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Introduction: Despite extensive research, the pathogenesis and predispositions
underlying long COVID (long-term coronavirus disease 2019) remain
poorly understood.

Methods: To address this, we analyzed the immunological landscapes of 44
patients with long COVID and 44 matched convalescents using single-cell RNA
sequencing (scRNA-seq) of peripheral blood mononuclear cells (PBMCs) and
validated the findings with plasma cytokine measurements via Luminex technology.
Results: While the immune cell compositions showed minimal quantitative
differences only among natural killer (NK) cells, the transcriptome analyses
identified distinct gene expression patterns, particularly in classical monocytes:
patients with long COVID exhibited downregulation of the inflammation-
associated genes, including IL1B and CXCL2. Imputation of the transcription factor
activity hinted at a reduced inflammasome activity (via SNA/1) and an impaired
monocyte differentiation (via ATF2) in long COVID. The RNA velocity data supported
the presence of immature classical monocytes in these patients.

Discussion: These findings show that monocytes might be dysregulated and/or
exhausted in patients with long COVID.
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Introduction

Since its emergence in late 2019, severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) has caused a global
pandemic resulting in millions of deaths (1) and has posed
significant public health challenges. While accelerated vaccine
development and the evolution of viral variants have led to a
reduction in severe acute coronavirus disease 2019 (COVID-19)
cases (2), another clinical entity, i.e., "long COVID", has gained
attention. Long COVID describes the persistence of symptoms
lasting for at least 4 weeks after infection that cannot be
explained by another diagnosis (3). It is estimated that
approximately 10% of individuals infected with SARS-CoV-2 will
experience long COVID, although the data vary between
publications (4). Since the term "long COVID" has become
established in the language used by patients and also in science,
we decided to use it in our study instead of the term "post-COVID",
as defined by the World Health Organization for a condition that
specifies symptom onset within three months after SARS-CoV-2
infection and persistence for at least two months (5). The
characteristic symptoms include fatigue, shortness of breath, and
cognitive impairment; however, over 200 symptoms have been
described in patients with this condition (6). The diverse clinical
phenotypes of patients with this condition hamper diagnosis and
adequate treatment and call for a deeper understanding of
its pathogenesis.

The risk factors for the development of long COVID include
female sex, age, abnormal BMI, and severe previous courses of
SARS-CoV-2 infection (7-9). However, it remains unclear whether
and to what extent genetics predispose and which mechanisms
contribute to this condition (10). Hypotheses to explain the latter
include the persistence of a viral reservoir, potentially within the
gastrointestinal tract (11-13), and the reactivation of latent viruses,
such as Epstein-Barr virus (14-16). Others have focused their
attention on the impact of SARS-CoV-2 on the vascular system
(17-19). Our own focus is on the immunological landscape, as both
autoimmunity (20-22) and a perturbation of the peripheral
immune system (23-25) have been discussed as potential
underlying pathology. Along these lines, previous single-cell RNA
sequencing (scRNA-seq) studies have demonstrated distinct
immunological subsets in patients with long COVID, including
increased myeloid lineage cells with downregulated immune
pathways in two cases (26). Another study on 69 infected
individuals, including 21 with long COVID, reported significant
perturbations in gene expression until at least 6 months post-
infection, with long COVID patients failing to revert to their pre-
infection state (27). In contrast, another independent study on 10
patients showed that the majority of the immunological changes in
long COVID resolved 24 months after infection (28).

Abbreviations: COVID, corona virus disease; scRNAseq, single-cell RNA
sequencing; PBMCs, peripheral blood mononuclear cells; TF, transcription
factor; NK cell, natural killer cell; GO, Gene Ontology; DEGs, differentially
expressed genes; GSEA, gene set enrichment analysis; FDR, false discovery rate;

NES, normalized enrichment score.
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Despite significant global research efforts, the underlying
mechanisms of long COVID remain incompletely understood. To
further the current knowledge, we performed scRNA-seq on the
peripheral blood mononuclear cells (PBMCs) of 44 patients with
long COVID and 44 matched convalescents in combination with
plasma protein profiling in order to gain detailed insights into the
cellular and molecular changes associated with long COVID.

