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Introduction: Breast cancer (BC) is the most prevalent malignancy in women,
with patient outcomes heavily influenced by complex molecular mechanisms
like programmed cell death (PCD) and RNA methylation. While some studies
have investigated how specific PCD types and N6-methyladenosine-related
genes (mM6A-RGs) are associated with breast cancer, the research on
combined PCD mechanisms and their role in breast cancer development is
limited. This study integrates PCD-related genes (PCD-RGs) and m6A-RGs to
offer new insights for breast cancer clinical treatment.

Methods: Transcriptomic data and related genes were respectively retrieved
from public databases and published literature. First, PCD-m6A genes identified
through the correlation scoring and differentially expressed genes were
intersected to obtain candidate genes. Furthermore, to infer potential causal
relationships between gene expression and survival, we applied a two-sample
Mendelian randomization approach using summary-level data from public
databases. Therefore, prognostic genes were further obtained through
Mendelian randomization and regression analyses, and a prognostic model was
then constructed. Additionally, functional enrichment, immune infiltration, and
drug sensitivity analyses were conducted. Finally, the expression intensity of
prognostic genes was verified by RT-gqPCR and IHC.

Results: Through a series of analyses, seven prognostic genes were identified.
Following this, the prognostic model has been demonstrated to have a certain
degree of accuracy as indicated by both transcriptomic public sets. Successively,
enrichment analysis revealed numerous pathways, among which herpes simplex
virus 1 infection was notable; its relevance lies in overlapping immune evasion
pathways with BC, a core focus of our investigation. Immune cell infiltration
analysis revealed that 11 immune cell types, including M1 macrophages, exhibited
significant differences between high and low groups. A key finding from drug
sensitivity analysis was that the high-risk group exhibited significantly increased
sensitivity to several drugs, including CCT018159, rapamycin, vinblastine,
metformin, and roscovitine. The expression levels of MYD88, DAXX and ANXA5
were significantly upregulated in the control samples compared to breast cancer
samples. Moreover, the expression levels of SESN3, CRIP1, DPP4 and PIK3CA
were significantly upregulated in breast cancer samples compared to
control samples.
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Discussion: This study constructed a risk model based on seven prognostic
genes, offering new potential strategies for breast cancer therapy.
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GRAPHICAL ABSTRACT
Flow chart of this study.

1 Introduction

Breast cancer (BC) is the most prevalent malignant tumor among
women worldwide, posing a severe threat to female life and health (1).
In 2020, approximately 2.3 million new cases and 685,000 deaths
were reported. This accounted for over 24% of global cancer cases
among females and about 15% of cancer-related deaths, making it the
second leading cause of cancer mortality (2). Based on the expression
status of estrogen receptor, progesterone receptor, and human
epidermal growth factor receptor 2 (HER2), BC is typically
classified into four subtypes: Luminal A, Luminal B, HER2-
enriched, and triple-negative breast cancer (3). This disease exhibits
significant heterogeneity. Advances in surgery, chemotherapy,
radiotherapy, targeted therapy, and endocrine therapy have made
progress (4), but BC remains associated with substantial morbidity
and mortality. While early diagnosis via mammography screening
and combined diagnostics has significantly enhanced overall survival
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and prognosis for early-stage patients with breast cancer (5),
predicting outcomes for advanced and metastatic breast cancer
remains challenging. This difficulty arises from the limited accuracy
of known clinical, pathological, and molecular features. In recent
years, immunotherapy has emerged as a promising avenue for cancer
treatment, which harnesses the body’s immune system to target and
eradicate tumor cells (6). Although several prognostic indicators for
breast cancer currently exist, they still exhibit significant limitations
in accurately predicting patient survival outcomes, such as risks of
recurrence and variations in treatment response. These shortcomings
hinder their ability to meet the clinical demands of personalized
treatment decision-making. Thus, there is an urgent need to explore
novel prognostic biomarkers to address this gap.

Programmed cell death (PCD) is an intrinsic property of all
cellular life forms (7). PCD primarily includes pyroptosis, apoptosis,
necroptosis, ferroptosis, cuproptosis, and PANoptosis. Recent studies
indicate that PCD participates in various pathophysiological
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processes. It is crucial for host defense against pathogens and
organismal development. This mechanism serves as a key mediator
in the pathogenesis of diseases such as autoimmune disorders, cancer,
neurodegenerative diseases, immunodeficiency, and developmental
abnormalities (8, 9). Moreover, PCD is closely associated with
innate immunity and plays a pivotal role in regulating the
immunosuppressive tumor microenvironment (10, 11). Research
on the various types of PCD in breast cancer pathogenesis has
been conducted, including studies on molecular clustering and
prognostic signatures related to PANoptosis (12), as well as
prognostic models that involve cuproptosis/ferroptosis-related
genes (13). However, there is still limited research that integrates
PCD mechanisms with breast cancer development. While existing
studies have acknowledged the role of PCD in cancer, research
focusing on PCD-related genes (PCD-RGs) in BC remains largely
confined to basic mechanistic investigations. Their translational
relevance in clinical prognostic assessment has yet to be fully
elucidated, and functional validation coupled with clinical
translation in this context remains notably scarce, warranting
further in-depth investigation.

Epigenetics connects environmental influences and genetic factors,
referring to heritable modifications that regulate gene expression
without changing the nucleotide sequences. Over 160 types of RNA
modifications exist in organisms (14). Among these, N6-
methyladenosine (m6A) is the most prevalent internal methylation
modification at the N6 position of adenosine (15). Eukaryotic
biological processes are regulated by m6A through “writers”,
“readers”, and “erasers”, influencing the onset and progression of
multiple diseases. Current m6A research focuses largely on tumors,
with established roles in lung, cervical, and other cancers (15, 16). In
breast cancer, m6A-related genes have been investigated for prognostic
prediction and immune characterization (17). Over the past few years,
accumulating evidence has demonstrated that m6A can regulate gene
expression, thereby influencing multiple PCD processes (18, 19).
Studies have investigated the potential functional implications of
m6A regulation in PANoptosis among patients with bladder cancer
(20). Although m6A, as a pivotal mechanism in RNA regulation, has
been demonstrated to be associated with breast cancer progression,
current research predominantly focuses on its individual effects.
Investigations that integrate m6A with other core molecular
mechanisms, such as PCD, to analyze their coordinated regulation
in BC pathogenesis remain notably limited, thereby failing to elucidate
the comprehensive landscape of the intricate regulatory network in BC.

To thoroughly investigate the mechanisms linking programmed
cell death and m6A in BC, it is essential to identify prognostic genes
with a causal relationship to the disease. Mendelian randomization
(MR) uses genetic variants as instrumental variables. These variants
are determined at birth and remain stable, unaffected by
environmental factors (21). By leveraging instrumental variables to
link exposures and outcomes, MR mitigates confounding bias,
enhancing reliability and accuracy in causal inference beyond
traditional epidemiological limitations (22). Current research on
breast cancer-associated genes predominantly relies on correlational
analyses. While this approach can identify genes with statistical
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associations, it fails to effectively distinguish between ‘causal
relationships’ and ‘non-causal accompaniments’, thereby limiting
the clinical translational potential of candidate functional genes. In
contrast, studies employing MR to establish causal links between
genes and BC are still in their nascent stage, with both relevant data
and validation evidence remaining notably scarce.

This study aims to develop and validate a prognostic model for
breast cancer by integrating bioinformatics and mendelian
randomization methods, based on the interactions of m6A-RGs
and PCD-RGs. Next, the relevant mechanisms of prognostic genes
were explored through gene set enrichment analysis, immune
infiltration, drug sensitivity analysis, which offered new insights
for the clinical management of breast cancer.

2 Materials and methods
2.1 Data collection

The TCGA-BRCA dataset was retrieved from TCGA (https://
portal.gdc.cancer.gov/) on May 31, 2024, for the training cohort. It
encompassed 1,104 breast cancer (BC) tissue samples and 113
control tissue samples, containing 1082 breast cancer samples
with survival information (23). TCGA-BRCA was denoted as
TCGA-BC.

Breast cancer-related transcriptome datasets were collected
from the Gene Expression Omnibus database (https://
www.ncbi.nlm.nih.gov/geo/) in the validation cohort. The
GSE42568 (GPL570 platform) consisted of 104 breast cancer
tissue samples and 17 control samples (containing 104 breast
cancer samples with survival information) (24).

