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Introduction: Breast cancer (BC) is the most prevalent malignancy in women,

with patient outcomes heavily influenced by complex molecular mechanisms

like programmed cell death (PCD) and RNA methylation. While some studies

have investigated how specific PCD types and N6-methyladenosine-related

genes (m6A-RGs) are associated with breast cancer, the research on

combined PCD mechanisms and their role in breast cancer development is

limited. This study integrates PCD-related genes (PCD-RGs) and m6A-RGs to

offer new insights for breast cancer clinical treatment.

Methods: Transcriptomic data and related genes were respectively retrieved

from public databases and published literature. First, PCD-m6A genes identified

through the correlation scoring and differentially expressed genes were

intersected to obtain candidate genes. Furthermore, to infer potential causal

relationships between gene expression and survival, we applied a two-sample

Mendelian randomization approach using summary-level data from public

databases. Therefore, prognostic genes were further obtained through

Mendelian randomization and regression analyses, and a prognostic model was

then constructed. Additionally, functional enrichment, immune infiltration, and

drug sensitivity analyses were conducted. Finally, the expression intensity of

prognostic genes was verified by RT-qPCR and IHC.

Results: Through a series of analyses, seven prognostic genes were identified.

Following this, the prognostic model has been demonstrated to have a certain

degree of accuracy as indicated by both transcriptomic public sets. Successively,

enrichment analysis revealed numerous pathways, among which herpes simplex

virus 1 infection was notable; its relevance lies in overlapping immune evasion

pathways with BC, a core focus of our investigation. Immune cell infiltration

analysis revealed that 11 immune cell types, including M1macrophages, exhibited

significant differences between high and low groups. A key finding from drug

sensitivity analysis was that the high-risk group exhibited significantly increased

sensitivity to several drugs, including CCT018159, rapamycin, vinblastine,

metformin, and roscovitine. The expression levels of MYD88, DAXX and ANXA5

were significantly upregulated in the control samples compared to breast cancer

samples. Moreover, the expression levels of SESN3, CRIP1, DPP4 and PIK3CA

were significantly upregulated in breast cancer samples compared to

control samples.
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Discussion: This study constructed a risk model based on seven prognostic

genes, offering new potential strategies for breast cancer therapy.
KEYWORDS

breast cancer, programmed cell death, N6-methyladenosine, immune evasion,
prognostic genes
GRAPHICAL ABSTRACT

Flow chart of this study.
1 Introduction

Breast cancer (BC) is the most prevalent malignant tumor among

women worldwide, posing a severe threat to female life and health (1).

In 2020, approximately 2.3 million new cases and 685,000 deaths

were reported. This accounted for over 24% of global cancer cases

among females and about 15% of cancer-related deaths, making it the

second leading cause of cancer mortality (2). Based on the expression

status of estrogen receptor, progesterone receptor, and human

epidermal growth factor receptor 2 (HER2), BC is typically

classified into four subtypes: Luminal A, Luminal B, HER2-

enriched, and triple-negative breast cancer (3). This disease exhibits

significant heterogeneity. Advances in surgery, chemotherapy,

radiotherapy, targeted therapy, and endocrine therapy have made

progress (4), but BC remains associated with substantial morbidity

and mortality. While early diagnosis via mammography screening

and combined diagnostics has significantly enhanced overall survival
02
and prognosis for early-stage patients with breast cancer (5),

predicting outcomes for advanced and metastatic breast cancer

remains challenging. This difficulty arises from the limited accuracy

of known clinical, pathological, and molecular features. In recent

years, immunotherapy has emerged as a promising avenue for cancer

treatment, which harnesses the body’s immune system to target and

eradicate tumor cells (6). Although several prognostic indicators for

breast cancer currently exist, they still exhibit significant limitations

in accurately predicting patient survival outcomes, such as risks of

recurrence and variations in treatment response. These shortcomings

hinder their ability to meet the clinical demands of personalized

treatment decision-making. Thus, there is an urgent need to explore

novel prognostic biomarkers to address this gap.

Programmed cell death (PCD) is an intrinsic property of all

cellular life forms (7). PCD primarily includes pyroptosis, apoptosis,

necroptosis, ferroptosis, cuproptosis, and PANoptosis. Recent studies

indicate that PCD participates in various pathophysiological
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processes. It is crucial for host defense against pathogens and

organismal development. This mechanism serves as a key mediator

in the pathogenesis of diseases such as autoimmune disorders, cancer,

neurodegenerative diseases, immunodeficiency, and developmental

abnormalities (8, 9). Moreover, PCD is closely associated with

innate immunity and plays a pivotal role in regulating the

immunosuppressive tumor microenvironment (10, 11). Research

on the various types of PCD in breast cancer pathogenesis has

been conducted, including studies on molecular clustering and

prognostic signatures related to PANoptosis (12), as well as

prognostic models that involve cuproptosis/ferroptosis-related

genes (13). However, there is still limited research that integrates

PCD mechanisms with breast cancer development. While existing

studies have acknowledged the role of PCD in cancer, research

focusing on PCD-related genes (PCD-RGs) in BC remains largely

confined to basic mechanistic investigations. Their translational

relevance in clinical prognostic assessment has yet to be fully

elucidated, and functional validation coupled with clinical

translation in this context remains notably scarce, warranting

further in-depth investigation.

Epigenetics connects environmental influences and genetic factors,

referring to heritable modifications that regulate gene expression

without changing the nucleotide sequences. Over 160 types of RNA

modifications exist in organisms (14). Among these, N6-

methyladenosine (m6A) is the most prevalent internal methylation

modification at the N6 position of adenosine (15). Eukaryotic

biological processes are regulated by m6A through “writers”,

“readers”, and “erasers”, influencing the onset and progression of

multiple diseases. Current m6A research focuses largely on tumors,

with established roles in lung, cervical, and other cancers (15, 16). In

breast cancer, m6A-related genes have been investigated for prognostic

prediction and immune characterization (17). Over the past few years,

accumulating evidence has demonstrated that m6A can regulate gene

expression, thereby influencing multiple PCD processes (18, 19).

Studies have investigated the potential functional implications of

m6A regulation in PANoptosis among patients with bladder cancer

(20). Although m6A, as a pivotal mechanism in RNA regulation, has

been demonstrated to be associated with breast cancer progression,

current research predominantly focuses on its individual effects.

Investigations that integrate m6A with other core molecular

mechanisms, such as PCD, to analyze their coordinated regulation

in BC pathogenesis remain notably limited, thereby failing to elucidate

the comprehensive landscape of the intricate regulatory network in BC.

To thoroughly investigate the mechanisms linking programmed

cell death and m6A in BC, it is essential to identify prognostic genes

with a causal relationship to the disease. Mendelian randomization

(MR) uses genetic variants as instrumental variables. These variants

are determined at birth and remain stable, unaffected by

environmental factors (21). By leveraging instrumental variables to

link exposures and outcomes, MR mitigates confounding bias,

enhancing reliability and accuracy in causal inference beyond

traditional epidemiological limitations (22). Current research on

breast cancer-associated genes predominantly relies on correlational

analyses. While this approach can identify genes with statistical
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associations, it fails to effectively distinguish between ‘causal

relationships’ and ‘non-causal accompaniments’, thereby limiting

the clinical translational potential of candidate functional genes. In

contrast, studies employing MR to establish causal links between

genes and BC are still in their nascent stage, with both relevant data

and validation evidence remaining notably scarce.

