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Municipal Hospital), Qingdao, China
Immunoglobulin M (IgM) antibodies are gaining renewed attention as next-

generation platforms for cancer immunotherapy. Compared with IgG, IgM

exhibits distinct biological advantages, including higher avidity from multivalent

binding, potent complement activation, and enhanced recognition of

heterogeneous tumor antigens within immunosuppressive microenvironments.

These attributes position IgM as a promising candidate for solid tumor therapy,

despite the absence of currently approved IgM-based therapeutics. Recent

advances in genetic engineering, antibody design, and protein manufacturing

have enabled the generation of diverse IgM formats—ranging from monoclonal

and bispecific constructs to engineered IgM derivatives—demonstrating

substantial antitumor potential in preclinical and early translational studies.

Nonetheless, clinical development faces persistent challenges, including short

serum half-life, restricted tumor penetration, structural and biophysical

complexity, and scalability of production. In this review, we discuss the

structure and biology of IgM, highlight progress in developing novel IgM-based

antibody formats for solid tumors, and critically examine the key translational

barriers and future opportunities. Together, these insights underscore the

therapeutic promise of IgM and chart a path toward its integration into the

next generation of antibody-based cancer immunotherapies.
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1 Introduction

Immunoglobulins (Igs) are essential glycoproteins that play a

central role in the adaptive immune system and are synthesized by

B lymphocytes and plasma cells. Humans have five major

immunoglobulin isotypes: IgA, IgD, IgE, IgG, and IgM. Each

isotype, including its subclasses, exhibits distinct structural and

functional characteristics. Among these, IgG is the most abundant

serum isotype and has become a cornerstone of cancer therapy due

to its unique structural and functional properties (1). IgG antibodies

demonstrate high target specificity, thereby enhancing therapeutic

safety. Furthermore, IgG mediates immune responses via multiple

mechanisms, such as antibody-dependent cellular cytotoxicity

(ADCC) and antibody-dependent cellular phagocytosis (ADCP)

(1–4). These mechanisms have revolutionized oncology, enabling

the development of targeted therapies such as immune checkpoint

inhibitors and antibody–drug conjugates (5).

However, IgG therapies face several limitations, including low

avidity for antigens with low density or weak affinity as a result of

their bivalency (6), restricted penetration into solid tumors, and a

limited capacity for potent complement-mediated lysis. These

limitations have stimulated interest in alternative isotypes,

particularly immunoglobulin M (IgM). IgM antibodies have

previously been explored in infectious and autoimmune diseases,

where they enhanced pathogen clearance and immune regulation

(7). These findings laid the groundwork for their development in

cancer. IgM possesses ten binding sites, conferring higher binding

avidity than IgG antibodies targeting the same epitope (8). This

property enables IgM to bind effectively to low-density or weakly

expressed tumor-associated antigens, thereby overcoming a key

limitation of IgG. Its pentameric architecture further promotes

potent complement activation and direct lysis of tumor cells (9).

These functional advantages underscore the potential of developing

novel antibody therapies based on IgM. Such therapies may

overcome the shortcomings of IgG and provide a promising

avenue for the effective treatment of solid tumors (10). In this

review, we summarize the structural and biological features of IgM,

outline recent advances in IgM-based therapeutic antibodies for

solid tumor therapy, discuss major challenges such as short half-life,

limited tumor penetration, and manufacturing complexity, and

offer perspectives on future directions.
2 IgM structure and biology

Immunoglobulins are proteins produced by immune cells,

constituting an essential component of the immune system. They

consist of two heavy chains (HCs) and two light chains (LCs).

According to the type of heavy chain, immunoglobulins are

classified into five isotypes (IgA, IgD, IgE, IgG, and IgM) (11, 12).

The heavy and light chains are linked through disulfide bonds to

form a Y-shaped structure (13). At the Y-shaped junction, one or

more disulfide bonds are typically connected to the heavy chains,

forming the hinge region that permits independent movement of

the Fab arms and confers relative flexibility between Fab and Fc
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regions (14). Such a hinge structure is absent in IgM and IgE. The

N-terminal region of the immunoglobulin is designated as the

variable region and comprises three complementarity-determining

regions (CDRs) capable of directly binding antigens, whereas the C-

terminal part of the heavy chain is termed the constant region. Most

immunoglobulins contain three constant domains (Cm1–Cm3),
whereas IgM and IgE contain four (Cm1–Cm4). Each class is

defined by a distinct heavy chain constant region structure that

determines its effector functions and biological properties (15).

