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Schizophrenia (SZ) is a severe neuropsychiatric disorder arising from complex

interactions between genetic susceptibility and environmental factors. There is

growing evidence that immune dysregulation and neuroinflammation are central

to its pathogenesis, with the microbiota-gut-brain (MGB) axis playing a critical

role. This review synthesizes clinical and preclinical findings to elucidate the

relationship between gut microbiota dysbiosis and aberrant inflammatory

signaling in the periphery and central nervous system in schizophrenia. We

detail how alterations in gut microbiota metabolites, following dysbiosis disrupt

blood-brain barrier (BBB) integrity and exacerbate neuroinflammation, ultimately

leading to the neuropathology of SZ. The review further explores how gut

dysbiosis activates innate immune pathways, including the complement system

(e.g., C4) and Toll-like receptors (e.g., TLR4), and examines the bidirectional

relationship between cytokine imbalances and gut microbiota. A key focus is

placed on the dysregulation of the kynurenine pathway of tryptophan

metabolism, which mechanistically links immune activation to neurotransmitter

imbalances. Collectively, these findings demonstrate that gut microbiota

dysbiosis contributes to the pathophysiology of schizophrenia through

multifaceted immune-neuro-endocrine pathways, highlighting the MGB axis as

a promising target for novel therapeutic strategies.
KEYWORDS
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1 Introduction

Schizophrenia (SZ) is a chronic brain disorder characterized by

genetic heterogeneity and neuropathological alterations, with high

mortality rates (1). It impairs higher-order brain functions, leading

to multifaceted disabilities and incoordination of mental activities.

Its clinical symptoms primarily include positive symptoms, negative

symptoms, and cognitive deficits (2, 3). Evidence supports the

interplay between genetic and environmental factors plays a

crucial role in the pathogenesis of schizophrenia (4–6).

Current evidence from genetics, molecular neuropathology, and

clinical studies underscores the importance of immune factors in

both the pathogenesis and treatment of schizophrenia (7–9).

Notably, genetic data from multiple large-scale patient cohorts

and genome-wide association studies have shown that single

nucleotide polymorphisms located within the major immune-

related region on chromosome 6 are associated with

schizophrenia (10–12). This finding provides strong genetic

support for the immune hypothesis of schizophrenia.

Furthermore, immune dysfunction may indirectly increase the

risk of developing schizophrenia (see Figure 1). This dysfunction

can be triggered by intrinsic host factors, such as autoimmune
Frontiers in Immunology 02
diseases (13–15), as well as extrinsic environmental factors, such as

maternal infection and environmental exposures to infections

during early life, childhood, and around the first episode of

psychosis (16, 17).

Among these risk factors, infectious pathogens play a significant

role as environmental risk factors in SZ. Clinical evidence (see

Table 1) and meta-analyses (30) show a significant association

between schizophrenia and a history of infection with various

pathogens (for example, Chlamydophila psittaci, Chlamydia

pneumoniae, Human Herpesvirus 2, Borna disease virus, and

Human Endogenous Retrovirus W). Exposure to these infectious

pathogens and inflammatory stimuli can profoundly affect the brain

and behavior (31). A prominent example is Toxoplasma gondii

infection, which, in animal models, alters behavior and increases the

release of neurotransmitters such as dopamine, and the amount of

dopamine release is correlated with the number of infected cells

(32). In humans, it is associated with symptoms similar to those

observed in schizophrenia (33). Notably, such infections can induce

a complex neuroimmune response involving cytokine production

by microglia, astrocytes, and neurons (34). Furthermore, they can

dysregulate key immune components; for example, CD8+T cells,

which are crucial for sustaining lasting immunity, have been found
FIGURE 1

Immune-related risk factors that may induce schizophrenia and pathophysiological consequences. The figure provides an overview of the process
by which immune-related risk factors disrupt the balance of the immune system, ultimately contributing to the development of SZ. The risk factors
associated with immune system imbalance include intrinsic factors (such as autoimmune diseases) and extrinsic environmental factors (such as
maternal infections, environmental exposures during early life, childhood, and the first episode of psychosis, as well as gut microbiota dysbiosis).
Immune system imbalance is primarily reflected in abnormalities of immune cells, immune organs, and immune-related molecules. The pathological
mechanisms by which immune system imbalance may lead to SZ include neurotransmitter dysregulation (abnormalities in dopamine/glutamate/
GABA/5-HT), neurodevelopmental impairments (such as abnormal synaptic pruning and brain structural changes), inflammatory responses,
autoimmune reactions, and related clinical symptoms (positive symptoms, negative symptoms, and cognitive deficits). CMV, Cytomegalovirus; HSV-
2, Herpes Simplex Virus Type 2; MS, Multiple Sclerosis; GBS, Guillain-Barré Syndrome; CNVs, Copy Number Variations; SNPs, Single Nucleotide
Polymorphism.
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to be downregulated in schizophrenia patients (35). It is noteworthy

that Toxoplasma gondii infection has been shown to affect the gut

microbiome in mice (36). This suggests that the immune and

neurochemical disruptions may be partially mediated through

gut-related pathways. This interplay highlights the intricate

interactions between genetic and environmental factors in disease

development (37).

In fact, the total number of non-redundant genes encoded by

the microbiota far exceeds that of the human host, and the

composition and function of the microbiota are significantly

influenced by environmental factors (38, 39). This genomic

feature highlights the potentially critical role of the microbiome

in mediating gene-environment interactions in humans.

A growing number of studies indicate that levels of natural

antibodies against Gram-negative bacteria and lipopolysaccharide

(LPS), such as IgA, IgM, and IgG, are elevated in patients with SZ.

The production of these antibodies may be related to gut microbiota

dysbiosis and increased intestinal permeability (40). Recent

research has shown that gut microbes and their metabolites can

enter the systemic circulation and affect the central nervous system,

which may be closely related to the mechanisms underlying the

symptoms of schizophrenia. Together, this evidence positions the

Microbiota-Gut-Brain (MGB) axis as a key pathway through which

environmental and immune factors contribute to the
Frontiers in Immunology 03
pathophysiology of schizophrenia, a premise we will explore in

detail throughout this review.

2 The microbiota-gut-brain axis and
schizophrenia: evidence from clinical
and preclinical studies

During fetal development, microbial communities are already

present in the maternal placenta, amniotic fluid, and umbilical cord

(41–43). The perinatal period represents a critical window for the

development of both the gut microbiota and the brain. Factors such

as perinatal maternal stress, mode of delivery, environmental

exposures, and genetic factors significantly influence the

composition of the offspring’s gut microbiota and can alter

behavior and Central nervous system (CNS) structure (41–50).

Historically, a complex bidirectional communication system

between the gastrointestinal tract, its microbiota, and the CNS—

comprising neural, hormonal, and immune pathways—has been

recognized and termed the MGB axis (51).

In recent years, numerous clinical studies have demonstrated

that patients with schizophrenia exhibit characteristic gut dysbiosis,

manifested as significant disruptions in microbial relative

abundance and reduced a-diversity (52–57). Specifically, these
TABLE 1 Clinical evidence for the association between infectious pathogens and schizophrenia.

Category Antigen Antibody Conclusion
Relevance
(P<0.05%)

References

Microbial
antigen-
antibody

Toxoplasma antigen

IgG

The positive rate of anti-Toxoplasma gondii
IgG antibodies in patients with SZ is higher
than that in the general population, and
Toxoplasma gondii infection is associated
with higher levels of IgG and an increased

incidence of SZ.

