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Dysregulation of the homeostasis between regulatory T cell (Treg) and T helper 17

cell (Th17) is increasingly recognized as a pivotal mechanism in the pathogenesis of

autoimmune diseases. Emerging evidence indicates that gut microbiota-derived

metabolites, including short-chain fatty acids, secondary bile acids, and aromatic

metabolites, modulate Treg/Th17 balance by shaping immune cell differentiation

and function, thereby revealing novel therapeutic opportunities. This Review

synthesizes recent clinical and preclinical findings on the influence of microbial

communities and their metabolites on Treg/Th17 dynamics and examines the

underlying mechanisms in representative autoimmune disorders, such as

rheumatoid arthritis, systemic lupus erythematosus, Graves’ disease, autoimmune

hepatitis, and myasthenia gravis. We critically evaluate current microbiome-

targeted interventions and discuss their translational potential, highlighting both

promises and challenges. Finally, we outline priorities for future research, focusing

onmulti-omic integration, the development of individualized therapeutic strategies,

and rigorous clinical evaluation, to facilitate the development of safe and effective

microbiota-based therapies for autoimmune diseases.
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1 Introduction

Immune-cell imbalance — particularly the functional opposition

and dysregulation between regulatory T cells (Treg) and T helper 17

cell (Th17) — has been widely recognized as a central driver of

autoimmune disease pathogenesis (1, 2). Tregs are indispensable for

maintaining immune homeostasis by suppressing excessive immune

responses and preventing autoimmunity (3). In contrast, Th17

promote chronic inflammation and the development of autoimmune

disorders through secretion of pro-inflammatory cytokines (4).

Therefore, disruption of the Treg/Th17 equilibrium frequently

precipitates the onset and progression of autoimmune disease (5, 6).

Indeed, reduced Treg function accompanied by elevated Th17

activation is commonly observed in conditions such as rheumatoid

arthritis (RA) and systemic lupus erythematosus (SLE) (7, 8).

The gut microbiota functions as a major regulator of host

immunity, and microbial metabolites have emerged as key

modulators of immune-cell differentiation and function (9).

Accumulating clinical and preclinical studies indicate that gut

microbes and their metabolic products influence autoimmune

pathogenesis in part by shaping the Treg/Th17 balance (10). For

example, microbial metabolites such as short-chain fatty acids

(SCFAs) have been reported to promote Treg differentiation while

inhibiting Th17 activation (11, 12). Such regulatory mechanisms

suggest novel therapeutic avenues for autoimmune disease.

Multiple studies further indicate that loss of microbial diversity and

altered metabolite abundance correlate inversely with disease activity,

and that restoring microbiome composition can rebalance Treg and

Th17 populations and ameliorate disease severity (8, 13). Interventions

targeting the gut microbiome — including probiotic administration,

dietary modification, and fecal microbiota transplantation (FMT) —

have demonstrated potential to modulate immune responses and

improve clinical outcomes in various settings (14, 15).

Identifying microbiota-derived metabolites that regulate immune

homeostasis therefore provides new perspectives for therapeutic

development and for prioritizing translational research. By

synthesizing mechanistic insights and clinical evidence, this Review

aims to delineate how gut microbial metabolites govern the Treg/Th17

axis, summarize disease-specific findings, and evaluate translational

pathways towardmicrobiome-based therapies for autoimmune disease.
2 Interactions between gut microbiota
and the immune system

2.1 Immunological functions of Treg and
Th17 and mechanisms that maintain their
balance

Treg and Th17 represent two principal CD4+ T-cell subsets that

play opposing yet complementary roles in immune homeostasis and

the regulation of immune responses (16). Treg cells restrain

excessive immunity and maintain tolerance largely through the

production of anti-inflammatory cytokines such as IL-10 and
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transforming growth TGF-b, thereby preventing autoimmune

pathology (17). Numerous studies have documented quantitative

and functional alterations in Treg populations across autoimmune

disorders; impaired Treg function correlates closely with disease

exacerbation in conditions such as RA and SLE (18, 19).