Additionally, 27 N6-methyladenosine-related genes (m6A-
RGs) were identified in published literature (Supplementary
Table 1) (25).

Additionally, 1,548 programmed cell death related genes (PCD-
RGs) were reported in the literature (Supplementary Table 2) (26).

The genome-wide association studies (GWAS) data of
expression Quantitative Trait Loci for candidate genes were
retrieved from the Integrative Epidemiology Unit (IEU) Open
GWAS database (https://gwas.mrcieu.ac.uk/). The breast cancer
dataset was obtained from the IEU Open GWAS database by
searching with the keyword “breast cancer”. The dataset identified
was ukb-b-16890, including a total of 9,851,867 single-nucleotide
polymorphisms (SNPs) derived from 462,933 European samples
(breast cancer: 10,303, control: 452,630).

2.2 Differential expression analysis

Differential expression analysis was used to identify differentially
expressed genes between BC and control groups in TCGA-BC via the
DESeq?2 package (version 1.42.0) (27) (|log,Fold Change (FC)| > 0.5
and p < 0.05).
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2.3 ldentification and functions of
candidate genes

The Spearman method was employed to analyze the correlation
between m6A-RGs and PCD-RGs. Genes that were significantly
correlated with PCD-m6A genes were selected (|r| > 0.3 and p <
0.05). Following this, DEGs and PCD-m6A genes were intersected
to identify candidate genes. Specifically, to explore the biological
pathways involving the candidate genes, a functional enrichment
analysis was conducted of the candidate genes using the
clusterProfiler package (version 4.7.1.003) (28), drawing data
from the Kyoto encyclopedia of genes and genomes (KEGG) and
gene ontology (GO) databases (p < 0.05). Moreover, The STRING
(https://string-db.org) was employed to build the protein-protein-
interaction network to explore the interaction relationships of
candidate genes at the protein level (confidence = 0.9).

2.4 Mendelian randomization analysis

Based on Mendelian randomization method, candidate genes
that had a causal relationship with breast cancer were identified via
TwoSampleMR package (version 0.6.4) (29). Candidate genes were
considered as predictors, with breast cancer identified as the
outcome of interest.

Initially, SNPs were selected with p < 5 x 1078, clump = TRUE,
R* < 0.001, kb > 100, and SNPs > 3. Instrumental variables were
calculated to be F-statistic, with F > 10. Moreover, the directionality
of exposure factors was tested. After that, MR combined five
algorithms for MR analysis, including MR-Egger (30), inverse
variance weighted (IVW) (31), weighted median (32), weighted
mode (33), and simple mode (29). The IVW method served as the
primary measure for determining statistical significance (p < 0.05).
In turn, correlation analysis was conducted with a scatter plot, forest
plot, and randomness analysis with a funnel plot. Moreover, the
robustness of Mendelian randomization analysis results was
assessed via a sensitivity analysis, comprising heterogeneity test (p
> 0.05) (34), horizontal pleiotropy test (p > 0.05) (35), and Leave-
One-Out analysis. Additionally, the Steiger directional test was
applied to eliminate the prospect of reverse causation (result =
TRUE, p < 0.05) (36).

Ultimately, the candidate genes specifically linked to breast
cancer were obtained through Mendelian randomization analysis
and documented as key genes. These key genes were used for
further analysis.

2.5 Identification of prognostic genes

In order to further screen out the prognostic genes related to the
prognosis of breast cancer from the key genes, various regression
analysis methods were employed. Initially, based on breast cancer
tissue samples from TCGA-BC, the survival package (version 3.5.3)
(37) was employed to construct a univariate Cox regression analysis
(hazard ratio # 1, p < 0.2) with proportional hazards (PH)
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assumption test (p > 0.05) to identify survival-associated genes.
Subsequently, the glmnet package (version 4.1.4) was utilized to
perform least absolute selection and shrinkage operator (LASSO)
(log(lambda.min) # 0). The genes identified through LASSO
regression were initially evaluated for the PH assumption (p >
0.05), followed by multivariate Cox analysis. Afterwards, the model
was screened and validated by stepwise regression analysis (p <
0.05). Finally, the key genes identified through all the
aforementioned analyses were defined as prognostic genes which
were utilized to construct risk model.

2.6 Construction and validation of risk
model

Based on prognostic genes, the TCGA-BC dataset was utilized
as a training cohort (n = 1,082) to construct a risk model, while the
GSE42568 dataset acted as a validation cohort (n = 104) to validate
the risk model for predicting outcomes in patients with breast
cancer. Firstly, in TCGA-BC, based on the relative expression
intensity of prognostic genes and regression coefficients, risk
scores were computed for patients with BC. The formula used
was Riskscore = ', coef (gene;)+expr(gene;), where expr signified
the expression level of prognostic genes and coef denoted the
coefficient associated with prognostic genes. Breast cancer
specimens were binned into two risk groups via an optimal cutoff
value. A risk curve scatter plot was plotted, and the expression
intensity of prognostic genes was displayed. Furthermore, the
Kaplan-Meier survival curve for overall survival of the two risk
groups was generated using the survminer package (version 0.4.9)
(38) (p < 0.05). Finally, the survivalROC package (version 1.0.3)
(39) was leveraged to generate a receiver operating characteristic
(ROC) curve for assessing 1, 2, and 3 years survival prospects.
Moreover, the risk model underwent validation in a
validation cohort.

Additionally, to explore the prognostic value of prognostic
genes, in the BC samples with survival information of TCGA-BC,
based on the optimal cut-off value of prognostic gene expression,
BC samples were divided into high-expression and low-expression
groups. Then, the Kaplan-Meier survival curves for overall survival
of patients in the high and low expression groups were analyzed
using the survminer package (version 0.4.9), and the log-rank test
was applied to compare the survival differences between the two
groups (p < 0.05).

2.7 Independent prognostic analysis

To explore the independent factors related to prognosis, an
independent prognostic analysis was conducted by integrating risk
scores, age, gender, T.stage, N.stage, and M.stage. Cox regression
analysis was utilized to identify an independent prognostic factor
paired with breast cancer (p < 0.05). Additionally, based on
independent prognostic factors, the rms package (version 6.5-1)
(40) was utilized to construct a nomogram model to explore the
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diagnostic value of independent prognostic factors. Notably, 1-, 2-,
and 3-year calibration curves and ROC curve were utilized to verify
the accuracy of the nomogram.

2.8 Correlation of risk scores with clinical
characteristics

The relationship of risk score to the clinical characteristics of BC
was evaluated via a series of analyses. First, the distinctions in risk
score among different clinical characteristics were compared. The
survival package was employed to construct Kaplan-Meier curves,
which assessed distinctions in overall survival between two risk
groups under various subgroups of clinical characteristics (p < 0.05).

2.9 Gene set enrichment analysis

To scrutinize the intrinsic mechanisms associated with
prognostic genes, GSEA was carried out. Initially, the DESeq2
package was employed to differentially analyze the two risk
groups and sort the log,FC from largest to smallest. Furthermore,
GSEA was conducted using the gseKEGG function from the
clusterProfiler package to explore the functional pathways
associated with the prognostic genes. A normalized enrichment
score ([NES|) > 1 and p < 0.05 were considered significant. The top 5
pathways were visualized.

2.10 Analysis of immune cell infiltration

The abundance of immune cell infiltration between the high-
risk and low-risk groups was also investigated. CIBERSORT
algorithm (version 1.03) (41) was employed to assess enrichment
of 22 immune cell types in TCGA-BC. Afterwards, deviations in
enrichment of immune cells were analyzed (p < 0.05). Additionally,
the relationships among prognostic genes and various immune
cells, the interactions between different immune cells, and the
connections among prognostic genes within the TCGA-BC were
analyzed using the psych package.