Methods

Recruitment and characterization of the
study cohorts

A total of 44 patients with long COVID were recruited from the
outpatient clinic of Rostock University Medical Center. Selection
was based on the order of their visit, and diagnosis followed the
WHO definition of “Post COVID-19 condition (long COVID)” (5,
29). The symptoms, disease progression, comorbidities, previous
treatments, and quality of life are summarized in Figure 1A. Health-
related quality of life (HRQoL) was assessed using the Short-Form
12 (SF-12) (30) and the Bell Disability Score (31). Routine
laboratory tests included complete blood counts, coagulation
parameters, C-reactive protein (CRP), liver enzymes, renal
parameters, vitamin B12, folate, 25-OH-vitamin D, and thyroid-
stimulating hormone (TSH), as well as basic autoimmune
diagnostics. Differential diagnoses were excluded by the
consulting cardiologists and pneumologists. A total of 44 age- and
sex-matched controls were recruited from a monitored healthcare
worker cohort (32-34). Selection was based on primary messenger
RNA (mRNA) vaccination and on optimal matching with patients.
Of the controls, 43 were convalescent from SARS-CoV-2 infection
and one was uninfected.

Ethics commitment

This study was approved by the Ethics Committee of the
Rostock University Medical Center under file no. A 2020-0086
and no. A 2023-0081. Written informed consent was provided by
all participants.

PBMC isolation

Venous blood was collected into EDTA vacutainers. PBMCs
were isolated using SepMates (StemCell, Vancouver, BC, Canada)
with Ficoll-Paque PLUS (Cytiva, Marlborough, MA, USA). Aliquots
of 1-3 x 10° cells each were stored at —80°C until further processing.

Single-cell capture and RNA sequencing

After thawing, 180,000 PBMCs were labeled with BD Human
Multiplexing Sample Tags (Becton Dickinson, Franklin Lakes, NJ,
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Detailed description of long COVID patients and the control cohorts. (A) UpSet plot summarizing the pooled patient groups, with horizontal bars
representing the number of patients in each symptom group and vertical black bars representing the symptom combination groups. (B) Bar plots
showing the time (in months) between blood sampling and the second vaccine dose in blue and between blood sampling and the primary severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in red.

USA) for the multiplexing of 12 samples per run. The viability of
PBMCs was assessed via staining with Calcein and DRAQ7
(Thermo Fisher Scientific, Waltham, MA, USA). RNA was
harvested using the Single-Cell Capture and cDNA Synthesis
protocol with the BD Rhapsody Single-Cell Analysis System, and
a total of eight runs were performed to enable single-cell capture
from all patients and controls. Each run contained a balanced
mixture of patient and control samples plus a spike control
(isolated CD3™ T cells from an independent donor) to monitor
potential batch effects. A total of 40,000-60,000 cells were pooled
and loaded onto the Rhapsody cartridge. The incubation times for
settlement of the cells varied between 15 and 25 min. The RNA
libraries for scRNA-seq were prepared using the Library
Preparation Protocol for mRNA Whole Transcriptome Analysis
and Sample Tag according to the manufacturer’s instructions and
were purified using AMPure beads (Beckman Coulter, Brea, CA,
USA). The libraries were indexed using a run-specific primer and
were quantified and quality-checked using a Qubit 3.0 Fluorometer
(Thermo Fisher Scientific, Waltham, MA, USA) and an Agilent
4200 TapeStation System with the Agilent HS D5000 screen tape
assay (Agilent Technologies, Santa Clara, CA, USA). Sequencing
was performed by Novogene Europe (Cambridge, UK, Munich
subsidiary) using Illumina technology.

scRNA-seq data analysis and quality
control

Raw scRNA-seq reads were aligned to the human genome and
annotated by cell type using the BD RhapsodyTM Sequence Analysis
Pipeline 2.2.1, complemented by manual assignment as previously
described in Hillman et al. (35). Subsequent analysis was conducted
using the Seurat 5.1.0 package in R, version 4.4.1 (R Core Team
2024, Vienna, Austria) (36, 37).
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Quality control procedures involved the exclusion of cells
exhibiting either an excessive or an insufficient number of unique
RNA products or more than 25% of mitochondrial genes. A total of
132,230 PBMC:s could successfully be recovered (44 patients and 44
controls). Of these, 118,843 passed quality control. Cartridge batch
effects were assessed using a cell mix score calculated using the
CellMixS 1.7.1 package for R for the CD3" spike cells, the aim of
which was to statistically validate the visual impression of
homogeneous distribution provided by the UMAP (uniform
manifold approximation and projection). This score is based on
the calculation of a p-value for each cell, which represents the
probability of belonging to a common underlying population (38).
Subsequent analysis involved the normalization and scaling of
the reads.