By contrast, Th17 promote inflammatory responses and

contribute to autoimmune pathogenesis via secretion of pro-

inflammatory cytokines including IL-17 and IL-22 (20). Although

Th17 cells are important for host defense against certain pathogens,

their aberrant activation can drive tissue injury and autoimmunity

(21). In many autoimmune diseases, the frequency or activity of

Th17 is elevated while Treg numbers or suppressive capacity are

reduced, producing a net shift toward inflammation and tissue

damage (22, 23).

The lineage specification of Treg and Th17 is governed in part

by the interplay between key transcriptional regulators: RORgt, the
lineage-defining factor for Th17, and Foxp3, the master regulator of

Treg identity and function (24). The balance between RORgt and
Foxp3 is critical for immune equilibrium, and disruption of their

reciprocal regulation can precipitate immune dysregulation and

disease (25, 26).

In autoimmune settings, the Treg/Th17 balance is disrupted.

For instance, RA patients exhibit elevated Th17 cells and often

defective Treg function, leading to IL-17–mediated synovitis and

osteoclast activation (27). Similarly, SLE patients show increased

circulating Th17 frequency correlating with disease activity (28).

These examples underscore that an overactive Th17 response

concurrent with impaired Treg regulation underlies pathology in

RA, SLE and other autoimmune diseases.

A range of extrinsic and intrinsic cues— including environmental

signals, cytokine milieus and metabolic pathways — shape the

differentiation trajectories of Treg versus Th17 (29). For example,

cytokines such as IL-6 and IL-23 favor Th17 differentiation, whereas

TGF-b promotes Treg induction under certain contexts (30). This

dynamic interconversion and competitive differentiation between the

two lineages underlies both immune tolerance and pathogenic

inflammation, making restoration of the Treg/Th17 balance a

promising strategy to modulate immune responses and treat

autoimmune disease (31, 32).
2.2 Regulatory effects of the gut
microbiota on the Treg/Th17 balance

The gut microbiota exerts profound influences on host immunity,

particularly by shaping T-cell differentiation. Evidence indicates that

microbial communities modulate the equilibrium between Treg and

Th17 through diverse mechanisms, including the production of

metabolites, antigen presentation, and regulation of mucosal

immunity (33). Treg and Th17 are two major CD4+ T-cell subsets

with opposing functions in immune regulation: Th17 drive

inflammatory responses, whereas Treg cells suppress excessive

immunity (34). Microbial metabolites such as SCFAs promote Treg

differentiation while limiting Th17 proliferation, thereby sustaining
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both intestinal and systemic immune homeostasis (8). For example,

Bacteroides fragilis polysaccharide Asignals via TLR2 to induce IL-10–

producing Foxp3^+ Tregs (35), and segmented filamentous bacteria

drive Th17 differentiation through antigen presentation and local DC-

mediated cues (36). Collectively, these findings demonstrate that

defined microbial species and their metabolites regulate Treg/Th17

polarization and cytokine production, maintaining immune balance

within this axis (Figure 1) (33).

Gut microbiota dysbiosis refers to an imbalance in gut

microbial ecology that disrupts health. Formally, gut dysbiosis is

defined as increased pathogens and pathobionts, reduced beneficial

keystone taxa, and loss of overall diversity (37). Hallmarks include

loss of SCFA-producing Firmicutes and bloom of Proteobacteria/

enterobacteria (38). This is often accompanied by altered microbial

metabolism: e.g. reduced butyrate synthesis and depleted anti-

inflammatory metabolites. In elderly or diseased individuals,

dysbiosis is manifested by narrowed richness and expansion of
Frontiers in Immunology 03
opportunistic bacteria (39). Functionally, dysbiosis predisposes to

barrier dysfunction and inflammation: irreversible microbiome

shifts associate with gut barrier breakdown and systemic disease

(IBD, diabetes, etc.) (40, 41). Thus, we define dysbiosis as a loss of

the “healthy” core microbiota (high diversity, stable SCFA

producers) coupled with metabolite derangements. In this state,

local and systemic immune tolerance is undermined.).

