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Artificial intelligence (Al) shows great promise in eosinophilic esophagitis (EoE)
management. It enhances diagnostic accuracy and consistency in endoscopic
and histopathological analyses, with performance comparable to or exceeding
non-experts. Al aids in standardizing assessments like EREFS and EoEHSS,
identifies molecular phenotypes and novel biomarkers, and predicts treatment
responses, facilitating precision medicine. However, challenges exist: “black box”
issues demand explainable Al (XAl) for trust; validation in large, diverse cohorts,
ensuring model generalization, and regulatory approval are crucial; data
governance, privacy, and algorithmic integrity require attention. Future
priorities include researching pediatric populations, improving treatment
response prediction, and developing non-invasive monitoring tools. An
integrated multimodal Al platform may transform EoE care from reactive to
proactive, personalized approaches.
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1 Introduction

Eosinophilic Esophagitis (EoE) is a chronic inflammatory disorder of the esophagus
driven by an immune response to specific antigens. Its characteristic pathological feature is
a substantial infiltration of eosinophils within the esophageal mucosal tissue (1). In recent
years, EoE’s global incidence has surged, now rivaling inflammatory bowel disease in
Western nations (2). The pathophysiological mechanisms of EoE are complex, primarily
driven by a combination of genetic susceptibility, environmental triggers, and impaired
esophageal barrier function (3, 4). Adults with EoE typically present with dysphagia and
food impaction, whereas children exhibit more diverse symptoms such as vomiting,
abdominal pain, and feeding difficulties, all significantly impairing quality of life (2).
Early diagnosis and timely individualized intervention for EoE are becoming increasingly
important in clinical practice.

Although the Endoscopic Reference Score (EREES) is a valuable tool, a normal
endoscopy does not exclude EoE. Therefore, the definitive diagnosis always depends on
histologic assessment of multiple esophageal biopsies (5). Currently, diagnosing and
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managing EoE remains clinically challenging in practice. First,
diagnostic delay is a major issue in EoE. This is largely due to
non-specific symptoms and patients” self-management, which can
mask the severity of the condition (6). Second, the need for repeated
invasive endoscopies with biopsies adds significant strain on
patients and healthcare systems alike (7). Finally, the assessment
of EoE is subjective and variable (8). Subtle features such as
esophageal rings, longitudinal furrows, white exudates, edema,
and strictures can be easily overlooked by less-experienced
endoscopists, leading to significant inter-observer variation (9).
Furthermore, as eosinophils in EoE are often focally distributed,
relying solely on peak counts per high-power field may fail to
accurately reflect disease severity (10). These factors delay EoE
diagnosis and treatment, and prolonged inflammation raises the
risk of irreversible complications like fibrosis and strictures.

Artificial intelligence (AI), a branch of computer science, aims
to simulate human cognitive functions such as learning and
problem-solving (11). Machine learning serves as a key
component, enhancing system performance through data-driven
methods (12). Deep learning (DL), a subset of machine learning,
uses multi-layer artificial neural networks (ANNs) such as
convolutional neural networks (CNNs), which excel in image
processing tasks like medical image analysis, to learn hierarchical
features from data (13, 14). Al is transforming medicine, with
notable impact in gastroenterology (15). It improves endoscopic
diagnosis, increases lesion detection, and advances precision
medicine (16, 17). AI offers multiple advantages in the
management of EoE. It can enhance diagnostic accuracy and
consistency by analyzing endoscopic and histopathological images
(14), standardize evaluations through automated calculation of
metrics such as the EREFS score and EoEHSS grade (18), and
integrate multimodal data, including clinical, endoscopic,
histological, and molecular information, to identify disease
subtypes and characterize heterogeneity (19). Furthermore, it
shows potential in predicting responses to specific treatments
such as dietary or pharmacological interventions, thereby
supporting personalized therapeutic decisions (20). Additional
prospects include enabling non-invasive monitoring and
improving research efficiency (21). AI integration enhances
diagnostic accuracy and clinical efficiency to improve long-term
patient outcomes.

