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Lipids orchestrate immune signaling beyond structure and energy. In

autoimmune diseases (ADs), immune cells rewire fatty-acid and cholesterol

pathways under microenvironmental pressures, creating pharmacologically

actionable dependencies. This metabolic dysregulation is not merely a passive

consequence of immune activation but is a key driver of disease progression. This

review synthesizes evidence from human and preclinical studies to systematically

outline the core regulatory networks of lipid metabolism. It further dissects the

role of lipid metabolism in reshaping the functions of T cells, B cells,

macrophages, and dendritic cells, and delineates its organ-specific

dysregulation in various ADs (e.g., synovium, skin, central nervous system, gut).

Rather than blanket immunosuppression, we propose “immune-metabolic

normalization”: titrating hyperactive nodes to physiological set-points while

preserving host defense. We prioritize targets with high translational potential

and evaluate corresponding targeted strategies, including drug repurposing,

novel agents in clinical development, and innovative interventional concepts.

Our work aims to bridge descriptive immunometabolic research with verifiable,

patient-centered interventions, laying the groundwork for precision medicine in

autoimmune diseases.
KEYWORDS

lipid metabolism, immunometabolism, autoimmune diseases, T cells, B cells,
macrophages, targeted therapy
1 Introduction

Autoimmune diseases (ADs) are chronic inflammatory conditions characterized by a

loss of immune tolerance to self-antigens, leading to immune-mediated attack on the

body’s own tissues and organs (1). Affecting approximately 3-5% of the global population

with rising incidence, ADs pose a significant public health challenge (2). Current clinical

management primarily relies on glucocorticoids, broad-spectrum immunosuppressants,
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and biologics (3). However, these therapies often lack specificity;

while suppressing aberrant immune responses, they concurrently

impair normal host defense mechanisms, increasing the risk of

infections and malignancies. Furthermore, many patients

experience treatment resistance, disease relapse, or drug

intolerance, highlighting the limitations of current strategies and

underscoring the urgent need for more precise, safe, and durable

interventions (3).

The emergence of the immunometabolism field has provided a

revolutionary perspective for understanding and treating immune-

mediated diseases. This discipline has revealed that cellular

metabolism is not merely a passive process supplying energy post-

activation (4) but is a decisive factor actively dictating immune cell

fate and function (5, 6). Immune cells undergo precise metabolic

reprogramming during different stages—quiescence, activation,

differentiation, and memory formation—to meet specific

bioenergetic and biosynthetic demands. For instance, effector T

cells rely on glycolysis (7), whereas regulatory T cells (Tregs) and

memory T cells prefer oxidative phosphorylation (OXPHOS) (8).

This tight coupling between metabolic signatures and cellular

functions implies that metabolic pathways themselves can be

targeted to modulate immune responses. By intervening at

metabolic vulnerabilities specific to pathogenic immune cell

subsets, it may be possible to selectively suppress deleterious

immunity while sparing protective functions, enabling more

precise immunomodulation.

Within the broad landscape of immunometabolism, lipid

metabolism is moving from the background to the forefront.

Traditionally viewed primarily as structural membrane

components and energy stores, lipids are now recognized for their

complex and central regulatory functions. They act as diverse

signaling molecules (e.g., sphingosine-1-phosphate [S1P],

specialized pro-resolving mediators [SPMs]) (9, 10), directly

regulating cell survival, migration, and activation. They form the

basis of key signaling platforms—lipid rafts—where minor

compositional changes can influence the signaling efficiency of

immune receptors like the T-cell receptor (TCR) and B-cell

receptor (BCR) (11–13). Furthermore, lipid metabolites serve as

substrates for post-translational modifications (e.g., palmitoylation)

or ligands for nuclear receptors (e.g., Peroxisome Proliferator-

Activated Receptors [PPARs], Liver X Receptors [LXRs]), thereby

reshaping the gene expression profiles of immune cells at the

transcriptional level (11, 14). Metaflammation represents a core

link connecting metabolic dysregulation and autoimmunity (15).

Growing evidence strongly indicates that lipid metabolic

dysregulation is a central pathological feature of numerous ADs,

including systemic lupus erythematosus (SLE), rheumatoid arthritis

(RA), multiple sclerosis (MS), inflammatory bowel disease (IBD),

and psoriasis (16). Metabolically derived harmful products can

activate immune cells, while inflammatory cytokines released

during immune responses exacerbate metabolic imbalance,

creating a vicious cycle that drives AD pathogenesis (17).

This review aims to systematically elaborate on the role of

immunocyte lipid metabolic reprogramming in ADs and its

potential as a therapeutic target. We will first overview the
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fundamental biochemical processes, key regulatory networks, and

organellar basis of lipid metabolism. Subsequently, we will detail how

lipid metabolism finely regulates the differentiation and function of

key immune cells, including T cells, B cells, and antigen-presenting

cells (APCs). Then, we will delve into the specific manifestations and

pathogenic mechanisms of lipid metabolic dysregulation in five

representative ADs: SLE, RA, MS, IBD, and psoriasis. Finally, we

will comprehensively evaluate therapeutic strategies targeting lipid

metabolism. These strategies encompass drug repurposing, novel

agents under clinical development, promising preclinical targets,

and non-pharmacological interventions. This work is intended to

provide a theoretical basis and direction for future research and

clinical translation in this field.
2 Dual roles of lipid metabolism in
immune regulation

Lipids are chemically and functionally diverse molecules,

including fatty acids (FAs), triglycerides, cholesterol, and

sphingolipids (18, 19). Their functions extend far beyond energy

storage and biomembrane constitution (20–42; Supplementary

Table 1). FAs are not only energy sources and precursors for

complex lipids but also give rise to potent inflammatory

mediators like prostaglandins (PGs) and leukotrienes (10).

Sphingolipid metabolites, such as ceramide and S1P, are

important second messengers regulating apoptosis, proliferation,

and migration (43). Cholesterol is crucial for maintaining

membrane fluidity and integrity and serves as a precursor for

steroid hormones and bile acids (44). The dynamic balance

among these molecules collectively determines cellular structural

integrity, signaling efficiency, and metabolic status. This section

outlines the core components of lipid metabolism to provide a

foundation for understanding its cell-specific reprogramming in

immune cells.
2.1 Coordination of key metabolic
pathways and organelles

The fate and function of immune cells depend on the

reprogramming of key lipid metabolic pathways, particularly the

balance between de novo lipogenesis (DNL) and fatty acid b-
oxidation (FAO) (Figure 1).

Lipid metabolism depends on a highly coordinated network of

organelles. DNL, which initiates from acetyl-CoA, occurs primarily

in the endoplasmic reticulum (ER) (45, 46), whereas FAO takes

place in mitochondria. Mitochondrial fitness—encompassing

membrane potential, respiratory capacity, and dynamics (fusion

and fission)—is critical for immune cell function (47, 48).

Mitochondria also establish close contact with the endoplasmic

reticulum (ER) via structures known as mitochondria-associated

membranes (MAMs). These MAMs play a key role in multiple

cellular processes: they mediate lipid transport, regulate calcium

signaling, and help maintain cellular homeostasis (49).
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Furthermore, lipid droplets (LDs) store neutral lipids to buffer

lipotoxicity and supply energy via lipolysis (50, 51). LDs also

function as docking sites for signaling proteins and serve as

platforms for the synthesis of inflammatory lipid mediators such

as eicosanoids, thereby directly linking lipid storage to

inflammatory responses (52, 53).

Different immune cells exhibit distinct preferences for

metabolic pathways depending on their functional status. DNL

supplies membrane constituents and modulates signaling in rapidly

proliferating activated immune cells (54). In contrast, FAO serves as

a crucial energy source required for the maintenance and survival of

long-lived cells such as memory T cells and Tregs, thereby

supporting their persistence and capacity for rapid responses (55).

In these cells, fully functional mitochondria are indispensable (56,

57). FAO exerts diverse roles across immune cell types, and

metabolic preferences evolve during cellular differentiation and in

response to varying physiological contexts (55).

Cholesterol homeostasis is maintained through a balance of

synthesis, uptake (via LDLR), and efflux (via ABCA1/ABCG1) (58).

Together with sphingolipids, cholesterol forms specialized plasma
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membrane microdomains known as lipid rafts. These rafts act as

signaling platforms that enrich the T-cell receptor (TCR), co-

stimulatory molecules (e.g., CD28), and downstream signaling

proteins (e.g., Lck). Upon antigen stimulation, lipid rafts facilitate

the aggregation of these molecules, effectively initiating and

amplifying TCR signaling (59, 60). Increased membrane cholesterol

content lowers the activation threshold of T cells, a key mechanism

underlying T cell hyperactivation in SLE patients (61, 62).

Under pathological conditions such as autoimmune disease, this

precise metabolic coordination becomes disrupted. When immune

cells encounter high protein synthesis demands (e.g., antibody

secretion in plasma cells) or experience lipid imbalance,

endoplasmic reticulum (ER) stress is triggered, activating the

unfolded protein response (UPR) (63). Although the UPR attempts

to mitigate stress by upregulating lipid synthesis genes to expand ER

membrane capacity, persistent ER stress disrupts lipid metabolism

and can trigger inflammatory or apoptotic signaling (64). In activated

immune cells such as macrophages and neutrophils, the number and

size of LDs increase significantly, representing a hallmark feature of

immunometabolic reprogramming (65).
FIGURE 1

Key pathways of intracellular lipid metabolism. Cellular uptake of fatty acids (FAs) occurs via CD36, FABPs, and FATPs, while LDL enters through
LDLR. Fas are activated to acyl-CoA by ACSL1 and can either undergo mitochondrial import via CPT1/2 for b-oxidation (producing acetyl-CoA, ATP,
ROS, and citrate) or serve as substrates for de novo lipogenesis involving ELOVLs, SCD, and FASN to generate palmitate and triacylglycerol (TAG).
Glucose-derived pyruvate also contributes to Acetyl-CoA production. TAG stored in lipid droplets is hydrolyzed by ATGL and HSL under PLIN5
regulation, releasing Diacylglycerol (DAG) and acyl-CoA, which may be re-esterified by DGAT1. Acetyl-CoA is also utilized for cholesterol synthesis
via the mevalonate pathway (catalyzed by HMGCR). Key transcription factors including PPARs, Sterol Regulatory Element-Binding Proteins (SREBPs),
and Liver X Receptors (LXRs) coordinate these processes by regulating lipid metabolic genes. Created in BioRender. Yu, Y (2025). https://
BioRender.com/havvjba Abbreviations: CD36,Cluster of Differentiation 36; FABPs, Fatty Acid-Binding Proteins; FATPs, Fatty Acid Transport Proteins; LDL,
Low-Density Lipoprotein; LDLR, Low-Density Lipoprotein Receptor; ACSL1, Acyl-CoA Synthetase Long-Chain Family Member 1; CPT1/2, Carnitine
Palmitoyltransferase 1 and 2; ROS, Reactive Oxygen Species; ELOVLs, Elongation of Very Long Chain Fatty Acids Proteins; SCD, Stearoyl-CoA
Desaturase; FASN, Fatty Acid Synthase; TAG, Triacylglycerol; ATGL, Adipose Triglyceride Lipase; HSL, Hormone-Sensitive Lipase; PLIN5, Perilipin 5; DAG,
Diacylglycerol; DGAT1, Diacylglycerol O-Acyltransferase 1;HMGCR, 3-Hydroxy-3-Methylglutaryl-CoA Reductase; PPARs, Peroxisome Proliferator-
Activated Receptors.
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2.2 The lipid regulatory network modulates
immune functions