This study aims to develop and validate a prognostic model for

breast cancer by integrating bioinformatics and mendelian

randomization methods, based on the interactions of m6A-RGs

and PCD-RGs. Next, the relevant mechanisms of prognostic genes

were explored through gene set enrichment analysis, immune

infiltration, drug sensitivity analysis, which offered new insights

for the clinical management of breast cancer.
2 Materials and methods

2.1 Data collection

The TCGA-BRCA dataset was retrieved from TCGA (https://

portal.gdc.cancer.gov/) on May 31, 2024, for the training cohort. It

encompassed 1,104 breast cancer (BC) tissue samples and 113

control tissue samples, containing 1082 breast cancer samples

with survival information (23). TCGA-BRCA was denoted as

TCGA-BC.

Breast cancer-related transcriptome datasets were collected

from the Gene Expression Omnibus database (https://

www.ncbi.nlm.nih.gov/geo/) in the validation cohort. The

GSE42568 (GPL570 platform) consisted of 104 breast cancer

tissue samples and 17 control samples (containing 104 breast

cancer samples with survival information) (24).

Additionally, 27 N6-methyladenosine-related genes (m6A-

RGs) were identified in published literature (Supplementary

Table 1) (25).

Additionally, 1,548 programmed cell death related genes (PCD-

RGs) were reported in the literature (Supplementary Table 2) (26).

The genome-wide association studies (GWAS) data of

expression Quantitative Trait Loci for candidate genes were

retrieved from the Integrative Epidemiology Unit (IEU) Open

GWAS database (https://gwas.mrcieu.ac.uk/). The breast cancer

dataset was obtained from the IEU Open GWAS database by

searching with the keyword “breast cancer”. The dataset identified

was ukb-b-16890, including a total of 9,851,867 single-nucleotide

polymorphisms (SNPs) derived from 462,933 European samples

(breast cancer: 10,303, control: 452,630).
2.2 Differential expression analysis

Differential expression analysis was used to identify differentially

expressed genes between BC and control groups in TCGA-BC via the

DESeq2 package (version 1.42.0) (27) (|log2Fold Change (FC)| > 0.5

and p < 0.05).
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2.3 Identification and functions of
candidate genes

The Spearman method was employed to analyze the correlation

between m6A-RGs and PCD-RGs. Genes that were significantly

correlated with PCD-m6A genes were selected (|r| > 0.3 and p <

0.05). Following this, DEGs and PCD-m6A genes were intersected

to identify candidate genes. Specifically, to explore the biological

pathways involving the candidate genes, a functional enrichment

analysis was conducted of the candidate genes using the

clusterProfiler package (version 4.7.1.003) (28), drawing data

from the Kyoto encyclopedia of genes and genomes (KEGG) and

gene ontology (GO) databases (p < 0.05). Moreover, The STRING

(https://string-db.org) was employed to build the protein-protein-

interaction network to explore the interaction relationships of

candidate genes at the protein level (confidence = 0.9).
2.4 Mendelian randomization analysis

Based on Mendelian randomization method, candidate genes

that had a causal relationship with breast cancer were identified via

TwoSampleMR package (version 0.6.4) (29). Candidate genes were

considered as predictors, with breast cancer identified as the

outcome of interest.

Initially, SNPs were selected with p < 5 × 10–8, clump = TRUE,

R2 < 0.001, kb > 100, and SNPs > 3. Instrumental variables were

calculated to be F-statistic, with F > 10. Moreover, the directionality

of exposure factors was tested. After that, MR combined five

algorithms for MR analysis, including MR-Egger (30), inverse

variance weighted (IVW) (31), weighted median (32), weighted

mode (33), and simple mode (29). The IVW method served as the

primary measure for determining statistical significance (p < 0.05).

In turn, correlation analysis was conducted with a scatter plot, forest

plot, and randomness analysis with a funnel plot. Moreover, the

robustness of Mendelian randomization analysis results was

assessed via a sensitivity analysis, comprising heterogeneity test (p

> 0.05) (34), horizontal pleiotropy test (p > 0.05) (35), and Leave-

One-Out analysis. Additionally, the Steiger directional test was

applied to eliminate the prospect of reverse causation (result =

TRUE, p < 0.05) (36).

Ultimately, the candidate genes specifically linked to breast

cancer were obtained through Mendelian randomization analysis

and documented as key genes. These key genes were used for

further analysis.
2.5 Identification of prognostic genes

In order to further screen out the prognostic genes related to the

prognosis of breast cancer from the key genes, various regression

analysis methods were employed. Initially, based on breast cancer

tissue samples from TCGA-BC, the survival package (version 3.5.3)

(37) was employed to construct a univariate Cox regression analysis

(hazard ratio ≠ 1, p < 0.2) with proportional hazards (PH)
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assumption test (p > 0.05) to identify survival-associated genes.

Subsequently, the glmnet package (version 4.1.4) was utilized to

perform least absolute selection and shrinkage operator (LASSO)

(log(lambda.min) ≠ 0). The genes identified through LASSO

regression were initially evaluated for the PH assumption (p >

0.05), followed by multivariate Cox analysis. Afterwards, the model

was screened and validated by stepwise regression analysis (p <

0.05). Finally, the key genes identified through all the

aforementioned analyses were defined as prognostic genes which

were utilized to construct risk model.
2.6 Construction and validation of risk
model

Based on prognostic genes, the TCGA-BC dataset was utilized

as a training cohort (n = 1,082) to construct a risk model, while the

GSE42568 dataset acted as a validation cohort (n = 104) to validate

the risk model for predicting outcomes in patients with breast

cancer. Firstly, in TCGA-BC, based on the relative expression

intensity of prognostic genes and regression coefficients, risk

scores were computed for patients with BC. The formula used

was Riskscore =on
i=1coef (genei)*expr(genei), where expr signified

the expression level of prognostic genes and coef denoted the

coefficient associated with prognostic genes. Breast cancer

specimens were binned into two risk groups via an optimal cutoff

value. A risk curve scatter plot was plotted, and the expression

intensity of prognostic genes was displayed. Furthermore, the

Kaplan-Meier survival curve for overall survival of the two risk

groups was generated using the survminer package (version 0.4.9)

(38) (p < 0.05). Finally, the survivalROC package (version 1.0.3)

(39) was leveraged to generate a receiver operating characteristic

(ROC) curve for assessing 1, 2, and 3 years survival prospects.

Moreover, the risk model underwent validation in a

validation cohort.

Additionally, to explore the prognostic value of prognostic

genes, in the BC samples with survival information of TCGA-BC,

based on the optimal cut-off value of prognostic gene expression,

BC samples were divided into high-expression and low-expression

groups. Then, the Kaplan-Meier survival curves for overall survival

of patients in the high and low expression groups were analyzed

using the survminer package (version 0.4.9), and the log-rank test

was applied to compare the survival differences between the two

groups (p < 0.05).
2.7 Independent prognostic analysis

To explore the independent factors related to prognosis, an

independent prognostic analysis was conducted by integrating risk

scores, age, gender, T.stage, N.stage, and M.stage. Cox regression

analysis was utilized to identify an independent prognostic factor

paired with breast cancer (p < 0.05). Additionally, based on

independent prognostic factors, the rms package (version 6.5-1)

(40) was utilized to construct a nomogram model to explore the
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diagnostic value of independent prognostic factors. Notably, 1-, 2-,

and 3-year calibration curves and ROC curve were utilized to verify

the accuracy of the nomogram.
2.8 Correlation of risk scores with clinical
characteristics

The relationship of risk score to the clinical characteristics of BC

was evaluated via a series of analyses. First, the distinctions in risk

score among different clinical characteristics were compared. The

survival package was employed to construct Kaplan-Meier curves,

which assessed distinctions in overall survival between two risk

groups under various subgroups of clinical characteristics (p < 0.05).
2.9 Gene set enrichment analysis