Cytokine profiling

Cytokines were measured using a custom-designed Luminex®
Discovery Assay panel (R&D Systems, Minneapolis, MN, USA),
with selection based on the identified differentially expressed genes
(DEGs). The assay was performed according to the manufacturer’s
protocol using undiluted plasma samples. Data acquisition was
100/200™ System, with
calculations performed using XxPONENT® 3.1 software. The

carried out using the Luminex®

lowest manufacturer standard was considered as the lower limit
of detection (LLOD). No extrapolation was performed.

Measurement of IgG antibodies against the
SARS-CoV2 nucleocapsid

Cryopreserved plasma samples from both patients and controls
were analyzed using an enzyme-linked immunosorbent assay
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(ELISA) specific for immunoglobulin G (IgG) antibodies against the
nucleocapsid protein of SARS-CoV-2 [anti-SARS-CoV-2-NCP-
ELISA (IgG)] (EUROIMMUN Medizinische Labordiagnostika
AG, Liubeck, Germany) following the manufacturer’s protocol.
The samples were centrifuged at 10,000 x g for 5 min prior to
101-fold dilution. Photometric measurements were obtained at 450
nm with a reference wavelength of 620-650 nm using the Infinite
M200 spectrophotometer (Tecan, Madnneheim, Switzerland). The
results were calculated as the ratio of the sample extinction to that of
the calibrator.

Statistics

DEGs were determined using a non-parametric Wilcoxon rank-
sum test and were classified based on a fold change greater than 3
and a (Bonferroni-corrected) p-value less than 107'8. UMAPs were
constructed using nearest-neighbor clustering of all the genes
expressed. Spearman’s rank correlation coefficient was employed
for correlation analyses. Heatmaps were constructed using a
column/row-wise clustering approach with complete linkage and
Euclidean distance metrics. Gaussian distribution was assessed
using Kolmogorov-Smirnov tests. The Mann-Whitney U test was
employed for the comparison of data that did not adhere to a
normal distribution. Statistical analysis was performed using SPSS
version 29.0.1.1 (IBM, Armonk, NY, USA) and GraphPad Instat
version 3.1 (GraphPad Software, Boston, MA, USA).

Transcription factor activity

Estimation of transcription factor (TF) activity was performed
using the DoRothEA R package version 1.16.0, a gene regulatory
network comprising signed interactions between TFs and their
target genes (39-41). The VIPER algorithm (42) was employed to
estimate the activity of the TFs from the expression data of all
monocytes of all genes. Group comparisons were made based on the
mean differences.

RNA velocity

The raw reads of all genes were divided into spliced and
unspliced read matrices before estimation of the RNA velocities
using gene-relative slopes. The velocity graph was visualized on the
previously calculated UMAP of all monocytes embedding,
employing a correlation-based transition probability matrix
within the k-nearest neighbor graph. All analyses were performed
using velocyto.R and velocyto.py (43).

Pathway analysis

Pathway analysis was conducted with ShinyGO software (44),
which compared all downregulated genes in all monocytes of the
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long COVID cohort with the Reactome 2022 (45) and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) 2021 (46-48)
databases. Gene set enrichment analyses (GSEA) were performed
by alignment of the normalized counts of all monocytes with the
Hallmark Gene Sets of Molecular Signatures Database (49-51).
Enriched pathways were identified using the normalized
enrichment score (NES) and the false discovery rate (FDR).