A healthy gut microbiota can maintain the organism’s normal

tolerance environment. Commensals induce intestinal DCs to produce

retinoic acid and TGFb, promoting peripheral Tregs (42). Dysbiosis

increases epithelial permeability and translocation of microbial

products (LPS, flagellin), triggering DC activation and IL-6/IL-23

production that favor Th17 differentiation (43). Indeed, irreversible

dysbiotic changes associate with gut barrier defects and systemic

inflammation (44, 45). Restoring commensal-derived signals (e.g.

mucosal IgA, epithelial IL-10) is thus crucial to re-establish Treg-

mediated tolerance (46, 47).
FIGURE 1

Mechanisms of gut microbiota involvement in autoimmune diseases. The gut microbiota promotes autoimmune pathogenesis by modulating key
signaling pathways (NF-kB, Nrf-2), disrupting the Treg/Th1/Th17 balance, regulating the release of inflammatory factors, and producing microbial
metabolites such as SCFAs. GPR109a, G protein-coupled receptor 109a; FFAR2/3, Recombinant Free Fatty Acid Receptor 2/3; SCFAs, Short chain
fatty acids; MUC2, Recombinant Mucin 2; ROS, Reactive oxygen species; NF-kB, Nuclear factor kappa-B; COX-2, Cyclooxygenase 2; iNOS, Inducible
nitric oxide synthase; ZO-1, Zona Occludens 1; MAPK, Mitogen-activated protein kinase; IL-1b, Interleukin-1 beta; TNF-a, Tumor necrosis factor
alpha; Est-1, Estrogen sulfotransferase-1; SHP-2, SH2 domain-containing protein-tyrosine phosphatase-2; Nrf-2, NF-E2-related factor 2; HO-1,
Recombinant Heme Oxygenase 1; IL-6, Interleukin-6; IL-10, Interleukin-10; TGF-b, Transforming growth factor beta; IFN-g, Interferon gamma; IL-
17, Interleukin-17; IL-21/IL-22, Interleukin-21/Interleukin-22; IL-12 p40, Interleukin12 p40. (By Figdraw, ID: TWIOIab0ee).
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The gut ecosystem is shaped by numerous intrinsic and extrinsic

factors, which in turn influence the Treg/Th17 balance. Intrinsic factors

include age, sex, and genetics. For example, normal gut diversity

increases during early life and plateaus in adulthood (48), but old

age is associated with loss of microbial richness and depletion of SCFA-

producers (49), possibly contributing to “inflammaging”. Host sex

hormones also modulate the microbiota: in NOD mice, gut microbes

elevated testosterone in males, protecting against autoimmunity, and

transfer of male microbiota to females increased their testosterone and

reduced disease (50). Such “microgenderome” effects likely contribute

to the higher prevalence of autoimmune disorders in women, although

the exact microbial taxa involved are still under study.

Extrinsic factors are major drivers of microbiota composition. Diet

is paramount: cohorts across continents show that Western diets (high

fat/sugar, low fiber) select for low-diversity communities, whereas rural

or high-fiber diets support diverse, fiber-fermenting microbiota (51).

For instance, a high-fat diet consistently increases the Firmicutes/

Bacteroidetes ratio and reduces beneficial taxa (52). Changes can be

rapid; immigrants adopt the gut microbiome of the host country within

weeks of diet change (53). Conversely, lifelong Western diets can

irreversibly erase key taxa (54). Geography and lifestyle also matter,

stool surveys show distinct microbial signatures in Malawian and

Amerindian children versus US children (51), reflecting diet,

sanitation, and cultural habits. Antibiotics and drugs profoundly

perturb the microbiota, even short courses cause sustained loss of

diversity and expansion of resistant organisms (55).

Targeted microbial interventions — including probiotics,

prebiotics, and FMT — have been shown to restore Treg/Th17

homeostasis and ameliorate immune-mediated disorders. For

instance, plant-derived compounds such as phytosterols enhance

SCFAs production, thereby promoting Treg differentiation,

suppressing Th17 expansion, rebalancing gut microbial ecology, and

attenuating inflammation (56).