To scrutinize the intrinsic mechanisms associated with

prognostic genes, GSEA was carried out. Initially, the DESeq2

package was employed to differentially analyze the two risk

groups and sort the log2FC from largest to smallest. Furthermore,

GSEA was conducted using the gseKEGG function from the

clusterProfiler package to explore the functional pathways

associated with the prognostic genes. A normalized enrichment

score (|NES|) > 1 and p < 0.05 were considered significant. The top 5

pathways were visualized.
2.10 Analysis of immune cell infiltration

The abundance of immune cell infiltration between the high-

risk and low-risk groups was also investigated. CIBERSORT

algorithm (version 1.03) (41) was employed to assess enrichment

of 22 immune cell types in TCGA-BC. Afterwards, deviations in

enrichment of immune cells were analyzed (p < 0.05). Additionally,

the relationships among prognostic genes and various immune

cells, the interactions between different immune cells, and the

connections among prognostic genes within the TCGA-BC were

analyzed using the psych package.
2.11 Mutation status of patients with breast
cancer in two risk groups

To better understand variations in driver genes between two

risk groups, the maftools package (version 2.14.0) (42) was utilized

to analyze gene mutations in two risk groups and display the top 20

high-frequency mutated genes in a tumor mutational burden

waterfall plot.
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2.12 Drug sensitivity analysis

Additionally, the sensitivity of the high-risk and low-risk groups

to the drug was also analyzed. The information on chemical drugs

for breast cancer and their half maximal inhibitory concentration

(IC50) was retrieved from the Genomics of Drug Sensitivity in

Cancer databases (http://cancerrxgene.org). The pRRophetic

package (version 0.5) (43) was utilized to calculate IC50 values of

drugs in patients with breast cancer samples in TCGA-BC.

Subsequently, the psych package was used for Spearman’s

correlation analysis of drug IC50 values versus risk scores (cor) >

0.3 and p < 0.05). The top five drugs were presented according to

their adjusted p-value.
2.13 Reverse transcription quantitative
polymerase chain reaction

To verify the expression levels of the prognostic genes in the

samples, RT-qPCR was conducted. RNA specimens from 32 matched

pairs of breast cancer and adjacent paracancerous tissues were

obtained from Xi’an Jiaotong University Second Affiliated Hospital.

The inclusion criteria encompassed sufficient bone marrow, hepatic,

and renal function, a minimum expected survival of three months,

and provision of informed consent. The exclusion criteria comprised

incomplete case information, mortality due to postoperative

complications, and the presence of concurrent malignancies. This

study complied with the Declaration of Helsinki (2013 revision) and

was formally approved by the hospital’s Ethics Committee (Approval

No. 2024YS060). All participants provided written informed consent.

In the RT-qPCR, total RNA was extracted using manufacturer-

specified protocols. The mRNA underwent reverse transcription

with the SweScript First Strand cDNA Synthesis Kit, followed by

quantitative PCR amplification using SYBR Green qPCRMaster Mix.

Primer sequences are detailed in Supplementary Table 3. Moreover,

mRNA expression levels were normalized to GAPDH and quantified

via the 2−DDCt method. Statistical significance (p-values) was

determined using GraphPad Prism (version 6).
2.14 Immunohistochemistry

Fresh tumor specimens were fixed in neutral buffered formalin

for a duration of 24 hours at ambient temperature. Subsequently, the

samples underwent embedding and processing in accordance with

established protocols. Tissue sections were deparaffinized utilizing a

series of graded ethanol solutions and subsequently rehydrated.

Antigen retrieval was conducted for 30 minutes using an antigen

retrieval solution. Following this, the sections were stained with

PIK3CA, SESN3, ANXA5, MYD88, DPP4, DAXX, and CRIP1.
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2.15 siRNA transfection

BRCA cells were seeded into 6-well plates at a density ranging

from 50,000 to 100,000 cells per well and cultured overnight to

achieve 50–70% confluency. Each small interfering RNA (siRNA)

(siPIK3CA#1: GGAUCAGAUGAAUUCACUATT; siPIK3CA#2:

CCACAAAUUAUCAUAGAAUTT; siCRIP1#1:GUGAUU

CUGUGCUACUAUT T ; s i C R I P 1 # 2 : G GAACAAG

UGCUUGGUCAUTT) was diluted to a working concentration of

20 mM in nuclease-free water. For the transfection process, 5 mL of

Lipofectamine 2000 was combined with 100 mL of Opti-MEM I

medium and incubated for 5 minutes at room temperature.

Subsequently, 50 nM of each siRNA was added to the mixture,

resulting in a total volume of 200 mL. Following a 20-minute

incubation at room temperature, the siRNA-lipid complex was

added dropwise to each well containing cells in Opti-MEM I

medium. The cells were then incubated at 37 °C with 5% CO2 for

48 hours to facilitate PIK3CA or CRIP1 knockdown. Following

transfection, the cells were subjected to RNA extraction to verify the

efficiency of the knockdown.
2.16 CCK8 assay

The proliferation of PIK3CA or CRIP1 knockdown breast cell

lines was evaluated utilizing the CCK8 assay. Cells were seeded in

96-well plates at a density of 1,000 cells per well, with three

replicates for each condition. The experimental setup included

continuous treatment with 0.5 mM of the drug or no treatment,

alongside blank wells as controls. Proliferation assessments were

conducted every 24 hours over a 3-day period. At each specified

time point, 10 mL of CCK8 reagent was added to each well, followed

by a 3-hour incubation at 37 °C. Absorbance was subsequently

measured at 450 nm using a microplate reader. Proliferation curves

were generated and analyzed using GraphPad Prism 6 software.
2.17 Statistical analysis

All data were managed utilizing R language software (version

4.2.2). The Wilcoxon test was employed for analytical comparisons,

with p < 0.05 considered statistically significant.
3 Results

3.1 The functions of 455 candidate genes
related to m6A and PCD in breast cancer

By differential expression analysis, 9,572 differentially expressed

genes, with 5,933 upregulated and 3,639 downregulated in the BC

group were obtained (Figure 1A). Meanwhile, 1040 PCD-m6A

genes were obtained from Spearman correlation analysis between

27 m6A-RGs and 1,548 PCD-RGs (|r| > 0.3 and p < 0.05). By
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analyzing the overlap between 9,572 differentially expressed genes

and 1,040 PCD-m6A genes, 455 candidate genes were obtained

(Figure 1B). Notably, GO analysis showed that 455 candidate genes

were significantly enriched in 2,705 biological process entries, such

as the intrinsic apoptotic signaling pathway. Additionally, there

were 200 entries related to cellular components, such as cell-

substrate junctions, and 234 entries related to molecular

functions, including protease binding (Figure 1C, Supplementary

Table 4). Furthermore, 160 KEGG pathways were identified, such as

Hepatitis B and apoptosis (Figure 1D, Supplementary Table 5). At

the protein level, there were interactions among 309 candidate

genes (Figure 1E), with SRC and TNF exhibiting a higher number of

connections and interactions with other proteins.
3.2 Acquisition of 54 key genes among
candidate genes

A two-sample MR analysis involved 455 candidate genes as

exposure variables, with breast cancer as the outcome. About 54

genes were identified and were used as key genes (p < 0.05).

Consequently, 26 protective factors were identified (OR < 1, p <

0.05), while 28 risk factors were also identified (OR > 1, p < 0.05)

(Table 1). Analyzing the correlation between exposure factors and

outcomes using a scatter plot revealed that 28 genes were positively

correlated, while 26 genes were negatively correlated. Forest plots

indicated that the effect value of 26 genes was less than 0, while the

effect values of the 28 risk genes were greater than 0. SNP numbers

were largely symmetrical on both sides of the line and corresponding

to Mendel’s second law. Moreover, sensitivity analyses revealed that

all 54 exposure factors displayed no evidence of heterogeneity (p >

0.05) (Supplementary Table 6). Additionally, there was no indication

of horizontal pleiotropy between the 54 exposure factors and the

outcome (p > 0.05) (Supplementary Table 7). In Leave-One-Out, no

significant bias was observed, supporting the reliability of the results.