Results

Peripheral immune cell compositions in
long COVID patients were inconspicuous

We analyzed the PBMCs from 44 individuals diagnosed with
long COVID using scRNA-seq, with the detailed clinical
characteristics, comorbidities, and treatments summarized in
Table 1. Majority of the patients reported mild (n = 27) or
moderate (n = 13) initial SARS-CoV2 infections (29). Quality of
life, assessed in 21 and 16 long COVID patients using the Short-
Form 12 (30) and the Bell score (31), respectively, was significantly
reduced compared with that of standardized populations [MCS
(mental component summary): ¢ (20) = —-13.17, p < 0.001; PCS
(physical component summary): ¢t (20) = —15.33, p < 0.001].
Patients were grouped according to symptoms such as dizziness,
pain, cognitive or cardiorespiratory constraints, and fatigue. The
number of patients in each symptom combination group is
presented in Figure 1A. The severity of the symptoms and post-
exertional malaise, classified as extreme exhaustion after minimal
stress, were mentioned, when available. Controls (n = 44) were age-
and sex-matched, mostly convalescent (n = 43) plus one naive to
SARS-CoV-2 (n = 1), as determined based on the anti-nucleocapsid
antibodies. Both groups received comparable numbers of SARS-
CoV2 vaccinations and had received mRNA vaccines only
(Table 1). The controls, mainly healthcare workers, were primed
and boosted at the turnaround 2020/2021, followed by the patients
in the spring/summer of 2021. First SARS-CoV-2 infections
occurred mainly in 2022, suggesting Omicron as the predominant
variant in all study participants (52). Figure 1B summarizes, for
both cohorts, the time intervals between blood sampling and

TABLE 1 Demographics, vaccinations, and infections of the study
cohorts.

Patients Controls
Parameter -value
(n=44 (=44 P
Men/women, n 9/35 9/35 1.0°
Age (years), median (range) 54 (19-79) 51 (26-63) 0.5202¢
No. of inations, i .
0' of vaccinations, median 3 (36) 3(-5) 0.1055¢
(min-max)
0.6811
Anti-nucleocapsid antibodies, 2.479 (0.3222- .
. . N (0.2490- 0.0086
median (min-max) 7.898)
8.414)

“Ratios that are a relative measure for the concentration of antibodies in plasma.
PFisher’s exact test.
“Mann-Whitney U test.
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The peripheral immune cell compositions in long COVID patients were inconspicuous. (A) Stacked bar plots indicating the relative cell counts in
each sample. Cell types, long COVID patients, and controls are color-coded, as shown on the right. (B) Box plots summarizing the percentages
determined for the controls and the patients for each cell type. Boxes represent 25, 50, and 75 percentiles, and lower and upper whiskers indicate 10
and 90 percentiles, respectively. Outliers are shown. The p-values were determined using two-sided Mann—Whitney U test. No adjustments for

multiple comparisons were made.

completion of the primary immunization, as well as between blood
sampling and first infections.

At the time of blood collection between July 2023 and February
2024, the controls, as part of a vaccination study (32), had been
regularly assessed for anti-nucleocapsid antibodies, revealing a
median of two infections each. Regarding the patients, the
infection that triggered long COVID had been documented;
thereafter, any reliable information on additional SARS-CoV-2
infections was sketchy. We therefore quantified the patients’ anti-
nucleocapsid IgG antibodies at the time of blood collection and
found evidence of recent infections in some patients, but also
confirmed fewer and/or longer ago infections for the majority,
resulting in a significantly lower median for the anti-nucleocapsid
titers in patients compared with the controls (Table 1).

Quality control of the scRNA-seq included the exclusion of cells
with aberrant counts of unique RNA products (<200 and >4,000)
and cells expressing more than 25% of mitochondrial genes.
Assessment of batch effects and calculation of the cell mixing
scores of the spike controls from each experimental run
confirmed a high degree of comparability between all
experimental runs, justifying the combined processing of all data
(Supplementary Figures SID-F).

Using the BD Rhapsody " Sequence Analysis Pipeline on the
basis of the highly expressed genes, in conjunction with a manual
assignment of monocytes according to the expression of CD14 and
CD16, as previously described in Hillman et al. (35), allowed for the
identification of eight distinct cell types (Figure 2A). In order to
mitigate potential biases due to sample-to-sample variations in cell
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yields, we here compared the relative cell counts. Figure 2A shows
comparable immune cell compositions between patients and
controls, with only minor differences in NK cells (Figure 2B).

Classical monocytes of long COVID
patients display significant alterations in
their immune signatures

UMAP clustering of cells revealed distinct expression profiles
between patients and controls in classical and intermediate, but not
non-classical, monocytes (Figures 3A, B). Differential gene
expression analysis, based on a fold change threshold greater than
3 and a p-value threshold below 1078, identified 40 DEGs in
classical, 13 in intermediate, and 6 in non-classical monocytes,
while other cell types showed minimal changes (Figure 3C).