Immunoglobulins are found in plasma and on B-cell surfaces.

IgD, IgE, and IgG occur as monomers, while IgA is most

commonly present as dimers. IgM exists as a monomer on B-cell

surface but polymerizes into either a J chain–containing pentamer

or a J chain–independent hexamer, with the pentameric form

predominating in humans (16, 17). (An overview of the five

immunoglobulin isotypes and the detailed architecture of IgM are

presented in Figure 1).

IgM is the first antibody isotype generated during the humoral

immune response and plays a critical role in mucosal immunity,

together with IgA. The IgM light chain comprises ~220 amino

acids, whereas the heavy chain consists of ~576 amino acids. The C-

terminus of IgM heavy chain contains tailpieces comprising an 18-

amino-acid peptide sequence (18). These tailpieces interact with

one another, a process essential for IgM polymerization and

assembly with the J chain (19). The J chain, a 137-amino acid

polypeptide, is an essential component of polymeric IgM and joins

two IgM-Fc molecules to stabilize the pentamer. Additionally, it

facilitates IgM transport through interaction with polymeric

immunoglobulin receptors (pIgR) (20, 21).

Advances in cryo-electron microscopy (cryo-EM) have yielded

new insights into IgM structure. Contrary to the previously

hypothesized pentagon, single-particle negative-stain electron

microscopy revealed that the IgM pentamer adopts an

asymmetric pentagon with a pronounced gap (18, 21, 22). High-

resolution cryo-EM demonstrated that the pentameric core is an

asymmetric, disc-shaped Fc ring formed by the constant regions

(Cm2–Cm4) of ten m chains interlaced by disulfide bonds (23). IgM

possesses an asymmetric, rigid core formed by the Cm4 and Cm3
constant regions and the J chain, with the Fab and Cm2 domains

rotating as a unit around a hinge located at the Cm3/Cm2 interface.
This structural feature is likely associated with multivalent binding

of surface-associated antigens and the activation of the complement

pathway (24). The Fc ring is asymmetric and relatively rigid,

stabilized by the J chain, whereas the Fab arms exhibit wide

mobility in their connection to the Fc ring via the hinge region

(24). This architecture enables IgM to bind multiple antigenic

epitopes and may facilitate multivalent engagement with tumor-

associated antigens (25). Li et al. demonstrated that Fcm receptor

(FcmR) binds specifically to the side of the IgM pentamer rather

than in a random manner, and a single IgM pentamer can

simultaneously bind up to four FcmR molecules. Moreover, the

FcmR binding sites overlap with those of pIgR, suggesting mutually

exclusive binding, thereby providing a structural basis for

understanding IgM selection in distinct physiological pathways

(26). These structural insights further indicate competition
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between FcmR and pIgR for binding sites, thereby modulating IgM

transport and functional pathways (26, 27). Collectively, these

observations suggest that IgM exerts potent complement-

dependent cytotoxicity (CDC) and may additionally regulate

immune balance via receptor-mediated mechanisms.

IgM functions as a critical first line of adaptive immune defense.

Its unique structure confers high avidity, enabling efficient pathogen

aggregation and toxin neutralization. Early studies showed that IgM

activates complement to mediate immune responses (28). More

recent studies have revealed that, beyond complement activation,

IgM functions through alternative pathways. For example, in solid

tumors, IgM may regulate the immune response via non-

complement-dependent mechanisms, such as FcmR-mediated

pathways (29). Furthermore, although IgM has a larger molecular

size than IgG, recent studies indicate that IgM has better relative

distribution and selective accumulation in inflamed and tumor

tissues due to the extravasation through leaky vasculature and

subsequent inflammatory cell-mediated sequestration (ELVIS)

phenomenon and the enhanced permeability and retention (EPR)

effect (30). These characteristics underscore the promise of IgM

antibodies as therapeutic agents in cancer immunotherapy,

particularly in the treatment of solid tumors.
3 Therapeutic IgM formats in solid
tumors

This section outlines the major types of IgM antibodies

investigated in tumor therapy and summarizes their current

research and clinical status. (Representative antitumor
Frontiers in Immunology 03
mechanisms of monoclonal, bispecific, and engineered IgM

antibodies are presented in Figure 2).
3.1 Natural IgM

Natural IgM antibodies are primarily secreted by peritoneal B1

B cells and have the capacity to recognize and bind self-antigens.