Finally, when using breast cancer as the exposure factor and the 54

genes as the outcome in the Steiger test for reverse causality, the

directional relationship was determined to be “TRUE”. There was no

reverse causality between the 54 exposure factors and the outcome

(p < 0.05) (Supplementary Table 8). Overall, 54 genes were recorded

as key genes.
3.3 Recognition of PIK3CA, SESN3, ANXA5,
MYD88, DPP4, DAXX, and CRIP1 as
prognostic genes

After 54 key genes were obtained, 22 survival-associated genes

were identified by univariate Cox regression analysis (p < 0.2) and

PH assumption test (p > 0.05) (Figure 2A, Table 2). Then, these 22

genes were incorporated into LASSO analysis (lambda.min =

0.006699639), which yielded a total of 12 significant genes (FYN,

ZMPSTE24, EPM2A, PIK3CA, MTDH, SESN3, ANXA5, PLK1,

MYD88, DPP4, DAXX, and CRIP1) with a log(lambda.min ≠ 0
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(Figures 2B, C). Finally, the PH assumption test excluded PLK1,

followed by multivariate Cox analysis. The model was then screened

and validated by stepwise regression analysis, resulting in seven

prognostic genes (PIK3CA, SESN3, ANXA5, MYD88, DPP4,

DAXX, and CRIP1) with p < 0.05 (Figures 2D, E; Table 3).
Frontiers in Immunology 07
3.4 Development of a risk model with high
accuracy

The risk model was formulated using the expression intensity

and risk coefficients of seven prognostic genes. Constructed risk
FIGURE 1

Identification of candidate genes. (A) Volcano plot of differentially expressed genes in the BC dataset. (B) Venn map acquisition of 455 intersection
genes of differentially expressed genes and PCD-m6A-RGs. (C) Gene Ontology (GO) enrichment analysis of 455 candidate genes. (D) Kyoto
encyclopedia of genes and genomes (KEGG) pathway enrichment analysis of 455 candidate genes. (E) Construction of a PPI network for 455
candidate genes.
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TABLE 1 Results of Mendelian randomization analysis.

Exposure Method Nsnp B Se Pval Or Or_lci95 Or_uci95 Symbol Ensembl

eqtl-a-
ENSG00000172403

Inverse variance
weighted (fixed
effects)

7 0.001933 0.000983 0.049306 1.001935 1.000006 1.003867 SYNPO2 ENSG00000172403

eqtl-a-
ENSG00000003400

Inverse variance
weighted
(multiplicative
random effects)

7 -0.00398 0.001418 0.00505 0.996031 0.993266 0.998804 CASP10 ENSG00000003400

eqtl-a-
ENSG00000164111

Inverse variance
weighted (fixed
effects)

12 -0.00077 0.000385 0.045947 0.999231 0.998477 0.999986 ANXA5 ENSG00000164111

eqtl-a-
ENSG00000175793

Inverse variance
weighted (fixed
effects)

3 -0.00295 0.001467 0.044255 0.997052 0.994189 0.999924 SFN ENSG00000175793

eqtl-a-
ENSG00000164938

Inverse variance
weighted (fixed
effects)

8 0.001324 0.000653 0.042711 1.001325 1.000043 1.002608 TP53INP1 ENSG00000164938

eqtl-a-
ENSG00000169230

Inverse variance
weighted (fixed
effects)

9 -0.00081 0.000395 0.039589 0.999187 0.998412 0.999961 PRELID1 ENSG00000169230

eqtl-a-
ENSG00000143799

Inverse variance
weighted (fixed
effects)

16 0.00098 0.00047 0.037137 1.000981 1.000058 1.001904 PARP1 ENSG00000143799

eqtl-a-
ENSG00000065361

Inverse variance
weighted (fixed
effects)

4 -0.00175 0.000839 0.03692 0.998252 0.996612 0.999894 ERBB3 ENSG00000065361

eqtl-a-
ENSG00000002330

Inverse variance
weighted (fixed
effects)

3 0.00388 0.001853 0.036275 1.003888 1.000248 1.00754 BAD ENSG00000002330

eqtl-a-
ENSG00000153162

Inverse variance
weighted (fixed
effects)

13 0.001599 0.000762 0.035979 1.0016 1.000105 1.003098 BMP6 ENSG00000153162

eqtl-a-
ENSG00000065534

Inverse variance
weighted (fixed
effects)

13 0.001765 0.000841 0.035779 1.001766 1.000117 1.003418 MYLK ENSG00000065534

eqtl-a-
ENSG00000169429

Inverse variance
weighted (fixed
effects)

12 0.001188 0.000558 0.033236 1.001189 1.000094 1.002285 CXCL8 ENSG00000169429

eqtl-a-
ENSG00000091592

Inverse variance
weighted (fixed
effects)

10 -0.00118 0.000547 0.031487 0.998825 0.997756 0.999896 NLRP1 ENSG00000091592

eqtl-a-
ENSG00000196296

Inverse variance
weighted (fixed
effects)

5 -0.00249 0.001154 0.030944 0.997514 0.995261 0.999772 ATP2A1 ENSG00000196296

eqtl-a-
ENSG00000084073

Inverse variance
weighted (fixed
effects)

5 0.00221 0.001021 0.030375 1.002212 1.000209 1.004219 ZMPSTE24 ENSG00000084073

eqtl-a-
ENSG00000072274

Inverse variance
weighted (fixed
effects)

9 -0.00134 0.000614 0.029437 0.998663 0.997461 0.999866 TFRC ENSG00000072274

eqtl-a-
ENSG00000104549

Inverse variance
weighted (fixed
effects)

6 0.002119 0.000969 0.028727 1.002121 1.00022 1.004025 SQLE ENSG00000104549

(Continued)
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TABLE 1 Continued

Exposure Method Nsnp B Se Pval Or Or_lci95 Or_uci95 Symbol Ensembl

eqtl-a-
ENSG00000164081

Inverse variance
weighted (fixed
effects)

11 0.001892 0.000851 0.026293 1.001894 1.000223 1.003567 TEX264 ENSG00000164081

eqtl-a-
ENSG00000102606

Inverse variance
weighted (fixed
effects)

11 0.000982 0.000433 0.023456 1.000983 1.000133 1.001834 ARHGEF7 ENSG00000102606

eqtl-a-
ENSG00000127415

Inverse variance
weighted (fixed
effects)

6 0.001614 0.000712 0.02343 1.001615 1.000218 1.003014 IDUA ENSG00000127415

eqtl-a-
ENSG00000137831

Inverse variance
weighted (fixed
effects)

5 -0.00192 0.000848 0.023428 0.99808 0.996422 0.99974 UACA ENSG00000137831

eqtl-a-
ENSG00000172936

Inverse variance
weighted (fixed
effects)

6 -0.00293 0.001286 0.022873 0.997078 0.994568 0.999594 MYD88 ENSG00000172936

eqtl-a-
ENSG00000127580

Inverse variance
weighted (fixed
effects)

3 0.001999 0.000859 0.019958 1.002001 1.000315 1.003689 WDR24 ENSG00000127580

eqtl-a-
ENSG00000166851

Inverse variance
weighted (fixed
effects)

4 0.002397 0.000987 0.015194 1.0024 1.000462 1.004341 PLK1 ENSG00000166851

eqtl-a-
ENSG00000166908

Inverse variance
weighted (fixed
effects)