2.11 Mutation status of patients with breast
cancer in two risk groups

To better understand variations in driver genes between two
risk groups, the maftools package (version 2.14.0) (42) was utilized
to analyze gene mutations in two risk groups and display the top 20
high-frequency mutated genes in a tumor mutational burden
waterfall plot.
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2.12 Drug sensitivity analysis

Additionally, the sensitivity of the high-risk and low-risk groups
to the drug was also analyzed. The information on chemical drugs
for breast cancer and their half maximal inhibitory concentration
(ICs) was retrieved from the Genomics of Drug Sensitivity in
Cancer databases (http://cancerrxgene.org). The pRRophetic
package (version 0.5) (43) was utilized to calculate ICsy values of
drugs in patients with breast cancer samples in TCGA-BC.
Subsequently, the psych package was used for Spearman’s
correlation analysis of drug ICs, values versus risk scores (cor) >
0.3 and p < 0.05). The top five drugs were presented according to
their adjusted p-value.

2.13 Reverse transcription quantitative
polymerase chain reaction

To verify the expression levels of the prognostic genes in the
samples, RT-qPCR was conducted. RNA specimens from 32 matched
pairs of breast cancer and adjacent paracancerous tissues were
obtained from Xi'an Jiaotong University Second Affiliated Hospital.
The inclusion criteria encompassed sufficient bone marrow, hepatic,
and renal function, a minimum expected survival of three months,
and provision of informed consent. The exclusion criteria comprised
incomplete case information, mortality due to postoperative
complications, and the presence of concurrent malignancies. This
study complied with the Declaration of Helsinki (2013 revision) and
was formally approved by the hospital’s Ethics Committee (Approval
No. 2024YS060). All participants provided written informed consent.
In the RT-qPCR, total RNA was extracted using manufacturer-
specified protocols. The mRNA underwent reverse transcription
with the SweScript First Strand cDNA Synthesis Kit, followed by
quantitative PCR amplification using SYBR Green qPCR Master Mix.
Primer sequences are detailed in Supplementary Table 3. Moreover,
mRNA expression levels were normalized to GAPDH and quantified
via the 2744¢

determined using GraphPad Prism (version 6).

method. Statistical significance (p-values) was

2.14 Immunohistochemistry

Fresh tumor specimens were fixed in neutral buffered formalin
for a duration of 24 hours at ambient temperature. Subsequently, the
samples underwent embedding and processing in accordance with
established protocols. Tissue sections were deparaffinized utilizing a
series of graded ethanol solutions and subsequently rehydrated.
Antigen retrieval was conducted for 30 minutes using an antigen
retrieval solution. Following this, the sections were stained with
PIK3CA, SESN3, ANXA5, MYD88, DPP4, DAXX, and CRIP1.
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2.15 siRNA transfection

BRCA cells were seeded into 6-well plates at a density ranging
from 50,000 to 100,000 cells per well and cultured overnight to
achieve 50-70% confluency. Each small interfering RNA (siRNA)
(siPIK3CA#1: GGAUCAGAUGAAUUCACUATT; siPIK3CA#2:
CCACAAAUUAUCAUAGAAUTT; siCRIP1#1:GUGAUU
CUGUGCUACUAUTT; siCRIP1#2:GGAACAAG
UGCUUGGUCAUTT) was diluted to a working concentration of
20 uM in nuclease-free water. For the transfection process, 5 UL of
Lipofectamine 2000 was combined with 100 uL of Opti-MEM I
medium and incubated for 5 minutes at room temperature.
Subsequently, 50 nM of each siRNA was added to the mixture,
resulting in a total volume of 200 uL. Following a 20-minute
incubation at room temperature, the siRNA-lipid complex was
added dropwise to each well containing cells in Opti-MEM I
medium. The cells were then incubated at 37 °C with 5% CO2 for
48 hours to facilitate PIK3CA or CRIP1 knockdown. Following
transfection, the cells were subjected to RNA extraction to verify the
efficiency of the knockdown.

2.16 CCKS8 assay

The proliferation of PIK3CA or CRIP1 knockdown breast cell
lines was evaluated utilizing the CCK8 assay. Cells were seeded in
96-well plates at a density of 1,000 cells per well, with three
replicates for each condition. The experimental setup included
continuous treatment with 0.5 UM of the drug or no treatment,
alongside blank wells as controls. Proliferation assessments were
conducted every 24 hours over a 3-day period. At each specified
time point, 10 UL of CCK8 reagent was added to each well, followed
by a 3-hour incubation at 37 °C. Absorbance was subsequently
measured at 450 nm using a microplate reader. Proliferation curves
were generated and analyzed using GraphPad Prism 6 software.

2.17 Statistical analysis

All data were managed utilizing R language software (version
4.2.2). The Wilcoxon test was employed for analytical comparisons,
with p < 0.05 considered statistically significant.

3 Results

3.1 The functions of 455 candidate genes
related to m6A and PCD in breast cancer

By differential expression analysis, 9,572 differentially expressed
genes, with 5,933 upregulated and 3,639 downregulated in the BC
group were obtained (Figure 1A). Meanwhile, 1040 PCD-m6A
genes were obtained from Spearman correlation analysis between
27 m6A-RGs and 1,548 PCD-RGs (|r| > 0.3 and p < 0.05). By
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analyzing the overlap between 9,572 differentially expressed genes
and 1,040 PCD-m6A genes, 455 candidate genes were obtained
(Figure 1B). Notably, GO analysis showed that 455 candidate genes
were significantly enriched in 2,705 biological process entries, such
as the intrinsic apoptotic signaling pathway. Additionally, there
were 200 entries related to cellular components, such as cell-
substrate junctions, and 234 entries related to molecular
functions, including protease binding (Figure 1C, Supplementary
Table 4). Furthermore, 160 KEGG pathways were identified, such as
Hepatitis B and apoptosis (Figure 1D, Supplementary Table 5). At
the protein level, there were interactions among 309 candidate
genes (Figure 1E), with SRC and TNF exhibiting a higher number of
connections and interactions with other proteins.

3.2 Acquisition of 54 key genes among
candidate genes

A two-sample MR analysis involved 455 candidate genes as
exposure variables, with breast cancer as the outcome. About 54
genes were identified and were used as key genes (p < 0.05).
Consequently, 26 protective factors were identified (OR < 1, p <
0.05), while 28 risk factors were also identified (OR > 1, p < 0.05)
(Table 1). Analyzing the correlation between exposure factors and
outcomes using a scatter plot revealed that 28 genes were positively
correlated, while 26 genes were negatively correlated. Forest plots
indicated that the effect value of 26 genes was less than 0, while the
effect values of the 28 risk genes were greater than 0. SNP numbers
were largely symmetrical on both sides of the line and corresponding
to Mendel’s second law. Moreover, sensitivity analyses revealed that
all 54 exposure factors displayed no evidence of heterogeneity (p >
0.05) (Supplementary Table 6). Additionally, there was no indication
of horizontal pleiotropy between the 54 exposure factors and the
outcome (p > 0.05) (Supplementary Table 7). In Leave-One-Out, no
significant bias was observed, supporting the reliability of the results.
Finally, when using breast cancer as the exposure factor and the 54
genes as the outcome in the Steiger test for reverse causality, the
directional relationship was determined to be “TRUE”. There was no
reverse causality between the 54 exposure factors and the outcome
(p < 0.05) (Supplementary Table 8). Overall, 54 genes were recorded
as key genes.

3.3 Recognition of PIK3CA, SESN3, ANXAS5,
MYD88, DPP4, DAXX, and CRIP1 as
prognostic genes

After 54 key genes were obtained, 22 survival-associated genes
were identified by univariate Cox regression analysis (p < 0.2) and
PH assumption test (p > 0.05) (Figure 2A, Table 2). Then, these 22
genes were incorporated into LASSO analysis (lambda.min =
0.006699639), which yielded a total of 12 significant genes (FYN,
ZMPSTE24, EPM2A, PIK3CA, MTDH, SESN3, ANXAS5, PLK1,
MYD88, DPP4, DAXX, and CRIP1) with a log(lambda.min # 0
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FIGURE 1
Identification of candidate genes. (A) Volcano plot of differentially expressed genes in the BC dataset. (B) Venn map acquisition of 455 intersection
genes of differentially expressed genes and PCD-m6A-RGs. (C) Gene Ontology (GO) enrichment analysis of 455 candidate genes. (D) Kyoto
encyclopedia of genes and genomes (KEGG) pathway enrichment analysis of 455 candidate genes. (E) Construction of a PPl network for 455
candidate genes.