Notably, the immunomodulatory influence of the gut microbiota

extends beyond the intestinal tract to peripheral compartments such as

the blood and spleen (33). This cross-compartment regulation

underscores that microbial health impacts not only gastrointestinal

physiology but also systemic immune homeostasis. Taken together,

these insights highlight the substantial therapeutic potential of

microbiota-based interventions in autoimmune disease, particularly

through re-establishing the Treg/Th17 balance.
3 Molecular mechanisms by which gut
microbial metabolites regulate the
Treg/Th17 balance

3.1 SCFAs

Short-chain fatty acids (SCFAs), principally acetate, propionate,

and butyrate, are microbial metabolites generated through

fermentation of dietary fibers in the gut (57). Accumulating evidence
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highlights their indispensable roles in intestinal health and immune

regulation. The study found that SCFAs enhance the stability of Treg

cells and suppress the activity of Th17 cells, thereby contributing to the

maintenance of immune system homeostasis (58). SCFAs, particularly

butyrate, function as a primary energy source for colonocytes.

Simultaneously, they modulate host immunity by promoting

regulatory T-cell differentiation and mucosal tolerance through

mechanisms that include GPR43-mediated signaling and epigenetic

regulation via histone deacetylase inhibition (59). One key pathway is

engagement of SCFA-sensing G protein–coupled receptors: microbial

acetate, propionate and butyrate activate FFAR2 (GPR43) and FFAR3

(GPR41) onmucosal cells and leukocytes. FFAR2 signaling is necessary

for SCFA-driven expansion of colonic Foxp3^+ regulatory T cells and

protection from T-cell-transfer colitis, while SCFAs additionally act via

HDAC inhibition and mTOR–S6K modulation to stabilize Foxp3

expression and limit pro-inflammatory Th17 responses (Figure 2)

(60). For instance, propionate activates the GPR43–cAMP/PKA–

CREB signaling cascade, leading to expansion of Treg cells and

increased secretion of IL-10 and TGF-b (8). In animal models of

autoimmune disease such as RA, SCFAs supplementation significantly

alleviates joint inflammation and tissue injury.

SCFAs also regulate immune function through inhibition of

histone deacetylases (HDACs), thereby stabilizing the Treg

phenotype (61). Butyrate, for example, promotes Foxp3 expression

via HDAC inhibition, strengthening Treg suppressive capacity. This

epigenetic mechanism contributes to the maintenance of tolerance and

prevents excessive immune activation, thereby curbing autoimmune

responses (62).

Moreover, SCFAs reinforce tolerance by balancing pro- and anti-

inflammatory cytokine production. They downregulate pro-

inflammatory mediators such as IL-6 and IL-23 while enhancing IL-

10 and TGF-b expression, a shift repeatedly observed across models of

autoimmune disease (63, 64). These findings suggest that SCFAs hold

substantial translational promise as immunoregulatory metabolites.

In vivo studies support this potential: supplementation with SCFAs

attenuates clinical symptoms in models of RA and inflammatory bowel

disease, while improving barrier integrity and reducing systemic

inflammation (65). Taken together, SCFAs emerge as key microbial

products that modulate the Treg/Th17 axis through convergent

signaling and epigenetic pathways, thereby promoting tolerance and

constraining autoimmune pathology. Their capacity to re-establish

immune balance positions SCFAs as both mechanistic targets and

therapeutic candidates for autoimmune disease (66, 67).
3.2 Secondary bile acids

The gut microbiota converts primary bile acids into secondary

bile acids through a series of complex metabolic processes, exerting

profound effects on the host immune system. Primary bile acids are

synthesized in the liver and secreted into the intestine via bile, where

microbial enzymatic reactions transform them into secondary bile
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acids such as deoxycholic acid (DCA) and lithocholic acid (LCA)

(68, 69). These metabolites not only contribute to the composition

of the bile acid pool but also regulate host metabolism and immune

responses by binding to bile acid receptors expressed on host cells.