5 0.002635 0.00108 0.014648 1.002639 1.000519 1.004763 PIP4K2C ENSG00000166908

eqtl-a-
ENSG00000149212

Inverse variance
weighted (fixed
effects)

10 -0.00122 0.000483 0.011515 0.99878 0.997834 0.999726 SESN3 ENSG00000149212

eqtl-a-
ENSG00000152409

Inverse variance
weighted (fixed
effects)

9 0.001 0.000389 0.010207 1.001001 1.000237 1.001765 JMY ENSG00000152409

eqtl-a-
ENSG00000168329

Inverse variance
weighted (fixed
effects)

11 0.001603 0.000621 0.009879 1.001604 1.000385 1.002825 CX3CR1 ENSG00000168329

eqtl-a-
ENSG00000185043

Inverse variance
weighted (fixed
effects)

12 -0.00064 0.000247 0.009634 0.999361 0.998877 0.999845 CIB1 ENSG00000185043

eqtl-a-
ENSG00000239697

Inverse variance
weighted (fixed
effects)

8 -0.00097 0.000372 0.009179 0.999031 0.998302 0.99976 TNFSF12 ENSG00000239697

eqtl-a-
ENSG00000100330

Inverse variance
weighted (fixed
effects)

9 -0.00084 0.000317 0.008026 0.999159 0.998538 0.999781 MTMR3 ENSG00000100330

eqtl-a-
ENSG00000204209

Inverse variance
weighted (fixed
effects)

5 0.002393 0.000884 0.006765 1.002396 1.000661 1.004134 DAXX ENSG00000204209

eqtl-a-
ENSG00000110395

Inverse variance
weighted (fixed
effects)

5 -0.00203 0.000734 0.005693 0.997973 0.996538 0.999409 CBL ENSG00000110395

eqtl-a-
ENSG00000176720

Inverse variance
weighted (fixed
effects)

7 -0.00193 0.000698 0.00565 0.99807 0.996706 0.999437 BOK ENSG00000176720

eqtl-a-
ENSG00000197635

Inverse variance
weighted (fixed
effects)

6 -0.00347 0.001228 0.004746 0.996538 0.994142 0.99894 DPP4 ENSG00000197635
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F
rontiers in Immunol
ogy
 09
 frontiersin.org

https://doi.org/10.3389/fimmu.2025.1711910
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1711910
TABLE 1 Continued

Exposure Method Nsnp B Se Pval Or Or_lci95 Or_uci95 Symbol Ensembl

eqtl-a-
ENSG00000240972

Inverse variance
weighted (fixed
effects)

3 0.003252 0.001107 0.003325 1.003257 1.001081 1.005437 MIF ENSG00000240972

eqtl-a-
ENSG00000121879

Inverse variance
weighted (fixed
effects)

4 -0.00371 0.001238 0.002709 0.996296 0.993882 0.998715 PIK3CA ENSG00000121879

eqtl-a-
ENSG00000181649

Inverse variance
weighted (fixed
effects)

3 -0.00383 0.001258 0.002326 0.996178 0.993726 0.998636 PHLDA2 ENSG00000181649

eqtl-a-
ENSG00000129354

Inverse variance
weighted (fixed
effects)

7 -0.00188 0.000616 0.002258 0.99812 0.996915 0.999326 AP1M2 ENSG00000129354

eqtl-a-
ENSG00000010810

Inverse variance
weighted (fixed
effects)

4 0.004596 0.001497 0.002138 1.004606 1.001663 1.007558 FYN ENSG00000010810

eqtl-a-
ENSG00000147649

Inverse variance
weighted (fixed
effects)

4 -0.00486 0.001562 0.001873 0.995156 0.992114 0.998206 MTDH ENSG00000147649

eqtl-a-
ENSG00000039068

Inverse variance
weighted (fixed
effects)

13 0.001779 0.000548 0.001177 1.00178 1.000704 1.002857 CDH1 ENSG00000039068

eqtl-a-
ENSG00000137713

Inverse variance
weighted (fixed
effects)

7 0.001369 0.000415 0.000958 1.00137 1.000557 1.002184 PPP2R1B ENSG00000137713

eqtl-a-
ENSG00000103657

Inverse variance
weighted (fixed
effects)

5 -0.003 0.000893 0.000792 0.997008 0.995264 0.998754 HERC1 ENSG00000103657

eqtl-a-
ENSG00000188906

Inverse variance
weighted (fixed
effects)

13 0.002033 0.000598 0.000669 1.002035 1.000862 1.003209 LRRK2 ENSG00000188906

eqtl-a-
ENSG00000101421

Inverse variance
weighted (fixed
effects)

20 0.001154 0.000332 0.000507 1.001155 1.000504 1.001807 CHMP4B ENSG00000101421

eqtl-a-
ENSG00000186010

Inverse variance
weighted (fixed
effects)

5 0.003042 0.000849 0.000337 1.003047 1.00138 1.004717 NDUFA13 ENSG00000186010

eqtl-a-
ENSG00000213145

Inverse variance
weighted (fixed
effects)

5 0.00625 0.001672 0.000185 1.00627 1.002978 1.009572 CRIP1 ENSG00000213145

eqtl-a-
ENSG00000112425

Inverse variance
weighted (fixed
effects)

14 -0.00122 0.000326 0.000183 0.998781 0.998142 0.999419 EPM2A ENSG00000112425

eqtl-a-
ENSG00000183765

Inverse variance
weighted (fixed
effects)

7 0.005331 0.001361 8.96E-05 1.005345 1.002667 1.008031 CHEK2 ENSG00000183765

eqtl-a-
ENSG00000143514

Inverse variance
weighted (fixed
effects)

4 -0.00348 0.000887 8.53E-05 0.996522 0.994791 0.998255 TP53BP2 ENSG00000143514

eqtl-a-
ENSG00000160803

Inverse variance
weighted (fixed
effects)

3 0.007662 0.001581 1.26E-06 1.007691 1.004573 1.010819 UBQLN4 ENSG00000160803

eqtl-a-
ENSG00000064547

Inverse variance
weighted (fixed
effects)

17 -0.00139 0.000267 1.88E-07 0.998607 0.998084 0.999131 LPAR2 ENSG00000064547
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F
rontiers in Immunol
ogy
 10
 frontiersin.org

https://doi.org/10.3389/fimmu.2025.1711910
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1711910
model was as follows: RiskScore = PIK3CA × 0.36 + SESN3 × (–

0.19) + ANXA5 × (–0.37) + MYD88 × –0.45) + DPP4 × 0.18 +

DAXX × (–0.36) + CRIP1 × (–0.15). According to this model,

patients in TCGA-BC were classified into high-risk (n = 552) and
Frontiers in Immunology 11
low-risk (n = 530) groups using an optimal cutoff value (–5.80621)

for risk score. The data indicated that the number of deaths

increased as the risk score increased (Figures 3A, B). Individuals

in the high-risk group experienced significantly lower survival rates
TABLE 1 Continued

Exposure Method Nsnp B Se Pval Or Or_lci95 Or_uci95 Symbol Ensembl

eqtl-a-
ENSG00000132676

Inverse variance
weighted (fixed
effects)

10 -0.00358 0.000458 5.21E-15 0.996423 0.995529 0.997318 DAP3 ENSG00000132676
FIGURE 2

Construction of a risk model by Cox regression and LASSO analysis in the training group. (A) The forest plot for univariate Cox analysis. (B, C) LASSO
regression was used to determine the optimal outcome l values. (D, E) The forest plot for multivariate COX analysis and stepwise regression analysis.
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(p < 0.0001) (Figure 3C). ROC analysis suggested that the risk

model exhibited good predictive capacity, with Area Under the

Curves (AUC) for 1 (0.60), 2 (0.61), and 3 (0.64) years in TCGA-

BC (Figure 3D).