The volcano plot in Figure 4A details these findings for the
classical monocytes. In total, there were 37 downregulated genes in
patients with long COVID, among them IL1B, several chemokines
(CCL3, CCL4, CXCL1, CXCL2, CXCL3, and CXCL8), and the
TNFo-induced protein 3 (TNFAIP3). Further downregulated
genes included DUSP2, encoding a phosphatase that
downregulates members of the mitogen-activated protein (MAP)
kinase superfamily (53), and MIRI55HG, a microRNA involved in
the regulation of MHCII antigen presentation (54) (Figure 4A). In
order to eliminate the possibility that the observed differences
between patients and controls were merely a consequence of the
varying intervals between the blood sampling and the most recent
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expressed genes (DEGs) in the various cell types based on a fold change threshold greater than 3 and a p-value threshold below 1078,

SARS-CoV-2 infection, we employed the anti-nucleocapsid titers as
a surrogate and correlated them with the respective raw read counts
for each of the 40 DEGs. Supplementary Table S2 presents the
correlation coefficients, with range between 0.0133 and 0.185
or —0.0003 and —0.217, thus ruling out any simple linkage. To
further evaluate the use of convalescents as a control group, we
compared our data to those of publicly available datasets generated
via scRNA-seq of healthy controls from two different studies (55,
56). These external control groups were free of immune disorders
and, when compared with our long COVID group, confirmed a
consistent downregulation of the majority of the DEGs
(Supplementary Figure S2).

As monocytes displayed the most DEGs, GSEA was performed
for this subset using NES > 0 and FDR < 0.01. Patients with long
COVID showed a significantly reduced expression of the
inflammation-related pathways, including TNFo signaling via
NE-xB, consistently through all subsets of monocytes (Figure 4B).
Additional pathways, such as inflammatory response and apoptosis,
were also downregulated, while heme metabolism and hallmark
genes of oxidative phosphorylation (although failing to reach
significance) demonstrated a higher NES in patients compared to
the controls (Figure 4C). Of note is that the downregulated genes in
the monocytes of patients formed a homogeneous pattern, clearly
separating patients and controls, and most prominently in classical
and intermediate monocytes, although to a lower extent also visible
in non-classical monocytes (Figures 5A-C).

The three most significantly upregulated genes in the classical
monocytes of patients with long COVID were ENSG00000287256,
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GRIPI1, and TNFRSFI2A, the latter a weak inducer of apoptosis
linked to fibrosis-related pathways (57) (Figure 4A). However,
application of Euclidean distance metrics revealed for the former
two an upregulation in only very few patients, while the majority
remained inconspicuous (Figure 5A). Supplementary Figure S3
summarizes the differences in the expression patterns between
patients and controls based on median counts per million (CPM)
per DEG. Consistent with the GSEA results, intermediate
monocytes showed significant expression of the genes related to
inflammation, such as IL-1b, CXCL2, and CXCLS, with uniformly
lower results in patients.

The plasma concentrations of CXCL2 confirmed the RNA
sequencing (RNAseq) data, while other chemokines, such as
CCL20, showed a trend that did not quite reach statistical
significance (Figure 6). The plasma concentrations of IL-6, TNFa,
IFNy, IL-1B, CXCL1, CXCL8, and CCL4 remained below their
respective detection thresholds (Supplementary Table S3).

As there was a minor quantitative difference observed for the
NK cell populations, differential expression of the genes was also
analyzed. However, only two genes allowed for the clustering of
patients and controls. These genes were identified as TNFa-induced
protein 8-like protein 2 (TNFAIP8L2) and CISH, both of which
have been implicated in the regulation of immune processes. Both
were downregulated in patients with long COVID (Supplementary
Figure S4).

In summary, we here showed that the differences in the immune
landscape between patients with long COVID and controls were i)
restricted to classical and intermediate monocytes; ii) reflected in
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Classical monocytes in long COVID patients showed functional alterations. (A) Volcano plot specifying the differentially expressed genes (DEGs) in
classical monocytes based on a fold change threshold greater than 3 and a p-value threshold of 107*%. (B) Gene set enrichment analysis results,
selected based on a normalized enrichment score (NES) >0 and a false discovery rate (FDR) <0.01, revealing, for patients with long COVID, a
significant reduction in the expression of the key gene sets associated with inflammation pathways. (C) Bubble plot summarizing, for the various
monocyte subsets, the results of further gene set enrichment analyses and showcasing additional pathways that were consistently downregulated in
patients. Color coding and the size of the bubbles indicate FDR and NES, respectively.
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Differentially expressed genes in classical monocytes revealed significant differences between long COVID patients and controls. (A) Heatmap
showing the results of the Euclidean distance metrics of the single-cell RNA sequencing (scRNA-seq) data from classical monocytes, segregating
long COVID patients and controls into three major clusters. (B, C) Respective heatmaps for intermediate and non-classical monocytes. Box plots
summarizing the median counts per million (CPM)/gene and comparing patients and controls are depicted in Supplementary Figure S3.
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FIGURE 6