2 Al-assisted endoscopic diagnosis of
EoE

2.1 Optimizing EoE detection: development
and validation of deep learning models

In endoscopic diagnosis of EoE, computer-aided diagnosis
(CAD) systems can automatically detect subtle features like
edema and annular rings that may be missed visually. By serving
as a “second observer,” these systems improve lesion detection and
help minimize diagnostic oversight (9, 22). In recent years,
convolutional neural networks (CNNs) have been increasingly
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applied to EoE diagnosis due to their strong image analysis
capabilities. By automatically learning hierarchical features, from
edges and textures to complex shapes, CNNs can detect subtle
endoscopic signs of EoE that may be overlooked visually (10).
Models such as ResNet, DenseNet, and U-Net have been trained on
annotated endoscopic images labeled with EoE status and EREFS
criteria to support this task (23). Okimoto et al. developed a CAD
system using ResNet50, trained on 1192 EoE and 1192 normal
esophageal images. On an independent test set, the model
demonstrated 94.7% image-based accuracy (90.8% sensitivity,
96.6% specificity), along with case-based sensitivity and specificity
0f 94.9% and 99.0%, respectively. Clinically, these results are highly
relevant: the high sensitivity indicates a strong ability to identify
EoE cases, reducing the likelihood of missed diagnoses, while the
exceptional specificity helps avoid unnecessary biopsies in non-EoE
patients (17). In Guimaraes et al.’s study, a CNN model was trained
to distinguish between three categories of images: normal
esophagus, active EoE, and esophageal candidiasis. The model
achieved an overall accuracy of 91.5% and an area under the
curve (AUC) of 0.966, outperforming the participating human
endoscopists. This model covers the full range of common
differential diagnoses encountered in clinical practice, thereby
expanding the diagnostic scope of the model (17). In Roémmele
et al’s study, a deep learning algorithm named AI-EoE was
developed for binary classification (EoE vs. normal). On an
external validation dataset, the model achieved a sensitivity,
specificity, and accuracy of 0.93 each, with an AUC of 0.986 (9).
By employing a multicenter validation approach, this study
enhanced the model’s generalization capability. Daniel et al.
employed deep learning to model and validate 1,066 whole-slide
images from 400 patients across multiple institutions. The model
demonstrated excellent performance and successfully addressed
two major challenges in EoE diagnosis and digital pathology: the
need to simultaneously detect multiple small features and the
capability to efficiently analyze entire slides (24).

2.2 Enhancing diagnostic capabilities:
integrating EREFS scoring into Al

The Eosinophilic Esophagitis Endoscopic Reference Score
(EREFS) is a validated clinical tool for grading the severity of
endoscopic inflammation (9) and has been shown to correlate
with histological severity and treatment response (25). While
EREFS has improved the standardization and diagnostic utility of
endoscopic assessments, it cannot replace histological biopsy for
confirming EoE. This is because the inter- and intra-observer
agreement for scoring individual features only reaches moderate
to good levels, indicating non-negligible variability in the scoring
process (5). Artificial intelligence technology helps address the
limitations of the EREF scoring system in practical applications.
Rommele et al. went beyond simple binary classification, developing
the AI-EoE-EREFS model. During training, this model
incorporated specific auxiliary branches for each EREFS feature
(e.g., severity of edema, rings, exudates, furrows, and strictures) (9).

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1712113
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Xu et al.

This integration significantly enhanced the model’s performance.
Studies showed that in external validation, AI-EoE-EREFS achieved
a sensitivity of 0.96, specificity of 0.94, accuracy of 0.95, and an
AUC as high as 0.992 (12). These results confirm that integrating
EREFS with Al enhances both the diagnosis and severity assessment
of EoE.