Related (18–20)

IgM

There was no statistically significant
difference in the positive rate of IgM
antibodies against Toxoplasma gondii
between SZ patients and the general

population.

Unrelated (18, 21)

Chlamydia pneumoniae
antigen

Antibody to Chlamydia
pneumoniae

The incidence of Chlamydia infection is
significantly increased in SZ patients.

Related (22)

Chlamydia trachomatis
antigen

Antibody to Chlamydia
trachomatis

The IgG antibody titer for Chlamydia
trachomatis is significantly elevated in SZ

patients.
Related (23, 24)

Chlamydia psittaci antigen Antibody to Chlamydia psittaci
The incidence of Chlamydia psittaci

infection is significantly increased in SZ
patients.

Related (25)

HERV-W Antigen HERV-W HERV-W-env is upregulated in SZ patients. Related (26, 27)

HHV-2 Antigen HHV-2

The anti-HSV2 IgG antibody is significantly
increased in schizophrenic patients, among
which the HERV-W envelope protein or
RNA shows the strongest correlation with

SZ.

Related (28)

BDV Antigen BDV
There is an association between BDV
infection and the risk of developing SZ.

Related (29)
TG/TPO: Thyroglobulin/Thyroid Peroxidase; ANAs: Antinuclear Antibodies; HERV-W-env: Human endogenous retrovirus W; HHV-2: Human Herpesvirus 2; BDV: Borna Disease
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alterations include an increased abundance of Proteobacteria and

Lactobacillus, along with decreased levels of anti-inflammatory

commensals such as Prevotella (58). This dysbiosis reflects a pro-

inflammatory state within the gastrointestinal tract, characterized

by an elevated abundance of Lachnoclostridium and reduced levels

of short-chain fatty acid-producing Blautia spp. and Ruminococcus

spp. (59). These microbial changes correlate with higher

lipopolysaccharide (LPS) and lower superoxide dismutase-1 levels

(59, 60), which can lead to microbial translocation, systemic

inflammation, and increased permeability of both the intestinal

and blood-brain barriers (BBB), creating a vicious cycle (61–65).

These alterations are associated with specific SZ phenotypes,

symptom severity, and treatment response (39, 66–68). For

instance, a meta-analysis by Murray et al. indicated that abnormal

proliferation of specific microbial taxa (e.g., Bifidobacterium and

Lactobacillus) is significantly correlated with core clinical features,

including worsened negative symptoms, metabolic pathway

disturbances, and reduced cortical gray matter volume (57).
3 Microbial metabolites in SZ
pathology: BBB disruption and
neuroinflammation

The alterations in microbial composition described above are

closely linked to functional disturbances in the gut ecosystem of

patients with schizophrenia. Influenced by the altered gut

microbiota composition, SZ patients show an increased incidence

of gastrointestinal barrier dysfunction, food antigen sensitivity,

inflammation, and metabolic syndrome (56, 69, 70). This may

result from severe disruption of functional capacity in the gut

microbiota of SZ patients, leading to a marked increase in pro-

inflammatory metabolites and a significant decrease in anti-

inflammatory metabolites (71). In preclinical and clinical

metabolomics studies, approximately 10 metabolites have been

identified to exhibit significant alterations in patients with SZ.

These include N-acetylaspartate, lactate, tryptophan, kynurenine,

glutamate, creatine, linoleic acid, D-serine, glutathione, and 3-

hydroxybutyrate, among others (72). A recent study found that

elevated levels of lactate and cortisol in the peripheral blood of SZ

patients were significantly correlated with decreased immune

parameters (such as reactive lymphocytes) and altered

concentrations of cerebral metabolites like glutamate and N-

acetylaspartate (73). Another study further identified correlations

between specific gut bacteria (e.g., Streptococcus-Sobrinus) and

metabolites (such as 7-aminomethyl-7-carbaguanine and vitamin

D2), and discovered that these microbial features were closely

associated with patients’ cognitive function (74). Furthermore, the

gut microbiome is associated with changes in brain structure and

function in SZ patients, as evidenced by neuroimaging studies

linking microbial a-diversity to alterations in gray matter volume

and regional homogeneity (75). These alterations in brain structure

may facilitate the entry of toxic substances and peripheral

inflammatory mediators into the brain, thereby triggering

neuroinflammation. This process can involve gut microbiota
Frontiers in Immunology 04
metabolites crossing the blood-brain barrier, modulating the

microbiota-gut-brain axis, and regulating microglial activity and

cytokine release.
3.1 Bile acids

The potential role of bile acids (BAs) metabolism dysregulation

in SZ is likely mediated through interactions with the gut-brain axis

(76). Clinical studies have confirmed significant alterations in both

the gut microbiota composition and BAs profiles in SZ patients

(77), highlighting a potential correlation between BAs dysregulation

and the disorder. A metagenome-wide association study further

identified gut bacteria unique to SZ patients, including

Alkalibacterium, Enterococcus faecium, and Lactobacillus

fermentum (78). Cross-sectional studies found that certain gut

microbes such as Collinsella, Corynebacterium, Lactobacillus, and

Succinivibrio (67); Lachnospiraceae (79); and Veillonella (75) were

positively correlated with the severity of SZ. This association

between gut microbiota dysbiosis and SZ severity might be

mediated through abnormalities in the BAs decoupling process.

Metabolomic analysis of serum BAss in SZ patients revealed

significantly altered BAs profiles compared to healthy controls

(80). Notably, levels of primary Bas, such as CDCA, were

generally elevated in patients, whereas levels of secondary Bas

(e.g., DCA and LCA) were reduced (80). These altered BAs

profiles may subsequently affect the composition of the gut

microbiota, thereby interfering with neural function and

contributing to the development and progression of SZ. A recent

case report described a 39-year-old Persian male with treatment-

resistant SZ who, after receiving 300 mg UDCA daily for 12 weeks,

showed significant improvement in both positive and negative

symptoms, along with enhanced cognitive abilities. Importantly,

UDCA treatment was not only effective but also well-tolerated, with

no adverse reactions reported during the treatment period,

underscoring the safety and efficacy of UDCA supplementation

(81). Animal studies have revealed that secondary bile acids may

impair the integrity of the BBB. Among these, DCA has been

demonstrated to damage endothelial tight junctions, leading to

increased BBB permeability (82). This disruption allows toxic

substances and peripheral inflammatory mediators to enter the

brain, triggering neuroinflammation.
3.2 Polyamines

Polyamines (PAs) are important metabolites produced by gut

bacteria. Research has confirmed that the gut microbiota is a

significant source of polyamine synthesis, with its production of

putrescine, spermidine, and spermine playing a key role in

maintaining intestinal polyamine homeostasis (83). Historically,

PAs were implicated in the etiology of schizophrenia because

certain antipsychotic and antimalarial drugs contain structural

components resembling spermidine and were associated with

extrapyramidal symptoms and psychosis (84). A multi-omics
frontiersin.org
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analysis revealed significant disturbances in the polyamine

biosynthesis pathway (85). Currently, e levated blood

concentrations of PAs (primarily spermine and/or spermidine)