(Figures 2B, C). Finally, the PH assumption test excluded PLK1,
followed by multivariate Cox analysis. The model was then screened
and validated by stepwise regression analysis, resulting in seven
prognostic genes (PIK3CA, SESN3, ANXA5, MYDS88, DPP4,
DAXX, and CRIP1) with p < 0.05 (Figures 2D, E; Table 3).

accuracy
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3.4 Development of a risk model with high

The risk model was formulated using the expression intensity
and risk coefficients of seven prognostic genes. Constructed risk
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TABLE 1 Results of Mendelian randomization analysis.

Exposure

Method

Nsnp B

Or_Ici95

Or_uci95

10.3389/fimmu.2025.1711910

Symbol

Ensembl

Inverse variance

eqtl-a- .
hi fix 7 .001 . .04 1.001 1. 1. 7 YNPO2 EN 1724
ENSG00000172403 | I8 ted (fixed 0.001933  0.000983 = 0.049306 001935 000006 00386 S (@) SG00000 03
effects)
Inverse variance
tl-a- ighted
edt-a weighted 7 -0.00398  0.001418 = 000505 0996031 | 0993266 0.998804 CASPI0 ENSG00000003400
ENSG00000003400 | (multiplicative
random effects)
eqtl Inverse variance
a-
ighted (fixed 12 -0.00077 = 0.000385 = 0.045947 | 0.999231 | 0.998477 0.999986 ANXA5 ENSG00000164111
ENSGO0000164111 | Weighted (fixe
effects)
eatl-a Inverse variance
q weighted (fixed 3 -0.00295 = 0.001467 = 0.044255 | 0.997052 = 0.994189 0.999924 SFN ENSG00000175793
ENSG00000175793
effects)
eqtl-a Inverse variance
- ighted (fix 001324 | 0. 042711 | 1.001325  1.00004 1.002 TP53INP1 | EN! 164
ENSGO0000164938 weighted (fixed 8 0.0013 0.000653  0.0427 001325 000043 002608 53 SG00000164938
effects)
atl Inverse variance
€ -a-
ighted (fixed 9 -0.00081 0.000395 = 0.039589 = 0.999187 | 0.998412 0.999961 PRELID1 ENSG00000169230
ENSG00000169230  “eishted (fixe
effects)
cqtl-a Inverse variance
q weighted (fixed 16 0.00098 0.00047 0.037137 | 1.000981 | 1.000058 1.001904 PARP1 ENSG00000143799
ENSG00000143799
effects)
catl-a Inverse variance
q weighted (fixed 4 -0.00175 = 0.000839 = 0.03692 0.998252 | 0.996612 0.999894 ERBB3 ENSG00000065361
ENSG00000065361
effects)
i Inverse variance
€ -a-
q weighted (fixed 3 0.00388 0.001853 = 0.036275 = 1.003888 | 1.000248 1.00754 BAD ENSG00000002330
ENSG00000002330
effects)
Inverse variance
eqtl-a- .
weighted (fixed 13 0.001599 = 0.000762 = 0.035979 @ 1.0016 1.000105 1.003098 BMP6 ENSG00000153162
ENSG00000153162
effects)
eqtl-a Inverse variance
- ighted (fix 1 0.001765 = 0.000841 = 0.035779 = 1.0017 1.000117 1.00341 MYLK ENSG00000065534
ENSG00000065534 | "VCi8 ted (fixed 3 00176 0.0008 0.035779 66 000 003418 SGi 6553
effects)
catl-a Inverse variance
q weighted (fixed 12 0.001188 = 0.000558 = 0.033236 = 1.001189 = 1.000094 1.002285 CXCL8 ENSG00000169429
ENSG00000169429
effects)
Inverse variance
eqtl-a- .
weighted (fixed 10 -0.00118 = 0.000547 = 0.031487 | 0.998825 | 0.997756 0.999896 NLRP1 ENSG00000091592
ENSG00000091592
effects)
eqtl-a Inverse variance
- ighted (fix -0.0024 001154 0.030944 = 0.997514 = 0.995261 999772 ATP2A1 ENSG000001962:
ENSG00000196206 | "VEi8 ted (fixed 5 0.00249 | 0.00115 0.0309 9975 0.99526 0.999 SGi 0196296
effects)
cqtl-a Inverse variance
q weighted (fixed 5 0.00221 0.001021 = 0.030375 = 1.002212 | 1.000209 1.004219 ZMPSTE24 =~ ENSG00000084073
ENSG00000084073
effects)
q Inverse variance
€ -a-
q weighted (fixed 9 -0.00134 = 0.000614 = 0.029437 = 0.998663 = 0.997461 0.999866 TFRC ENSG00000072274
ENSG00000072274
effects)
eqtl-a Inverse variance
- ighted (fix 00211 : 028727 | 1.002121 = 1.00022 1.00402 LE EN 10454
ENSG00000104549 | “<i8 ted (fixed 6 0.002119 = 0.000969 = 0.028 00! 000! 004025 sQ SG00000104549
effects)
(Continued)
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TABLE 1 Continued

10.3389/fimmu.2025.1711910

Exposure Method Nsnp B Se Pval Or Or_Llci95 Or_uci95 Symbol Ensembl
cqtl-a Inverse variance
q weighted (fixed 11 0.001892 = 0.000851 = 0.026293 | 1.001894 = 1.000223 1.003567 TEX264 ENSG00000164081
ENSG00000164081
effects)
eqtl-a Inverse variance
- ighted (fi 11 X 2 0.0004 0234 1. 1.0001 1.001834 ARHGEF7  EN 102
ENSGO0000102606 weighted (fixed 0.00098 0.000433  0.023456 000983 000133 00183: RHGEF7 SG00000102606
effects)
i Inverse variance
€ -a-
q weighted (fixed 6 0.001614 = 0.000712 = 0.02343 1.001615 = 1.000218 1.003014 IDUA ENSG00000127415
ENSG00000127415
effects)
eqtl-a Inverse variance
q weighted (fixed 5 -0.00192  0.000848 = 0.023428 | 0.99808 0.996422 0.99974 UACA ENSG00000137831
ENSG00000137831
effects)
eqtl-a Inverse variance
- ighted (fi -0.002 .0012 022 X 994 . 4 MYD EN 172
ENSG00000172936 weighted (fixed 6 0.00293  0.001286 = 0.022873 | 0.997078 = 0.994568 0.99959: 88 SG00000172936
effects)
i Inverse variance
€ -a-
q weighted (fixed 3 0.001999 = 0.000859 = 0.019958 | 1.002001 & 1.000315 1.003689 WDR24 ENSG00000127580
ENSG00000127580
effects)
cqtl-a Inverse variance
q weighted (fixed 4 0.002397 = 0.000987 = 0.015194 = 1.0024 1.000462 1.004341 PLK1 ENSG00000166851
ENSG00000166851
effects)
eqtl-a Inverse variance
- ighted (fix 0.002 .001 014648 | 1.002 1.00051 1.0047 PIP4K2 EN 1
ENSG00000166908 | &8 ted (fixed 5 002635 = 0.00108 0.014648 002639 000519 004763 C S$G00000166908
effects)
i Inverse variance
€ -a-
q weighted (fixed 10 -0.00122  0.000483 = 0.011515 | 0.99878 0.997834 0.999726 SESN3 ENSG00000149212
ENSG00000149212
effects)
catl-a Inverse variance
q weighted (fixed 9 0.001 0.000389 = 0.010207 & 1.001001 | 1.000237 1.001765 MY ENSG00000152409
ENSG00000152409
effects)
eqtl-a Inverse variance
- ighted (fix 11 001 000621 0. 1.001604 = 1. 1.00282 R1 EN 16832
ENSG00000168329 weighted (fixed 0.001603 = 0.0006: 0.009879 00160: 000385 002825 CX3C S$G00000168329
effects)
eqtl-a Inverse variance
q weighted (fixed 12 -0.00064 = 0.000247 = 0.009634 | 0.999361 | 0.998877 0.999845 CIB1 ENSG00000185043
ENSG00000185043
effects)
eqtl-a Inverse variance
d weighted (fixed 8 -0.00097  0.000372 = 0.009179 | 0.999031 = 0.998302 0.99976 TNFSF12 ENSG00000239697
ENSG00000239697
effects)
eqtl-a Inverse variance
- ighted (fix -0.00084 | 0.000317 = 0.00802 19991 X 999781 MTM EN 1
ENSG00000100330 weighted (fixed 9 0.0008 0.0003 0.008026 = 0.999159 = 0.998538 0.99978 R3 SG00000100330
effects)
eatl Inverse variance
a-
q weighted (fixed 5 0.002393 = 0.000884 = 0.006765 & 1.002396 = 1.000661 1.004134 DAXX ENSG00000204209
ENSG00000204209
effects)
catl-a Inverse variance
q weighted (fixed 5 -0.00203  0.000734 = 0.005693 | 0.997973 = 0.996538 0.999409 CBL ENSG00000110395
ENSG00000110395
effects)
eqtl-a Inverse variance
- ighted (fix -0.001 : X X . 9994 BOK EN 176721
ENSGO00000176720 weighted (fixed 7 0.00193  0.000698  0.00565 0.99807 0.996706 0.999437 O $G00000176720
effects)
i Inverse variance
€ -a-
q weighted (fixed 6 -0.00347  0.001228 = 0.004746 @ 0.996538 = 0.994142 0.99894 DPP4 ENSG00000197635
ENSG00000197635
effects)
(Continued)
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TABLE 1 Continued