2.3 Performance comparison: Al vs. human
endoscopists

Current studies indicate that AI models matches the
performance of experienced endoscopists in identifying EoE and
exceeds that of less-trained practitioners (26). In Rommele et al.’s
study, both AI-EoE and AI-EoE-EREFS performed significantly
better than novice endoscopists and senior specialists on the same
set of images (9). Similarly, the accuracy of Guimaraes et al.’s model
(91.5%) was higher than that of the endoscopists they tested (83.1%)
(17). These findings highlight the significant role of AI in
standardizing diagnostic quality and suggest that it can serve as a
valuable training and auxiliary tool for endoscopists with varying
levels of experience (27) (Table 1).

3 Al-based histopathological analysis
of eosinophilic esophagitis

3.1 Deep learning-based automatic
quantification of eosinophils (PEC)

Esophageal biopsy is central to EoE diagnosis and monitoring,
yet manual eosinophil counting remains limited by its time-
consuming procedures, significant inter-observer variability,
difficulty in identifying peak regions, and inconsistent
microscopic field sizes (18, 27). The current gold standard for
diagnosing EoE is manual counting of peak eosinophils under a
microscope, with a diagnosis confirmed when the count reaches or
exceeds 15 per high-power field (hpf) (28). However, this diagnostic
process is cumbersome and subject to subjective variability. The
U-Net architecture is particularly effective for this application due
to its strength in pixel-level localization. This capability enables
precise delineation of individual eosinophil boundaries, which is
essential for addressing challenges such as cell clustering and
differentiating eosinophils from other cell types in densely packed
tissue regions (10). The Open-EoE toolkit utilizes an ensemble
learning strategy integrating multiple object detection models
including Faster R-CNN, Mask R-CNN, and CenterNet, enabling
efficient and accurate provision of peak eosinophil counts from
WSIs and addressing the limitations of manual counting (10). A
study by Reed et al. proposed a U-Net-based system, which was
trained on hematoxylin-eosin (H&E)-stained biopsy images with
annotated eosinophil locations to learn the identification and
segmentation of individual eosinophils. In subsequent processing,
we counted eosinophils within the predefined HPF field to estimate
the peak eosinophil count (PEC) (21). The system automates
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eosinophil counting and produces statistical data to measure
disease severity and progression, highlighting the value of
objective, automated histological analysis (29). Studies show that
AT models count eosinophils with accuracy comparable to
pathologists, reliably identifying samples that meet EoE diagnostic
criteria. This method reduces the time and subjectivity of manual
counting while providing heatmaps to visualize cell
distribution (17).

3.2 Application of Al in comprehensive
analysis of EOEHSS features

The role of Al in EoE histopathological analysis is not limited to
PEC quantification. To enable a more comprehensive evaluation of
histological changes in EoE, the research team also developed and
validated the EoE Histological Scoring System (EoEHSS) (30).
EoEHSS is a semi-quantitative scoring system that assesses
multiple histological features beyond PEC, including eosinophilic
abscesses, surface epithelial alterations, basal zone hyperplasia,
spongiosis, lamina propria fibrosis, and degranulation (18).
Nevertheless, its clinical adoption remains challenging due to the
complexity of the scoring protocol, the number of parameters
required, and the time needed for assessment. However, with the
advent of AI technology, segmentation and classification models
based on deep learning are well-suited for automatically detecting
and quantifying all these features on whole-slide images (WSIs).
This approach overcomes the limitations of manual PEC counting
and manual EoEHSS scoring, providing a richer and more
standardized histological assessment than manual PEC counting
(21). Archila et al. developed an Al-based digital pathology model
to evaluate histological features of EoE. By integrating object
detection, semantic segmentation, and instance segmentation, the
model systematically analyzes tissue cellular composition, epithelial
and lamina propria changes, as well as eosinophil activity. It
demonstrates strong PEC and quantitative assessment of multiple
EoEHSS histological features, achieving a level of accuracy
comparable to experienced gastrointestinal pathologists (31).