have been observed in cases across various subtypes of

schizophrenia (86–88). However, data on PA concentrations in

the brain remain limited. One study on human brain tissue found

no difference in polyamine levels in the frontal cortex or

hippocampus of schizophrenia patients compared to control

subjects (89). Another study reported significantly elevated

agmatine concentrations in both the plasma and postmortem

frontal cortex tissue of first-episode and chronic schizophrenia

patients (90–93), and found that antipsychotic treatment could

reduce blood agmatine levels (94). Elevated spermidine and total

PA concentrations were also detected in fibroblasts obtained

from SZ patients (95). Furthermore, studies on serum from SZ

patients showed elevated levels of polyamine oxidase (the enzyme

responsible for degrading PAs) (96, 97), while the activities of three

enzymes involved in PA synthesis—ornithine aminotransferase,

antizyme inhibitor 1 (AZIN1), and ornithine cyclodeaminase —

were found to be reduced in the prefrontal cortex of both treated

and untreated patients (98), ultimately potentially leading to

disrupted polyamine homeostasis. A translational convergent

functional genomics study identified the gene AZIN1,

which encodes AZIN1, as a candidate gene for schizophrenia

(99), providing genetic support for these findings. The

pathophysiological role of PAs in SZ is primarily thought to be

mediated through the dopamine pathway and by altering the

function of the N-methyl-D-aspartate receptor (100), although

the precise mechanisms remain unclear.

Under pathological conditions such as cerebral ischemia and

trauma, stress states can induce significant disruption in polyamine

metabolism, particularly the abnormal accumulation of putrescine.

This alteration is closely associated with vasogenic edema and the

disruption of the BBB (101). Research has confirmed that inhibiting

polyamine biosynthesis with the ornithine decarboxylase inhibitor

a-difluoromethylornithine significantly mitigates increased BBB

permeability, Evans blue extravasation, and brain tissue water

content in models of cerebral ischemia (102). Notably, this

protective effect can be reversed by the administration of

exogenous putrescine. This indicates that upregulation of

endogenous polyamines, especially putrescine, serves as a critical

mediator in BBB injury.
3.3 Short-chain fatty acids

The structural integrity of the BBB is maintained by tightly

joined brain endothelial cells, astrocytic end-feet, pericytes, and

various transport proteins, which stringently regulate the

penetration of substances from the blood into the brain tissue

(103). SCFAs—such as acetate, propionate, and butyrate—

produced by gut microbial fermentation, can enter the systemic

circulation, reach the brain, and are present in considerable

concentrations in the cerebrospinal fluid (104).
Frontiers in Immunology 05
Recent research has shown that SCFAs play a crucial role in

modulating the structure and function of the BBB. On the one hand,

SCFAs can enhance BBB integrity by regulating the expression of

tight junction proteins. For instance, studies in germ-free or

antibiotic-treated mouse and rhesus monkey models have

demonstrated reduced levels of BBB tight junction proteins (e.g.,

claudin-5, occludin) and increased BBB permeability; colonization

with SCFA-producing strains (such as Clostridium tyrobutyricum

and Bacteroides) reversed these effects (105–108). On the other

hand, SCFAs can protect the BBB directly or indirectly through

anti-inflammatory mechanisms. SCFAs can interact with free fatty

acid receptor 3 present on brain endothelial cells (109), suppress

inflammatory responses, and alleviate oxidative stress, thereby

promoting BBB stability. For example, propionate exerts anti-

inflammatory and antioxidant effects by reducing cell surface

CD14 expression and influencing the translocation of Nuclear

Factor Erythroid 2-Related Factor 2 (110). Peripherally, certain

SCFAs (e.g., acetate, propionate, and butyrate) have also been

identified to possess anti-inflammatory properties (111–113).
4 Gut microbiota dysbiosis and
abnormal activation of the innate
immune system

4.1 Evidence for the association between
complement components and
schizophrenia

Current studies have identified elevated transcript levels of

complement components (C1qA, C3, C4, C5) in patients with

schizophrenia (114) (see Table 2), suggesting, albeit not entirely

consistently, that increased activation of the classical complement

pathway may be associated with SZ.
4.2 Gut microbiota dysbiosis and abnormal
activation of complement C4

Genetic susceptibility to schizophrenia is significantly

associated with polymorphisms in genes related to the

complement system, largely attributable to alleles of the

complement C4 gene located within the major histocompatibility

complex region on chromosome 6 (132). The C4 allele

demonstrates the strongest association with SZ risk (132)and is

closely linked to increased synaptic phagocytosis and elimination by

microglia (8). Furthermore, recent research has found that C4 gene

overexpression triggers impaired GluR1 trafficking through an

intracellular mechanism involving the endosomal protein SNX27,

leading to pathological synaptic loss.

Pathogen exposure has long been recognized as a risk factor for

the development of schizophrenia (142). Immune-related

environmental variables, such as pathogen infection and gut

microbiota dysbiosis, may interact with complement system
frontiersin.org
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TABLE 2 Evidence for the association between complement components and SZ.

Complement Study subpopulations Control populations Results References

C1q

Mothers whose offspring developed
mental illness in adulthood

Mothers whose offspring did not
develop mental illness

The levels of C1q IgG(↑*) (115)

FES Healthy People Serum C1q levels(↓*) (116)

Patients with SZ Healthy People The levels of C1q mRNA(↑*) (117)

FES Healthy People Plasma levels of C1q (↑*) (118)

FES Healthy People Serum C1 levels(↑*) (119)

FES Healthy People C1q mRNA and protein (↓*) (120)

FES&UHR for psychosis Healthy People Serum C1q levels (→) (121)

SZ cases with high inflammation Healthy People C1qA mRNA(↑*) (114)

C3

FES Healthy People Serum C3 levels (↑*) (119)

Patients with SZ Healthy People Serum C3 levels (↓*) (122)

Patients with SZ Healthy People
The levels of C3(↑*) in both CSF and

plasma
(123)

FES Healthy People Serum C3 levels (→) (124)

Patients with SZ Healthy People Serum C3 levels C3(↑*) (125)

Patients with SZ Healthy People C3 mRNA(→) (117)

SZ cases with high inflammation Healthy People
C3 mRNA(↑*);
C3 protein(→)

(114)

FES Healthy People Serum C3 levels (↓*) (116)

Female subjects with high C3
concentrations

Female subjects with normal C3
concentrations

Serum C3 levels (↓*) (126)

Patients with SZ Healthy People Serum C3 levels(↑*) (127)

FES Healthy People
The expression of C3(↑*)

Serum C3 levels(↑*)
(128)

Patients with SZ Healthy People Serum C3-ana levels (↑) (129)

UHR&FES&CSZ Healthy People
In serum:UHR:C3(↑*)
FEP&CSZ:C3(→)

(121)

Patients with SZ Healthy People The frequency of the C3 gene allele(↑*) (130)

Patients with SZ Healthy People Serum C3 levels(↑*) (131)

FES Healthy People Plasma levels of C3(→) (118)

C4

Patients with SZ Healthy People C4 mRNA(↑) (117)

Patients with SZ Healthy People The expression of C4A(↑) (132)

Patients with SZ Healthy People Serum C4-ana levels(↑*), C4A mRNA(↑*) (129)

Mice with overexpressed C4A gene
Mice with normal C4A gene

expression.
The expression of C4A(↑*) (133)

Mice with overexpressed C4A gene
Mice with normal C4A gene

expression.
The expression of C4(↑*) (134)

Patients with SZ Healthy People Serum C4 levels(↑*) (125)

FES Healthy People The expression of C4(↓*) (116)

FES Healthy People
The expression of C4(↑*)
Plasma levels of C4(↑*)

(118)

UHR&FES&CSZ Healthy People
In serum:CSZ&UHR:C4(↑*)

FES:C4(→)
(121)

(Continued)
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dysfunction (143). Particularly noteworthy is the finding that

genetic polymorphisms of complement components C4A and

C4B are significantly associated with various microbial

environmental variables in schizophrenia patients, including a

history of pathogen exposure and gut ecological imbalance (143).