10.3389/fimmu.2025.1711910

Exposure Method Nsnp B Se Pval Or Or_Llci95 Or_uci95 Symbol Ensembl
cqtl-a Inverse variance
q weighted (fixed 3 0.003252 = 0.001107 = 0.003325 | 1.003257 @ 1.001081 1.005437 MIF ENSG00000240972
ENSG00000240972
effects)
eqtl-a Inverse variance
- ighted (fi 4 -0.00371 | 0.0012 .002 9962 . 2 99871 PIK3CA EN 121
ENSGO0000121879 weighted (fixed 0.0037 0.001238 = 0.002709 = 0.996296 = 0.99388 0.998715 3C SG00000121879
effects)
i Inverse variance
€ -a-
q weighted (fixed 3 -0.00383 = 0.001258 = 0.002326 | 0.996178 | 0.993726 0.998636 PHLDA2 ENSG00000181649
ENSG00000181649
effects)
eqtl-a Inverse variance
q weighted (fixed 7 -0.00188 = 0.000616 = 0.002258 | 0.99812 0.996915 0.999326 APIM2 ENSG00000129354
ENSG00000129354
effects)
eqtl-a Inverse variance
- ighted (fi 4 004 0014 .0021 1.004 1.001 1. F EN! 1081
ENSG00000010810 weighted (fixed 0.004596 = 0.001497 = 0.002138 004606 001663 007558 YN SG00000010810
effects)
i Inverse variance
€ -a-
q weighted (fixed 4 -0.00486 = 0.001562 = 0.001873 | 0.995156 | 0.992114 0.998206 MTDH ENSG00000147649
ENSG00000147649
effects)
cqtl-a Inverse variance
q weighted (fixed 13 0.001779 = 0.000548  0.001177 = 1.00178 1.000704 1.002857 CDH1 ENSG00000039068
ENSG00000039068
effects)
eqtl-a Inverse variance
- ighted (fix 7 0.001 .00041 X 100137 1. 7 1.002184 PPP2RIB | EN 13771
ENSG00000137713 | WEiB ted (fixed 001369 = 0.000415 = 0.000958 0013 00055 00218 SG00000137713
effects)
i Inverse variance
€ -a-
q weighted (fixed 5 -0.003 0.000893 = 0.000792 | 0.997008 | 0.995264 0.998754 HERC1 ENSG00000103657
ENSG00000103657
effects)
catl-a Inverse variance
q weighted (fixed 13 0.002033 = 0.000598 = 0.000669 | 1.002035 @ 1.000862 1.003209 LRRK2 ENSG00000188906
ENSG00000188906
effects)
eqtl-a Inverse variance
- ighted (fix 2 001154 | 0. 2 0. 1.0011 1. 4 1.001807 HMP4B  EN 101421
ENSG00000101421 weighted (fixed 0 0.00115: 0.00033. 0.000507 001155 00050: 00180 C SG0000010
effects)
eqtl-a Inverse variance
q weighted (fixed 5 0.003042 = 0.000849 = 0.000337 = 1.003047 @ 1.00138 1.004717 NDUFA13 ENSG00000186010
ENSG00000186010
effects)
eqtl-a Inverse variance
d weighted (fixed 5 0.00625 0.001672 = 0.000185 | 1.00627 1.002978 1.009572 CRIP1 ENSG00000213145
ENSG00000213145
effects)
eqtl-a Inverse variance
- ighted (fix 14 -0.00122 | 0.00032 .0001 X 1 0998142 99941 EPM2A EN 11242
ENSGO00000112425 weighted (fixed 0.00 0.000326 ~ 0.000183 | 0.99878 0.998 0.999419 SG00000 5
effects)
eatl Inverse variance
a-
q weighted (fixed 7 0.005331  0.001361 = 8.96E-05 | 1.005345 = 1.002667 1.008031 CHEK2 ENSG00000183765
ENSG00000183765
effects)
catl-a Inverse variance
q weighted (fixed 4 -0.00348 = 0.000887 = 8.53E-05 @ 0.996522 = 0.994791 0.998255 TP53BP2 ENSG00000143514
ENSG00000143514
effects)
eqtl-a Inverse variance
- ighted (fix ! 2 0.001581 = 1.26E- 1. 1 1.004 1.01081 BQLN4  EN 1
ENSGO00000160803 weighted (fixed 3 0.00766 0.00158 6E-06 00769 004573 010819 UBQLN: SG00000160803
effects)
i Inverse variance
€ -a-
q weighted (fixed 17 -0.00139  0.000267 = 1.88E-07 | 0.998607 = 0.998084 0.999131 LPAR2 ENSG00000064547
ENSG00000064547
effects)
(Continued)
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TABLE 1 Continued

10.3389/fimmu.2025.1711910

Exposure Method snp B Pval Or Or_Llci95 Or_uci95 Symbol Ensembl
i Inverse variance
eqtl-a- .
q weighted (fixed 10 -0.00358 = 0.000458 = 5.21E-15 | 0.996423 = 0.995529 0.997318 DAP3 ENSG00000132676
ENSG00000132676
effects)
Gene P value Hazard Ratio(99% Cl
FYN 0.1 0.851(0.673-1 —
LPAR2 Q.127 808(0.614-1.06) —
TFRC 0.141 1.13(0.961-1.32) r—
ZMPSTE24  0.106 1.3(0.947-1.77) ————
CHMP4B 0.105 0.756(0.54-1.06 —_—
SQLE 0.042 1.17(1.01-1.36, p——
EPM2A 0.084 1.48(0.949-2.31 ——
PIK3CA 0.009 1.47(1.1-1.96 —
IDUA 0.155 0.842(0.664~1.07) e
MTDH 0.002 1.41(1.13-1.75) e &
SESN3 0.181 0.908(0.787-1.05) — 5
MY 0.095 1.29(0.956-1.75) ] 2
TEX264 0.038 0.757(0.581-0.986 —— 2
ANXAS 0.044 0.737(0.548-0.992 ——
LK1 0.059 1.15(0.995-1.34) prt
PIP4K2C 0.17 1.2(0.925-1.56) ——
MYD88 0.014 0.668(0.484-0.923) ——
OK 0.08 0.847(0.704-1.02) —_—
DPP4 0.159 1.15(0.947-1,39) ——
DAXX 0.001 0.586(0.423-0.813) —
CRIP1 0.045 0.836(0.701-0.996) —
TNFSF12 0.027 0.766(0.604-0.971 —
r T T T T 1 8 ~ s s -
[ 05 X 15 2 25 3 Log(Lambda)
Hazard Ratio
| |
15 min) 1 Gene P value Hazard Ratio(95% Cl)
751057 1 MYD88 0.01 0.636(0.449-0.899) by
13.25:
| | ANXA5 0.034 0.707(0.514-0.975) =
8 DAXX 0.084 0.731(0.512-1.043) [ ]
'g SESN3 0.032 0.838(0.713-0.985) =y
o
3 CRIP1 0265 0.888(0.722-1.094) G
© 13.00
% FYN 0649 0.932(0.687-1.263) e}
2
; ZMPSTE24 0.581 1.11(0.767-1.606) fe—
E MTDH 0.429 1.115(0.851-1.463) (el
EPM2A 0.465 1.199(0.737-1.95) D)
1275
DPP4 0.064 1.246(0.987-1.573) g
PIK3CA 0242 1.265(0.854-1.875) ——y
1 r T ]
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1 Hazard Ratio
-8 - -6 5 -4
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Gene P value Hazard Ratio(95% CI)
MYD88 0.008 0.637(0.455-0.891) (==
ANXAS 0.014 0.689(0.512-0.926) ===
DAXX 0.045 0.699(0.493-0.992) (==
SESN3 0.015 0.824(0.705-0.963) [ e |
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FIGURE 2