3.3 Al-based analysis of global features and
other immune cells

EoE pathology encompasses not only eosinophil infiltration but
also features such as basal cell hyperplasia, dilated intercellular
spaces, and lamina propria fibrosis, the accurate quantification of
which remains difficult with traditional methods (3). Al offers a
novel approach to this problem. Models based on deep
convolutional neural networks (DCNNs) can accurately classify
EoE biopsy specimens not only by detecting localized eosinophils
but also by learning the “overall histological features” of the entire
biopsy slide (14, 21, 30). A study utilized an Al platform to achieve
semantic segmentation of eosinophil and basal cell regions within
tissue sections, subsequently developing novel spatial biomarkers
(such as eosinophil spatial density, basal cell peak area, and
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TABLE 1 Application of artificial intelligence in eosinophilic esophagitis.

10.3389/fimmu.2025.1712113

Trained and tested a Convolutional neuronal network (CNN) using real-world endoscopic
images to diagnosis EoE

Develop and validate a deep learning-based AI model for EoE detection, EREFS quantification,
and comparison with endoscopists’ performance.

Constructed a computer-assisted diagnosis (CAD) system using a convolutional neural network
(CNN) and evaluated its performance to diagnosis EoE.

To develop and validate a machine learning model for EoE identification, quantitation and

No Author Year Al-built models Aim
Al-assisted endoscopic diagnosis of EoE

1 (26) Guimarde | 2022 CNN

2(9) Roémmele | 2022 A deep learning-based AT model

3(27) Okimoto 2022 CNN based on ResNet50

4 (24) Daniel 2022 Deep learning diagnosis.

EoE histopathological analysis based on Al technology

1(18) Archila 2023 AT based digital pathology model
2 (32) Zhang 2024 MC-AI (Machine Learning)
3(33) Wu 2024 Machine Learning (XGBoost)

4 (30) Larey 2022 Al platform

5(10) Xiong 2024 Open-EoE (Ensemble of CNNs)
6 (14) Czyzewski | 2021 Deep CNN

7 (29) Adorno 2021 UNet++(CNN)

Application of Al in EOE prognosis and precision medicine

1 (20) Visaggi 2024 machine learning
2 (40) Halder 2022 machine learning
3 (34) Wang 2025 machine learning
4 (36) Sallis 2018 Machine Learning (Random Forest)
5(37) Sallis 2018 Machine Learning
6 (35) Shoda 2018 Machine Learning

Evaluating histologic features related to EoE

Identifying EoE mast cells, analyzing their distribution in esophageal biopsies.

Evaluating pivotal molecular markers that may facilitate the diagnosis of EoE

Predict EoE activity and classify pathological severity

An efficient and accurate open-source toolkit for peak eosinophil counts has been developed
Biopsy classification based on global characteristics

Analysis of spatial biomarkers

Early diagnosis of EoE

Prediction of treatment response and prognosis
Early screening for EoE

Diagnosis and classification

Molecular typing and prognosis prediction

Internal molecular phenotyping

distribution patterns). These markers outperformed traditional
PEC metrics, with the constructed model achieving 86.7%
accuracy in histological severity classification. This demonstrates
that the spatial distribution of inflammatory cells holds clinical
value equivalent to cell density in reflecting tissue structural
alterations (30). Therefore, these AI classifiers can accurately
diagnose EoE even on image patches with few eosinophils,
achieving high accuracy (e.g., 85%-99%), sensitivity, and
specificity (29).

The pathogenesis of eosinophilic esophagitis (EoE) is complex.
Besides eosinophils, other immune cells (such as mast cells) may
also be involved. Recent studies have begun to use Al to analyze
other key immune cells. A study by Zimmerman et al. developed the
Mast Cell-AI (MC-AI) tool for identifying, counting, and
characterizing mast cells in EoE biopsy tissues (32). The MC-AI
tool revealed that in active EoE, the density of intraepithelial mast
cells increases, while that in the lamina propria decreases. Crucially,
the density of mast cells in the epithelium and papillary regions is
significantly correlated with the degree of eosinophilic infiltration,
basal cell hyperplasia, and lamina propria fibrosis (32). In addition,
Wu et al. investigated biomarkers for diagnosing EoE by integrating
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bioinformatics and machine learning analyses. The results indicated
that CXC chemokine receptor 2 (CXCR2) is an independent
diagnostic biomarker for pediatric eosinophilic esophagitis and is
associated with immune cell infiltration, suggesting that regulatory
T cells and neutrophils may play important roles in the
pathogenesis of pediatric EoE (33). The lack of metrics like
diagnostic time and subtle feature detection in these studies
underscores the need for a comprehensive evaluation framework
to fully assess AI's endoscopic utility (Table 1).