A sophisticated molecular network within cells senses lipid and

energy status to adjust metabolic pathways and thereby regulate

immune function. Key sensory and signaling pathways include:

2.2.1 Sterol regulatory element-binding proteins
SREBPs are master transcription factors regulated by cellular

sterol levels (66). SREBP-2 primarily activates genes in the

cholesterol synthesis pathway (e.g., HMG-CoA reductase

[HMGCR], LDLR), while SREBP-1c mainly regulates genes

involved in FA and triglyceride synthesis (e.g., acetyl-CoA

carboxylase [ACC], fatty acid synthase [FASN]) (67). Studies have

shown that the regulation of lipid synthesis can directly drive the

functions of various effector immune cells. For instance, the SREBP

signaling pathway in B cells is essential for antibody responses, as

well as for the formation of germinal centers, memory B cells, and

bone marrow plasma cells (68). In DCs, lipid metabolism regulates

their antigen presentation and maturation processes (69).

2.2.2 Peroxisome proliferator-activated receptors
PPARs are a family of nuclear receptors (PPARa, PPARb/d,

PPARg) acting as intracellular lipid sensors (70). PPARa and

PPARb/d promote FAO and energy expenditure, whereas PPARg
drives lipogenesis and storage (71). PPARs play pivotal roles in

integrating lipid metabolism with inflammation; for instance,

PPARg exerts potent anti-inflammatory effects and is a key

determinant in the fate of Tregs, memory T cells, and M2

macrophages (72, 73). However, it is crucial to note this: PPARg’s
effects on immune cells are highly context-dependent (74).

Additionally, they can vary substantially across species (75).

2.2.3 Liver X receptors
LXRs (LXRa and LXRb) are nuclear receptors activated by

oxysterols, sensing cholesterol levels (76). They promote cholesterol

efflux by upregulating ABCA1/G1 to prevent cellular cholesterol

overload. Additionally, LXRs possess significant anti-inflammatory

functions, inhibiting the expression of inflammatory genes in

macrophages (77) and modulating T cell and dendritic cell (DC)

function, relevant to ADs (78–80).

2.2.4 AMPK/mTOR axis
AMP-activated protein kinase (AMPK) and the mechanistic

target of rapamycin complex 1 (mTORC1) are central kinases

sensing cellular energy and nutrient status, exerting antagonistic

yet coordinated effects on lipid metabolism (73). AMPK, an energy

sensor, activates under low energy conditions (high AMP/ATP

ratio). Activated AMPK phosphorylates and inhibits synthases

like ACC. This action shuts down energy-consuming anabolic

processes while promoting energy-producing catabolism, thereby

reprogramming cellular energy metabolism to support cell function.

In regulatory T cells (Tregs), this metabolic reprogramming

combines with AMPK-mediated Foxp3 phosphorylation and
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stabilization. Together, they maintain the suppressive capacity of

Tregs. Defects in this process can lead to autoimmune liver disease

(81). mTORC1, a nutrient sensor, activates when signals like amino

acids, glucose, and growth factors are abundant. Activated

mTORC1 promotes anabolic processes necessary for growth and

proliferation, including protein synthesis and lipid synthesis (partly

via SREBP activation) (82). The balance of the AMPK/mTOR axis

determines whether a cell is in an anabolic or catabolic mode,

crucially influencing immune cell fate (83).

Cellular lipid metabolic status is determined not by a single

pathway but by the interconnected network of these pathways at the

organellar, metabolic, and signaling levels (84) (Supplementary

Figure S1). For example, LXRs can induce SREBP-1c expression,

forming a feed-forward loop connecting cholesterol clearance to FA

synthesis, facilitating the esterification and storage of free

cholesterol as cholesterol esters in LDs, which is vital for lipid

homeostasis but can contribute to pathology when dysregulated

(85). This networked regulation provides metabolic plasticity but

also means dysfunction at any node can trigger cascades leading to

complex metabolic disturbances. In ADs, persistent inflammatory

signals and altered nutrient environments impact multiple nodes

simultaneously, disrupting homeostasis and driving pathological

metabolic reprogramming. We will now explore how these

principles are implemented across different immune cell subsets.

This metabolic programming ultimately shapes their unique

immune functions.
3 Lipid metabolic preferences and
functional remodeling in key immune
cells

Building upon the foundational framework of lipid metabolism,

we have observed that immune cells exhibit functionally specific

lipid metabolic preferences (Figure 2), which directly shape the

intensity and type of immune response (55). This section will

provide an in-depth analysis of how key immune cells—such as T

cells, B cells, macrophages, and dendritic cells—leverage distinct

lipid metabolic patterns to support their activation, differentiation,

and functional execution (Table 1). Furthermore, it aims to

elucidate the intrinsic link between metabolic reprogramming and

the remodeling of immune functions.
3.1 T cells

As central players in adaptive immunity, T cell differentiation

and function are tightly controlled by their metabolic state. Lipid

metabolism acts as a checkpoint determining T cell fate (113, 114).

3.1.1 CD4+T cells
3.1.1.1Metabolic regulation of Th17/Treg balance

Upon antigen activation, naïve T cells rapidly initiate metabolic

reprogramming, shifting to aerobic glycolysis to support rapid
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clonal expansion. Their eventual differentiation into different

effector subsets is closely linked to lipid metabolic pathway

choices. Pathogenic Th17 cells heavily rely on the DNL/fatty acid

synthesis (FAS) pathway (involving enzymes like ATP-citrate lyase

[ACLY], ACC, FASN) to convert glucose-derived carbons into FAs

(115). Inhibiting ACC1 or FASN pharmacologically (e.g., with

TOFA or soraphen A) or genetically can effectively block Th17

differentiation and promote Treg generation, ameliorating disease

in autoimmune models (8, 115). Conversely, immunosuppressive

Treg cells depend on FAO to maintain their stability and function

(116, 117). Early studies using the carnitine palmitoyltransferase 1a

(CPT1a) inhibitor Etomoxir suggested that FAO is crucial for Treg

cell function. This interpretation, however, was complicated by

subsequent findings that questioned Etomoxir’s specificity and

indicated CPT1a-independent effects (118). More definitive

support comes from genetic studies. For example, disrupting the

Acyl-CoA Synthetase Bubblegum Family Member 1(Acsbg1) gene

in Treg cells has shown that their functional maintenance relies on

intact mitochondrial fatty acid metabolism (119). This distinct

metabolic preference makes the Th17/Treg axis an attractive

therapeutic target; modulating the FAS/FAO balance may reshape

immune responses and suppress autoimmune inflammation (113).
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3.1.1.2 Metabolic profiles of Th1 and Th2 cells

The differentiation and function of Th1 and Th2 cells are

regulated by distinct lipid metabolic pathways. In Th1 cells, the

cholesterol biosynthesis pathway and its precursor mevalonate

promote differentiation and enhance IFN-g production (120).

Consistent with this, inhibition of this pathway using statins

selectively suppresses the production of IFN-g and IL-10 without

affecting cell viability, underscoring the specificity of metabolic

regulation in Th1 function (121). Moreover, fatty acid

metabolism profoundly influences Th1 functional states. For

instance, loss of the monounsaturated fatty acid Scd2 activates

type I interferon signaling in Th1 cells. This finding offers a novel

metabolic–immune perspective for understanding the role of Th1

cells in antiviral defense and autoimmune inflammation (122).

In contrast, Th2 cell differentiation and function exhibit a

stronger reliance on fatty acid metabolism. PPARg is highly

expressed during Th2 differentiation, and both PPARg antagonism

and inhibition of FAS significantly impair Th2 proliferation,

differentiation, and secretion of signature cytokines such as IL-5

and IL-13 (123). Additionally, Th2 cells display high tolerance to

lactate-rich environments, suggesting a metabolic preference for fatty

acid oxidation(FAO) over glycolysis as an energy source (124, 125).
FIGURE 2

Lipid metabolic reprogramming in immune cell activation and differentiation. This figure summarizes lipid metabolic patterns across immune cell
subsets, emphasizing the shift between fatty acid synthesis (FAS) and fatty acid oxidation (FAO) to meet functional demands. Left (Lipogenic
phenotype – proliferating/effector cells): Rely on de novo lipogenesis (DNL) for membrane biogenesis and rapid growth.M1 macrophages: LPS/
TLR4-induced HIF-1a enhances ACLY/FASN, promoting lipid synthesis and inflammation. Activated B cells: BCR/CD40 signaling activates SREBP/c-
MYC, upregulating FASN/SCD1 to support antibody production. Effector T cells: TCR/mTOR-driven DNL facilitates proliferation and cytokine
secretion. Dendritic cells: Glycolysis and DNL support antigen presentation structures. Right (FAO phenotype – regulatory/memory cells): Depend
on fatty acid oxidation for long-term survival and regulatory functions.M2 macrophages: IL-4/IL-13 activate PPAR-g/LXR, promoting FAO and anti-
inflammatory activity. Resting T/B cells: Use exogenous lipids and FAO to maintain quiescence. Tregs: FAO-derived metabolites sustain Foxp3 and
suppressive function. Memory cells: Rely on CD36 and FAO for rapid recall capacity. Transcriptional regulation: Key sensors (SREBP-1c, PPARs, HIF-
1a/mTOR) integrate nutrient and immune signals to dynamically regulate metabolic genes, thereby coordinating immune cell function. Created in
BioRender. yu, Y (2025). https://BioRender.com/yi5u4zy“.
frontiersin.org
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3.1.2 CD8+T cells
Lipid metabolism serves as a central regulator of CD8+ T cell

fate and function, profoundly influencing their efficacy in antitumor

immunity (126). To meet the demands of proliferation and effector

functions, activated CD8+ T cells not only uptake exogenous lipids

but also engage in de novo lipogenesis (DNL) to sustain optimal

effector responses (127, 128).

However, in the tumor microenvironment (TME), cholesterol

can upregulate Cluster of Differentiation 36(CD36) on CD8+ T cells,

leading to intracellular lipid accumulation, lipid peroxidation, and

ferroptosis. These changes ultimately impair cytotoxicity and
Frontiers in Immunology 06
promote tumor progression (129). Notably, targeting CD36 can

restore cytotoxic T lymphocyte (CTL) function and synergize with

anti–PD-1 therapy (129).