They play critical roles in both immunity and autoimmunity (31).

Their polyreactivity and broad specificity enable recognition of

pathogen-associated molecular patterns, apoptotic debris, and

tumor-associated antigens (31, 32). Mechanistically, natural IgM

mediates antitumor activity through two principal pathways. First,

it strongly activates the classical complement cascade, inducing

CDC and facilitating opsonization of tumor cells (33–35). Second,

natural IgM can signal through the FcmR, shaping adaptive immune

responses by influencing T- and B-cell cross-talk (36, 37). Together,

these mechanisms provide a multifaceted defense against

malignant transformation.

Early work demonstrated that IgM antibodies against

ganglioside GT1b significantly suppressed Ehrlich solid tumor

growth, establishing one of the first links between natural IgM

and direct tumor inhibition (38). In breast cancer, natural and

adaptive IgM antibodies recognize aberrant glycan structures such

as mucins, facilitating immune clearance of transformed cells and

preventing tumor progression (39). For example, Atif et al.

demonstrated that natural IgM is indispensable for early

neoantigen recognition and the activation of adaptive immunity

(40). It initiates a cascade of signaling events between monocytes

and dendritic cells through immune complex formation, ultimately
FIGURE 1

Human immunoglobulin isotypes and IgM structure. Schematic representation of the five major immunoglobulin classes. Among them, IgM is
secreted predominantly as a pentamer, conferring ten antigen-binding sites and high avidity. The right panel depicts the IgM monomer, highlighting
the variable domains (Vm, VL), constant domains (Cm1–Cm4, CL), and the tailpiece that is essential for multimerization.
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leading to the activation of CD8+ T cells and the induction of

cytotoxic responses. This dual role has been validated in two cancer

models, urethane-induced tumor and melanoma, underscoring its

contribution not only as an innate defense molecule but also as a

critical initiator of antitumor immunity (40). These findings suggest

novel opportunities for immunotherapy. Natural IgM exhibits

strong avidity for repetitive antigens and mediates potent CDC,

features that have inspired the design of engineered IgM molecules.

Its unique ability to recognize weakly expressed or structurally

altered tumor antigens provides a conceptual foundation for

engineering therapeutic IgM molecules inspired by natural

prototypes. By leveraging these natural effector mechanisms,

engineered IgM antibodies may overcome the limitations of IgG-
Frontiers in Immunology 04
based antibodies, particularly in targeting heterogeneous and

weakly expressed tumor antigens.
3.2 Monoclonal IgM antibodies

Monoclonal IgM(mIgM) antibodies are fully human or

humanized IgM molecules engineered to bind specific tumor-

associated antigens with high affinity. Owing to their multivalent

structure, mIgM antibodies can simultaneously engage multiple

epitopes with strong avidity. Unlike IgG, which binds only two

antigen sites, IgM can effectively target weakly expressed or

heterogeneous antigens, making it especially valuable for solid
FIGURE 2

Antitumor mechanisms of IgM antibody formats. (A) Monoclonal IgM antibodies mediate tumor cell lysis primarily through potent activation of the
classical complement pathway. (B) Bispecific IgM antibodies concurrently engage tumor-associated antigens and T cells, thereby promoting
cytokine release, immune synapse formation, and tumor cell cytotoxicity. (C) Engineered IgM antibodies are designed to overcome
immunosuppression (e.g., targeting the PD-1/PD-L1 axis) and to stimulate proliferation and activation of effector immune cells, such as T cells and
NK cells, ultimately inducing tumor cell death.
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tumor therapy. Recent studies have highlighted unique tumor-

killing mechanisms mediated by IgM. In some situations, IgM

can induce non-canonical, complement-independent cytotoxicity,

including receptor-interacting serine/threonine-protein kinase

(RIPK)-independent necroptosis and lipoptosis through lipid

accumulation pathways, which are unique pathways that IgG

antibodies don’t possess. For example, experimental evidence

demonstrated that only IgM antibodies, especially clone M6-1D4,

significantly reduce the viability of hepatocellular carcinoma (HCC)

cell lines by inducing RIPK-independent necroptosis, while the IgG

antibodies were ineffective (41). PAT-SM6 can induce lipoptosis via

GRP78–LDL complex internalization (42). These findings

emphasize the distinctive advantages of IgM over IgG in

solid tumors.