4 Al for prediction, subtyping, and
precision medicine in EoE

4.1 Early diagnosis of EoE and prediction of
disease progression

The diagnosis of EoE relies on invasive endoscopic biopsy and
histological evaluation, which may lead to diagnostic delays. Wang
et al. developed a machine learning model incorporating patient
demographics, hospital attributes and comorbidities to help clinicians
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screen high-risk EoE patients early and determine the need for biopsy.
Validated to show good performance (34). Besides, a multicenter study
collected patients’ demographic information, clinical symptoms, allergy
history, comorbidities, and endoscopic findings, and developed and
validated such prediction models using machine learning algorithms.
The results showed that the model trained solely on clinical data
exhibited good predictive performance in the external validation cohort
(AUC 0.90, sensitivity 0.90, specificity 0.75). Moreover, the model
combining clinical and endoscopic data performed better (AUC 0.94,
sensitivity 0.94, specificity 0.68) (35) (20). This predictive model holds
promise as an instant diagnostic tool. By integrating clinical and
endoscopic examination data, it can forecast EoE risk prior to
histology results, thereby assisting physicians in early risk stratification.

4.2 Application of Al in transcriptomics and
molecular profiling analysis

EoE is a heterogeneous disease. Al-based ML algorithms, such as
clustering analysis and predictive algorithms, are being employed to
identify these endophenotypes from complex molecular data and
construct predictive models (17). A landmark study analyzed
esophageal mRNA transcriptomes using machine learning. Based on
weighted analysis of genes such as eotaxin and periostin, the study
developed a diagnostic probability score, p(EoE). A p(EoE) score of >25
identifies EoE with high accuracy (sensitivity 90.9%, specificity 93.2%).
Additionally, this score changes with treatment, making it a potential
tool for monitoring disease activity (9, 36). Furthermore, the study
developed an IGHE score based on local IgE germline gene transcripts.
This score can identify a subset of patients with highly allergic
inflammation, who may be ideal candidates for IgE-blocking
therapies (e.g., omalizumab) (36). Sallis et al. developed a diagnostic
probability score (FI Score) using ML. This model enables early
identification of food impaction risk in pediatric EoE patients by
recognizing their individual molecular inflammatory signatures (37).
Another study employed machine learning to comprehensively analyze
histological, endoscopic, and molecular data, identifying three potential
internal molecular phenotypes of EoE. The EoEel phenotype is
characterized by mild inflammation and exhibits good response to
steroid therapy. The EoEe2 phenotype, marked by prominent type 2
inflammation and predominantly childhood onset, shows poor
response to steroids but may benefit from T2 pathway-targeted
biologics (e.g., dupilumab) (38). These diagnostic tools established
AT’s central role in EoE precision medicine by enabling a
comprehensive “diagnosis-subtyping-prognosis” workflow. This
integrated framework allows molecular profiling to directly guide

clinical decisions.