Among these, a negative correlation was observed between plasma

lipopolysaccharide-binding protein (LBP) levels and C4A gene copy

number was observed in patients with schizophrenia, but not in

healthy controls (143). This discovery is significant because LBP, a

marker of bacterial translocation, reflects the host’s response to gut

microbial translocation and circulating bacterial LPS (144).

Together, these results suggest that the complement system,

particularly C4A, may play a key role in the gene-environment

interactions of schizophrenia by modulating the gut microbiota and

systemic immune activation status.

Furthermore, the negative correlation between C4A and C4B

copy numbers in SZ patients may reflect a non-random association

between these loci. Further analysis revealed that C4A and C4B

haplotypes are significantly associated not only with the diagnosis of
Frontiers in Immunology 07
schizophrenia and environmental factors but also with psychiatric

symptoms and cognitive function (143). While multiple previous

studies have confirmed the association between the C4A gene and

an increased risk of schizophrenia (132), the intrinsic mechanism

underlying the negative correlation between C4B and schizophrenia

risk remains unclear. It is currently unknown whether a lower C4B

copy number has a protective effect against the disease or merely

reflects an associated pathological protein deficiency. The negative

correlations between C4A and C4B, as well as between C4L and C4S

copy numbers, more likely indicate that these loci reside at

opposing ends of a risk (C4A and C4L) and protective (C4B and

C4S) spectrum, existing in a state of linkage disequilibrium (143).

Biochemically, C4A exhibits higher affinity for amino groups,

whereas C4B binds more readily to hydroxyl groups, suggesting

that C4A may be more involved in binding immune complexes and

protein antigens, while C4B plays a more important role in binding

carbohydrate-rich microbial antigens (145). Consequently, a

deficiency in C4B protein in patients may impair its ability to

bind microbial antigens. Conversely, another possibility is that a
TABLE 2 Continued

Complement Study subpopulations Control populations Results References

FES Healthy People Serum C4 levels(↑*) (128)

Patients with SZ Healthy People Serum C4 levels(↑*) (127)

The C4 concentration in newborns
with symptoms of mental disorders

The normal range of C4
concentrations in healthy newborns

Serum C4 levels(→) (126)

FES Healthy People Serum C4 levels (↑*) (119)

SZ cases with high inflammation Healthy People
C4 mRNA(↑*)
C4 protein (↓*)

(114)

Patients with SZ Healthy People The expression of C4A(↑*) (120)

FES Healthy People C4 gene mRNA expression(→) (135)

FES Healthy People

C4 levels were elevated(↑*)in the
dorsolateral prefrontal cortex and parietal
cortex, while remaining unchanged(→) in

peripheral tissues

(136)

YASZ&AOSZ Healthy People The expression of C4A(↑) (137)

Male patients with SZ or SZ with
affective disorder

Female patients with SZ or SZ with
affective disorder

In males:C4A(↑*);In females: C4B(↑*) (138)

Adult schizophrenic patients Healthy People Serum C4 levels (↑*) (139)

FES Healthy People CSF C4(↑*) (140)

FES Healthy People Serum C4 levels (↓*) (124)

Patients with SZ Healthy People
The levels of C4(↑*) in both CSF and

plasma
(123)

Male patients with SZ Female patients with SZ
In protein, serum and CSF levels:

C4 allele is stronger in males than in
females

(123)

C5

Patients with SZ Healthy People CSF C5(↑*) (141)

FES Healthy People Serum C5 levels(↓*) (116)

Patients with SZ Healthy People Serum C5-ana levels (→) (129)
FES: First Episode-SZ; UHR: Ultra-High Risk; CSZ: Chronic SZ;YASZ: Young adult-onset SZ; AOSZ: Adolescent-Onset SZ; CSF: Cerebrospinal fluid
Symbols: ↑*/↓* indicates a significant upward/downward trend (p < 0.05); ↑/↓ indicates a gradual upward/downward trend (p>0.05); → indicates No trend/Stable.
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lower C4B copy number might protect the stability of the host

microbiome to some extent by reducing the excessive clearance of

beneficial microbes mediated by C4B. A study on pediatric

inflammatory bowel disease indicated that individuals with low

C4B copy numbers had milder inflammation and higher gut

microbial diversity compared to those with high C4B copy

numbers (146).

As research on the gut microbiome in schizophrenia expands,

integrating C4 genotyping with microbiome analysis is of great

importance. Furthermore, these haplotype associations require

further analysis to exclude nearby HLA gene variants—which

may influence the observed immune phenotype due to linkage

disequilibrium with specific C4 alleles (123).
5 Potential pathophysiological
mechanisms of toll-like receptors and
gut bacterial translocation in
schizophrenia and psychiatric
disorders

Toll-like receptors (TLRs) coordinate the activation of innate

immune responses alongside the complement system and play a

significant role in the neuroimmune mechanisms of schizophrenia.

Studies indicate that activation of TLR2/3/4/5 triggers the NF-kB/
NLRP3 pathway and the PI3K/Akt/mTORC1 signaling pathway,

leading to microglial activation, neuroinflammation, and neuronal

damage (147, 148). Furthermore, thickness changes in the limbic

system and cortical brain regions of schizophrenia patients are

correlated with abnormal expression of specific TLRs, suggesting

their involvement in brain structural remodeling (149). Stimulation

of whole blood cells from SZ patients with selective TLR agonists

results in enhanced release of pro-inflammatory cytokines

(including IL-1b, IL-6, IL-8, and TNF-a) (150), further

supporting the role of TLRs in regulating neuroinflammation

in schizophrenia.

TLR4, a key receptor for recognizing pathogen-associated

molecular patterns such as LPS, activates downstream signaling

through both MyD88-dependent and independent pathways,

inducing the production of various cytokines and participating in

the regulation of neuroinflammation and cellular function (151,

152). In recent years, studies on SZ bodily fluids have consistently

reported increased numbers of TLR4-positive monocytes and

elevated TLR4 expression in the peripheral blood of schizophrenia

patients (149, 153–155), suggesting that TLR4 upregulation is a key

factor in the immunopathological process of schizophrenia.

Postmortem results show increased TLR4 protein expression in

the prefrontal cortex of schizophrenia patients (152), which is

associated with activation of the MyD88 and NF-kB pathways

(156). Recent research has identified the TLR4/MyD88/NF-kB
pathway as playing a central role in various neurological disease

models, suggesting its relevance in schizophrenia pathogenesis. For

instance, regulatory T cells modulate neuroinflammation and
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microglial pyroptosis in LPC-induced demyelination via this

pathway, thereby alleviating myelin loss and cognitive dysfunction

(157). Additionally, TLR4 regulates hippocampal neurogenesis and

synaptic function through this pathway, and is involved in

neuroinflammation and neuronal apoptosis (158). Conversely,

inhibiting TLR4 can suppress microglial activation, alleviate

neuroinflammation, improve cognitive function, and mitigate

synaptic plasticity impairments and depression-like symptoms via

this pathway (159, 160).