On the other hand, memory CD8+ T cell (Tmem) persistence

relies on highly efficient catabolic metabolism, particularly FAO, to

maintain their quiescent state and metabolic flexibility. Similar to

Treg cells, this process is independent of CPT1a (118, 130).

Interestingly, Tmem cells depend less on extracellular fatty acid

uptake. Instead, they utilize glucose taken up from the extracellular

environment to support FAO and oxidative phosphorylation

(OXPHOS) (131).
TABLE 1 Lipid metabolic features of major immune cell subsets.

Cell type Major
metabolic
pathway(s)

Key metabolic
regulator(s)

Key
differentiation/

activation signal(s)

Immune function Association with
autoimmune diseases

References

Th17 cells FAS PI3K/Akt/mTORC1 STAT3 Produces IL-17/22, drives
tissue inflammation

Linked to RA (synovial
inflammation), MS (CNS
inflammation), IBD (intestinal
inflammation), and psoriasis
(keratinocyte
hyperproliferation).

(229, 230)

Treg cells FAO AMPK/PPARa/b TGF-b/Smad3 Maintains immune
tolerance, suppresses
effector T cells

Frequently impaired in SLE,
IBD, RA

(231, 232)

Memory T
cells

FAO AMPK/PPARd IL-7/IL-15 Supports long-term
survival and rapid recall
response

Contribute to MS relapses
(central memory T cells),
sustain chronic inflammation
in RA (synovial memory T
cells), and cooperate in
pathogenesis in SLE (alongside
memory B cells).

(148, 149, 233)

Plasma cells FAS/cholesterol
synthesis

SREBP-1c/mTORC1 BLIMP1 Large-scale antibody
synthesis and secretion

Key contributors through
autoantibody production: anti-
nuclear/anti-dsDNA antibodies
in SLE, anti-CCP antibodies in
RA, and anti-SSA/Ro
antibodies in Sjögren’s
syndrome.

(233)

M1
macrophages

Glycolysis/FAS HIF-1a NF-kB/TLR4/MyD88 Releases
pro-inflammatory
cytokines, enhances
bactericidal activity

Enriched in RA synovium
(promoting joint destruction),
promote lupus nephritis in SLE
kidneys, and enhance
keratinocyte proliferation in
psoriasis.

(140, 234)

M2
macrophages

FAO PPARg IL-4/STAT6
IL-10/STAT3

Tissue repair, secretes
anti-inflammatory factors

Contribute to disease through
loss of function: deficient
intestinal barrier repair in IBD,
impaired remyelination in MS,
and weakened anti-
inflammatory activity in RA.

(235)

Activated
DC cells

Glycolysis/FAS mTORC1/HIF-1a TLR2/4-TRIF Expresses co-stimulatory
molecules, initiates T cell
response

Critical in initiating localized
autoimmunity: activate Th17
cells and promote CNS
infiltration in MS, stimulate
pathogenic T cells in psoriatic
skin, and disrupt tolerance in
IBD via excessive immune
activation.

(136, 236, 237)
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3.1.3 gdTcells
Beyond the previously emphasized Th17 cells, IL-17-producing

gd T (gd T17) cells are increasingly recognized for their pivotal role

in autoimmunity. As a major subset of innate-like lymphocytes, gd
T17 cells can rapidly and abundantly produce IL-17 within hours

upon stimulation by IL-1b and IL-23, independent of conventional

T cell receptor signaling (132). In various models, including

experimental autoimmune encephalomyelitis (EAE), psoriasis,

and arthritis, gd T17 cells have been identified as a critical early

source of IL-17, often preceding the activation of Th17 cells (133).

Recent studies reveal that the differentiation and function of gd
T17 cells are highly lipid-dependent. In inflammatory settings such

as psoriasis, these cells shift toward aerobic glycolysis and

lipogenesis. They also uptake free fatty acids, such as palmitate,

via the CD36 receptor, which further stimulates IL-17A production

(134). Importantly, inhibiting acetyl-CoA carboxylase ACC1

disrupts de novo fatty acid synthesis in gd T17 cells, reducing

their lipid storage and IL-17A secretion capacity. This metabolic

intervention has been shown to markedly ameliorate inflammation

in a psoriasis model (135).
3.2 B cells and plasma cells

B cell activation and proliferation also require substantial lipids for

membrane expansion. Specifically, sterol (cholesterol) and fatty acid

synthesis, regulated by the SREBP pathway, are crucial for B cell

activation, germinal center (GC) formation, memory B cell generation,

and ultimate differentiation into antibody-secreting plasma cells (PCs)

(22, 68). Genetic deletion of SCAP, a key protein in the SREBP

signaling pathway, in B cells abolishes effective proliferation and

reduces lipid raft structures, indicating the necessity of SREBP-

mediated lipogenesis for B cell responses (68). During the GC

reaction, B cells undergo intense proliferation and affinity

maturation, a process also dependent on mitochondrial metabolism

and FAO for energy (23). Differentiated PCs significantly upregulate

DNL and cholesterol synthesis to provide phospholipids and

cholesterol needed for constructing the extensive ER membrane

system required for high-rate antibody secretion (24). Inhibiting

fatty acid synthesis severely impedes PC differentiation and antibody

secretion capacity (166). Thus, lipid metabolic reprogramming is

fundamental to the high antibody production function of PCs.
3.3 Dendritic cells

When DCs are activated via pattern recognition receptors such

as Toll-like receptors (TLRs), they undergo metabolic

reprogramming. This process upregulates glycolysis and de novo

lipogenesis (DNL), leading to lipid droplet accumulation. These

changes enhance their immunogenicity, enabling efficient initiation

of immune responses (136).

Specifically, the maturation of cDC1s, their expression of co-

stimulatory molecules, and production of pro-inflammatory

cytokines like IL-12 are crucial for initiating Th1-type immune
Frontiers in Immunology 07
responses (136). Furthermore, membrane cholesterol enrichment in

cDC1s is key for forming effective antigen presentation platforms.

Impaired cholesterol efflux specifically enhances the immunogenicity

of cDC1s (137). Conversely, LXR agonists inhibit the maturation of

cDC2s by promoting cholesterol efflux (80). However, excessive lipid

accumulation, such as that induced by a high-fat diet, impairs the

antigen presentation capacity and lymph node migration of CD11b+

cDC2s. This shifts their function towards inducing immune tolerance

rather than immune activation (138, 139).
3.4 Macrophages

Macrophages can polarize into pro-inflammatory M1 or anti-

inflammatory M2 phenotypes, a balance often disrupted in ADs

(140). The classical model posits that M1 macrophages are

characterized by high aerobic glycolysis and a disrupted TCA

cycle, coupled with FAS activation, while M2 macrophages rely

on an intact TCA cycle and OXPHOS fueled by FAO. Activation of

nuclear receptors like PPARg and LXR is key for driving M2

polarization (141, 142). However, recent studies challenge this

clear dichotomy, suggesting human M2 macrophages may also

rely on glucose metabolism, and highlighting potential off-target

effects of commonly used FAO inhibitors like etomoxir, indicating a

more complex metabolic landscape for macrophages than

previously thought (143–145).

It is evident that the lipid metabolic preferences of adaptive

immune cells form the metabolic basis for their functional

specialization. From FAS-dependent pathogenic Th17 cells to FAO-

preferring Treg cells, and from plasma cells requiring extensive lipid

synthesis to support antibody production to dendritic cells whose

antigen-presenting capacity is influenced by lipid accumulation,

metabolic characteristics directly determine the nature and intensity

of immune responses. However, the metabolic programs of immune

cells do not exist in isolation; they are profoundly shaped by their

tissue microenvironment. Variations in lipid abundance and

composition across different tissues shape distinct T cell

communities. For instance, the intestinal environment, rich in

dietary lipids and microbially derived bile acids, promotes the

differentiation and functional maintenance of Treg cells to sustain

immune tolerance (146). The skin, abundant in ceramides (CER),

cholesterol (CHOL), and free fatty acids (FFA), serves as a key

reservoir for resident memory T cells (147). Nevertheless, when this

lipid environment undergoes quantitative or qualitative alterations, it

can transform into a pathological foundation that drives chronic

inflammation and autoimmunity (148, 149). In the following

section, we will explore how lipid metabolism is altered in the

pathological context of autoimmune diseases.
4 Landscape of lipid metabolic
dysregulation in autoimmune diseases

Lipid metabolic dysregulation is a common pathological feature

of various autoimmune diseases (16). However, distinct immune
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cell subsets and tissue microenvironments in different diseases

exhibit unique patterns of lipid metabolic reprogramming

(Figure 3). As previously discussed, this reprogramming is not

merely a passive consequence but actively contributes to disease

pathogenesis. In this section, we will systematically outline the

specific landscape of lipid metabolic dysregulation in five

representative autoimmune diseases: SLE, RA, MS, IBD, and

psoriasis. Furthermore, we will clarify how unique patterns of

metabolic disturbance in different disease contexts contribute to

their specific immunopathological characteristics (Table 1).
4.1 Systemic lupus erythematosus

SLE is a systemic autoimmune disease characterized by

abundant autoantibody production and multi-organ involvement

(150, 151). Its pathogenesis involves dysfunction of various immune
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cells, including T cells, B cells, and APCs, closely linked to profound

lipid metabolic abnormalities (152).

CD4+ T cells, central drivers in SLE, exhibit significant lipid

metabolic abnormalities (153, 154). Given the crucial role of

mTORC1-driven lipogenesis in promoting Th17 cell differentiation

(82), its dysregulation is particularly relevant to the pathogenesis of

SLE. Concurrently, the immunoregulatory function of Treg cells is

suppressed (151–153). Studies have confirmed that activation of

mTORC1 precedes the onset of SLE and related comorbidities,

indicating that this metabolic reprogramming acts as a key

upstream event driving T cell functional imbalance (86).