Construction of a risk model by Cox regression and LASSO analysis in the training group. (A) The forest plot for univariate Cox analysis. (B, C) LASSO
regression was used to determine the optimal outcome A values. (D, E) The forest plot for multivariate COX analysis and stepwise regression analysis.

model was as follows: RiskScore = PIK3CA x 0.36 + SESN3 x (-
0.19) + ANXA5 x (-0.37) + MYD88 x -0.45) + DPP4 x 0.18 +
DAXX x (-0.36) + CRIP1 x (-0.15). According to this model,
patients in TCGA-BC were classified into high-risk (n = 552) and
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low-risk (n = 530) groups using an optimal cutoff value (-5.80621)
for risk score. The data indicated that the number of deaths
increased as the risk score increased (Figures 3A, B). Individuals

in the high-risk group experienced significantly lower survival rates
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TABLE 2 Results of univariate Cox regression analysis and PH

assumption test.

BAD 0.455852
CASP10 0.552484
FYN 0.917774
CDH1 0.096991
LPAR2 0.289792
ERBB3 0.149579
MYLK 0.65049

TFRC 0.312696
ZMPSTE24 0.417722
NLRP1 0.775306
MTMR3 0.056764
CHMP4B 0.175083
ARHGEF7 0.835618
HERCI1 0.074423
SQLE 0.956928
CBL 0.28711

EPM2A 0.424358
PIK3CA 0.220091
IDUA 0.618828
WDR24 0.940641
APIM2 0.940262
DAP3 0.196975
PPP2R1B 0.53946

UACA 0.303869
TP53BP2 0.45382

PARP1 0.028492
MTDH 0.793298
SESN3 0.593774
MY 0.345596
BMP6 0.997127
UBQLN4 0.704015
TEX264 0.42449

ANXAS5 0.362315
TP53INP1 0.094076
PLK1 0.058812
PIP4K2C 0.300765
CX3CR1 0.941204
PRELID1 0.127376
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TABLE 2 Continued

CXCL8 0.219645
SYNPO2 0.009942
MYD88 0.712093
SEN 0.026588
BOK 0.748919
PHLDA2 0.002169
CHEK2 0.458157
CIB1 0.965798
NDUFA13 0.199574
LRRK2 0.325526
ATP2A1 0.260043
DPP4 0.258957
DAXX 0.486589
CRIP1 0.828803
TNESF12 0.820692
MIF 0.157154

(p < 0.0001) (Figure 3C). ROC analysis suggested that the risk
model exhibited good predictive capacity, with Area Under the
Curves (AUC) for 1 (0.60), 2 (0.61), and 3 (0.64) years in TCGA-
BC (Figure 3D).

Furthermore, patients were divided into high-risk (n = 11) and
low-risk (n = 93) groups using an optimal cutoft value of (-9.06375)
for risk score in GSE42568. Similarly, the number of deaths increased
as the risk score in the sample increased (Figures 3E, F), with
individuals in the high-risk cohort experiencing decreased survival
rates (p = 0.013) (Figure 3G). Validation of the risk model in the
GSE42568 dataset confirmed its predictive accuracy, as evidenced by
AUC. The values were 0.60, 0.69, and 0.61 for 1, 2, and 3 years,
respectively, underscoring the model’s consistent prognostic strength
(Figure 3H). These outcomes affirmed the robustness of the risk
model in evaluating the prognostic risk of patients with BC.

In addition, the Kaplan-Meier curves between the high and low
expression groups of prognostic genes showed that the survival rate
was significantly lower when the expression levels of DPP4 and
PIK3CA were high (p < 0.05), while the survival rate was significantly
lower when the expression levels of the remaining five prognostic
genes were low (p < 0.05). In general, this further illustrated the
prognostic value of prognostic genes for breast cancer patients.

3.5 Risk score, age, and stage were
independent prognostic factors in TCGA-
BC

The risk score, age, N.stage, and M.stage were recognized as
independent prognostic factors of TCGA-BC (p < 0.05) (Figures 4A,
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FIGURE 3

Evaluation the accuracy of the risk model in training set and validation set. (A, B) Distribution of the risk score and survival status between low-/high-
risk groups in the training set. (C) Kaplan-Meier survival analysis between low-/high-risk groups in the training set. (D) Time-dependent receiver
operating characteristic curve analysis of the training set. (E, F) Distribution of the risk score and survival status between low-/high-risk groups in
GSE42568 data set. (G) Kaplan-Meier survival analysis between low- and high-risk subgroups of patients in GSE42568 data set. (H) Time-dependent

receiver operating characteristic curve analysis of the GSE42568 data set.

B). The nomogram model constructed by independent prognostic
factors indicated that the risk of breast cancer was influenced by
independent prognostic factors (Figure 4C). The resulting
calibration curve reflected the nomogram’s high predictive

Frontiers in Immunology

13

precision for patient outcomes at 1, 2, and 3 years’ intervals

(Figure 4D). The ROC analysis of 1 (0.82),

2 (0.77), and 3 years

(0.75) in TCGA-BC (Figure 4E) indicates that the predictive

performance of the nomogram plot is good.
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TABLE 3 Results of stepwise regression analysis.

FYN 0.546473
ZMPSTE24 0.271245
EPM2A 0.635281
PIK3CA 0.34695
MTDH 0.838477
SESN3 0.57122
ANXAS5 0.108482
PLK1 0.024894
MYD88 0.657923
DPP4 0.285684
DAXX 0.258309
CRIP1 0.833499

Additionally, the survival rates of the two risk groups were
analyzed among different clinical subgroups. Patients were more
prevalent in the high-risk group within age (> 60), N.stage (N2, N3),
and M.stage (M1). Conversely, patients were more frequently found
in the low-risk group within age (£60), N.stage (NO, N1), and
M.stage (MO) (Figures 5A-C). Survival differences between the two
risk groups across various clinical subtypes indicated that patients
in the high-risk group exhibited reduced survival rates (age, N.stage,
and M.stage [MO0]) (Figures 5D-I).

In conclusion, the aforementioned results not only demonstrated
the impact of clinical characteristics on the survival of breast cancer
patients but also indicated that certain independent prognostic
features were associated with the survival risk of these patients.

3.6 Biological pathway and mutation genes
analysis of risk groups in BC

Enrichment analysis of all genes in TCGA-BC resulted in a total
of 30 pathways, such as herpes simplex virus 1 infection (Figure 6A,
Supplementary Table 9). This pathway might be associated with the
immune evasion of breast cancer.

Furthermore, within the high-risk group, TP53, PIK3CA, and
TTN genes resulted in high mutation rates, reaching 35%, 34%, and
19% respectively (Figure 6B). Conversely, in the low-risk group,
PIK3CA, TP53, and TTN genes indicated a high mutation rate,
achieving 35%, 33%, and 19% respectively (Figure 6C). Further
analysis of the mutational panorama of prognostic genes revealed
that prognostic genes comprised the highest number of missense
mutations and occupied the most SNP mutation types. Additionally,
the highest percentage of single-nucleotide variants was found for T >
C and C > T, while the PIK3CA mutated genes occurred at the
highest frequency (Figure 6D). The aforementioned results indicated
that the TP53, PIK3CA, and TTN genes exhibited high mutation
rates with similar frequencies in both two groups. Meanwhile,
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missense mutations and SNP types were the predominant mutation
patterns among prognostic genes, with T > C/C > T single-nucleotide
variants and PIK3CA gene mutations being the most common. These
findings provided a basis for revealing the molecular mutation
characteristics associated with breast cancer risk stratification.