Furthermore, patients were divided into high-risk (n = 11) and

low-risk (n = 93) groups using an optimal cutoff value of (–9.06375)

for risk score in GSE42568. Similarly, the number of deaths increased

as the risk score in the sample increased (Figures 3E, F), with

individuals in the high-risk cohort experiencing decreased survival

rates (p = 0.013) (Figure 3G). Validation of the risk model in the

GSE42568 dataset confirmed its predictive accuracy, as evidenced by

AUC. The values were 0.60, 0.69, and 0.61 for 1, 2, and 3 years,

respectively, underscoring the model’s consistent prognostic strength

(Figure 3H). These outcomes affirmed the robustness of the risk

model in evaluating the prognostic risk of patients with BC.

In addition, the Kaplan-Meier curves between the high and low

expression groups of prognostic genes showed that the survival rate

was significantly lower when the expression levels of DPP4 and

PIK3CA were high (p < 0.05), while the survival rate was significantly

lower when the expression levels of the remaining five prognostic

genes were low (p < 0.05). In general, this further illustrated the

prognostic value of prognostic genes for breast cancer patients.
3.5 Risk score, age, and stage were
independent prognostic factors in TCGA-
BC

The risk score, age, N.stage, and M.stage were recognized as

independent prognostic factors of TCGA-BC (p < 0.05) (Figures 4A,
TABLE 2 Results of univariate Cox regression analysis and PH
assumption test.

Gene P_value

BAD 0.455852

CASP10 0.552484

FYN 0.917774

CDH1 0.096991

LPAR2 0.289792

ERBB3 0.149579

MYLK 0.65049

TFRC 0.312696

ZMPSTE24 0.417722

NLRP1 0.775306

MTMR3 0.056764

CHMP4B 0.175083

ARHGEF7 0.835618

HERC1 0.074423

SQLE 0.956928

CBL 0.28711

EPM2A 0.424358

PIK3CA 0.220091

IDUA 0.618828

WDR24 0.940641

AP1M2 0.940262

DAP3 0.196975

PPP2R1B 0.53946

UACA 0.303869

TP53BP2 0.45382

PARP1 0.028492

MTDH 0.793298

SESN3 0.593774

JMY 0.345596

BMP6 0.997127

UBQLN4 0.704015

TEX264 0.42449

ANXA5 0.362315

TP53INP1 0.094076

PLK1 0.058812

PIP4K2C 0.300765

CX3CR1 0.941204

PRELID1 0.127376

(Continued)
TABLE 2 Continued

Gene P_value

CXCL8 0.219645

SYNPO2 0.009942

MYD88 0.712093

SFN 0.026588

BOK 0.748919

PHLDA2 0.002169

CHEK2 0.458157

CIB1 0.965798

NDUFA13 0.199574

LRRK2 0.325526

ATP2A1 0.260043

DPP4 0.258957

DAXX 0.486589

CRIP1 0.828803

TNFSF12 0.820692

MIF 0.157154
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B). The nomogram model constructed by independent prognostic

factors indicated that the risk of breast cancer was influenced by

independent prognostic factors (Figure 4C). The resulting

calibration curve reflected the nomogram’s high predictive
Frontiers in Immunology 13
precision for patient outcomes at 1, 2, and 3 years’ intervals

(Figure 4D). The ROC analysis of 1 (0.82), 2 (0.77), and 3 years

(0.75) in TCGA-BC (Figure 4E) indicates that the predictive

performance of the nomogram plot is good.
FIGURE 3

Evaluation the accuracy of the risk model in training set and validation set. (A, B) Distribution of the risk score and survival status between low-/high-
risk groups in the training set. (C) Kaplan-Meier survival analysis between low-/high-risk groups in the training set. (D) Time-dependent receiver
operating characteristic curve analysis of the training set. (E, F) Distribution of the risk score and survival status between low-/high-risk groups in
GSE42568 data set. (G) Kaplan-Meier survival analysis between low- and high-risk subgroups of patients in GSE42568 data set. (H) Time-dependent
receiver operating characteristic curve analysis of the GSE42568 data set.
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Additionally, the survival rates of the two risk groups were

analyzed among different clinical subgroups. Patients were more

prevalent in the high-risk group within age (> 60), N.stage (N2, N3),

and M.stage (M1). Conversely, patients were more frequently found

in the low-risk group within age (≦60), N.stage (N0, N1), and

M.stage (M0) (Figures 5A–C). Survival differences between the two

risk groups across various clinical subtypes indicated that patients

in the high-risk group exhibited reduced survival rates (age, N.stage,

and M.stage [M0]) (Figures 5D–I).

In conclusion, the aforementioned results not only demonstrated

the impact of clinical characteristics on the survival of breast cancer

patients but also indicated that certain independent prognostic

features were associated with the survival risk of these patients.
3.6 Biological pathway and mutation genes
analysis of risk groups in BC

Enrichment analysis of all genes in TCGA-BC resulted in a total

of 30 pathways, such as herpes simplex virus 1 infection (Figure 6A,

Supplementary Table 9). This pathway might be associated with the

immune evasion of breast cancer.

Furthermore, within the high-risk group, TP53, PIK3CA, and

TTN genes resulted in high mutation rates, reaching 35%, 34%, and

19% respectively (Figure 6B). Conversely, in the low-risk group,

PIK3CA, TP53, and TTN genes indicated a high mutation rate,

achieving 35%, 33%, and 19% respectively (Figure 6C). Further

analysis of the mutational panorama of prognostic genes revealed

that prognostic genes comprised the highest number of missense

mutations and occupied the most SNP mutation types. Additionally,

the highest percentage of single-nucleotide variants was found for T >

C and C > T, while the PIK3CA mutated genes occurred at the

highest frequency (Figure 6D). The aforementioned results indicated

that the TP53, PIK3CA, and TTN genes exhibited high mutation

rates with similar frequencies in both two groups. Meanwhile,
Frontiers in Immunology 14
missense mutations and SNP types were the predominant mutation

patterns among prognostic genes, with T > C/C > T single-nucleotide

variants and PIK3CA genemutations being the most common. These

findings provided a basis for revealing the molecular mutation

characteristics associated with breast cancer risk stratification.
3.7 The changes in immune cells and the
differences in drug sensitivity among
different risk groups

In the immune microenvironment, the proportion of abundance

of 22 immune cells in two risk groups is illustrated in Figure 7A. The

immune cells with notable distinctions were analyzed in two risk

groups (p < 0.05). This analysis revealed 11 immune cells that were

notably different between the two groups, such as macrophages M2,

CD8 T cells, and regulatory T cells (Tregs) (Figure 7B). The relevance

between prognostic genes and differential immune cells indicated that

PIK3CA was most counterintuitively linked to Tregs (cor = –0.63).

Conversely, MYD88 demonstrated a positive correlation with M1

Macrophages (cor = 0.57). The correlation between differential

immune cells displays that gamma delta T cells exhibited a

negative correlation with monocytes (cor = –0.66), while gamma

delta T cells displayed a positive correlation with macrophages M1

(cor = 0.55). The correlation between prognostic genes indicated a

strong inverse correlation between DPP4 and DAXX (cor = –0.69),

while PIK3CA exhibited a significant positive correlation with DPP4

(cor = 0.58) (Figure 7C). Overall, the state of immune cells might

affect the risk of breast cancer, further highlighting the significance of

prognostic genes.