Plasma CXCL2 and CCL20 confirmed the single-cell RNA sequencing (scRNA-seq) data. (A) Box plots overlaid with dots representing individual
patients and controls summarizing the plasma concentrations of CXCL2, CCL20, and CCL3, analyzed using Luminex assays (n = 44 each). Boxes
represent 25, 50, and 75 percentiles, and lower and upper whiskers indicate 10 and 90 percentiles, respectively. P-values are the results of two-sided
Mann—-Whitney U tests. LLOD, lower limit of detection. (B) Box plots showing the corresponding differentially expressed genes in all monocytes via
the median counts per million (CPM) of patients and controls. Boxes represent 25, 50, and 75 percentiles, and lower and upper whiskers indicate 10
and 90 percentiles, respectively. Outliers are shown. P-values are the results of two-sided Mann—Whitney U tests.

the DEGs that are predominantly downregulated; and iii)
confirmed as reduced protein concentrations in the plasma for
CXCL2 and CCL20.

Differentially expressed genes in the
classical monocytes of long COVID
patients hint at less inflammasome activity
and an immature phenotype

Subsequent subclustering analysis yielded 10 distinguishable
monocyte populations (Figure 7A). Subcluster 3 was predominantly
associated with non-classical monocytes, as well as a portion of
subcluster 7. All the other subclusters were associated with classical
and intermediate monocytes (Figure 7B). The bubble heatmap in
Figure 7C provides a detailed visualization of all 40 DEGs,
highlighting the subclusters in which each gene was expressed
and the proportion of cells within those subclusters expressing
the respective genes. Figure 7D attributes subclusters 0, 5, and 7 to
monocytes from the patients and subclusters 4 and 6 to the controls.

Moreover, the RNA velocity trajectories suggested an origin of
differentiation and thereby majority of the immature monocytes in
subcluster 0 and neighboring areas that comprise classical and
intermediate monocytes from patients in subclusters 1 and 7
(Figure 7D). From this origin, the trajectories extended in two
directions, either via subcluster 1 toward subcluster 4 or toward
subcluster 2. However, interestingly, the trajectories pointed from
subcluster 6 toward subcluster 5, suggesting another origin of
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differentiation. Similarly, the trajectories from subcluster 3,
consisting of non-classical monocytes, pointed to various
directions, except toward the patients’ monocytes. However,
subclusters 3, 5, 7, 8, and 9 harbored the least DEGs (see Figure 7C).

Gene Ontology (GO) enrichment analysis of the 37
downregulated genes in all monocytes from patients, ranked
based on the FDR, highlighted functional alterations in long
COVID. Cross-referencing with the KEGG and Reactome
databases revealed that the infection-related pathways (IL-17, IL-
10, and TNFo signaling) were significantly enriched among the
downregulated genes, indicating the reduced activity of these
pathways in the classical and intermediate monocytes of patients.
Similarly, pathways linked to pro-inflammatory conditions such as
rheumatoid arthritis and legionellosis were found to be suppressed
in patients (Figure 8A). To assess transcriptional regulation in
patients with long COVID, the TF activities were imputed from
the expression data of all the genes expressed in all monocytes using
DoRothEA. The heatmap in Figure 8B shows that the monocytes
from patients appeared to be primarily regulated by SNAII, which is
known to suppress inflammasome activity (58). Conversely, ATF2,
a TF associated with monocyte differentiation (59), displayed a
markedly reduced activity in patients. A more extensive spectrum of
TFs exhibited weaker differences, encompassing WT1, ATF2, ETV4,
DDIT3, and HMGAL.