Several mIgM antibodies have shown encouraging preclinical

and early clinical potential. IGM-8444 (Aplitabart), although

molecularly engineered to enhance DR5 clustering and agonistic

signaling, remains a monospecific IgM antibody and is therefore

discussed within the monoclonal IgM category (Table 1). Preclinical

studies revealed that IGM-8444 binds DR5 with high affinity and

induces potent cytotoxicity compared with IgG agonists (8). In

Colo205 cells, IGM-8444 was more than 10,000-fold more potent

than anti-DR5 IgG. Importantly, it exhibited no hepatotoxicity at

concentrations up to 500 mg/mL, whereas TNF-related apoptosis-

inducing ligand (TRAIL) induced toxicity with an IC50 of 0.04 mg/
mL. Broad screening across 190 cancer cell lines representing 15

solid and 5 hematological tumors showed strong responses in 25

cell lines (IC50 < 2 ng/mL), moderate responses in 75, and weak

responses in 90. Combination studies further demonstrated

synergistic activity with chemotherapy agents and the BCL-2

inhibitor ABT-199, without additional hepatotoxicity. In vivo,

IGM-8444 inhibited tumor growth in a dose-dependent manner

and achieved complete remission in the gastric PDX model.
Frontiers in Immunology 05
Collectively, the multivalent structure and efficient cross-linking

ability of IGM-8444 address key limitations of IgG-based agonists,

providing a promising approach for DR5-targeted therapy.

Another well-studied candidate is PAT-SM6, a human IgM

monoclonal antibody targeting a cancer-specific isoform of glucose-

regulated protein 78 (GRP78), with additional binding to low-

density lipoprotein (LDL) complexes through GRP78-mediated

interactions (43) (Table 1). GRP78 is aberrantly expressed on the

surface of various solid and brain tumors and is implicated in

cancer progression (55, 56). PAT-SM6 exerts anticancer activity

through apoptosis, proliferation inhibition, CDC, and the unique

mechanism termed lipoptosis (42–44). Preclinical studies showed

that selective cytotoxicity against melanoma, pancreatic cancer, and

multiple myeloma cells while sparing normal tissues. In a Phase 1

trial with 12 heavily pretreated patients with relapsed or refractory

multiple myeloma, PAT-SM6 achieved stable disease (SD) in 33.3%

of patients, but no partial or complete responses were observed (45,

46, 57). By contrast, SAM-6, another IgM antibody derived from the

same research group, specifically recognizes an oxidized LDL

receptor variant expressed on malignant cells and induces

apoptosis through lipid accumulation (lipoptosis) (47, 48).

However, SAM-6 has not yet entered clinical trials; its

development remains at the preclinical stage.

Another promising monoclonal antibody is AT101, a

complement-fixing mouse IgM that targets glypican-1 (GPC1)

(Table 1). GPC1 is a cell surface proteoglycan that is highly

expressed in pancreatic ductal adenocarcinoma (PDAC) tumor

tissues but shows little to no expression in normal pancreatic tissue

or chronic pancreatitis (49). It is associated with several growth

factors that promote cancer cell proliferation, angiogenesis, and

metastasis. AT101 is capable of selectively triggering complement

activation and promoting the recruitment of immune effector cells

within the tumor microenvironment (TME). In an experiment, it was
TABLE 1 Summary of therapeutic IgM antibodies investigated in solid tumors.

Antibody Institute/Company Type Target(s) MOA Phase/clinical trial
ID/indication

Reference

IGM-8444
(Aplitabart)

IGM Biosciences Monospecific
IgM

DR5 DR5 clustering; apoptosis
induction; CDC

Phase 1a/1b/
(NCT04553692)/solid

tumors

(8)

PAT-SM6 Patrys Ltd. Monospecific
IgM

GRP78 (and
GRP78–LDL
complex)

Apoptosis; lipoptosis;
complement activation

Phase 1 completed/
(NCT01727778)/multiple

myeloma

(42–46)

SAM-6 Patrys Ltd. Monospecific
IgM

Oxidized LDL
receptor variant

Lipid accumulation; lipoptosis Preclinical/solid tumors (47, 48)

AT101 Centro Di Riferimento
Oncologico (CRO) Di Aviano

IRCCS

Monospecific
IgM

GPC1 CDC; tumor growth
inhibition

Preclinical/solid tumors (49, 50)

IGM-2323
(Imvotamab)