4.3 Predicting therapeutic response:
toward individualized EoE management

Currently, multiple studies have demonstrated the potential of AT
in optimizing the diagnosis and treatment of esophageal reflux
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disease (EoE). For instance, by analyzing molecular signatures
(such as microRNAs) in esophageal biopsy samples and combining
this with machine learning modeling, it is possible to effectively
distinguish responders from non-responders to proton pump
inhibitor (PPI) therapy (7). Researchers also attempted to correlate
Al-generated histological statistics (such as data based on the U-Net
model) with therapeutic phenotypes (such as steroid responsiveness
and dietary exclusion responsiveness) (29). Additionally, Al-based
models can identify EoE patients likely to benefit from biologic
therapy by analyzing transcriptomic and molecular biology data
(17, 36). In terms of treatment strategy optimization, computer
simulation models have been developed to identify the most
effective dietary exclusion protocols, serving as an early example of
using computational models to guide treatment (39). Additionally,
Halder et al. developed a hybrid framework integrating fluid
dynamics with machine learning, based on mechanical parameters
such as esophageal wall stiffness and muscle contraction patterns.
This framework has demonstrated clinical utility in evaluating
treatment efficacy and monitoring patients’ post-treatment
conditions (40) (Table 1). These studies established an Al-assisted
framework that enhanced EoE treatment precision and patient
tolerance through a “predict-monitor-optimize” workflow,
providing a new paradigm for personalized care.

5 Common challenges in clinical
implementation

First, the “black box” nature of deep learning models makes their
decision-making processes opaque, hindering clinical trust and
adoption (41, 42). While high accuracy is important, it is
insufficient without an understanding of how the model arrives at a
diagnosis. Therefore, emphasizing the need for model explainability
through techniques like Explainable AI (XAI) is paramount. XAI
technologies—such as Grad-CAM, which generates heatmaps—are
particularly crucial when AI identifies novel biomarkers, as they
reveal the basis for decision-making and are key to gaining clinicians’
trust (9, 30, 43). Secondly, existing studies are predominantly based
on retrospective, single-center data, leaving a validation gap. Future
studies should evaluate models not only on standard metrics but also
on real-world performance across diverse hospitals, populations, and
equipment. Comprehensive validation is currently the main barrier to
clinical use. The model requires validation of its efficacy in an
independent, multicenter prospective cohort (17). Additionally, the
model exhibits limited versatility across different devices, populations,
and environments, and faces complex and lengthy regulatory
approval processes for medical devices (9, 44). Finally, at the data
level, challenges related to privacy security and algorithmic fairness
must be addressed. This requires employing techniques such as data
anonymization and federated learning to safeguard data security,
while ensuring the representativeness of training data to prevent
exacerbating health inequalities (41, 45). Furthermore, the attribution
of responsibility for AI errors and the establishment of clinical
oversight mechanisms are also urgently needed (41).
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6 Discussion and conclusions

This article reviews the remarkable success of Al in objective,
image-based tasks for EoE diagnosis, with performance comparable
to or even surpassing that of non-experts in many aspects (9).
However, the current evidence requires critical appraisal. Most
reviewed studies are retrospective, rely on single-institution data,
and lack rigorous external validation across diverse populations and
equipment. These limitations increase overfitting risks and hinder
the direct translation of reported accuracy into clinical practice.
Consequently, existing models should be regarded as proof-of-
concept rather than clinically deployable tools. More importantly,
the application of Al is shifting from automating existing tasks to
discovering novel biomarkers and internal molecular phenotypes of
patients, which represents a solid step toward truly precision
medicine (36). Future research must prioritize addressing several
key unmet needs in the current field: First, there is a severe lack of
Al research on children and adolescents with EoE (17). Second,
regarding the prediction of therapeutic response, developing models
that can reliably predict patients’ responses to specific therapies
remains one of the highest-priority tasks. Finally, using AI to
develop or enhance non-invasive monitoring tools to replace
repetitive invasive endoscopic examinations is the ultimate goal of
current Al research (16, 43). The future of Al in the field of EoE lies
not in isolated tools, but in an integrated, multimodal platform
capable of integrating multidimensional data such as clinical,
endoscopic, histological, molecular, and patient-reported
outcomes (46).

In summary, despite ongoing significant challenges, Al
technology is poised to transform EoE management from a
reactive, “one-size-fits-all” model to a proactive, personalized, and
data-driven science. Through earlier and more accurate diagnosis,
more refined disease subtyping, and more predictive treatment
selection, AI holds the promise of ultimately improving the
quality of life for patients with this chronic condition.
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