Concurrently, T cells in SLE commonly exhibit mitochondrial

dysfunction. This includes hyperpolarized mitochondrial

membrane potential, increased production of reactive oxygen

species (ROS), abnormal morphology (such as enlargement), and

reduced ATP generation (155). These alterations impair energy

supply and affect epigenetic modifications like DNA methylation,
FIGURE 3

Dysregulated lipid metabolism in autoimmune diseases. This figure illustrates dysregulated lipid metabolism in key immune cells across five
representative autoimmune diseases (1) MS: microglia, T cells, and B cells exhibit altered fatty acid oxidation (FAO), while oligodendrocytes show
impaired cholesterol synthesis, contributing to neuronal demyelination (2) psoriasis: keratinocytes, T helper 17 (Th17) cells, plasmacytoid dendritic
cells (pDCs), and macrophages display dysregulated arachidonic acid metabolism and reactive oxygen species (ROS) production, with reduced
omega-3 polyunsaturated fatty acids (PUFAs), driving psoriatic skin lesion formation (3) SLE: autoreactive B cells, plasma cells, dendritic cells, and
macrophages undergo abnormal FAO and interact with oxidized lipoproteins, facilitating autoantibody generation (4) IBD: effector T cells (Teff),
regulatory T cells (Treg), and macrophages show disrupted FAO; coupled with gut microbiota dysbiosis (impacting short-chain fatty acids, SCFAs)
and increased intestinal permeability, this fuels the inflammatory cycle (5) RA: fibroblast-like synoviocytes (FLS), osteoclasts, macrophages, T cells,
and B cells exhibit dysregulated lipid metabolism (e.g., lactic acid accumulation, oxidized low-density lipoprotein (ox-LDL) involvement), leading to
bone erosion and cartilage degradation. The legend depicts innate immune cells, activated macrophages, neutrophils, regulatory T cells, T helper
subsets, effector T cells, and bacteria. ”Created in BioRender. yu, Y (2025). https://BioRender.com/21li3ok.
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leading to aberrant expression of autoreactive genes. Reducing lipid

peroxidation/ROS and inhibiting T cell oxidative stress can alleviate

lupus nephritis (LN) (156–158). Furthermore, lipid rafts contribute to

SLE pathogenesis (159). Increased synthesis of cholesterol and

glycosphingolipids (GSLs) in SLE T cells leads to excessive lipid

raft aggregation on the plasma membrane, enhancing TCR signaling

and lowering the activation threshold for autoreactive T cells (160,

161). Downregulating the transcription factor FLI1 reduces GSL

synthesis, affecting SLE progression (79, 87, 162, 163). Recent

studies confirm increased CD38 expression in SLE CD4+ T cells

correlates with increased lipid rafts, and targeting CD38 to modulate

ganglioside GM2 distribution alleviates SLE pathology (161).

Autoreactive B cells in SLE upregulate the scavenger receptor

CD36 to increase exogenous lipid uptake (164), enhancing

mitochondrial OXPHOS to fuel B cell activation, proliferation,

and differentiation, thereby exacerbating disease (165). B cell

differentiation into PCs depends on SREBP-mediated lipogenesis

to support massive ER expansion. Inhibiting fatty acid synthesis

ameliorates disease in lupus-prone mice (166, 167). Conversely,

regulatory B cells (Bregs) in SLE are reduced in number and

functionally impaired, exhibiting metabolic abnormalities like

mitochondrial depolarization and elevated ROS (168).

Macrophages and DCs also play significant roles in SLE,

particularly LN (169). In LN models, renal macrophages exhibit

impaired phagocytic function, failing to clear apoptotic cells and

immune complexes effectively. Excess lipid peroxides can activate

macrophage inflammation (170), while their phagocytic capacity is

impaired due to downregulated CPT1a and reduced fatty acid

metabolism (171, 172). Additionally, high levels of type I interferon

persistently induce upregulation of the scavenger receptor SR-A1

on macrophages, promoting uptake of oxidized low-density

lipoprotein (oxLDL) and foam cell formation, accelerating

atherosclerosis—a mechanism underlying the high cardiovascular

risk in SLE patients (169). Research on DCs in SLE is less extensive.

In LN, DCs infiltrate the kidney and amplify inflammation (173).

Recent studies show that accumulated cholesterol metabolite

farnesyl pyrophosphate (FPP) within DCs of SLE model mice

promotes their activation via mitochondrial remodeling (174).

In summary, in SLE, mTOR-driven metabolic anomalies in T

cells, excessive lipid uptake by B cells, and macrophage dysfunction

drive premature immune cell activation, amplifying metabolic

disturbances and providing the basis for autoantibody production

and multi-organ inflammatory damage.
4.2 Rheumatoid arthritis

RA is an autoimmune disease characterized by chronic synovial

inflammation and joint cartilage/bone erosion (175).The

pathological core lies in the pathogenic interaction between

immune and stromal cells within the synovial microenvironment,

wherein lipid metabolism serves a dual role as both an energy

source and a signaling mechanism.

The inflamed RA synovium constitutes a unique metabolic

microenvironment characterized by hypoxia and high lactate
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concentrations (176). High lactate is taken up by synovial CD4+

T cells via the transporter Solute Carrier Family 5 Member 12

(SLC5A12), which inhibits their glycolysis and paradoxically drives

FAS (177, 178). This lactate-induced increase in FAS is a key

metabolic basis for T cell differentiation towards the pathogenic

Th17 phenotype and IL-17 production. This mechanism directly

links accumulated this local metabolite (lactate) to T cell

pathogenicity (179, 180). Concurrently, excess FAs lead to LD

deposition and upregulate T cell migration programs, facilitating

immune cell infiltration and exacerbating synovitis and joint

destruction (91, 176). Fibroblast-like synoviocytes (FLS) are major

effectors of joint destruction in RA. RA-FLS exhibit upregulated

FASN expression leading to fatty acid accumulation (181, 182).

These excess FAs enhance phosphorylation of DRP1 protein,

inducing mitochondrial fission, which increases ROS production

and activates pro-inflammatory and pro-survival pathways like

PI3K/mTOR/NF-kB, ultimately conferring the aggressive,

cartilage-destructive phenotype to FLS (92). The RA synovium is

infiltrated by numerous macrophages. Active RA is dominated by

MerTK-negative (MerTK−) macrophages secreting pro-

inflammatory cytokines, while remission phases enrich MerTK-

positive (MerTK+) macrophages with repair functions (93). The

latter can effectively produce SPMs (e.g., resolvins), inducing FLS

repair responses and maintaining joint homeostasis (93). A

hallmark pathological change in RA is bone erosion caused by

excessive osteoclast activation. Osteoclast differentiation is

regulated by cytokines like Receptor Activator of Nuclear Factor

Kappa-B Ligand(RANKL) (183). It is also closely linked to

cholesterol metabolism (184). Statins, besides lowering lipids, can

inhibit RANKL expression and inhibit osteoclast precursor

differentiation, suggesting potential value for bone protection in

RA (185). The hypoxic synovial microenvironment in RA initially

induces lipid synthesis in T cells, and this metabolic reprogramming

in turn drives their pathogenic phenotype and tissue infiltration

capacity, illustrating the vicious cycle between metabolic

abnormality and immune activation.

In the hypoxic joint microenvironment of RA, lactate

accumulation drives lipid metabolic reprogramming in T cells

and FLS. This reprogramming promotes the differentiation of

pathogenic Th17 cells, enhances the invasiveness of FLS, and

disrupts bone homeostasis, thereby synergistically exacerbating

synovial inflammation and joint destruction. Hypoxia and lipid

signaling act cooperatively within the RA joint microenvironment

to jointly drive disease progression. Specifically, the hypoxic

synovial milieu initially induces lipid synthesis in T cells, and this

metabolic reprogramming in turn drives pathogenic T cell

phenotypes and enhances tissue infiltration capacity. This process

exemplifies a vicious cycle between metabolic dysregulation and

immune activation.
4.3 Multiple sclerosis

MS is an autoimmune disease characterized by chronic central

nervous system (CNS) inflammation, demyelination, and
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neurodegeneration (186). Patients with MS exhibit significant

alterations in lipid metabolism, including changes in levels of

low-density lipoprotein (LDL), high-density lipoprotein (HDL),

apolipoproteins, and oxysterols. These metabolic abnormalities

correlate with clinical disease activity, although their causal

relationship remains incompletely defined (187). Given that

myelin itself is a lipid-rich structure, lipid metabolic disturbances

occupy a central position in MS pathogenesis; lipid molecules are

both targets of myelin destruction and inflammatory mediators

affecting immune function.

Myelin, formed by extensions of oligodendrocyte membranes

wrapping around axons, is rich in lipids (constituting ~70-80% of

dry weight) (188). Therefore, oligodendrocytes must maintain high

lipogenic capacity for myelination during development and effective

remyelination after damage (189). The failure of remyelination in

MS is partly due to impaired differentiation of oligodendrocyte

precursor cells into mature oligocytes. Consequently, these cells face

a severe deficit in their lipid synthesis capacity, which is required for

producing the vast amounts of lipids essential for myelin

production (189). Altered myelin composition due to lipid

dysmetabolism may affect its stability and increase its

immunogenicity, potentially triggering immune attack (190). In

MS demyelinating lesions, microglia and infiltrating macrophages

phagocytose myelin debris, leading to lipid overload and foam cell

formation (191). This lipid accumulation triggers sustained

inflammation and inhibits transition to a pro-repair phenotype,

hindering remyelination. The transcription factor Interferon

Regulatory Factor 5(IRF5) is key for regulating myelin debris

degradation and cholesterol homeostasis; IRF5 deficiency leads to

inadequate degradation in lysosomes, causing abnormal

accumulation of LDs and cholesterol crystals, exacerbating disease

(191). Activity of the fatty acid elongase ELOVL6 has also been

found to promote inflammatory foam cell formation (192).

Changes in mitochondrial lipid metabolism have been identified

in CD4+ T cells from MS patients (193). In the experimental

autoimmune encephalomyelitis (EAE) mouse model, Treg cells

infiltrating the CNS heavily rely on CPT1a-mediated FAO to

maintain their function; enhancing Treg FAO capacity is

considered a potential therapeutic strategy (194). Furthermore,

the lipid mediator maresin-1 (MaR1) can reduce Th1 cells,

increase Tregs, and suppress pro-inflammatory cytokines (98,

195), also reducing immune cell infiltration, accelerating

inflammation resolution, and delaying disease progression in EAE

models (102). CD4+ T cells from relapsing-remitting MS (RRMS)

patients exhibit dysregulated LXR-mediated lipid metabolism.

While LXRb expression is upregulated, downstream target gene

expression is downregulated, leading to increased membrane

cholesterol and decreased GSLs. This altered lipid raft

composition is thought to enhance T cell reactivity, promote IL-

17 production, and exacerbate neuroinflammation (99). Recently, a

lipid kinase was found to promote Th17 differentiation via the

mTORC1/STAT3 pathway, contributing to EAE progression (103).

A clinical study profiling lipid metabolic reprogramming in

immune cells of MS patients is ongoing (NCT04053374).

Metabolic reprogramming endows pathogenic T cells with strong
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migratory and pathogenic capacity, enabling CNS invasion and

inflammatory cytokine release; these cytokines, in turn, exacerbate

lipid metabolic reprogramming in CNS immune cells and damaged

cells, leading to myelin and neuronal injury.
4.4 Inflammatory bowel disease

IBD, including Crohn’s disease (CD) and ulcerative colitis

(UC), involves a loss of tolerance to intestinal microbiota in

genetically susceptible individuals, resulting in chronic gut

inflammation. A nationwide study suggests abnormal lipid

profiles in CD and UC patients (196). Lipid metabolism plays

multifaceted roles in IBD, regulating intestinal barrier function,

microbial homeostasis, and immune responses (197).