Accumulating evidence indicates that the synthesis of secondary

bile acid is tightly linked to the composition and functional state of

the gut microbiota, with microbial diversity significantly shaping

this metabolic process (70, 71). Moreover, secondary bile acids play

crucial roles in maintaining intestinal barrier integrity, modulating

immune responses, and mediating anti-inflammatory effects.

The immunomodulatory properties of secondary bile acids are

particularly evident in the regulation of Treg and Th17 (72).

FOXP3+ Tregs are key mediators of immune tolerance, and their

dysfunction or depletion is closely associated with the pathogenesis
Frontiers in Immunology 05
of multiple autoimmune diseases (73). Studies have shown that

secondary bile acids, particularly DCA and LCA, promote the

differentiation of FOXP3+ Treg while suppressing Th17 cell

development through specific signaling pathways (72, 74). In

autoimmune disorders such as multiple sclerosis (MS), a

deficiency of secondary bile acids correlates with reduced Treg

abundance and increased Th17 responses, suggesting a critical role

of bile acid metabolites in regulating CNS autoimmunity (75).

Modulating gut microbial composition to enhance secondary bile

acid production may therefore represent a novel therapeutic

strategy for MS and related diseases.

In MS patients, the production of secondary bile acids is markedly

reduced compared with healthy controls, paralleling impaired immune

regulation. Specifically, microbial taxa responsible for secondary bile
FIGURE 2

Gut microbiota and microbial metabolites regulate the Th17–Treg balance. Specific taxa influence T-cell fate: Clostridium, Bacteroides fragilis and
Lactobacillus promote Treg development and function, whereas SFB, Bacteroides fragilis, Lactobacillus and Bifidobacterium stimulate Th17 differentiation
and cytokine production. Microbial metabolites are key effectors: SCFAs (acetate, propionate, butyrate) act mainly via HDAC inhibition and modulation of
the mTOR–S6K pathway; BA derivatives signal through TGR5 and FXR to promote Treg differentiation and/or suppress Th17 polarization; Trp-derived
ligands (IAA, IPA, I3C) function as AhR agonists that favor Treg generation and restrain Th17 responses, whereas I3AA may antagonize AhR and impair
Treg function. Microbial components and secreted factors — including LPS, flagellin (from SFB), exopolysaccharides (from Lactobacillus casei), EVs and
BFT — promote Th17 differentiation. Conversely, EVs, PSA (from Bacteroides fragilis) and cell-surface b-glucan/galactan polysaccharides enhance Treg
activity. Treg, regulatory T cell; Th17, T helper 17 cell; SFB, segmented filamentous bacteria; SCFAs, short-chain fatty acids; BA, bile acid; Trp, tryptophan;
HDACs, histone deacetylases; TGR5, G-protein-coupled bile acid receptor; FXR, farnesoid X receptor; IAA, indole-3-acetic acid; IPA, indole-3-propionic
acid; I3C, indole-3-carbinol; AhR, aryl hydrocarbon receptor; I3AA, indole-3-acetaldehyde; LPS, lipopolysaccharide; EVs, bacterial extracellular vesicles;
BFT, Bacteroides fragilis toxin; PSA, polysaccharide A. (By Figdraw, ID: ATTYS1c1c0).
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acid biosynthesis are diminished, leading to decreased intestinal levels

of immunoregulatory metabolites such as DCA and LCA (72). This

reduction compromises Treg function while enhancing Th17

differentiation, driving CNS inflammation and disease progression.