The pathological processes described above are often initiated in

schizophrenia by a breach of the intestinal barrier, creating a

conduit for gut-derived immune activation. Alterations in the

microbial flora, gut inflammation, increased intestinal barrier

permeability (forming a “leaky gut”), bacterial translocation, and

exposure to stressful environments in schizophrenia (144, 152, 156),

may trigger innate immunity via TLR4 stimulation. The specific

mechanism may involve a compromised intestinal barrier allowing

antigens from the gut microbiota to penetrate and contact IgG

antibodies, forming immune complexes that circulate in the

bloodstream, including to the choroid plexus of the CNS. The

chronic accumulation of these complexes can initiate inflammation

and contribute to the progression of chronic disease. When a “leaky

gut” is present, intestinal barrier permeability is increased, pro-

inflammatory substances like LPS may activate inflammatory

pathways, be recognized and activated by the TLR4 receptor, and

mediate inflammatory responses. This indirect influence of gut

microbes on the innate immune system leads to changes in the

circulating levels of pro- and anti-inflammatory cytokines,

subsequently directly affecting brain function (161).

Exposure to microbial products such as LPS, which can

translocate from a leaky gut, activates TLR4 signaling, which is

closely intertwined with gut-brain axis interactions. This is

corroborated by numerous animal models. Pretreatment with

paliperidone (an atypical antipsychotic drug) inhibits TLR4

activation and neuroinflammatory responses in the prefrontal

cortex of stressed rats. The mechanism involves modulating

stress-induced gut inflammation and reducing plasma LPS levels,

thereby influencing brain TLR4 signaling pathways. This result

suggests that the therapeutic effects of paliperidone extend beyond

its impact on dopamine and serotonin neurotransmission systems

(162). Another rat study found that acute restraint stress can

upregulate TLR4 gene expression in the frontal cortex by

inducing gut microbiota translocation, while intervention with

antibiotics or the TLR4 specific inhibitor TAK-242 effectively

suppresses this process and reduces the accumulation of

inflammatory and oxidative/nitrosative mediators (163).

Furthermore, inhibiting TLR4 can also modulate gut microbiota

homeostasis and the MyD88/NF-kB axis in ulcerative colitis (164),

indicating that TLR4 acts not only as a key sensor of innate

immunity but may also regulate neuroimmune crosstalk and gut

microenvironment homeostasis. Given that SZ patients also

experience loss of gut microbiota homeostasis, targeting the TLR4

signaling pathway and focusing on bacterial translocation and

microbiota may offer new avenues for immunomodulatory

therapy in schizophrenia.
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Specifically, in the “leaky gut” state, gut microbiota dysbiosis

occurs, the expression of intestinal epithelial junction proteins (e.g.,

tight junction proteins) decreases, and intestinal permeability

increases, forming a “leaky gut” (165). This breach facilitates

bacterial translocation, as evidenced by the significant increase in

markers such as soluble CD14 and LBP in the blood of individuals

with schizophrenia (144, 166). Upon entering the systemic circulation,

microbial products like LPS are recognized by and activate the TLR4

receptor on innate immune cells. This triggers downstream signaling

pathways (e.g., NF-kB andMAPK), driving the massive release of pro-

inflammatory cytokines, including IL-1b, IL-6, and TNF-a (167–170).

These peripheral inflammatory mediators can, in turn, compromise

the blood-brain barrier and activate central immune cells, thereby

linking gut-derived innate immune stimulation to the

neuroinflammation characteristic of schizophrenia. This cascade

establishes a self-perpetuating vicious cycle, wherein systemic

inflammation exacerbates gut barrier dysfunction and dysbiosis,

which then further fuels the inflammatory response.
6 Gut microbiota dysbiosis and
cytokine abnormalities

6.1 Evidence for the association between
cytokines and schizophrenia

Given the dysfunction of the BBB in patients with

schizophrenia, changes in cytokine levels in the periphery

(peripheral blood) and the center (cerebrospinal fluid, CSF) are

valuable for assessing the CNS inflammatory state. Numerous

studies have identified abnormal alterations in various cytokines

in the CSF and peripheral blood of SZ patients (see Table 3), most of

which are pro-inflammatory cytokines (IL-1b, IL-2, IL-8, TNF-a,
and IFN-g) (188–191), with a smaller proportion being anti-

inflammatory cytokines (including TGF-b1, IL-4, and IL-10)

(192). The prevailing research view is that a dynamic imbalance

between pro-inflammatory and anti-inflammatory cytokines may

contribute to the pathogenesis of schizophrenia and subsequent

psychopathological symptoms (193–196).

According to Table 3, a characteristic pro-inflammatory state can

be observed in SZ patients, manifested by persistently elevated levels of

pro-inflammatory cytokines such as IL-6, IL-1b, and TNF-a in both

peripheral blood and CSF, accompanied by a relative deficiency of

anti-inflammatory cytokines like IL-10 and TGF-b. This cytokine

imbalance is closely related to symptom severity, cognitive deficits,

and treatment response. This aligns with current mainstream research;

for example, the TLR4/NF-kB/IL-1b signaling pathway is activated in

chronic SZ patients (197), and clozapine reduces the expression of

pro-inflammatory genes such as IL-1b and IL-6 by inhibiting the

TLR4/NF-kB pathway (198). Additionally, IL-8 mediates the

migration and survival of neural stem cells and oligodendrocyte

progenitor cells early in life, and elevated CSF cytokines IL-1b and

IL-6 suggest the possibility of microglial activation (199–201).

Aggregating data from Table 3 reveals consistent cross-barrier

alterations in cytokine levels in both CSF and peripheral blood
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across different clinical stages (first-episode/FES, acute/ASZ, and

chronic/CSZ), which hold clinical translational significance: 1).

Significantly elevated levels of IL-1b, IL-6, and IL-8 in FES and

ASZ SZ patients suggest they may be state markers for the onset or

acute exacerbation of SZ; 2). The dose-dependent decrease in pro-

inflammatory cytokine levels (e.g., IL-1b, IFN-g, IL-6, TNF-a)
following antipsychotic treatment (risperidone and clozapine)

indicates value for monitoring treatment response; meanwhile, a

significant increase in anti-inflammatory cytokine levels (e.g., sIL-

2R) was observed in some patients (181, 184), a finding suggesting

that antipsychotic drugs may exert anti-inflammatory-like effects.
6.2 Potential pathophysiological
mechanisms of gut microbiota and
metabolite SCFAs in cytokine abnormalities

SCFAs (such as acetate, propionate, and butyrate) activate

receptors like FFAR2/3 and Gpr109a and inhibit histone

deacetylase (HDAC), collectively suppressing the activation of the

NF-kB signaling pathway, thereby downregulating the expression

of pro-inflammatory cytokines (202–204). It is well-known that the

NF-kB signaling pathway is typically activated in inflammatory and

autoimmune diseases (205–207). Interestingly, all three cytokines

elevated in SZ patients in Table 1 (IL-1b, IL-6, and IL-8) are

regulated via the NF-kB pathway. Since cytokines can also

regulate the activity of tryptophan catabolism in astrocytes and

microglia, this finding corresponds to the alterations in the

kynurenine pathway observed in the brains of individuals with

schizophrenia (186).