In summary, the transcriptional profile of classical monocytes
implied not only a lower expression of pro-inflammatory cytokines
and various chemokines but also an involvement of TFs that
suppress inflammasome activity in patients. A conspicuous
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FIGURE 7

Differentially expressed genes from distinct monocyte subclusters. (A) Uniform manifold approximation and projection (UMAP) of the single-cell RNA

sequencing (scRNA-seq) data from classical monocytes identifying 10 distinc
classical monocytes. (C) Bubble heatmap visualizing the gene expression for

t clusters. (B) UMAP differentiating classical from intermediate and non-
each cluster, where the color and the dot size indicate the average

scaled expression levels and the percentages of cells expressing the respective gene, respectively. (D) RNA velocity trajectories indicating the
differentiation of distinct populations of monocytes against the background of patient and control cells.

deficiency of transcriptional regulation promoting monocyte
differentiation was observed, indicating an immature phenotype
in the classical monocytes of patients. The RNA velocity data
corroborated these findings, as the patient-derived subcluster 0
not only contained the largest number of DEGs but also the least
differentiated monocytes.

Distinctive gene expression in long COVID
patients did not correlate with the clinical
parameters

In order to explore potential diagnostic indicators for long
COVID, we set out to investigate the correlations between routine
pathology parameters, quality of life, and the DEGs in classical
monocytes. We here concentrated on classical monocytes as they
not only expressed the most DEGs but also constituted by far the
largest fraction of peripheral monocytes. As demonstrated in
Supplementary Figure S5, there was no linkage, and neither was
there any correlation between the main clinical symptoms and
the DEGs.

Discussion

Our scRNA-seq analysis complemented by plasma profiling
provided a comprehensive and novel immune landscape of long

Frontiers in Immunology 09

COVID syndrome. We revealed qualitative rather than quantitative
alterations, confined to classical monocytes, confirming the
importance of innate immunity in long COVID (24, 60). Notably,
we observed the reduced gene expression of the inflammatory
mediators in patients, including ILIB and various chemokines,
contrasting prior studies that reported a transiently pro-
inflammatory monocyte state (25, 28). TF imputation via
DoRothEA pointed to an enhanced activity of SNAII, implicating
inflammasome suppression, and reduced ATF2 activity, indicating
impaired monocyte-to-macrophage differentiation (58, 59).
Together with the RNA velocity analysis, these findings support a
developmental impairment in the immature classical monocytes of
patients with long COVID. While the proportions of the monocyte
subset remained unchanged, we speculate that some classical
monocytes still differentiated into intermediate and non-classical
monocytes, explaining the decreasing number of DEGs along the
maturation trajectory. Functionally, immature classical monocytes
in the peripheral blood may lead to a deficit of mature classical
macrophages in surrounding tissues, potentially reducing the
pathogen defense capability (61). Indeed, anecdotal reports from
patients indicated increased susceptibility to infections after having
acquired long COVID. Future work should therefore not only
investigate the tissue macrophages of patients with long COVID
but also monitor in detail seasonal infections.

The question whether the reduced inflammatory potential and the
immature phenotype of classical monocytes in patients are a cause or a
consequence of long COVID arises. In case of a predisposition, the
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Monocytes from long COVID patients revealed changes in the immunological pathways, transcription factor activities, and differentiation stages. (A)
Bar plots of the downregulated pathways in long COVID patients created with the ShinyGO software by comparing the downregulated genes (n =
37) in all monocytes of the patients and ranked using the false discovery rate (FDR). (B) Heatmap showing the transcription factors (TFs), as inferred
via DoRothEA, regulating the genes expressed in the monocytes of patients and controls. Plots were generated from the expression data of all

monocytes for all genes.

restricted inflammatory response from macrophages could impair viral
control during infection. Indeed, more severe courses of COVID-19
predispose for long COVID (7, 9), and impaired viral control may
allow viral persistence, facilitating long COVID (11-13, 62). Although
patients did not report immune defects pre-illness, a mild monocytic
impairment could explain the observation that, in the majority of cases
with long COVID, a single infection with SARS-CoV-2 sufficed
triggering long COVID (8). An impaired cytokine production during
infection would also delay immune cell recruitment to the lung and
thus prevent efficient elimination of the virus, causing damage to the
lung and facilitating post-exertional malaise, fatigue, persistent cough,
shortness of breath, and chest pain in the long run (63).

