm has shifted
from viewing lipids as passive structural and energy molecules to
recognizing their active roles as signaling regulators and determinants
of immune cell fate. Lipid reprogramming is a necessary condition for
immune cell functional differentiation (80). It can also be induced by
inflammatory factors (141). This forms a self-amplifying positive
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feedback loop, which acts as a core regulatory node driving disease
initiation, progression, and chronicity. In ADs, distinct metabolic
dysregulation—such as glycolytic hyperactivation in SLE, lactate-
induced lipogenesis in RA, and myelin lipid overload in MS—
characterizes each disorder. More importantly, these metabolic
vulnerabilities present unprecedented opportunities for developing
novel, more targeted therapeutic strategies. By reprogramming
metabolism rather than using broad suppression, we can normalize
immune function and restore homeostasis, representing a profound
shift in the treatment philosophy for ADs.

A core paradox exists in targeting lipid metabolism for ADs:
many effective drug targets (e.g., HMGCR, FASN) are essential for
normal immune cell function (312). Why does inhibiting these
pathways treat disease? Could it cause immunosuppression or
metabolic toxicity? How to balance efficacy and safety? We posit
that pathogenic immune cells in ADs exist in a state of metabolic
hyperactivation, far exceeding normal homeostatic levels. The
therapeutic goal is not complete pathway blockade but rather
modulating runaway metabolic activity back to the normal
homeostatic setpoint (313). The concept of “immunometabolic
normalization” rather than “inhibition”—highlights the need for
drugs with an appropriate therapeutic window. Such agents should
effectively suppress pathological hyperactivation while avoiding
excessive impairment of the normal metabolism essential for
protective immunity.

Despite remarkable progress, challenges remain: while the
association between lipid metabolic abnormalities and ADs is clear,
precise causal chains need full elucidation. Determining the initiating
factors and key nodes is crucial for identifying optimal intervention
targets. Lipid metabolic regulation exhibits significant heterogeneity
across diseases, patients, tissue microenvironments, and even cell
subsets. For instance, inhibiting pathways like mTORC1 or FASN
may affect both pathogenic and protective cells (103) or other tissue
functions (314). AD metabolic dysregulation is systemic, involving
interactions between tissue stromal cells (e.g., RA FLS) and distant
organs (177, 178), adding complexity. Therefore, it is essential to
move beyond one-size-fits-all suppression and toward tailored and
personalized interventions. Cellular metabolic pathways are
evolutionarily conserved and shared among nearly all cell types.
This universality means metabolic interventions often have broad
systemic effects. Translating basic findings into effective clinical
therapies is challenging. Many drugs targeting core pathways (e.g.,
LXR agonists, ACC inhibitors) show efficacy preclinically but face
limitations due to potential systemic side effects (e.g., hepatic steatosis
with LXR agonists). Achieving targeted delivery to specific immune
cells or tissues to improve efficacy and reduce off-target effects is a
major bottleneck.

Future breakthroughs rely on multidisciplinary integration.
Combining single-cell transcriptomics, proteomics, metabolomics,
and lipidomics will enable mapping detailed metabolic landscapes of
distinct immune cell subsets in disease states at unprecedented
resolution. This will further aid in identifying disease-specific
metabolic vulnerabilities, discovering novel targets, and stratifying
patients for precision medicine trials based on their metabolic
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phenotypes. High-throughput lipidomics/metabolomics may yield
biomarkers reflecting disease activity, predicting treatment response,
or distinguishing patient subtypes, enabling early diagnosis,
personalized therapy, and treatment monitoring. Developing novel
drug delivery systems [e.g., based on liposomes, exosomes (311)] for
targeted delivery of metabolic modulators to specific immune cells or
inflamed tissues is key to overcoming off-target effects. Integrating
metabolomic biomarkers with dietary (e.g., Omega-3 PUFAs, ketogenic
diets) and gut microbiome (e.g., probiotics, FMT) interventions will
help build multi-dimensional “metabolism-immune-microecology”
regimens. Combining these agents with established immunotherapies
promises synergistic effects. This includes pairing them with biologics
(e.g, TNF-o or IL-17 inhibitors, B cell-depleting agents) or JAK
inhibitors, which could lead to superior disease control, permit lower
doses of individual drugs, and reduce treatment-related toxicity.

In summary, targeting lipid metabolism opens a promising new
avenue for treating ADs. Future research will strive to deepen our
understanding of this complex regulatory network and translate this
knowledge into precise metabolic intervention strategies that truly
improve patients’ quality of life. This will require relentless
exploration by basic scientists, as well as close collaboration among
clinicians, pharmacologists, and the biotechnology industry. Such
efforts will propel this exciting field from bench to bedside, ultimately
enabling effective control and personalized management of ADs.
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SUPPLEMENTARY FIGURE 1

Schematic illustration of the regulatory network governing lipid metabolism.
Fatty acids (FAs) enter cells via CD36-mediated lipid uptake. Subsequent
intracellular signaling involves the PI3K/AKT pathway, which modulates
activity of AMPK and mTOR1. AMPK functions as a central regulator: it
influences peroxisome proliferator-activated receptor a (PPARa)-
dependent transcriptional programs and modulates sterol regulatory
element-binding protein 1 (SREBP1) activity. Transcription factors SREBP1
and SREBP2 translocate to the nucleus to drive expression of genes for fatty
acid synthesis (e.g., fatty acid synthase, FASN; acetyl-CoA carboxylase, ACC)
and cholesterol synthesis (e.g., 3-hydroxy-3-methylglutaryl-CoA reductase,
HMGCR; low-density lipoprotein receptor, LDLR), respectively. PPARo
promotes fatty acid oxidation (FAO) by facilitating acetyl-CoA transport into
mitochondria via carnitine palmitoyltransferase 1 (CPT1); within
mitochondria, B-oxidation, the tricarboxylic acid (TCA) cycle, and ATP
production occur. Additionally, the liver X receptor (LXR) regulates
cholesterol efflux via target genes such as ATP-binding cassette transporter
Al (ABCA1) and G1 (ABCG1I).Created in BioRender. yu, Y (2025). https://
BioRender.com/havvjba

SUPPLEMENTARY TABLE 1
Diverse lipids orchestrate immune cells in autoimmunity.
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