A healthy gut microbiota ferments dietary fiber to produce

short-chain fatty acids (SCFAs), notably butyrate (198). Butyrate is

a primary energy source for colon epithelial cells and a potent

histone deacetylase (HDAC) inhibitor (199).Through this

epigenetic mechanism, it promotes Treg cell differentiation while

suppressing pro-inflammatory responses, ultimately maintaining

intestinal immune tolerance (146). Patients with IBD commonly

exhibit gut microbiota dysbiosis, characterized particularly by a

reduction in butyrate-producing bacteria. This leads to decreased

levels of butyrate, which is recognized as a key driver of

inflammation in IBD (200). In ulcerative colitis, lipidomic

analyses have revealed that alterations in triglyceride and

phospholipid levels are closely linked to the pathogenesis,

progression, and treatment response of the disease (201).

CD patients exhibit a unique “creeping fat” phenomenon:

mesenteric adipose tissue abnormally proliferates and wraps

around the intestine (202). Creeping fat is infiltrated by immune

cells and secretes high levels of adipokines like pro-inflammatory

leptin. Interestingly, macrophages in CD creeping fat often exhibit

M2 polarization promoting tissue remodeling, but the hyperplastic

fat itself becomes a reservoir for inflammatory cells (203). Intestinal

lamina propria macrophages are sentinels for mucosal immune

homeostasis. In inflamed IBD gut, their metabolic reprogramming

is characterized by significant downregulation of the anti-

inflammatory nuclear receptor PPARg and FAO pathways (204).

This impairs their ability to polarize towards an M2 phenotype,

preventing effective inflammation suppression and repair, thereby

exacerbating gut damage. The probiotic Fecalibacterium prausnitzii

can reprogram macrophage energy metabolism, guiding them

towards M2 polarization and alleviating intestinal fibrosis in CD

patients (205). Another study found Fatty Acid-Binding Protein 5

(FABP5) upregulated in IBD macrophages, potentially exerting

anti-inflammatory effects by preventing M1 polarization (206).

IBD patients have impaired intestinal barrier function, associated

with sphingolipid metabolism abnormalities, such as potentially

elevated pro-inflammatory S1P and imbalances in ceramides

necessary for barrier integrity (207). Furthermore, bile acids,

synthesized by the liver and modified by microbiota, regulate

intestinal immunity by activating receptors like Farnesoid X

Receptor (FXR) and Takeda G protein-coupled Receptor 5
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(TGR5); their dysregulation also contributes to IBD pathogenesis

(208, 209). In summary, immune cells in IBD exhibit significant

metabolic reprogramming, including abnormalities in glucose/lipid

metabolism and imbalanced microbiota-immune cell interactions,

collectively driving and sustaining pathological gut inflammation.
4.5 Psoriasis

Psoriasis is a chronic inflammatory skin disease characterized by

hyperproliferation of keratinocytes and immune cell infiltration

(210). Its core pathological mechanism involves overactivation of

the IL-23/Th17 axis (210). IL-17 production in psoriasis is not

restricted to Th17 cells. Within psoriatic lesions, IL-17-producing

skin gd T cells are also pivotal in driving psoriasiform dermatitis.

Moreover, the IL-36 signaling pathway plays a central and unique

role in amplifying the IL-23/IL-17/IL-22 inflammatory axis and

promoting disease progression (211). The pathogenesis of psoriatic

lesions involves not only dysregulated immune-keratinocyte crosstalk

but also cellular metabolic reprogramming. Critically, Th1/Th17 and

Th2 cytokines exert divergent influences on lipid metabolism in

differentiating keratinocytes. This metabolic influence is proposed as

a key mechanism underlying the dysfunction of the skin barrier in

psoriasis (212).Concurrently, cytokines from DCs prompt

keratinocyte hyperproliferation and production of more

chemokines/cytokines, further attracting immune cell infiltration,

forming a vicious cycle (213, 214). Lipid metabolic abnormalities in

psoriasis manifest at both local (skin) and systemic levels, accelerating

disease progression by altering immune cell phenotypes and

functions (215).

Healthy skin barrier function relies on a precise ratio of lipids

(ceramides, cholesterol, free fatty acids) in the stratum corneum

(108). Psoriatic lesions exhibit significant barrier defects and

abnormal lipid profiles (216, 217), characterized by reduced levels

of anti-inflammatory omega-3 polyunsaturated fatty acids (PUFAs)

and elevated levels of pro-inflammatory arachidonic acid (AA). AA

is the precursor for potent pro-inflammatory eicosanoids (e.g.,

prostaglandins, leukotrienes), which directly drive skin

inflammation (218). Supplementing omega-3 PUFAs to modulate

skin inflammation may have clinical significance (219, 220).

Moreover, psoriasis is a systemic inflammatory disease. A recent

study suggests a significant association between elevated triglyceride

levels and the risk of psoriasis (221). Furthermore, patients with

psoriasis have a markedly increased risk of cardiovascular diseases,

including atherosclerosis (109). A key link underlying this

comorbidity is lipid metabolic dysregulation. Systemic

inflammation causes dyslipidemia (222) and promotes monocyte/

macrophage infiltration into vessel walls. In the inflammatory

microenvironment, these macrophages avidly take up oxidized

lipids, transforming into foam cells that initiate and accelerate

atherosclerosis, a mechanism similar to that in SLE (223). Similarly,

immune cells in psoriasis patients exhibit significant oxidative stress,

leading to lipid peroxidation and the production of pro-inflammatory

mediators (224, 225) (see Section 3.1). Moreover, these ROS-

dependent lipid mediators activate pro-inflammatory signaling,
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promote Th1/Th17 differentiation, and stimulate keratinocytes

(110). Simultaneously, Th17/Treg cells display a functional

imbalance analogous to that observed in SLE, which disrupts a

critical immunoregulatory equilibrium (88).Meanwhile, pathogenic

Th17 cells favor aerobic glycolysis and lipogenesis, while Treg FAO is

suppressed in the inflammatory environment, leading to insufficient

immunosuppressive function (88).In psoriasis patients, levels of Th2-

related cytokines or cell populations are reduced and negatively

correlate with disease severity (226). Diagnostically, the

combination of Th2+Treg cell ratio and adiponectin levels enables

high-precision prediction of psoriasis (227). Mechanistically, recent

research identifies Th2 immunity as a key tissue checkpoint that

suppresses skin autoimmunity and maintains lipid homeostasis,

conferring resistance to psoriasis by sustaining LXR/PPARg-
mediated fatty acid metabolism via STAT6 signaling (228).

A unifying theme across these diseases is the central role of

“metaflammation” within target organs. In summary, although

shared features of lipid metabolic dysfunction—such as hyperactive

mTOR signaling and mitochondrial dysfunction—exist across

autoimmune diseases, each disorder exhibits unique metabolic

characteristics shaped by its specific tissue microenvironment. This

spectrum ranges from lipid raft aggregation in T cells in SLE, to

lactate-driven fatty acid synthesis in the RA synovium, and from

imbalanced myelin lipid metabolism in MS to disrupted host-

microbiota interactions in IBD. Critically, in affected tissues—be it

the synovium in RA, the CNS in MS, the gut in IBD, or the skin and

vasculature in psoriasis—the local metabolic milieu (e.g., lactate,

lipids, and microbial metabolites) is not a passive backdrop but an

active participant. It shapes the metabolic programs and functional

phenotypes of immune cells, which in turn secrete inflammatory

factors that further worsen the local metabolic environment,

establishing a self-sustaining and amplifying pathological circuit

(Table 2). This understanding underscores that effective therapeutic

strategies may need to target not only the immune cells themselves

but also strive to normalize the metabolic microenvironment of

diseased tissues, thereby breaking this vicious cycle.
5 Therapeutic strategies targeting lipid
metabolism: from drugs to clinic

Given the central driving role of lipid metabolism in ADs,

targeting related pathways has become an highly attractive new

therapeutic direction. Strategies can be broadly categorized into

three groups: repurposing approved drugs for immunomodulatory

effects, developing new drugs against emerging metabolic targets,

and modulation via dietary and microbial interventions.
5.1 Novel immunomodulatory uses of
marketed drugs

Some metabolic modulators already widely used in the clinic

possess unexpected immunomodulatory effects, offering a

promising path for “drug repurposing”.
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5.1.1 Statins
Statins are HMGCR inhibitors primarily used for cholesterol

lowering. However, their potential in treating ADs stems largely

from pleiotropic anti-inflammatory effects (238). By inhibiting the

mevalonate pathway, statins not only reduce cholesterol synthesis

but, importantly, reduce the production of isoprenoid intermediates

(e.g., FPP, GGPP). These intermediates are required for the

prenylation of small GTPases (e.g., Rho, Ras), which are key

nodes in inflammatory signaling pathways (239). Thus, statins

can inhibit T cell activation, skew them from pro-inflammatory

Th1/Th17 towards anti-inflammatory Th2 phenotypes (212), and

inhibit DC maturation and antigen presentation capacity (240). In

the realm of clinical trials, statins such as simvastatin (MS-STAT2

trial, NCT03896217) for MS and atorvastatin (NCT00356473,

NCT04177173) for RA have demonstrated the potential to reduce

disease activity and slow progression (241, 242). However, the

results are inconsistent across studies, with some failing to

observe significant beneficial effects (243). Efficacy in SLE is also

debated. A retrospective study found adding atorvastatin to

standard therapy improved immune function and disease activity

indices in mild-to-moderate active SLE patients (244), while

another found atorvastatin had no significant effect in MRL/lpr

mice. However, in vitro experiments confirmed statins inhibit
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splenic B cell proliferation, suggesting potential for SLE (245).

This indicates statin efficacy may be disease- and patient-specific.

5.1.2 S1P receptor modulators
Fingolimod, siponimod, and ozanimod are functional

antagonists of S1P receptors (246). S1P binding to its receptor

S1PR1 is necessary for lymphocyte egress from lymph nodes into

circulation. These drugs, by binding S1PR1 and inducing its

internalization and degradation, sequester lymphocytes in lymph

nodes, preventing autoreactive lymphocytes from migrating to

target organs like the CNS (43). Fingolimod, the first oral drug

approved for MS, significantly reduces relapse rates and delays

disability progression (247). Later-developed siponimod and

ozanimod have higher receptor selectivity (248). Given their

broad immunomodulatory effects, the potential of S1P receptor

modulators in other ADs is being actively explored. For example,

ozanimod is under investigation for UC (NCT05369832). Trial

criteria sometimes mention RA and SLE, hinting at potential

applications (249).

5.1.3 Fibrates
Fibrates like fenofibrate are PPARa agonists used primarily for

hypertriglyceridemia. By activating PPARa, these agents drive
TABLE 2 Summary of dysregulated lipid metabolism in major autoimmune diseases. ① Preclinical: Studies conducted before human clinical trials (e.g.,
pharmacology, toxicology); ② Clinical: Trials in human subjects for safety and efficacy evaluation.