IGM Biosciences Bispecific
IgM

CD20 × CD3 TDCC; low cytokine release Phase 1/2/(NCT04082936)/
B-cell malignancies

(51, 52)

IGM-2644 IGM Biosciences Bispecific
IgM

CD38 × CD3 CDC; TDCC; low cytokine
release

Phase 1/(NCT05908396)/
multiple myeloma

(53)

IGM-7354 IGM Biosciences Engineered
IgM

PD-L1 × IL-15 NK/T-cell activation; IL-15
stimulation; antitumor

activity

Phase 1 completed/
(NCT05702424)/solid

tumors

(54)
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proven that AT101 can effectively inhibit tumor growth and prolong

survival in PDAC xenograft models (50). The data indicate that the

average survival time of mice in the AT101 group was significantly

longer than that of the control group. Among the mice treated with

AT101, most had a reduction in tumor mass, and one achieved

complete tumor remission. Moreover, no toxicity was observed in the

mice that received multiple injections of AT101. However, AT101

remains in preclinical development, and the critical step in clinical

translation will be humanization of the antibody.

Despite these advances, major challenges remain for

monoclonal IgM development. Their large molecular size(900–

950 kDa for pentamers and 1050–1150 kDa for hexamers),

limited stability, and short pharmacokinetic half-life complicates

large-scale production and purification (58). Furthermore, most

mIgM-based therapies are still in preclinical or early clinical stages,

and further optimization, including combination strategies, will be

essential to realize their full therapeutic potential.
3.3 Bispecific IgM antibodies

The treatment of solid tumors remains highly challenging

because of the complexity of the immunosuppressive tumor

microenvironment, the heterogeneity of antigen expression, and

the limited penetration of large-molecule antibodies into tumor

tissues. While monoclonal antibodies provide clinical benefit, their

effectiveness is often constrained under those conditions. Bispecific

antibodies (bsAbs) have emerged as a representative innovative

therapeutic strategy (59, 60). In the bispecific antibodies for treating

solid tumors, IgG plays a dominant role due to its longer half-life

and efficient immune function. However, their bivalency and

limited Fc-mediated clustering often constrain activity in low-

antigen-density tumors, motivating the exploration of multivalent

alternatives such as IgM (61). Recently, the development of

bispecific IgM (bsIgM) antibodies has attracted growing attention,

extending beyond infectious diseases to cancer therapy. Although

research is still in its early stages, the structural and functional

properties of bsIgMs make them a promising approach for

overcoming the limitations of existing antibody formats. BsIgMs

combine the multivalency of IgM, which has ten antigen-binding

sites, with the bispecificity function, and can simultaneously bind to

tumor antigens and immune cell markers. This dual capacity

provides a distinctive platform for solid tumor treatment. Their

high avidity enables effective binding to low-density tumor antigens,

and the pentameric structure enhances immune effector activation

via complement and Fc receptors (9, 16, 62).

Compared with bispecific IgGs, bsIgMs have demonstrated

superior biological activity. For instance, IgM-2323 (Imvotamab),

a CD20×CD3 bsIgM, displayed 100-fold higher binding activity to

CD20 than IgG-based T cell bispecifics, mediated CDC at levels

100-fold greater, and induced highly potent T cell-dependent

cytotoxicity (TDCC) (51) (Table 1). In a Phase 1/1b clinical trial

(NCT04082936) in relapsed or refractory non-Hodgkin lymphoma
Frontiers in Immunology 06
(R/R NHL), objective responses were observed in 11 of 38 evaluable

patients (29%), including 8complete responses (21%). Notably,

activity was seen even in heavily pretreated patients, including

those who had undergone CAR-T therapy (52). Based on the

encouraging results of IGM-2323 (imvotamab), IGM Biosciences

developed a novel CD38×CD3 bispecific IgM T cell engager, IGM-

2644 (Table 1). It has 10 binding sites for human CD38, and a single

anti-CD3 scFv fused to the joining (J) chain. Previous clinical

studies have already demonstrated that IGM-2644 exhibits dual

CDC and TDCC mechanisms and demonstrates activity against

daratumumab-resistant tumor cells. In addition, IGM-2644 also

demonstrated reduced T cell fratricide compared to bispecific IgGs

(53). Currently, IGM-2644 has an ongoing Phase 1 clinical trial

(NCT05908396) for relapsed/refractory multiple myeloma.