Therapeutic strategies aimed at restoring bile acid balance have shown

promise: supplementation with DCA or LCA in experimental MS

models effectively restored immune homeostasis, reduced Th17

frequency, promoted Treg differentiation, and alleviated clinical

symptoms (72, 74). These findings not only highlight the therapeutic

potential of secondary bile acid supplementation but also deepen our

understanding of microbiota–immune system crosstalk. Targeting bile

acid metabolism may thus offer new treatment options for MS,

improving both immune balance and patient outcomes.
3.3 Tryptophan and other aromatic
metabolites

Tryptophan (Trp), an essential aromatic amino acid in humans,

has emerged as a critical substrate for generating immunoregulatory

metabolites such as indole and indole-3-propionic acid. Increasing

evidence indicates that Trp-derived indole compounds modulate the

balance between Treg and Th17 primarily through binding to the aryl

hydrocarbon receptor (AhR) (58). AhR is a ligand-activated

transcription factor that governs diverse physiological processes,

including immune regulation. Trp metabolism therefore not only

shapes the local intestinal immune microenvironment but also exerts

systemic immunomodulatory effects by directing T-cell differentiation

and function (76). In murine models, indole compounds have been

shown to promote Treg generation while suppressing Th17

differentiation, thereby sustaining immune tolerance and dampening

inflammatory responses (77). These findings highlight the therapeutic

potential of targeting Trp metabolism to reestablish Treg/Th17

homeostasis in autoimmune diseases.

Trp metabolism is a key microbiota–immune interface. Both host

enzymes (IDO1/IDO2, TDO) and bacterial pathways convert Trp into

bioactive compounds (9, 78). The host IDO-mediated kynurenine

(Kyn) pathway generates metabolites that modulate T cells (79).

Microbiota-derived indole and indole-derivatives (e.g. indole-3-

aldehyde, indole propionic acid) act via AhR on immune cells and

mucosal cells (80). These Trp metabolites generally promote Tregs and

suppress Th17. For instance, Kyn and 3-HAA synergistically drive

naïve CD4^+ T cells to Foxp3^+ Tregs in the presence of DCs (81).

Indole derivatives from commensals activate AhR to induce IL-22 and

IL-10, enhancing barrier function and Treg stability. Notably, RA

patients show perturbations in Trp metabolism: serum kynurenic and

xanthurenic acids (Treg-promoting) are decreased, while neurotoxic

quinolinic acid is elevated (82). Experimental arthritis was improved by

supplementing enzyme activities to boost Kyn metabolites. In SLE,

increased IDO activity and high Kyn/Trp ratio correlate with disease

and fatigue (83). These data link dysbiotic Trp metabolism to Th17/

Treg imbalance in autoimmunity. Overall, Trp-derived metabolites

constitute another axis by which gut microbiota shape T cell fate.
Frontiers in Immunology 06
4 Advances in the study of gut microbial
metabolites and Treg/Th17 balance in
representative autoimmune diseases

4.1 Rheumatoid arthritis

Rheumatoid arthritis (RA) is a chronic autoimmune disorder in

which mounting evidence links the gut microbiome to disease onset

and progression. Patients with RA frequently exhibit reduced microbial

diversity, diminished levels of SCFAs, and an increased proportion of

Th17, collectively contributing to aberrant immune activation and

persistent inflammation (84, 85). Dysbiosis disrupts the delicate

equilibrium between Treg and Th17, thereby fueling chronic

inflammatory responses (8, 86). Table 1 summarizes mechanistic and

clinical evidence for gut microbiota–derived metabolites in modulating

the Treg/Th17 axis across representative autoimmune diseases.

Notably, SCFAs concentrations are significantly lower in RA

patients compared with healthy controls (102). SCFAs not only

sustain intestinal barrier integrity but also orchestrate immune

regulation by promoting Treg differentiation and suppressing Th17

activation (103, 104). For instance, butyrate enhances Treg expansion

and IL-10 secretion via GPR43 signaling while simultaneously

attenuating Th17 polarization, underscoring its potential as a

therapeutic target in RA (8, 105).

Current therapies such as methotrexate have been shown to

partially restore gut microbial composition and increase SCFAs

levels, thereby rebalancing Treg and Th17 populations. Clinical

studies demonstrate that methotrexate treatment improves microbial

diversity and structure in RA patients, accompanied by reduced

inflammatory markers (106, 107). These findings suggest that

targeting the gut microbiota to modulate immune responses may

represent a promising adjunctive strategy for RA management.