Disease Key immune
cell(s)

Core lipid metabolic
abnormalities

Pathological
consequences

Preclinical & clinical evidence References

SLE T cells, B cells,
Macrophages,
Dendritic Cells

T cells: Enhanced mTOR-
driven glycolysis & FAS;
B cells: Enhanced CD36-
mediated lipid uptake;
Macrophages: Impaired FAO;
DCs: Altered mitochondrial
metabolism

Broken immune
tolerance;
Autoantibody
production;
Accelerated
atherosclerosis

Preclinical: Rapamycin improves mouse models;
CD36 knockout alleviates disease.

Clinical: Fluvastatin reduces disease activity;
Sirolimus effective.

(86–90)

RA T cells, Fibroblast-like
synoviocytes (FLS),
Macrophages

T cells/FLS: Enhanced fatty
acid synthesis;
Macrophages: Deficient SPM
synthesis

Chronic synovitis;
Cartilage destruction
& bone erosion

Preclinical:: FASN inhibition alleviates joint
damage.

Clinical:: Inhibiting T cell FAS reverses
pathogenicity; Statins improve outcomes.

(91–97)

MS Microglia/Macrophages,
T cells

Myelin lipids: Overload &
impaired degradation;
Cholesterol efflux: Impaired;
T cells: Dysregulated LXR
signaling, enhanced FAS

CNS demyelination;
Failed remyelination;
Neurodegeneration

Preclinical:: LPA1 antagonist, PIKFYVE
inhibition, MaR1 effective in EAE.

Clinical:: LXR agonist inhibits Th17; Oleic acid
restores Treg function.

(98–102)

IBD Macrophages, T cells,
Epithelial cells

Gut microbiota: Reduced
SCFA production;
Macrophages: Impaired FAO;
Epithelial barrier: Ceramide
deficiency

Intestinal barrier
dysfunction;
Chronic
inflammation;
Treg impairment

Preclinical:: FABP5 inhibitor, PPARg agonists
ameliorate colitis.

Clinical:: T cell lipid raft abnormalities in CD;
Enhancing FAO reverses pathogenic Trm cells.

(103–107)

Psoriasis Keratinocytes, T cells,
Macrophages

Keratinocytes: Altered
epidermal lipid synthesis;
Systemic: Dyslipidemia;
Immune cells: Increased pro-
inflammatory eicosanoids

Skin barrier defect;
Keratinocyte
hyperproliferation;
Increased
cardiovascular risk

Preclinical:: Suppressed Treg FAO; ACC1
deficiency ameliorates model.

Clinical:: Cholesterol efflux capacity (CEC)
inversely correlates with activity; LXR/PPARg
activation beneficial.

(108–112)
Bold terms highlight key categorical elements within the table, including specific immune cell types, pivotal lipid pathways or components, critical anatomical structures, and the categories of
scientific evidence.
Immune cells (e.g., T cells, DCs) and disease-specific cell types (e.g., FLS, Keratinocytes).Core lipid components and pathways (e.g., Myelin lipids, Cholesterol efflux).Critical anatomical
structures (e.g., Epithelial barrier).Categories of research evidence (Preclinical, Clinical).
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metabolic reprogramming in T cells. This metabolic shift enhances

FAO, thereby alleviating inflammation associated with ADs (250).

Although research in ADs is early-stage, a trial plans to explore

fenofibrate’s role in preventing chemotherapy-induced neuropathy

(NCT07025005), indirectly suggesting potential utility in

neuroinflammatory diseases like MS.

5.1.4 PPARg agonists
Thiazolidinediones (TZDs) like pioglitazone are potent PPARg

agonists. They promote macrophage polarization to the M2

anti-inflammatory phenotype, inhibit inflammatory pathways, and

may improve skin barrier function, offering theoretical benefits in

RA, IBD, and psoriasis. However, first-generation TZDs, affecting

systemic lipid/glucose metabolism, have side effects (weight gain,

edema) limiting use in non-diabetic populations (251). Research

focuses on developing newer, more selective PPARg agonists with

better safety. A drug interaction study assessed pioglitazone

pharmacokinetics in IBD patients (NCT02371603). Oral pioglitazone

significantly improved clinical measures in secondary progressive MS

patients without serious adverse events (NCT00242177) (252).

Pioglitazone treatment in young female SLE patients significantly

decreased inflammatory markers (NCT01322308) (253). In RA

patients, pioglitazone significantly reduced disease activity and CRP

levels, improved lipid profiles, and was well-tolerated (NCT00554853)

(254), supported by other studies (NCT00763139; NCT02338899)

(255, 256).
5.2 Emerging targets and drugs in clinical
development

A range of new drugs targeting more specific nodes in

immunometabolic pathways are under development, showing

great therapeutic promise.

5.2.1 mTOR inhibitors
Sirolimus (rapamycin) and its analog everolimus are specific

inhibitors of mTORC1. As mentioned, mTORC1 is hyperactivated

in pathogenic T cells in SLE and RA. By inhibiting mTORC1, these

drugs can reshape T cell balance: inhibiting Th1 and Th17 cell

differentiation while promoting Treg cell expansion and function

(257, 258). Several clinical trials are currently evaluating mTOR

inhibitors. A Phase II trial (SIRIUS, NCT04582136) for active SLE

is ongoing. Another early-phase trial at the USNIH explores sirolimus

use in pediatric patients with autoimmune cytopenias related to SLE

and RA, among others (NCT00392951). A Phase II trial for

IgG4-related disease (IgG4-RD, NCT05746689) is not yet recruiting.

5.2.2 PCSK9 Inhibitors
PCSK9 is a key protein regulating cholesterol metabolism by

mediating LDLR degradation. Initially developed for lipid lowering,

PCSK9 inhibitors are being explored for ADs due to anti-

inflammatory effects. A Mendelian randomization study suggested

PCSK9 inhibition significantly lowers SLE risk but may increase

asthma and CD risk, with effects differing from HMGCR inhibitors
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(245). A phase II trial is assessing PCSK9 inhibitor effects on islet

function and inflammation markers (e.g., hs-CRP, IL-6) in type 1

diabetes (NCT05641753), results pending.
5.3 Frontier directions in preclinical
research

At the basic research level, numerous novel lipid metabolic

targets are being discovered and validated (Table 3).

5.3.1 Fatty acid synthesis inhibitors (FASN/ACC
inhibitors)

Directly targeting the upregulated FAS pathway (e.g., FASN or

ACC1) in pathogenic Th17 cells is a direct strategy to inhibit these

cells (263). Various FASN and ACC inhibitors are in development,

primarily for cancer and metabolic dysfunction-associated

steatohepatitis (MASH). Inhibiting FASN-mediated lipid

metabolism in B cells alleviates lupus in mice (166). The FASN

inhibitor TVB-2640 can activate macrophages and DCs and

significantly ameliorate imiquimod (IMQ)-induced lupus in mice

(264), showing great potential, particularly in SLE.

5.3.2 Lipid uptake and transport modulators
(CD36, FATP modulators)

Targeting the scavenger receptor CD36 may prevent lipid overload

in macrophages and B cells, blocking key steps in SLE-related

atherosclerosis and autoreactive B cell activation (164, 285). PPARg
activation can upregulate CD36-mediated FAO, enhancing Treg

responses, potentially beneficial for treating inflammation and ADs

(290). In the RA synovium, CD36 promotes pro-inflammatory

macrophage polarization and IL-1b/TNF-a release via lipid uptake.

An observational study is analyzing whether plasma from SLE/RA

patients affects CD36 expression on monocytes (NCT01180361),

providing basis for intervention studies. In EAE, CD36 is required for

myelin debris uptake by macrophages/microglia; its pharmacological

inhibition worsened neuroinflammation and disease severity (286).

5.3.3 Specialized pro-resolving mediators
SPMs, including resolvins, protectins, and maresins, are

endogenous lipid mediators derived from omega-3 PUFAs. They do

not passively suppress inflammation but actively initiate and coordinate

the resolution of inflammation (10). SPMs restore tissue homeostasis by

inhibiting neutrophil infiltration, enhancing macrophage clearance of

apoptotic cells (efferocytosis), and promoting tissue repair (291). This

“pro-resolution pharmacology” represents a novel therapeutic concept,

shifting from anti-inflammatory to pro-resolving. Furthermore, SPM

levels correlate with RA disease activity, and they directly inhibit

pathogenic T cell proliferation by precisely regulating the Th17/Treg

balance (254). This regulatory effect may involve the antagonism of key

pro-inflammatory signals. For instance, in RA, gd T cells represent a

significant source of IL-17, and their function can conversely be

enhanced by mediators such as prostaglandin E2 (PGE2) (267). This

marks a transition in lipid metabolism research from correlative

observation to functional target development. Exogenous
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administration of specialized pro-resolving mediators (SPMs) has

demonstrated potent therapeutic efficacy in preclinical studies across

various autoimmune disease models, including RA and MS, suggesting

significant potential for clinical translation (98).

5.3.4 LXR agonists
LXR agonists effectively promote macrophage cholesterol efflux

and exert potent anti-inflammatory effects, making them ideal

candidates for inflammatory diseases like atherosclerosis (292).

Targeting T cell LXRb improved disease severity in an MS model

(259). An LXR inverse agonist, SR9243, alleviated RA by

modulating macrophage metabolism (260). However, a major

challenge is that LXR agonists induce SREBP-1c, leading to

increased hepatic lipogenesis and steatosis (293). This off-target

effect hinders clinical translation. Research focuses on developing

tissue-specific or pathway-selective LXR agonists to avoid liver side

effects while retaining anti-inflammatory benefits (294). An LXR

agonist, RGX-104, has undergone Phase I trials in advanced cancer
Frontiers in Immunology 14
(NCT02922764), proving druggability and providing experience for

future AD applications.
5.4 Therapeutic potential of dietary and
microbial interventions

5.4.1 Omega-3 PUFA supplementation
Dietary intervention is a direct means to modulate lipid

metabolism. Diets rich in omega-3 PUFAs (e.g., EPA, DHA from

fish oil) alter the body’s fatty acid profile, shifting eicosanoid

synthesis from the pro-inflammatory omega-6 pathway towards

producing anti-inflammatory or pro-resolving SPMs (295). Omega-

3 supplementation modulates B cell differentiation in lupus-prone

mice (296), reduces autoantibody production and immune complex

deposition, and blocks interferon and chemokine gene expression in

lupus (297, 298). Numerous clinical studies (including the large

VITAL trial) have evaluated omega-3 supplements for preventing/
TABLE 3 Targeting lipid metabolism: a summary of therapeutic strategies for autoimmune diseases.