SCFAs play an important regulatory role on various immune

cells, particularly those central to maintaining immune homeostasis

and anti-inflammatory responses, by inhibiting HDAC. For

instance, SCFAs can inhibit NF-kB activation and the secretion of

inflammatory cytokines like TNF-a in peripheral blood monocytes,

neutrophils, and macrophages, thereby mitigating excessive

immune responses. In dendritic cells, butyrate and propionate

can impede their normal differentiation and induce an immune

tolerant phenotype. Furthermore, SCFAs upregulate the expression

of Foxp3, a key transcription factor for regulatory T cells, through

HDAC inhibition (208, 209), promoting Treg differentiation and

suppressing the production of pro-inflammatory cytokines (210). In

SZ patients, the abundance of SCFA-producing bacteria is often

altered, leading to reduced SCFA levels, which weakens the capacity

to suppress inflammation; the abundance of SCFA-producing

bacteria also changes post-treatment (211, 212).
6.3 The kynurenine pathway: an interactive
mechanism linking gut microbiota,
immunity, and neurotransmitters

Specific neurotransmitters, such as GABA, dopamine,

glutamate, and serotonin (5-HT), are derived from precursors

tyrosine and tryptophan, which are transported across the BBB
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TABLE 3 Summary of meta-analysis of cytokines in peripheral blood and cerebrospinal fluid of SZ patients.

Sample Type Study subpopulations Control population Cytokine evaluated References

Peripheral Blood

SZ after treatment Healthy People
IL-6(↑*),
IL-6R(↓*)

(171)

FES&Recurrent SZ Healthy People IL-8(↑*) (172)

CSZ&FES
CSZ&FES after treatment with
risperidone and clozapine

CSZ after treatment with risperidone :IL-6,TNF-
a,IL-1b(↓*);

FES after treatment with risperidone :IL-6,TNF-
a,IL-1b(→);

CSZ&FES after treatment with risperidone and
clozapine(→)

(173)

CSZ&FES Healthy People CRP/hsCRP,IL-4,IL-6,IL-8,IL-10,TNF-a(↑*) (174)

ASZ&CSZ Healthy People

ASZ: IL-1b,IL-1RA,sIL-2R,IL-6,IL-8,IL-10,TNF-
a,IFN-g(↑*)

IL-2,IL-4,IL-12(↑)
(175)

CSZ: IL-1b,IL-1RA,sIL-2R,IL-6,IL-8,IL-10,TNF-
a(↑*)

IL-2,IL-4,IL-12,IFN-g(↓)

FES Healthy People IFN-g,IL-6,IL-17,IL-12(↑*) (176)

FES(Post-AT) FES(Pre-AT) IL-6,TNF-a(↓*); BDNF(↑*) (177)

FES Healthy People
BDNF,NGF(↓*)

IL-6,IL-8,TNF-a(↑*)
(178)

High-risk converters Non-converters IL-12(↓)
(179)

High-risk psychosis Healthy People IL-6(↑*),IL-1b(↓*)

FES&ESZ Healthy People IL-6,TNF-a(↑*) (180)

FES(Post-AT) FES(Pre-AT) IL-1 b,IL-6,IL-4(↓*)

(181)

ASZ(Post-AT) ASZ(Pre-AT) IL-1b,IL-6,TNF-a,sIL-6R,IFN-g(↓*)

TRS(Post-AT) TRS(Pre-AT) IL-6(↑*)

All SZ patients(Post-AT) All SZ patients(Pre-AT)
IL-1b,TNF-a,IFN-g (↓*); IL-6,TNF-a(↓); sTNF-

R2,sIL2-R(↑*)

Mothers with offspring affected by
SZ

Healthy mothers CRP,IL-8,IL-10(↑*) (182)

FES(4 weeks Post-AT) FES(Pre-AT) IL-2,IL-6,IL-1(↓*) (183)

ASZ

Healthy People

IFN-g,IL-1RA,IL-1b,IL-6,IL-8,IL-10,IL-12,sIL-2R,
TGF-b,TNF-a(↑*);IL-4(↓*);

(184)Acute exacerbation of CSZ
IFN-g,IL-1RA,IL-1b,IL-6,IL-8,IL-12,sIL-2R,TGF-

b,TNF-a(↑*);IL-4,IL-10(↓*)

CSZ IL-1b,IL-6,sIL-2R,TNF-a(↑*);IFN-g(↓*)

ASZ(36–75 days post-AT) ASZ(Pre-AT) IL-1b,IL-4,IL-6(↓*);IL-12,sIL-2R(↑*)

FES Healthy People IL-1b,sIL-2R,IL-6,TNF-a(↑*) (185)

Cerebrospinal Fluid

SZ after treatment Healthy People IL-6(↑*) (171)

SZ patients Healthy People IL-1b,IL-6,IL-8(↑*);sIL-2R (↓*) (186)

SZ patients Healthy People IL-1b,IL-6,IL-8(↑*) (187)
F
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FES: First Episode-Schizophrenia; ASZ: Acute Schizophrenia; CSZ: Chronic Schizophrenia; AST: Acute Schizophrenia After Treatment; CHR: Clinical High-Risk for Psychosis; BDNF: Brain
Derived Neurotrophic Factor; CRP: C-Reactive protein; hsCRP: hypersensitive C-reactive protein; ESZ: Early Schizophrenia; TRS: Treatment-Resistant Schizophrenia; AT: Antipsychotic
Treatment
Symbols: ↑*/↓* indicates a significant upward/downward trend(p < 0.05); ↑/↓ indicates a gradual upward/downward trend(p>0.05); → indicates No trend/Stable.
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into the CNS and subsequently converted into neurotransmitters

(213). Tryptophan is primarily absorbed in the gut and metabolized

by the gut microbiota through three downstream pathways: the 5-

HT pathway, the kynurenine pathway, and the indole pathway

(214). The kynurenine pathway of tryptophan metabolism

represents a critical link through which the MGB axis participates

in the immunopathology of schizophrenia. In schizophrenia,

immune activation upregulates pro-inflammatory cytokines (e.g.,

IFN-g, IL-1, TNF-a), which activate indoleamine 2,3-dioxygenase

(IDO) via both IFN-g receptor (IFN-gR)-dependent and

independent pathways (e.g., synergistic action of TLR4, IL-1R,

TNF-aR) (215). Enhanced activity of IDO enzymes (IDO-1 and

IDO-2) shifts tryptophan metabolism towards the kynurenine

pathway, leading to increased concentrations of kynurenic acid

(KYNA) within the CNS (216–220). Kynurenine (KYN) is

transported across the BBB and metabolized by glial cells into

KYNA and quinolinic acid (221, 222) ultimately resulting in

excessive KYNA production. Acting as an endogenous antagonist,

KYNA inhibits NMDA receptor and a7 nicotinic receptor function
(223), suppresses glutamate and acetylcholine neurotransmission

(223, 224), and leads to an imbalance in the glutamate, dopamine,

and acetylcholine systems, thereby affecting neurotransmission,

synaptic organization, and brain connectivity (225, 226).