Impaired monocyte maturation as a consequence of SARS-CoV-2
infection, on the other hand, is quite intriguing as it implies an innate
memory. While the concept of adaptive immune memory is well
established, evidence for comparable mechanisms in innate immunity
has only been recently recognized. These mechanisms are termed
trained immunity or immune tolerance, depending on whether the
immune response to a repeated encounter with a pathogen is
upregulated or muted (64-68). Indeed, viral infections can induce
long-term immune alterations and organ-specific complications (69).
Given that monocyte gene expression is still altered more than a year
post-infection and that classical monocytes circulate through the
periphery for only 1 day before being recruited to the various
tissues, an alteration in progenitor cells is strongly indicated (70).
Epigenetic reprogramming of the monocytes and hematopoietic
progenitors has been described in severe COVID-19, resulting in
the hyperactivation of monocytes during infection (71). In long
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COVID, our data instead suggest a state of immune tolerance. In
support of this, another research group demonstrated that stimulation
with the SARS-CoV-2 envelope protein induced tolerance in human
monocytes, reducing the responses against secondary stimuli (72). A
decline in innate and adaptive immune cells has been recently shown
in individuals infected with SARS-CoV-2 at 10 months after COVID-
19 (69). It remains unclear why some recover while others maintain
innate memory and develop sequelae. However, a recent study on the
post-acute sequelae of Ebola virus disease has also described a
dysregulation of monocytes and thus may confirm shared biological
pathways among post-acute infection syndromes (73).

A state of immune exhaustion induced by prolonged viral
challenge has been proposed as a mechanism in long COVID.
Monocytes from infected individuals have been observed to exhibit a
decrease in cytokine secretion, a finding similarly observed in our
patient cohort (74). This aligns with previous long COVID studies
reporting cytokine deficiencies and suggesting immune exhaustion as a
pivotal factor of the disease (63). Exhausted monocytes with an
impaired differentiation capacity have also been implicated in the
pathogenesis of sepsis (75, 76). Our GSEA only partially supported
this hypothesis. We observed a trend toward elevated OPXHOS in
patients, consistent with exhaustion-associated metabolic
reprogramming (77). In contrast, the apoptotic pathways were
downregulated, which does not fully align with classical exhaustion
patterns (78). Moreover, patients with long COVID showed no
elevated expression of PD-1, no reduction in CD86 or MHCII, and
no depletion of innate immune cells, indicating that a direct translation
of the exhaustion mechanisms seen in other diseases may be limited.
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There are additional aspects of our results that are worth
discussing. TNFRSFI2A, a mediator of lung fibrosis in severe
COVID-19 (57), was robustly upregulated, suggesting a possible
therapeutic target. Secondly, the NK cell alterations regarding
relative proportions and expression profiles were minor, but were
consistent with previous research that reported a reduced cytotoxic
capacity in NK cells during severe SARS-CoV-2 infection,
highlighting their potential relevance in the pathogenesis of long
COVID (79). Thirdly, we did not find any robust correlation
between the gene expression profiles of patients and the clinical
assessments, which may indicate that the distinct immunological
changes in patients with long COVID contribute to rather diverse
phenotypic disease characteristics.

Finally, several limitations have to be acknowledged. Firstly, due
to the lack of pre-infection samples, we cannot discriminate
whether our results are a cause or a consequence of long COVID.
While prospective studies would be ideal, they are becoming
increasingly unfeasible as the majority has now been infected with
SARS-CoV2. Secondly, convalescents served as controls and were
matched for age, sex, and immunization histories. However, as
healthcare workers, they had experienced either more frequent or
more recent SARS-CoV-2 infections, as indicated by the higher
anti-nucleocapsid titers. However, the scRNA-seq results did not
correlate with the anti-nucleocapsid titers, supporting our
interpretation of a downregulation on the patients’ side rather
than an upregulation in the controls. Our findings were further
validated by an external healthy control cohort. Thirdly, a long
COVID diagnosis remains challenging due to the lack of definitive
biomarkers. Even with standardized diagnostic procedures in place
at our medical care center, some uncertainties persist. Fourthly, the
variants of concern were inferred from the infection time points;
however, as the majority of the primary infections in both cohorts
occurred predominantly in 2022, Omicron was likely dominant
(52). Finally, our focus on PBMCs did not allow any conclusion on
transcriptional changes in neutrophils, which may have
complemented the picture.

In conclusion, we here present a downregulation of the
inflammatory pathways in the classical monocytes of patients
with long COVID. We discuss our results as a consequence of a
genetic predisposition on the patients’ side, immune exhaustion due
to persistent infection, or even epigenetic reprogramming due to
SARS-CoV-2. Further in vitro research is required to discriminate
between the latter two and to explore therapeutic interventions
stimulating classical monocytes.
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