Therapeutic
class

Representative
agents

Primary
metabolic
target(s)

Key immunomodulatory
effects

Targeted
disease(s)

Development stage & key clinical
trial ID(s)

HMG-CoA
Reductase
Inhibitors

Simvastatin,
Atorvastatin

HMGCR/
Mevalonate
Pathway

Inhibits T cell protein prenylation;
reduces Th1/Th17 differentiation

MS, RA, SLE Phase II (MS - NCT03896217); Phase II
(Graves’ Disease - NCT03110848); Phase II
(RA - NCT00555230); Phase IV (RA -
NCT04177173); Phase IV (RA -
NCT00356473); Phase II (SLE -
NCT00519363); Phase II (SLE -
NCT00432354);
Observational (RA/SLE - NCT01180361,
recruiting).

S1P Receptor
Modulators

Fingolimod,
Ozanimod

S1PReceptor1
(S1PR1)

Sequesters lymphocytes in lymph
nodes, preventing migration to
inflammatory sites

MS, UC Approved for MS (Fingolimod, Ozanimod,
Siponimod) and UC (Ozanimod, Etrasimod);
Hundreds of completed/ongoing trials (Phases
III-IV, post-marketing surveillance).

mTOR Inhibitors Sirolimus
(Rapamycin)

mTORC1 Inhibits Th1/Th17 differentiation;
promotes Treg expansion and
function

SLE,ALPS,
IgG4-RD

Phase II (SLE, NCT04582136, recruiting);
Phase II (ALPS - NCT00392951);
Phase II (IgG4-RD, NCT05746689, not yet
recruiting).

Nuclear Receptor
Agonists (PPAR)

Pioglitazone (PPARg),
Fenofibrate (PPARa)

PPARg, PPARa Promotes M2 macrophage
polarization; enhances FAO; exerts
anti-inflammatory effects

RA, IBD, MS Phase II (SLE - NCT02338899); Phase IV (SLE
- NCT01322308); Phase III (RA -
NCT00554853); Phase II (RA -
NCT00763139); Phase I (MS - NCT00242177);
Phase IIa (IBD - NCT0594058)

Nuclear Receptor
Agonists (LXR)

T0901317
(Preclinical), RGX-104

LXRa, LXRb Promotes macrophage cholesterol
efflux; inhibits pro-inflammatory
gene expression

SLE, MS Preclinical (259–262)

FAS/ACC
Inhibitors

TVB-2640 (FASN
inhibitor), TOFA
(ACC inhibitor)

FASN, ACC1 Inhibits pathogenic Th17
differentiation and autoantibody
production by autoreactive B cells/
plasma cells

RA,SLE,
Psoriasis

Preclinical (8, 115, 181, 263–265)

Pro-Resolving
Mediators

Resolvins, Protectins
(SPMs)

GPCRs(e.g.,
GPR32)

Actively promote inflammation
resolution; enhance efferocytosis

SLE,RA, IBD Preclinical (98, 266–283)

Lipid Uptake
Modulators

CD36 inhibitors CD36Scavenger
Receptor

Blocks lipid uptake in
macrophages and B cells,
preventing foam cell formation/
activation

SLE, RA, MS Observational Study (NCT01180361) (284);
Preclinical (164, 285–289)
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treating RA, SLE, psoriasis, CD, etc., generally showing benefits in

reducing disease activity (220, 299).

5.4.2 Gut microbiota modulation
Targeting the gut microbiota is another frontier for modulating

host metabolism and immunity. Strategies like probiotics, prebiotics,

or fecal microbiota transplantation (FMT) can reshape gut microbial

structure, increasing abundance of beneficial bacteria like butyrate

producers, showing great promise in IBD treatment (300). Butyrate

enhances gut barrier function and promotes Treg differentiation,

significantly improving joint inflammation in the collagen-induced

arthritis (CIA) model (301–303). Gut microbiota metabolites are key

mediators linking nutrition and immunity: SCFAs promote Treg

differentiation and enhance the gut immune barrier (304), while

bacterially modified bile acids influence immune cell differentiation

via receptor-mediated mechanisms (305–307). These findings

promote integrated intervention strategies, e.g., using traditional

Chinese medicine active components to modulate gut microbiota

metabolism, potentially enabling multi-target immunometabolic

regulation for chronic diseases.
5.5 Emerging therapeutic platforms and
metabolic intersections

The convergence of emerging technologies with metabolic

regulation is opening new avenues for modulating immunometabolic

homeostasis to treat complex diseases. CAR-T therapy is being

enhanced by metabolic reprogramming techniques to promote an

FAO-dependent memory-like phenotype, preventing T cell exhaustion

and enabling long-term survival/function in nutrient-poor, hypoxic

environments, significantly improving efficacy. CAR-T cell therapy for

ADs like SLE has entered clinical investigation (308). For example,

CD19-CAR T cell therapy substantially inhibits key pathways in SLE,

upregulating lipid metabolism-related pathways compared to

rituximab and belimumab (309). In synthetic immunology,

engineered probiotics designed to exploit APC metabolism, activating

HIF-1a in DCs to produce lactate and inhibit autoreactive T cells, have

been developed (310). In IBD models, pH-sensitive nanoparticle

carriers can target butyrate delivery to inflamed gut areas, promoting

Treg differentiation and barrier repair while reducing systemic side

effects (311). These innovative cross-disciplinary technologies hold

promise to revolutionize immunotherapy.
6 Conclusion

This review systematically elucidates the central role of lipid

metabolism in immune regulation. The research paradigm has shifted

from viewing lipids as passive structural and energy molecules to

recognizing their active roles as signaling regulators and determinants

of immune cell fate. Lipid reprogramming is a necessary condition for

immune cell functional differentiation (80). It can also be induced by

inflammatory factors (141). This forms a self-amplifying positive
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feedback loop, which acts as a core regulatory node driving disease

initiation, progression, and chronicity. In ADs, distinct metabolic

dysregulation—such as glycolytic hyperactivation in SLE, lactate-

induced lipogenesis in RA, and myelin lipid overload in MS—

characterizes each disorder. More importantly, these metabolic

vulnerabilities present unprecedented opportunities for developing

novel, more targeted therapeutic strategies. By reprogramming

metabolism rather than using broad suppression, we can normalize

immune function and restore homeostasis, representing a profound

shift in the treatment philosophy for ADs.

A core paradox exists in targeting lipid metabolism for ADs:

many effective drug targets (e.g., HMGCR, FASN) are essential for

normal immune cell function (312). Why does inhibiting these

pathways treat disease? Could it cause immunosuppression or

metabolic toxicity? How to balance efficacy and safety? We posit

that pathogenic immune cells in ADs exist in a state of metabolic

hyperactivation, far exceeding normal homeostatic levels. The

therapeutic goal is not complete pathway blockade but rather

modulating runaway metabolic activity back to the normal

homeostatic setpoint (313). The concept of “immunometabolic

normalization” rather than “inhibition”—highlights the need for

drugs with an appropriate therapeutic window. Such agents should

effectively suppress pathological hyperactivation while avoiding

excessive impairment of the normal metabolism essential for

protective immunity.

Despite remarkable progress, challenges remain: while the

association between lipid metabolic abnormalities and ADs is clear,

precise causal chains need full elucidation. Determining the initiating

factors and key nodes is crucial for identifying optimal intervention

targets. Lipid metabolic regulation exhibits significant heterogeneity

across diseases, patients, tissue microenvironments, and even cell

subsets. For instance, inhibiting pathways like mTORC1 or FASN

may affect both pathogenic and protective cells (103) or other tissue

functions (314). AD metabolic dysregulation is systemic, involving

interactions between tissue stromal cells (e.g., RA FLS) and distant

organs (177, 178), adding complexity. Therefore, it is essential to

move beyond one-size-fits-all suppression and toward tailored and

personalized interventions. Cellular metabolic pathways are

evolutionarily conserved and shared among nearly all cell types.

This universality means metabolic interventions often have broad

systemic effects. Translating basic findings into effective clinical

therapies is challenging. Many drugs targeting core pathways (e.g.,

LXR agonists, ACC inhibitors) show efficacy preclinically but face

limitations due to potential systemic side effects (e.g., hepatic steatosis

with LXR agonists). Achieving targeted delivery to specific immune

cells or tissues to improve efficacy and reduce off-target effects is a

major bottleneck.

Future breakthroughs rely on multidisciplinary integration.

Combining single-cell transcriptomics, proteomics, metabolomics,

and lipidomics will enable mapping detailed metabolic landscapes of

distinct immune cell subsets in disease states at unprecedented

resolution. This will further aid in identifying disease-specific

metabolic vulnerabilities, discovering novel targets, and stratifying

patients for precision medicine trials based on their metabolic
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phenotypes. High-throughput lipidomics/metabolomics may yield

biomarkers reflecting disease activity, predicting treatment response,

or distinguishing patient subtypes, enabling early diagnosis,

personalized therapy, and treatment monitoring. Developing novel

drug delivery systems [e.g., based on liposomes, exosomes (311)] for

targeted delivery of metabolic modulators to specific immune cells or

inflamed tissues is key to overcoming off-target effects. Integrating

metabolomic biomarkers with dietary (e.g., Omega-3 PUFAs, ketogenic

diets) and gut microbiome (e.g., probiotics, FMT) interventions will

help build multi-dimensional “metabolism-immune-microecology”

regimens. Combining these agents with established immunotherapies

promises synergistic effects. This includes pairing them with biologics

(e.g., TNF-a or IL-17 inhibitors, B cell-depleting agents) or JAK

inhibitors, which could lead to superior disease control, permit lower

doses of individual drugs, and reduce treatment-related toxicity.

In summary, targeting lipid metabolism opens a promising new

avenue for treating ADs. Future research will strive to deepen our

understanding of this complex regulatory network and translate this

knowledge into precise metabolic intervention strategies that truly

improve patients’ quality of life. This will require relentless

exploration by basic scientists, as well as close collaboration among

clinicians, pharmacologists, and the biotechnology industry. Such

efforts will propel this exciting field from bench to bedside, ultimately

enabling effective control and personalized management of ADs.
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SUPPLEMENTARY FIGURE 1

Schematic illustration of the regulatory network governing lipid metabolism.