On the other hand, activation of the KP results in substantial

tryptophan consumption, reducing the substrate available for 5-HT

synthesis (see Figure 2). Over 90% of the body’s 5-HT is synthesized

in the gut by enterochromaffin cells, which absorb tryptophan from

dietary proteins as a substrate for 5-HT synthesis; this process is

regulated by SCFAs and the kynurenine synthesis pathway (227,

228). Studies in animal models with gut microbiota depletion have

shown increased plasma tryptophan, elevated brain serotonin

concentrations, and reduced kynurenine pathway activity, all of

which normalize following microbiota restoration (229–231). Gut

microbiota dysbiosis and immune activation can further enhance

IDO activity, exacerbating the conversion of tryptophan to KYNA.

This leads to decreased peripheral and central 5-HT levels, impaired

receptor function, reduced concentrations of tryptophan and 5-HT

(232), worsened symptoms of affective disorders, elevated levels of

tryptophan catabolites (233, 234), and increased concentrations of

toxic metabolites in the CNS (235).

Animal experiments have demonstrated that acute tryptophan

depletion reduces brain tryptophan concentration by 70%, leading

to decreased serotonin levels, diminished 5-HT receptor binding

(236, 237), and effects on compulsive behavior (238). Similar results

have been observed in human cerebrospinal fluid (CSF) studies

(239). This suggests that immune dysregulation-induced gut

microbiota dysbiosis and activation of the kynurenine pathway

cause acute tryptophan depletion in the gut. This, in turn, leads to

reduced brain tryptophan concentration, decreased 5-HT levels,

and diminished 5-HT receptor binding, which may underlie the 5-

HT system dysfunction, impaired neurotransmission, and negative

cognitive effects observed in SZ.
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6.4 Limitations

This study has several limitations. First, despite conducting an

extensive literature search, we cannot entirely exclude the possibility

that some published studies may have been overlooked. Second, the

multiple meta-analyses and systematic reviews cited in this article

may carry a risk of accumulated type I errors (240). Furthermore,

although we endeavored to include studies that performed stratified

analyses of patients with schizophrenia, the interpretability and

generalizability of the results may still be constrained by limited

sample sizes and considerable population heterogeneity—such as

confounding factors including age, gender, ethnicity, smoking

history, and BMI (125).
7 Conclusions and discussion

7.1 Integrated mechanisms of the
microbiota-gut-brain-immune axis in
schizophrenia

By integrating the evidence discussed throughout this review,

we propose a comprehensive model illustrating the MGB-immune

interactions in schizophrenia (See Figure 3). At the peripheral level,

gut microbiota dysbiosis and a reduction in microbial metabolites—

particularly SCFAs—promote increased antigen exposure and

activation of innate immune responses. This leads to the

activation of immune cells (e.g., T cells, B cells, NK cells,

monocytes/macrophages) and dysfunction of glial cells,

culminating in the release of pro-inflammatory cytokines and

complement components such as C4. Accompanied by impaired

BBB integrity, these peripheral immune factors gain access to the

CNS, where they mediate neuroinflammatory responses, resulting

in synaptic damage and neuronal dysfunction.

In the CNS, dysbiosis directly or indirectly modulates

the function of microglia and astrocytes via metabolites

including SCFAs. Aberrantly activated glial cells exacerbate

neuroinflammation and influence synaptic pruning processes,

with complement C4-mediated synaptic phagocytosis playing a

critical role. Concurrently, pro-inflammatory cytokines regulate

the activity of key enzymes in tryptophan metabolism—

indoleamine IDO and TDO—promoting the production of

kynurenine pathway metabolites such as KYNA. This disrupts

multiple neurotransmitter systems, including dopamine, GABA,

glutamate, and serotonin, further exacerbating neurotransmission

dysfunction. Moreover, compromised intestinal barrier integrity

and gut-derived microbial components such as LPS activate TLR/

NF-kB/NLRP3 pathways, which not only drive systemic

inflammation but also modulate gut-derived tryptophan

metabolism and serotonin synthesis, thereby coupling immune

regulation with neuromodulatory functions.
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The gut microbiota, as a critical “microbial organ,” has

garnered extensive attention for its role in neuropsychiatric

disorders such as SZ. However, the causal relationships among

microbial dysbiosis, immune dysregulation, and disease onset

remain elusive. It is still unclear whether dysbiosis acts as a

driver, a consequence, or both. Elucidating this issue is

complicated by multiple confounding factors, including

population heterogeneity, medication use, dietary and lifestyle

variations, disease staging, and inconsistencies in research

methodologies. Although small-scale studies and disparities in

technical procedures—such as sample processing, sequencing, and

bioinformatic analyses—limit the reliability and generalizability of

the findings. Therefore, further large-scale and better-

standardized clinical studies with stratified populations are

urgently needed to provide more robust data on the association

between altered gut microbial features and schizophrenia.
7.2 Comparative analysis of gut microbiota
in neuropsychiatric disorders

It is well established that the gut microbiota regulates brain

function and behavior. The immune-mediated dysregulation of the
Frontiers in Immunology 12
MGB axis detailed in this review is observed not only in

schizophrenia but also across various neurological disorders

(241), including neurodevelopmental disorders (242), epilepsy

(243), and depression (244), among others. Major depressive

disorder is characterized by an elevated Bacteroidetes/Firmicutes

ratio (5), accompanied by enrichment of Bacteroides and depletion

of Blautia, Faecalibacterium, and Coprococcus, alongside increased

abundance of Eggerthella and elevated levels of pro-inflammatory

genera such as Escherichia (245). In contrast, anxiety disorders

demonstrate an increased Firmicutes/Bacteroidetes ratio (246),

reduced abundance of SCFA-producing genera including

Bifidobacterium and Lactobacillus, while Akkermansia abundance

shows a negative correlation with anxiety severity (247, 248).

Bipolar disorder similarly exhibits disruption of the Firmicutes/

Bacteroidetes ratio and reduced a-diversity, featuring increased

Streptococcaceae and Bacteroidaceae abundance contrasting with

deple t ion of ant i - inflammatory commensals such as

Faecalibacterium (249).Among neurodegenerative disorders,

Parkinson’s disease shows increased abundance of Lactobacillus

and B ifidobac t e r ium wi th concur ren t r educ t i on in

Faecalibacterium, Coprococcus, and Blautia (250, 251), where

decreased Blautia abundance correlates with clinical severity and

reduced fecal butyrate levels (252). Alzheimer’s disease manifests
FIGURE 2

The interactive mechanism of the kynurenine pathway among gut microbiota, immunity, and neurotransmitters. TRP, Tryptophan; KYN, Kynurenine;
KYNA, Kynurenic acid; 3-HK, 3-Hydroxykynurenine; QUIN, Quinolinic acid; 3-HAA, 3-Hydroxyanthranilic acid;a7nAChR, a7-nicotinic acetylcholine
receptors; NMDAR, N-methyl-D-aspartate receptor; GABA, Gamma-Aminobutyric Acid; 5-HT, 5-Hydroxytryptamine, Serotonin; 5-HTP, 5-
Hydroxytryptophan; IDO, Indoleamine 2,3-Dioxygenase; TDO, Tryptophan 2,3-Dioxygenase; KAT, Kynurenine Aminotransferase; KMO, Kynurenine
Monooxygenase; 3-HAO, 3-Hydroxyanthranilic Acid Oxygenase; HAAO, 3-Hydroxyanthranilate-3,4-dioxygenase; XA, Xanthurenic acid.
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through reduced beneficial bacteria including Bifidobacterium and