3.7 The changes in immune cells and the
differences in drug sensitivity among
different risk groups

In the immune microenvironment, the proportion of abundance
of 22 immune cells in two risk groups is illustrated in Figure 7A. The
immune cells with notable distinctions were analyzed in two risk
groups (p < 0.05). This analysis revealed 11 immune cells that were
notably different between the two groups, such as macrophages M2,
CD8 T cells, and regulatory T cells (Tregs) (Figure 7B). The relevance
between prognostic genes and differential immune cells indicated that
PIK3CA was most counterintuitively linked to Tregs (cor = —0.63).
Conversely, MYD88 demonstrated a positive correlation with M1
Macrophages (cor = 0.57). The correlation between differential
immune cells displays that gamma delta T cells exhibited a
negative correlation with monocytes (cor = -0.66), while gamma
delta T cells displayed a positive correlation with macrophages M1
(cor = 0.55). The correlation between prognostic genes indicated a
strong inverse correlation between DPP4 and DAXX (cor = -0.69),
while PIK3CA exhibited a significant positive correlation with DPP4
(cor = 0.58) (Figure 7C). Overall, the state of immune cells might
affect the risk of breast cancer, further highlighting the significance of
prognostic genes.

Next, the analysis revealed detailed information for common
chemotherapeutic drugs, including 138 drugs, with CCT018159,
rapamycin, vinblastine, metformin, and roscovitine being notably
different between the two risk groups (Figure 8A). Among these, the
ICsp of CCT018159, rapamycin, vinblastine, metformin, and
roscovitine in the high-risk group were higher in the high-risk
group (|cor| > 0.3 and p < 0.05) (Figure 8B). Patients in the low-risk
groups of CCT018159, rapamycin, vinblastine, metformin, and
roscovitine were more sensitive. These drugs might be suitable for
treating patients in the low-risk group. In conclusion, the
aforementioned results provided a new theoretical basis for the
pharmacotherapy of different risk groups.

3.8 Validation of the expression and
functional roles of MYD88, ANXAS5, DAXX,
SESN3, CRIP1, DPP4, and PIK3CA

The expression of seven prognostic genes was estimated by RT-
qPCR and IHC in 32 matched pairs of breast cancer and adjacent
paracancerous tissues (Table 4). The expression levels of MYD88,
ANXAS5, DAXX were significantly upregulated in the control samples
compared to BC samples (p < 0.05) (Figures 9A-C). However, the
expression levels of SESN3, CRIP1, DPP4, and PIK3CA were
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Construction and evaluation of a nomogram based on independent prognostic indicators of BC. (A, B) Univariate and multivariate Cox regression
analyses were used to identify the independent prognostic indicators for BC on the clinical characteristics and the risk score. (C) Construction of a
nomogram in conjunction with variables that independently predict BC prognosis. (D) Calibration plot of the nomogram. (E) AUC for predicting 1-,
2-, and 3-year overall survival for comparing the accuracy of various prognostic characteristics.

significantly upregulated in the BC samples compared to control
samples (p < 0.05) (Figures 9D-G). Immunohistochemistry was
utilized to evaluate the expression levels of these prognostic genes
within BRCA tissues and paired control tissues. The results revealed
that the expression levels of SESN3, CRIP1, DPP4, and PIK3CA was
higher than that of MYD88, ANXAS5, DAXX (Figure 9H).
Additionally, the CCK8 assay results indicated that PIK3CA and
CRIP1 significantly promotes the proliferation of BRCA cells
(Figure 9I). The above results have enhanced the reliability of the
bioinformatics analysis results.
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4 Discussion

Globally, BC is the most commonly diagnosed cancer and the
leading cause of cancer-related deaths among women (44). The
selection of treatment regimens for BC, including surgical resection,
radiotherapy, endocrine therapy, targeted therapy, and systemic
chemotherapy, is determined by its molecular and histological
characteristics (45). However, certain breast cancer subtypes are
associated with limited therapeutic options and poor survival
outcomes (46). Immunotherapy, a promising approach for cancer
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treatment, has emerged as a central focus in oncology, utilizing immune
checkpoint inhibitors as a key therapeutic strategy (47). Therefore,
prognostic biomarkers are imperative to assess patient outcomes and
guide therapeutic strategies. Evidence indicates that m6A can regulate
the expression and function of programmed cell death processes,
including apoptosis, pyroptosis, ferroptosis, autophagy, and
necroptosis (48). Currently, this approach is being applied to provide
potential therapeutic targets, anticancer agents, or combination
therapies for cancer treatment (49). However, existing studies have
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primarily focused on the individual roles of either m6A (50) or PCD
(51) in breast cancer, while their combined impact remains unreported.

In this study, we identified seven potential prognostic genes for
BC: PIK3CA, SESN3, ANXA5, MYD88, DPP4, DAXX, and CRIP1.
PIK3CA encodes the p110c catalytic subunit of PI3K, an enzyme
critical for intracellular signal transduction. Mutations in the
PIK3CA gene are associated with the development of multiple
cancer types (52). In colorectal cancer, the m6A modification
pattern correlates with tumor mutational burden and reveals a
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SR

KEGG and genomic variant analysis between low-/high-risk BC patients. (A) KEGG analysis of the high- and low-risk groups. (B, C) Gene mutation
frequency analysis in the high- (B) and low-risk groups (C). (D) Summary of the mutational analysis including variant classification, variant type, SNV
class, variants per sample, variant classification summary, and the top 10 mutated genes.

link through which m6A, by associating with PIK3CA mutations,
participates in regulating the cancer immune microenvironment
and therapeutic response (53). Multiple studies have shown that
PIK3CA is implicated in the pathogenesis and progression of breast
cancer (54, 55). SESN3 is a member of the Sestrin family. Sestrins
are stress-inducible proteins that may play significant roles in the
pathogenesis of multiple diseases, including cancer, metabolic
disorders, and neurodegenerative diseases (56). Our research
reveals a novel role for the SESN3 gene in influencing breast
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cancer progression via m6A or PCD, which paves the way for in-
depth future studies. Furthermore, ANXA5 is a calcium-dependent
phospholipid-binding protein belonging to the annexin family. It
plays critical roles in maintaining membrane stability, regulating
endocytosis, and modulating cellular proliferation, differentiation,
apoptosis, as well as inflammation and thrombosis processes (57).
Previous studies have shown that ANXA5 can influence tumor
progression through m6A (58) or PCD (57), but its role in breast
cancer remains to be further investigated. MYD88 is an adaptor
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Correlation between differential immune cells and prognostic genes. *p < 0.05; **p < 0.01; ****p < 0.0001.

protein that plays a pivotal role in immune responses. It is closely
associated with multiple diseases, including cancers, infectious
diseases, and autoimmune disorders (59). However, it remains
unclear whether MYD88 influences the progression of breast
cancer through m6A or PCD. Additionally, DPP4 is a serine
exopeptidase, and its inhibitors represent a novel therapeutic
option for type 2 diabetes mellitus. These inhibitors may also
have potential therapeutic applications for other diseases (60).

Frontiers in Immunology

Wang et al. found that IGF2BP2 promotes lymphatic metastasis
via stabilizing DPP4 in an m6A-dependent manner in papillary
thyroid carcinoma (61). And whether DPP4 influences breast
cancer progression through m6A requires further investigation.
DAXX is a multifunctional protein that plays a role in regulating
gene expression, DNA repair, cell cycle control, and tumor
suppression (62). In triple negative breast cancer, DAXX protein
can trigger Caspase-3 which prompts apoptosis by cleaving PARP-1

18 frontiersin.org


https://doi.org/10.3389/fimmu.2025.1711910
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Li et al.