Fatty acids (FAs) enter cells via CD36-mediated lipid uptake. Subsequent
intracellular signaling involves the PI3K/AKT pathway, which modulates

activity of AMPK and mTOR1. AMPK functions as a central regulator: it

influences peroxisome proliferator-activated receptor a (PPARa)-
dependent transcriptional programs and modulates sterol regulatory

element-binding protein 1 (SREBP1) activity. Transcription factors SREBP1
and SREBP2 translocate to the nucleus to drive expression of genes for fatty

acid synthesis (e.g., fatty acid synthase, FASN; acetyl-CoA carboxylase, ACC)
and cholesterol synthesis (e.g., 3-hydroxy-3-methylglutaryl-CoA reductase,

HMGCR; low-density lipoprotein receptor, LDLR), respectively. PPARa
promotes fatty acid oxidation (FAO) by facilitating acetyl-CoA transport into
mitochondria via carnitine palmitoyltransferase 1 (CPT1); within

mitochondria, b-oxidation, the tricarboxylic acid (TCA) cycle, and ATP
production occur. Additionally, the liver X receptor (LXR) regulates

cholesterol efflux via target genes such as ATP-binding cassette transporter
A1 (ABCA1) and G1 (ABCG1).Created in BioRender. yu, Y (2025). https://

BioRender.com/havvjba

SUPPLEMENTARY TABLE 1

Diverse lipids orchestrate immune cells in autoimmunity.
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110. Wroński A, Wójcik P. Impact of ROS-dependent lipid metabolism on psoriasis
pathophysiology. Int J Mol Sci. (2022) . 23:12137. doi: 10.3390/ijms232012137

111. Kao YS, Mamareli P, Dhillon-LaBrooy A, Stüve P, Godoy GJ, Velasquez LN,
et al. Targeting ACC1 in T cells ameliorates psoriatic skin inflammation. J Mol Med
(Berl). (2023) . 101:1153–66. doi: 10.1007/s00109-023-02349-w

112. Liang G, Huang J, Chen J, Wen X, Li R, Xie H, et al. Fatty acid oxidation
promotes apoptotic resistance and proinflammatory phenotype of CD4+ Tissue-
resident memory T cells in crohn’s disease. Cell Mol Gastroenterol Hepatol. (2024) .
17:939–64. doi: 10.1016/j.jcmgh.2024.02.014

113. Lim SA, Su W, Chapman NM, Chi H. Lipid metabolism in T cell signaling and
function. Nat Chem Biol. (2022) . 18:470–81. doi: 10.1038/s41589-022-01017-3

114. Buck MD, O’Sullivan D, Pearce EL. T cell metabolism drives immunity. J Exp
Med. (2015) . 212:1345–60. doi: 10.1084/jem.20151159

115. Young KE, Flaherty S, Woodman KM, Sharma-Walia N, Reynolds JM. Fatty
acid synthase regulates the pathogenicity of Th17 cells. J Leukoc Biol. (2017) . 102:1229–
35. doi: 10.1189/jlb.3AB0417-159RR

116. Endo Y, Onodera A, Obata-Ninomiya K, Koyama-Nasu R, Asou HK, Ito T, et al.
ACC1 determines memory potential of individual CD4+ T cells by regulating de novo
fatty acid biosynthesis. Nat Metab. (2019) . 1:261–75. doi: 10.1038/s42255-018-0025-4

117. Cluxton D, Petrasca A, Moran B, Fletcher JM. Differential regulation of human
treg and th17 cells by fatty acid synthesis and glycolysis. Front Immunol. (2019) .
10:115. doi: 10.3389/fimmu.2019.00115

118. Raud B, Roy DG, Divakaruni AS, Tarasenko TN, Franke R, Ma EH, et al.
Etomoxir actions on regulatory and memory T cells are independent of cpt1a-mediated
fatty acid oxidation. Cell Metab. (2018) . 28:504–515.e7. doi: 10.1016/
j.cmet.2018.06.002

119. Kanno T, Nakajima T, Kawashima Y, Yokoyama S, Asou HK, Sasamoto S, et al.
Acsbg1-dependent mitochondrial fitness is a metabolic checkpoint for tissue Treg cell
homeostasis. Cell Rep. (2021) . 37:109921. doi: 10.1016/j.celrep.2021.109921

120. Cai F, Jin S, Chen G. The effect of lipid metabolism on CD4+ T cells.Mediators
Inflamm. (2021) . 2021:6634532. doi: 10.1155/2021/6634532

121. Perucha E, Melchiotti R, Bibby JA, Wu W, Frederiksen KS, Roberts CA, et al.
The cholesterol biosynthesis pathway regulates IL-10 expression in human Th1 cells.
Nat Commun. (2019) . 10:498. doi: 10.1038/s41467-019-08332-9

122. Kanno T, Miyako K, Nakajima T, Yokoyama S, Sasamoto S, Asou HK, et al.
SCD2-mediated cooperative activation of IRF3-IRF9 regulatory circuit controls type I
interferon transcriptome in CD4+ T cells. Front Immunol. (2022) . 13:904875.
doi: 10.3389/fimmu.2022.904875

123. Angela M, Endo Y, Asou HK, Yamamoto T, Tumes DJ, Tokuyama H, et al.
Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPARg directs
early activation of T cells. Nat Commun. (2016) . 7:13683. doi: 10.1038/ncomms13683

124. Chakraborty S, Khamaru P, Bhattacharyya A. Regulation of immune cell
metabolism in health and disease: Special focus on T and B cell subsets. Cell Biol Int.
(2022) . 46:1729–46. doi: 10.1002/cbin.11867

125. Schreiber S, Hammers CM, Kaasch AJ, Schraven B, Dudeck A, Kahlfuss S.
Metabolic interdependency of th2 cell-mediated type 2 immunity and the tumor
microenvironment. Front Immunol. (2021) . 12:632581. doi: 10.3389/fimmu.2021.632581
Frontiers in Immunology 19
126. Wang R, Liu Z, Fan Z, Zhan H. Lipid metabolism reprogramming of CD8+ T
cell and therapeutic implications in cancer. Cancer Lett. (2023) . 567:216267.
doi: 10.1016/j.canlet.2023.216267

127. Tang Y, Chen Z, Zuo Q, Kang Y. Regulation of CD8+ T cells by lipid
metabolism in cancer progression. Cell Mol Immunol. (2024) . 21:1215–30.
doi: 10.1038/s41423-024-01224-z

128. Lee J, Walsh MC, Hoehn KL, James DE, Wherry EJ, Choi Y. Regulator of fatty
acid metabolism, acetyl coenzyme a carboxylase 1, controls T cell immunity. J
Immunol. (2014) 192:3190–9. doi: 10.4049/jimmunol.1302985

129. Ma X, Xiao L, Liu L, Ye L, Su P, Bi E, et al. CD36-mediated ferroptosis dampens
intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell
Metab. (2021) . 33:1001–1012.e5. doi: 10.1016/j.cmet.2021.02.015

130. van der Windt GJW, Everts B, Chang CH, Curtis JD, Freitas TC, Amiel E, et al.
Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory
development. Immunity. (2012) . 36:68–78. doi: 10.1016/j.immuni.2011.12.007

131. O’Sullivan D, van der Windt GJW, Huang SCC, Curtis JD, Chang CH, Buck
MD, et al. Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic
programming necessary for development. Immunity. (2014) . 41:75–88. doi: 10.1016/
j.immuni.2014.06.005

132. Papotto PH, Reinhardt A, Prinz I, Silva-Santos B. Innately versatile: gd17 T cells
in inflammatory and autoimmune diseases. J Autoimmun. (2018) . 87:26–37.
doi: 10.1016/j.jaut.2017.11.006

133. Cua DJ, Tato CM. Innate IL-17-producing cells: the sentinels of the immune
system. Nat Rev Immunol. (2010) . 10:479–89. doi: 10.1038/nri2800

134. Nah J, Lee Y, Seong RH. PRDM16 regulates gdT17 cell differentiation via
controlling type 17 program and lipid-dependent cell fitness. Front Immunol. (2023).
14:1332386. doi: 10.3389/fimmu.2023.1332386

135. Kao YS, Lauterbach M, Lopez Krol A, Distler U, Godoy GJ, Klein M, et al.
Metabolic reprogramming of interleukin-17-producing gd T cells promotes ACC1-
mediated de novo lipogenesis under psoriatic conditions. Nat Metab. (2025) 7:966–84.
doi: 10.1038/s42255-025-01276-z

136. You Z, Chi H. Lipid metabolism in dendritic cell biology. Immunol Rev. (2023) .
317:137–51. doi: 10.1111/imr.13215

137. Westerterp M, Gautier EL, Ganda A, Molusky MM, Wang W, Fotakis P, et al.
Cholesterol accumulation in dendritic cells links the inflammasome to acquired
immunity. Cell Metab. (2017) . 25:1294–1304.e6. doi: 10.1016/j.cmet.2017.04.005

138. Liu X, Yu P, Xu Y, Wang Y, Chen J, Tang F, et al. Metformin induces
tolerogenicity of dendritic cells by promoting metabolic reprogramming. Cell Mol Life
Sci. (2023) . 80:283. doi: 10.1007/s00018-023-04932-3

139. Chen IC, Awasthi D, Hsu CL, Song M, Chae CS, Dannenberg AJ, et al. High-fat
diet-induced obesity alters dendritic cell homeostasis by enhancing mitochondrial fatty
acid oxidation. J Immunol. (2022) . 209:69–76. doi: 10.4049/jimmunol.2100567

140. Wu S, Zhao S, Hai L, Yang Z, Wang S, Cui D, et al. Macrophage polarization
regulates the pathogenesis and progression of autoimmune diseases. Autoimmun Rev.
(2025) . 24:103820. doi: 10.1016/j.autrev.2025.103820

141. Huang SCC, Everts B, Ivanova Y, O’Sullivan D, Nascimento M, Smith AM,
et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of
macrophages. Nat Immunol. (2014) . 15:846–55. doi: 10.1038/ni.2956

142. Zizzo G, Cohen PL. The PPAR-g antagonist GW9662 elicits differentiation of
M2c-like cells and upregulation of the MerTK/Gas6 axis: a key role for PPAR-g in
human macrophage polarization. J Inflammation (Lond). (2015) . 12:36. doi: 10.1186/
s12950-015-0081-4

143. Wang F, Zhang S, Vuckovic I, Jeon R, Lerman A, Folmes CD, et al. Glycolytic
stimulation is not a requirement for M2 macrophage differentiation. Cell Metab.
(2018). 28:463–475.e4. doi: 10.1016/j.cmet.2018.08.012

144. NomuraM, Liu J, Rovira II, Gonzalez-Hurtado E, Lee J,WolfgangMJ, et al. Fatty acid
oxidation in macrophage polarization. Nat Immunol. (2016) . 17:216–7. doi: 10.1038/ni.3366

145. Batista-Gonzalez A, Vidal R, Criollo A, Carreño LJ. New insights on the role of
lipid metabolism in the metabolic reprogramming of macrophages. Front Immunol.
(2019) . 10:2993. doi: 10.3389/fimmu.2019.02993

146. Su F, Su M, Wei W, Wu J, Chen L, Sun X, et al. Integrating multi-omics data to
reveal the host-microbiota interactome in inflammatory bowel disease. Gut Microbes.
(2025) . 17:2476570. doi: 10.1080/19490976.2025.2476570
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Pérez H, MaChado JD, Dıáz-González F. HDL cholesterol efflux capacity is related
to disease activity in psoriatic arthritis patients. Clin Rheumatol. (2020) . 39:1871–80.
doi: 10.1007/s10067-020-04961-4
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