elevated opportunistic pathogens such as Escherichia and

Clostridium (253, 254). Autism spectrum disorder(ASD) presents

with reduced microbial diversity yet increased biomass in pediatric

populations (255, 256), featuring a shift from beneficial

microorganisms toward spore-forming, antibiotic-resistant, and/

or neurotoxin-producing species (257). Specific alterations include

reductions in Prevotella, Coprococcus, and Veillonellaceae, alongside

overgrowth of Desulfovibrio (positively correlated with Autism

spectrum disorder severity) (258), Sutterella, Ruminococcus,

Clostridium, Megamonas, and Candida (259, 260), accompanied

by an elevated Firmicutes/Bacteroidetes ratio (255). Notably,

Candida overgrowth and associated toxin production may

exacerbate neurobehavioral symptoms (37). Epilepsy research

similarly reveals substantial gut microbiota dysbiosis, with most

studies demonstrating reduced a-diversity in treatment-resistant

epilepsy (261–264). Phylum-level analyses indicate predominant

Firmicutes with relative Bacteroidetes reduction in some studies

(264, 265), while others report increased Actinobacteria,

Verrucomicrobia, or pro-inflammatory Proteobacteria, alongside
Frontiers in Immunology 13
potential reduction of beneficial Bacteroidetes and Actinobacteria

(262, 266).

In summary, these disorders share fundamental microbial

alterations: 1) Structural dysbiosis manifested through disrupted

Bacteroidetes/Firmicutes ratios and reduced a-diversity; 2)

Functional impairment characterized by universal depletion of anti-

inflammatory, SCFA-producing genera including Faecalibacterium,

Blautia, and Bifidobacterium; 3) Common pathophysiological

mechanisms involving impaired SCFA production, immune-

inflammatory activation, and dysregulated neuroactive metabolite

metabolism. These alterations promote systemic low-grade

inflammation through an imbalance between elevated pro-

inflammatory cytokines (e.g., IL-6, TNF-a) and anti-inflammatory

mediators (e.g., IL-10) (267–269). This systemic inflammation, akin

to the processes described in schizophrenia, can traverse the blood-

brain barrier or transmit via vagal afferents, subsequently activating

microglia and exacerbating neuroinflammatory processes while

impairing prefrontal cortex-mediated executive functions including

decision-making and emotional regulation (270). Pro-inflammatory

cytokines disrupt neurotransmitter metabolism through mechanisms
FIGURE 3

Integrated mechanisms of the microbiota-gut-brain-immune axis in schizophrenia. HPA axis, Hypothalamic-Pituitary-Adrenal Axis; SCFAs, Short-
Chain Fatty Acids; PRRs, Pattern Recognition Receptors; CRP, C-Reactive Protein; TLRs, Toll-like receptors; NLRs, Nucleotide-binding
Oligomerization Domain-like Receptors; CSF, Cerebrospinal Fluid; MHC, Major Histocompatibility Complex; BBB, Blood-Brain Barrier; C3/C4/C1q,
Complement Component 3/4/1q.
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such as inhibited tryptophan conversion to serotonin while driving

microglial activation, thereby amplifying neuroinflammation (271).

Activated microglia release chemokines, cytokines, and reactive

oxygen species, crucially contributing to neuroinflammatory

cascades while disrupting neurotransmitter balance and synaptic

plasticity through pro-inflammatory phenotypic transformation.

Notwithstanding these commonalities, disorder specific patterns

emerge. Major depressive disorder demonstrates Bacteroidetes/

Firmicutes ratio elevation contrasting with anxiety disorders, while

ASD presents the distinct profile of reduced diversity with increased

biomass and concurrent expansion of multiple opportunistic

pathogens. These shared and distinct features collectively illustrate

the multifaceted involvement of gut microbiota dysbiosis in

neuropsychiatric disorders. Beyond inflammation, psychological

stress represents another prevalent pathophysiological feature in

microbiota-associated diseases. Stress contributes to depression

(272), schizophrenia (273), autism spectrum disorder (274),

epilepsy (275), and migraine (276). Significant comorbidity exists

among these conditions, exemplified by the frequent co-occurrence

of depression and ASDwith epilepsy (277), the common comorbidity

of depression with migraine (277), and the elevated prevalence of

inflammatory bowel disease or irritable bowel syndrome among

migraine patients (278).
8 Future perspectives

The gut microbiota can influence drug bioavailability and

efficacy through metabolism, while most psychotropic

medications possess anti-inflammatory properties and may

directly alter microbial composition. A recent study revealed that

gut microbiome abnormalities in schizophrenia patients were

primarily associated with resistance to antipsychotic treatment,

whereas this correlation was significantly weaker in patients who

responded well to atypical antipsychotics (279). This suggests that

structural changes in the gut microbiota may serve more as a

potential biomarker for clozapine resistance rather than an

intrinsic feature of schizophrenia itself. Underlying mechanisms

may involve microbial-mediated drug metabolism, transformation,

and modulation of intestinal barrier function.

Furthermore, current immunomodulatory therapies, including

immunosuppressants and biologics, remain predominantly

palliative. Long-term administration often leads to drug tolerance

and opportunistic infections (280). The substantial comorbidity

burden—approximately 30% of inflammatory bowel disease

patients develop anxiety or depression—highlights the urgent

need for dual-effect therapies that simultaneously address

intestinal inflammation and gut-brain axis modulation.

Combinatorial treatment strategies targeting the gut-brain

interplay represent a paradigm shift in managing psychiatric

comorbidities in systemic disorders.
Frontiers in Immunology 14
By assessing baseline microbiome profiles, it becomes possible

to identify individuals at high risk for poor response to relevant

medications prior to treatment initiation. This enables the

development of personalized dosing regimens or adjunctive

microecological interventions (e.g. , probiotic/prebiotic

supplementation) to enhance therapeutic efficacy while reducing

the incidence of drug resistance and adverse effects. These advances

underscore the translational value of microbiome research in the

precision medicine of mental disorders.

Although microbial-based interventions, such as probiotics,

demonstrate therapeutic potential—for instance, certain strains of

Lactobacillus and Bifidobacterium have shown preliminary efficacy

in alleviating depressive symptoms (281)—their benefits in

schizophrenia remain inconsistent and lack high-quality clinical

support (282). Therapeutic strategies targeting the MGB axis,

including prebiotics, synbiotics, and fecal microbiota

transplantation, are not universally applicable. Instead, they

should be tailored based on disease subtype, patient stratification,

and bacterial functionality. Their clinical utility urgently requires

validation through well-designed, large-scale randomized

controlled trials.
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152. Garcıá Bueno B, Caso JR, Madrigal JL, Leza JC. Innate immune receptor toll-
like receptor 4 signalling in neuropsychiatric diseases. Neurosci Biobehav Rev. (2016)
64:134–47. doi: 10.1016/j.neubiorev.2016.02.013

153. Balaji R, Subbanna M, Shivakumar V, Abdul F, Venkatasubramanian G,
Debnath M. Pattern of expression of toll like receptor (Tlr)-3 and -4 genes in drug-
naïve and antipsychotic treated patients diagnosed with schizophrenia. Psychiatry Res.
(2020) 285:112727. doi: 10.1016/j.psychres.2019.112727
Frontiers in Immunology 18
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