Dysregulation of Trp metabolism has emerged as a critical link

connecting the gut microbiota, host immunity, and disease activity in

RA. Recent studies highlight its dual role: an imbalance in the host

kynurenine pathway, characterized by decreased protective metabolites

(e.g., kynurenic acid) and elevated pro-inflammatory metabolites (e.g.,

quinolinic acid), correlates with disease severity, and restoring this

balance shows therapeutic potential in animal models (82, 108).

Concurrently, gut microbiota-derived indole derivatives exert

opposing effects. For instance, indole-3-propionic acid maintains

immune homeostasis and alleviates arthritis by activating AhR (84),

whereas unmodified indole promotes a pro-inflammatory Th17

response, exacerbating disease (109). This metabolic heterogeneity

underscores that Trp metabolism is not only a source of robust

biomarkers for RA but also a promising, yet complex, therapeutic

target requiring precise modulation.

Probiotic interventions have also shown therapeutic promise. For

example, Lactobacillus casei has been reported to alleviate arthritis by

reshaping gut microbial communities and enhancing SCFAs

production. Specifically, Lactobacillus casei CCFM1074 reduced Th17

cell proportions while expanding Treg populations, thereby
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TABLE 1 Microbial metabolite evidence for Treg/Th17 modulation in autoimmune disease.

Disease
Representative
metabolite

Sample/Model Effect on Treg/Th17 Main finding References

RA

Butyrate (SerBut) Mouse models
↑ Treg; ↓ Th17/reduced inflammatory

readouts

SerBut improved oral
bioavailability and markedly

reduced arthritis and
neuroinflammation in murine
models without overt systemic

immunosuppression.

(87)

Butyrate (SCFAs)
Animal and human
observational studies

Mechanistic evidence supports
promotion of Foxp3+ Treg and

limitation of Th17

RA patients exhibit reduced
butyrate-producing bacteria;

perturbation correlates with barrier
dysfunction and systemic

inflammation.

(88)

Butyrate (micelle/
prodrug delivery)

CAIA arthritis mouse
model

↑ Treg; ↓ inflammatory mediators

Targeted delivery produced long-
lasting immunomodulatory effects
and suppressed arthritis after

limited dosing.

(89)

MS

Butyrate (SerBut) EAE mouse model
↑ Treg; ↓ Th17 in CNS/peripheral

compartments

SerBut suppressed
neuroinflammation in EAE model

and reduced clinical scores.
(87)

Methyl butyrate
(SCFAs derivative)

EAE mouse model
↓ Th17; ↑ regulatory markers (Treg

increase reported)

Methyl butyrate administration
reduced clinical severity and

improved histopathology in EAE.
(90)

FMT (microbiota
intervention)

Small randomized
pilot trial in RRMS

patients

Pilot biomarkers suggested shifts
consistent with enhanced mucosal
tolerance (potential ↑ Treg/↓ Th17)

FMT was safe/tolerable;
improvements in intestinal
permeability and microbiota

composition observed; biomarker
changes suggested

immunomodulatory effects.

(91)

Bile-acid derivatives

Human isolate screen,
mechanistic ex vivo

assays, cohort
associations

↓ Th17 differentiation; promotes
regulatory milieu

Identified human bacteria
producing bile-acid derivatives that
inhibit Th17 differentiation; linked
metabolites to host Th17 gene

expression.

(92)

SLE

Tryptophan-derived
indoles/AhR ligands

(IPA/IAld)

Review of
mechanisms and
disease links

Ligand-dependent: some ligands favor
Treg/IL-22; others favor Th17

Trp metabolism converges on AhR
activation to modulate immune
responses; ligand specificity
determines Treg vs Th17

outcomes.

(93)

Indole derivatives
(AhR ligands)

Mechanistic review
with animal and
human examples

Context- and ligand-dependent
modulation of Treg/Th17

AhR ligand identity determines
Treg vs Th17 differentiation;

suggests potential for selective AhR
modulators.