Next, the analysis revealed detailed information for common

chemotherapeutic drugs, including 138 drugs, with CCT018159,

rapamycin, vinblastine, metformin, and roscovitine being notably

different between the two risk groups (Figure 8A). Among these, the

IC50 of CCT018159, rapamycin, vinblastine, metformin, and

roscovitine in the high-risk group were higher in the high-risk

group (|cor| > 0.3 and p < 0.05) (Figure 8B). Patients in the low-risk

groups of CCT018159, rapamycin, vinblastine, metformin, and

roscovitine were more sensitive. These drugs might be suitable for

treating patients in the low-risk group. In conclusion, the

aforementioned results provided a new theoretical basis for the

pharmacotherapy of different risk groups.
3.8 Validation of the expression and
functional roles of MYD88, ANXA5, DAXX,
SESN3, CRIP1, DPP4, and PIK3CA

The expression of seven prognostic genes was estimated by RT-

qPCR and IHC in 32 matched pairs of breast cancer and adjacent

paracancerous tissues (Table 4). The expression levels of MYD88,

ANXA5, DAXXwere significantly upregulated in the control samples

compared to BC samples (p < 0.05) (Figures 9A–C). However, the

expression levels of SESN3, CRIP1, DPP4, and PIK3CA were
TABLE 3 Results of stepwise regression analysis.

Gene P_value

FYN 0.546473

ZMPSTE24 0.271245

EPM2A 0.635281

PIK3CA 0.34695

MTDH 0.838477

SESN3 0.57122

ANXA5 0.108482

PLK1 0.024894

MYD88 0.657923

DPP4 0.285684

DAXX 0.258309

CRIP1 0.833499
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significantly upregulated in the BC samples compared to control

samples (p < 0.05) (Figures 9D–G). Immunohistochemistry was

utilized to evaluate the expression levels of these prognostic genes

within BRCA tissues and paired control tissues. The results revealed

that the expression levels of SESN3, CRIP1, DPP4, and PIK3CA was

higher than that of MYD88, ANXA5, DAXX (Figure 9H).

Additionally, the CCK8 assay results indicated that PIK3CA and

CRIP1 significantly promotes the proliferation of BRCA cells

(Figure 9I). The above results have enhanced the reliability of the

bioinformatics analysis results.
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4 Discussion

Globally, BC is the most commonly diagnosed cancer and the

leading cause of cancer-related deaths among women (44). The

selection of treatment regimens for BC, including surgical resection,

radiotherapy, endocrine therapy, targeted therapy, and systemic

chemotherapy, is determined by its molecular and histological

characteristics (45). However, certain breast cancer subtypes are

associated with limited therapeutic options and poor survival

outcomes (46). Immunotherapy, a promising approach for cancer
FIGURE 4

Construction and evaluation of a nomogram based on independent prognostic indicators of BC. (A, B) Univariate and multivariate Cox regression
analyses were used to identify the independent prognostic indicators for BC on the clinical characteristics and the risk score. (C) Construction of a
nomogram in conjunction with variables that independently predict BC prognosis. (D) Calibration plot of the nomogram. (E) AUC for predicting 1-,
2-, and 3-year overall survival for comparing the accuracy of various prognostic characteristics.
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treatment, has emerged as a central focus in oncology, utilizing immune

checkpoint inhibitors as a key therapeutic strategy (47). Therefore,

prognostic biomarkers are imperative to assess patient outcomes and

guide therapeutic strategies. Evidence indicates that m6A can regulate

the expression and function of programmed cell death processes,

including apoptosis, pyroptosis, ferroptosis, autophagy, and

necroptosis (48). Currently, this approach is being applied to provide

potential therapeutic targets, anticancer agents, or combination

therapies for cancer treatment (49). However, existing studies have
Frontiers in Immunology 16
primarily focused on the individual roles of either m6A (50) or PCD

(51) in breast cancer, while their combined impact remains unreported.

In this study, we identified seven potential prognostic genes for

BC: PIK3CA, SESN3, ANXA5, MYD88, DPP4, DAXX, and CRIP1.

PIK3CA encodes the p110a catalytic subunit of PI3K, an enzyme

critical for intracellular signal transduction. Mutations in the

PIK3CA gene are associated with the development of multiple

cancer types (52). In colorectal cancer, the m6A modification

pattern correlates with tumor mutational burden and reveals a
FIGURE 5

The distribution of different clinical characteristics between low-/high-risk BC patients in independent prognostic factors. (A–C) Histogram shows
the distribution of different clinical characteristics in high-risk and low-risk groups. (D–I) Kaplan-Meier survival analysis was used to compare the
survival differences low-/high-risk groups in different clinical characteristics subtypes.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1711910
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1711910
link through which m6A, by associating with PIK3CA mutations,

participates in regulating the cancer immune microenvironment

and therapeutic response (53). Multiple studies have shown that

PIK3CA is implicated in the pathogenesis and progression of breast

cancer (54, 55). SESN3 is a member of the Sestrin family. Sestrins

are stress-inducible proteins that may play significant roles in the

pathogenesis of multiple diseases, including cancer, metabolic

disorders, and neurodegenerative diseases (56). Our research

reveals a novel role for the SESN3 gene in influencing breast
Frontiers in Immunology 17
cancer progression via m6A or PCD, which paves the way for in-

depth future studies. Furthermore, ANXA5 is a calcium-dependent

phospholipid-binding protein belonging to the annexin family. It

plays critical roles in maintaining membrane stability, regulating

endocytosis, and modulating cellular proliferation, differentiation,

apoptosis, as well as inflammation and thrombosis processes (57).

Previous studies have shown that ANXA5 can influence tumor

progression through m6A (58) or PCD (57), but its role in breast

cancer remains to be further investigated. MYD88 is an adaptor
FIGURE 6

KEGG and genomic variant analysis between low-/high-risk BC patients. (A) KEGG analysis of the high- and low-risk groups. (B, C) Gene mutation
frequency analysis in the high- (B) and low-risk groups (C). (D) Summary of the mutational analysis including variant classification, variant type, SNV
class, variants per sample, variant classification summary, and the top 10 mutated genes.
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protein that plays a pivotal role in immune responses. It is closely

associated with multiple diseases, including cancers, infectious

diseases, and autoimmune disorders (59). However, it remains

unclear whether MYD88 influences the progression of breast

cancer through m6A or PCD. Additionally, DPP4 is a serine

exopeptidase, and its inhibitors represent a novel therapeutic

option for type 2 diabetes mellitus. These inhibitors may also

have potential therapeutic applications for other diseases (60).
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Wang et al. found that IGF2BP2 promotes lymphatic metastasis

via stabilizing DPP4 in an m6A-dependent manner in papillary

thyroid carcinoma (61). And whether DPP4 influences breast

cancer progression through m6A requires further investigation.

DAXX is a multifunctional protein that plays a role in regulating

gene expression, DNA repair, cell cycle control, and tumor

suppression (62). In triple negative breast cancer, DAXX protein

can trigger Caspase-3 which prompts apoptosis by cleaving PARP-1
FIGURE 7

Landscape of tumor-infiltrating immune cells abundance between low-/high-risk BC patients. (A) Stacked graph of the proportions of various types
of immune cells in the high- and low-risk groups. (B) Differences in the infiltration of immune cells between the high- and low-risk groups. (C)
Correlation between differential immune cells and prognostic genes. *p < 0.05; **p < 0.01; ****p < 0.0001.
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protein (63). Conversely, CRIP1 is a cysteine-rich protein that

exhibits aberrant expression in multiple malignancies, including

breast cancer, cervical cancer, and pancreatic carcinoma. It

contributes significantly to tumor cell proliferation, migration,

and invasion processes (64). Our study first identified CRIP1

might participate breast cancer progression through m6A manner.