However, despite this encouraging activity, IGM Biosciences

announced in January 2025 that it would terminate all cancer-

related pipelines following the failure to achieve expected outcomes

and difficulties in strategic development. This result underscores the

significant translational challenges facing bsIgMs development.

Although preclinical studies indicated potent antitumor activity

and reduced cytokine release in vitro and in murine models, these

findings did not translate consistently into clinical efficacy. The

experience with IGM-2323 and IGM-2644 highlights the urgent

need to design safer and more effective bsIgM formats.

Despite their promise, bsIgMs face multiple challenges related to

structure, manufacturing, and translation. The large pentameric

structure of IgM complicates protein folding, stability, and

purification, resulting in low yields and batch variability (63).

Maintaining high affinity at both binding sites adds further

complexity to structural design and production. Additionally, IgM

antibodies have relatively short half-lives compared with IgG formats

(64), and their large size can hinder penetration and distribution

within solid tumors, particularly in dense or immune-excluded

tissues. Safety concerns, including immunogenicity and the risks of

cytokine release, necessitate cautious dose escalation and rigorous

clinical monitoring (54, 65).
3.4 Engineered IgM formats

Engineered IgM antibodies are designed to overcome the

intrinsic limitations of natural IgM by introducing genetic or

structural modifications. These engineered formats leverage the

multivalency and immune-activating potential of IgM to enhance

tumor targeting, particularly for low-density or heterogeneous

antigens. Early studies demonstrated that IgM could serve as an

efficient drug carrier. For example, methotrexate-conjugated IgM

retained full antigen-binding activity and achieved superior

antitumor efficacy in vivo compared with free drug or non-specific

conjugates (66). Similarly, IgM-based radioimmunoconjugates

labeled with a-particle emitters show highly potent and antigen-

specific cytotoxicity in vitro and in vivo, with only a few isotopes per

cell sufficient to induce growth inhibition (67).
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A representative example is IGM-7354, developed by IGM

Biosciences (Table 1). This antibody binds multiple PD-L1

receptors while simultaneously trans-presenting a single IL15/

IL15Ra complex via the j-chain to activate NK and CD8+ T cells

both in vitro and in vivo. Preclinical studies demonstrated that IGM-

7354 exhibits high binding avidity, promotes NK and CD8+ T-cell

proliferation, and inhibits tumor growth in PD-L1+ triple-negative

breast cancer models. It also showed potent single-agent activity in

xenograft models, enhanced antitumor effects in combination with

ADCC-capable antibodies or CAR T cells, and robust immune

activation in cynomolgus monkeys. Based on these data, IGM-7354

entered a Phase 1 clinical trial (NCT05702424) for advanced solid

tumors (54). Other engineered IgM molecules, such as IGM-8444,

further highlight the capacity of multivalent formats to improve death

receptor clustering and amplify apoptosis signaling (8).

Beyond immune checkpoint targeting, other engineered IgM

formats are being explored. For instance, the IgM-based T-cell

engagers have been designed to activate T cells and induce their

killing effect on tumor cells through simultaneously targeting tumor

antigens and T-cell receptors (38). Compared with traditional IgG-

based bispecific antibodies, IgM-based designs may have higher

stability and lower immunogenicity, thereby reducing treatment-

related adverse reactions. IgM antibodies have long faced

challenges in ADC development due to their high molecular

weight, polymeric structure, and a large number of glycosylation

sites, but the emergence of chemoenzymatic methods has provided a

new platform for the development of IgM-ADCs (68). Recent

advances include conditionally activated anti-IgM ADCs. The

antibody is shielded by an IgM domain and becomes exposed only

in the protease-rich TME. This strategy prevented off-target binding

to soluble or normal B cell–expressed IgM, while allowing efficient

MMAE-mediated cytotoxicity against malignant IgM+ lymphoma

cells after activation (69). These findings highlight the diverse

strategies of engineered IgM, from T-cell engagers to conditionally

activated ADCs, underscoring its therapeutic versatility.

Engineered IgM antibodies provide several advantages

compared with IgG or other formats. Their multivalency confers

high avidity, enabling efficient binding even to targets expressed at

low antigen density within the tumor environment. Although

engineered IgMs demonstrate improved stability, extended half-

life, and enhanced delivery efficiency compared with natural IgM,

significant hurdles remain. From a manufacturing perspective, due

to the large molecular size and complex quaternary structure of IgM

expression, assembly, and purification often lead to low yields and

batch variability. Pharmacokinetically, IgM molecules display rapid

systemic clearance and limited tissue penetration, creating a need to

balance half-life extension with tumor accessibility. In addition, the

multivalency of IgM may increase risks of unwanted complement

activation, off-target immune responses, or cytokine release,

particularly at high doses or in multifunctional constructs.