10.3389/fimmu.2025.1711910

A CCTO018159+
Rapan\lycin
Roscoviting-
Melformin
Vinblastine
20
)
=
g
o NOT
N’ .y .
o Positive correlation
-
o0
=)
T
10
5
1
0 total = 138 drugs
-0.3 0.0 0.3
Correlation coefficient(risk—1C50)
risk [JJ] High Risk [JJ] Low Risk
CCT018159 Metformin
5 TRRE TRRE
4 124
3. 114
N 10
High Risk Low Risk High Risk Low Risk
Rapamycin Roscovitine
e T
14 5.0
01 4.8
-1
4.6+
High Risk Low Risk High Risk Low Risk
Vinblastine
T
—24
-3
—4-
—54
—64
High Risk Low Risk

FIGURE 8

Drug sensitivity prediction between low-/high-risk BC patients. (A) Volcano plots show the correlation between IC50 and risk score in high- and
low-risk groups. (B) Boxplots indicating significant differences in estimated IC50 values of 5 potential drugs. ****p < 0.0001.

protein (63). Conversely, CRIP1 is a cysteine-rich protein that
exhibits aberrant expression in multiple malignancies, including
breast cancer, cervical cancer, and pancreatic carcinoma. It
contributes significantly to tumor cell proliferation, migration,
and invasion processes (64). Our study first identified CRIP1
might participate breast cancer progression through méA manner.

Then, we developed a risk prognostic model based on
expression levels of PIK3CA, SESN3, ANXA5, MYDS88, DPP4,
DAXX, and CRIPI to predict clinical outcomes in patients with
breast cancer. Performance validation demonstrated high predictive
accuracy for prognostic model, further indicating the prognostic
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value of prognostic genes. Additionally, GSEA, mutation status,
immune infiltration profiling, and drug sensitivity assays were
employed to characterize enriched biological pathways and assess
differential immune cell infiltration and therapeutic response
between high- and low-risk BC cohorts. In gene set enrichment
analysis, we found the herpes simplex virus 1 infection signal
pathway exhibits higher activity, which may facilitate immune
evasion in breast cancer cells potentially by modulating their
immunogenicity or interfering with the anti-tumor immune
response. M1 macrophages were identified as one of the
differentially abundant immune cells. It has been reported that
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TABLE 4 Clinical and pathological information for breast cancer patients.

10.3389/fimmu.2025.1711910

Sample Age Pathology diagnosis Stage PR ER HER2 Subtypes
1 54 Ductal infiltrating carcinoma 1B +++ ++ - Luminal A

2 36 Infiltrating lobular carcinoma IIA +++ ++ - Luminal A

3 42 Ductal infiltrating carcinoma 1IB ++ - - Luminal B

4 53 Ductal infiltrating carcinoma IIIA - - +++ HER?2 positive
5 57 Ductal infiltrating carcinoma 1B e+ o+ - Luminal A

6 56 Infiltrating lobular carcinoma 1IB - - - TNBC

7 48 Infiltrating lobular carcinoma 1B ++ - +++ HER?2 positive
8 49 Ductal infiltrating carcinoma 1B +++ ++ - Luminal A

9 61 Ductal infiltrating carcinoma A - - - TNBC

10 71 Ductal infiltrating carcinoma IIA +++ +++ - Luminal A

11 51 Ductal infiltrating carcinoma IIA ++ + - Luminal B

12 50 Ductal infiltrating carcinoma 1B - - +++ HER?2 positive
13 40 Ductal infiltrating carcinoma 1B +++ ++ - Luminal A

14 57 Infiltrating lobular carcinoma IIA +++ +++ - Luminal A

15 61 Ductal infiltrating carcinoma IIA - - - TNBC

16 35 Ductal infiltrating carcinoma 1B + - +++ HER?2 positive
17 57 Infiltrating lobular carcinoma IIA +++ ++ - Luminal A

18 85 Infiltrating carcinoma 11IB +++ +++ - Luminal A

19 79 Infiltrating carcinoma 1B - - +++ HER?2 positive
20 58 Ductal infiltrating carcinoma 1I1B ++ + - Luminal B

21 63 Ductal infiltrating carcinoma 1B +++ ++ - Luminal A

22 50 Infiltrating carcinoma IA - - - TNBC

23 49 Infiltrating carcinoma IIIA +++ +++ - Luminal A

24 53 Ductal infiltrating carcinoma IIA + - +++ HER?2 positive
25 46 Ductal infiltrating carcinoma IIA +++ ++ - Luminal A

26 46 Ductal infiltrating carcinoma 111B - - ++ HER?2 positive
27 41 Infiltrating carcinoma 1IB +++ +++ - Luminal A

28 42 Ductal infiltrating carcinoma 1IIB - - - TNBC

29 51 Ductal infiltrating carcinoma 1B ++ + - Luminal B

30 44 Ductal infiltrating carcinoma IIA +++ ++ - Luminal A

31 44 Ductal infiltrating carcinoma 1B +++ +++ - Luminal A

32 43 Ductal infiltrating carcinoma Ic - - - TNBC

overexpression of certain genes can suppress the progression of
breast cancer subtypes by promoting M1 macrophage polarization.
In line with the immune infiltration profiling results, MYD88
showed a significant positive correlation with M1 macrophages,
and similarly, gamma delta T cells were also significantly positively
correlated with M1 macrophages. Therefore, it is plausible that
through its significant positive correlation with M1 macrophages,
MYD88 may modulate the functional state of M1 macrophages,
thereby influencing the progression of breast cancer. In drug
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sensitivity analysis, we found CCT018159, rapamycin, vinblastine,
metformin, and roscovitine being notably different between the two
risk groups, which provides a novel perspective for therapeutic
strategies targeting high- and low-risk patient groups. Then,
validation demonstrated that the integrated nomogram
(incorporating independent predictors: Risk score, T stage, N
stage, and M stage) achieved high predictive accuracy for 1-, 2-,
and 3-year survival probabilities. Our clinical characteristic model
can provide clinicians with a visual tool and evidence-based support
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Validation of the expression of MYD88, ANXA5, DAXX, SESN3, CRIP1, DPP4, and PIK3CA in breast cancer clinical samples. (A) Analysis of MYD88 expression
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DAXX expression in BC tissues and paired control tissues by RT-gPCR. (D) Analysis of SESN3 expression in BC tissues and paired control tissues by RT-
gPCR. (E) Analysis of CRIP1 expression in BC tissues and paired control tissues by RT-gPCR. (F) Analysis of DPP4 expression in BC tissues and paired
control tissues by RT-gPCR. (G) Analysis of PIK3CA expression in BC tissues and paired control tissues by RT-gPCR. (H) Immunohistochemistry analysis of
MYD88, ANXAS5, DAXX, SESN3, CRIP1, DPP4, and PIK3CA expression in BRCA tissues and paired control tissues. (I) CCK8 assay was carried out to detect
the proliferation of control and CRIP1 or PIK3CA knockdown BRCA cell lines. **p < 0.01; ***p < 0.001.

for formulating personalized management strategies, such as
intensified monitoring for high-risk groups and streamlined
follow-up for low-risk cohorts. In conclusion, the poor outcomes
and reduced survival in high-risk patients may be attributed to
enhanced tumor immune evasion mechanisms and limited
immunotherapy efficacy within this subgroup.

In summary, we identified seven prognostic genes related to mé6A
and PCD in breast cancer. Besides, we created a risk model and a
nomogram model, revealing the prognostic value of prognostic genes

Frontiers in Immunology

21

and independent prognostic factors in breast cancer. Our findings
open new avenues for research and establish a theoretical framework
for treating BC and other malignancies with analogous pathogenesis.
However, the findings derived from this study require further
validation and confirmation through subsequent research.

Although we have developed a prognostic model grounded in
the identified genes and have demonstrated their prognostic
significance, a finding consistently corroborated by independent
datasets, the considerable heterogeneity in molecular characteristics
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(such as hormone receptor status, HER2 expression, and mutational
profiles) and clinical outcomes across various breast cancer
subtypes prompts questions regarding the model’s generalizability
to all subtypes. While gene expression differences were confirmed
via qQRT-PCR and IHC, protein-level validation using methods such
as Western blotting has not yet been performed. Comprehensive
functional experiments in breast cancer cell lines are still lacking,
and the specific mechanisms by which these genes regulate tumor
progression remain incompletely elucidated. Consequently, further
research is necessary, including validation within larger, subtype-
specific cohorts, to ascertain its applicability across different
subtypes. Additionally, we intend to utilize cellular and animal
models in future studies to further elucidate the functional
mechanisms of these prognostic genes in breast cancer, with a
particular focus on specific molecular subtypes.
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