Then, we developed a risk prognostic model based on

expression levels of PIK3CA, SESN3, ANXA5, MYD88, DPP4,

DAXX, and CRIP1 to predict clinical outcomes in patients with

breast cancer. Performance validation demonstrated high predictive

accuracy for prognostic model, further indicating the prognostic
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value of prognostic genes. Additionally, GSEA, mutation status,

immune infiltration profiling, and drug sensitivity assays were

employed to characterize enriched biological pathways and assess

differential immune cell infiltration and therapeutic response

between high- and low-risk BC cohorts. In gene set enrichment

analysis, we found the herpes simplex virus 1 infection signal

pathway exhibits higher activity, which may facilitate immune

evasion in breast cancer cells potentially by modulating their

immunogenicity or interfering with the anti-tumor immune

response. M1 macrophages were identified as one of the

differentially abundant immune cells. It has been reported that
FIGURE 8

Drug sensitivity prediction between low-/high-risk BC patients. (A) Volcano plots show the correlation between IC50 and risk score in high- and
low-risk groups. (B) Boxplots indicating significant differences in estimated IC50 values of 5 potential drugs. ****p < 0.0001.
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overexpression of certain genes can suppress the progression of

breast cancer subtypes by promoting M1 macrophage polarization.

In line with the immune infiltration profiling results, MYD88

showed a significant positive correlation with M1 macrophages,

and similarly, gamma delta T cells were also significantly positively

correlated with M1 macrophages. Therefore, it is plausible that

through its significant positive correlation with M1 macrophages,

MYD88 may modulate the functional state of M1 macrophages,

thereby influencing the progression of breast cancer. In drug
Frontiers in Immunology 20
sensitivity analysis, we found CCT018159, rapamycin, vinblastine,

metformin, and roscovitine being notably different between the two

risk groups, which provides a novel perspective for therapeutic

strategies targeting high- and low-risk patient groups. Then,

validation demonstrated that the integrated nomogram

(incorporating independent predictors: Risk score, T stage, N

stage, and M stage) achieved high predictive accuracy for 1-, 2-,

and 3-year survival probabilities. Our clinical characteristic model

can provide clinicians with a visual tool and evidence-based support
TABLE 4 Clinical and pathological information for breast cancer patients.

Sample Age Pathology diagnosis Stage PR ER HER2 Subtypes

1 54 Ductal infiltrating carcinoma IIB +++ ++ – Luminal A

2 36 Infiltrating lobular carcinoma IIA +++ ++ – Luminal A

3 42 Ductal infiltrating carcinoma IIB ++ – – Luminal B

4 53 Ductal infiltrating carcinoma IIIA – – +++ HER2 positive

5 57 Ductal infiltrating carcinoma IIB +++ +++ – Luminal A

6 56 Infiltrating lobular carcinoma IIB – – – TNBC

7 48 Infiltrating lobular carcinoma IIB ++ – +++ HER2 positive

8 49 Ductal infiltrating carcinoma IIB +++ ++ – Luminal A

9 61 Ductal infiltrating carcinoma IIA – – – TNBC

10 71 Ductal infiltrating carcinoma IIA +++ +++ – Luminal A

11 51 Ductal infiltrating carcinoma IIA ++ + – Luminal B

12 50 Ductal infiltrating carcinoma IIB – – +++ HER2 positive

13 40 Ductal infiltrating carcinoma IIB +++ ++ – Luminal A

14 57 Infiltrating lobular carcinoma IIA +++ +++ – Luminal A

15 61 Ductal infiltrating carcinoma IIA – – – TNBC

16 35 Ductal infiltrating carcinoma IIB + – +++ HER2 positive

17 57 Infiltrating lobular carcinoma IIA +++ ++ – Luminal A

18 85 Infiltrating carcinoma IIIB +++ +++ – Luminal A

19 79 Infiltrating carcinoma IIB – – +++ HER2 positive

20 58 Ductal infiltrating carcinoma IIIB ++ + – Luminal B

21 63 Ductal infiltrating carcinoma IIB +++ ++ – Luminal A

22 50 Infiltrating carcinoma IIA – – – TNBC

23 49 Infiltrating carcinoma IIIA +++ +++ – Luminal A

24 53 Ductal infiltrating carcinoma IIA + – +++ HER2 positive

25 46 Ductal infiltrating carcinoma IIA +++ ++ – Luminal A

26 46 Ductal infiltrating carcinoma IIIB – – ++ HER2 positive

27 41 Infiltrating carcinoma IIB +++ +++ – Luminal A

28 42 Ductal infiltrating carcinoma IIIB – – – TNBC

29 51 Ductal infiltrating carcinoma IIIB ++ + – Luminal B

30 44 Ductal infiltrating carcinoma IIA +++ ++ – Luminal A

31 44 Ductal infiltrating carcinoma IIB +++ +++ – Luminal A

32 43 Ductal infiltrating carcinoma IIIC – – – TNBC
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for formulating personalized management strategies, such as

intensified monitoring for high-risk groups and streamlined

follow-up for low-risk cohorts. In conclusion, the poor outcomes

and reduced survival in high-risk patients may be attributed to

enhanced tumor immune evasion mechanisms and limited

immunotherapy efficacy within this subgroup.

In summary, we identified seven prognostic genes related to m6A

and PCD in breast cancer. Besides, we created a risk model and a

nomogram model, revealing the prognostic value of prognostic genes
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and independent prognostic factors in breast cancer. Our findings

open new avenues for research and establish a theoretical framework

for treating BC and other malignancies with analogous pathogenesis.

However, the findings derived from this study require further

validation and confirmation through subsequent research.

Although we have developed a prognostic model grounded in

the identified genes and have demonstrated their prognostic

significance, a finding consistently corroborated by independent

datasets, the considerable heterogeneity in molecular characteristics
FIGURE 9

Validation of the expression of MYD88, ANXA5, DAXX, SESN3, CRIP1, DPP4, and PIK3CA in breast cancer clinical samples. (A) Analysis of MYD88 expression
in BC tissues and paired control tissues by RT-qPCR. (B) Analysis of ANXA5 expression in BC tissues and paired control tissues by RT-qPCR. (C) Analysis of
DAXX expression in BC tissues and paired control tissues by RT-qPCR. (D) Analysis of SESN3 expression in BC tissues and paired control tissues by RT-
qPCR. (E) Analysis of CRIP1 expression in BC tissues and paired control tissues by RT-qPCR. (F) Analysis of DPP4 expression in BC tissues and paired
control tissues by RT-qPCR. (G) Analysis of PIK3CA expression in BC tissues and paired control tissues by RT-qPCR. (H) Immunohistochemistry analysis of
MYD88, ANXA5, DAXX, SESN3, CRIP1, DPP4, and PIK3CA expression in BRCA tissues and paired control tissues. (I) CCK8 assay was carried out to detect
the proliferation of control and CRIP1 or PIK3CA knockdown BRCA cell lines. **p < 0.01; ***p < 0.001.
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(such as hormone receptor status, HER2 expression, and mutational

profiles) and clinical outcomes across various breast cancer

subtypes prompts questions regarding the model’s generalizability

to all subtypes. While gene expression differences were confirmed

via qRT-PCR and IHC, protein-level validation using methods such

as Western blotting has not yet been performed. Comprehensive

functional experiments in breast cancer cell lines are still lacking,

and the specific mechanisms by which these genes regulate tumor

progression remain incompletely elucidated. Consequently, further

research is necessary, including validation within larger, subtype-

specific cohorts, to ascertain its applicability across different

subtypes. Additionally, we intend to utilize cellular and animal

models in future studies to further elucidate the functional

mechanisms of these prognostic genes in breast cancer, with a

particular focus on specific molecular subtypes.
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