Advances in protein engineering, optimization of bioprocess, and

carefully designed clinical trials will be critical to realize the

therapeutic potential of engineered IgM antibodies.
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Immunoglobulin M (IgM) antibodies are re-emerging as a

promising therapeutic modality for solid tumors. Although notable

advances have been made in IgM research, design, and structural

characterization, several unmet needs remain. Importantly, current

IgM studies are still at an early stage, and more reliable preclinical

models are required to predict and evaluate efficacy, toxicity, and

pharmacokinetics before translation into human clinical trials.

One of the most significant challenges is the short half-life of IgM

(9). In 1964, Barth et al. reported that the half-life of IgM was 5.1 days,

whereas IgG antibodies exhibit a half-life of up to 21 days or longer (70,

71). This discrepancy is largely attributable to the neonatal Fc receptor

(FcRn), which binds endogenous IgG, protecting it from lysosomal

degradation and recycling it back into circulation (72). IgM, however,

does not undergo this protective pathway. Engineering IgMwith FcRn-

binding domains (73–76), albumin-fusion motifs, or protective

approaches such as liposomal encapsulation or PEGylation (77) has

shown promise in extending its circulation time.

In addition to advances in antibody engineering, a deeper

understanding of Fc receptor (FcR) biology is essential for

optimizing IgM-based therapeutics. FcRs are immune receptors that

bind to the Fc region of Igs and play central roles in antibody effector

functions (78).While IgG primarily exerts its effects through Fc gamma

receptors (FcgRs) to mediate cytotoxic and phagocytic responses, IgM

interacts mainly with the complement system and FcmR. Extensive
research has focused on FcgRs, which display distinct expression

patterns across immune effector cells, including macrophages,

dendritic cells, NK cells, neutrophils, and B cells, where they regulate

ADCC, phagocytosis, and cytokine production (79). Activating

receptors such as FcgRI (CD64), FcgRIIA (CD32A), and FcgRIIIA
(CD16A) promote immune activation, whereas the inhibitory FcgRIIB
(CD32B) counterbalances these signals to maintain immune

homeostasis (80). Understanding this bidirectional regulation

provides valuable insight into the rational design of IgM-based

therapeutic strategies. FcmR specifically binds to the Fc region of

pentameric or hexameric IgM with high affinity, modulating B- and

T-cell responses and contributing to immune homeostasis (62).

However, its precise role in regulating IgM-mediated antitumor

immunity remains largely unexplored, representing a critical frontier

for the clinical translation of IgM-based therapeutic approaches.

Despite its multivalency and strong binding avidity, IgM’s large

molecular size restricts penetration into dense, stromal-rich tumors.

Furthermore, TME features such as elevated interstitial fluid

pressure, hypoxia, and acidic pH may impair IgM stability and

activity (81, 82). While potent complement activation by IgM can

induce tumor cell lysis, it may also amplify pro-inflammatory

signaling, thereby exacerbating TME dysfunction (83). Future

studies are needed to better elucidate the interaction between IgM

and TME, which may enable more precise strategies for tumor

targeting. Manufacturability and stability represent additional

barriers. The structural complexity of IgM complicates large-scale

production and reduces biophysical stability during formulation
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(9). Encouragingly, advances in related fields have brought new

opportunities for IgM development. The concept of developability,

which has been critical in the optimization of IgG antibodies (84–

86), may similarly help identify superior IgM candidates and

streamline drug development. In addition, progress in

computational technologies is likely to facilitate the discovery of

IgM molecules with enhanced biophysical and pharmacological

properties (87). Optimizing expression hosts, applying

glycoengineering, and employing machine learning–based

developability screening could significantly improve IgM yield

and formulation stability.

Recent advances in antibody engineering, expression systems,

and bioprocess optimization have begun to address these

limitations (58). The future success of IgM therapies for solid

tumors will depend on continued progress in antibody

engineering, translational biology, and clinical development. With

deeper insights into IgM biology and the emergence of innovative

formats, improved strategies are expected to overcome current

challenges, thereby accelerating the translation of IgM-based

therapeutics into clinical trials and ultimately providing new hope

for patients with solid tumors.
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