(94)

Altered tryptophan
metabolites

(kynurenine, indoles)

Human cohort
metabolomics

Associations consistent with
dysregulated Treg/Th17 balance

Altered Trp metabolism correlates
with disease activity and immune
signatures; supports targeted

intervention.

(93–96)

T1D

Acetate/Butyrate
(diet-released SCFAs)

NOD mice/dietary
intervention models

↑ Foxp3+ Treg; ↓ Th17/reduced
autoimmune destruction

Diets releasing acetate/butyrate
increased SCFAs, reduced insulitis
and T1D incidence; increased

colonic Treg.

(97)

Butyrate
Mechanistic murine

studies
↑ Treg migration/function; ↓

diabetogenic responses

Butyrate-induced colonic Treg can
migrate to pancreas and draining
lymph nodes; increased Treg
migration contributed to

suppression of autoimmune
diabetes.

(98)

Acetate/Butyrate (after
HAMSAB feeding)

↑ Treg; ↓ inflammatory markers in
models; human signals preliminary

Dietary intervention increased
SCFAs and correlated with

(99)

(Continued)
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ameliorating disease severity in RA mouse models (104, 110). Such

evidence highlights the potential of probiotic supplementation as an

adjunct therapy for RA, reinforcing the concept that gut microbiota

modulation could be harnessed as a novel therapeutic avenue.

Collectively, these studies demonstrate that gut microbial

metabolites play a pivotal role in regulating the Treg/Th17 balance in

RA. Future research should aim to delineate the precise mechanisms

through which microbial metabolites influence RA pathogenesis and

explore their translational potential in clinical settings (111, 112).
4.2 Systemic lupus erythematosus

In systemic lupus erythematosus (SLE), growing attention has

been directed toward the regulatory effects of gut microbiota and

their metabolites on immune homeostasis. SLE is a complex

autoimmune disease characterized by an imbalance between Treg

and Th17, leading to chronic inflammation and multi-organ

damage (113). Experimental studies have revealed that specific

microbial taxa are markedly reduced in SLE models, whereas

supplementation with these key strains can effectively restore the

Treg/Th17 balance and ameliorate disease severity (114).

In the MRL/lpr mouse model, species such as Eisenbergiella

massiliensis, Lacrimispora saccharolytica, and Hungatella xylanolytica

were significantly decreased following disease onset. Their depletion
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was closely associated with reduced levels of metabolites including 5-

cholestenol, cholesterol, p-cresol, and indole (114). These metabolites

are linked to immune regulation andmay influence the Treg/Th17 axis.

Restoration of these microbial populations was shown to improve SLE

symptoms and contribute to re-establishing Treg/Th17 balance (114).

Supplementation with Bifidobacterium has also demonstrated

beneficial effects in both clinical and preclinical studies. Multiple

investigations have confirmed that the abundance of Bifidobacterium

is significantly reduced in SLE patients, correlating with impaired Treg

function and increased Th17 activity (10). Accordingly,

Bifidobacterium and its metabolites not only correct gut dysbiosis but

also restore Treg-mediated suppression, thereby reducing Th17-driven

inflammation, alleviating clinical symptoms, and mitigating renal

injury in SLE (115).

SCFAs, key metabolites derived from microbial fermentation of

dietary fibers, also play a pivotal role in regulating the Treg/Th17 axis

(116). SCFAs production is essential for gut health and modulates

immune cell differentiation and function to restrain autoimmune

responses (62). In SLE models, SCFAs deficiency has been directly

linked to increased Th17 activity and Treg dysfunction (117). In

addition, lipopolysaccharide (LPS), a structural component of Gram-

negative bacteria, exerts dual immunological effects: at low

concentrations it stimulates appropriate immune activation, whereas

at high concentrations it triggers excessive inflammation and immune

dysregulation (118). In SLE and other autoimmune diseases, disruption
TABLE 1 Continued

Disease
Representative
metabolite

Sample/Model Effect on Treg/Th17 Main finding References

Preclinical NOD data
+ early human pilot

data

immune changes consistent with
increased regulatory responses;
early human studies show

metabolome/immune modulation.

Acetate (SCFAs) NOD mice
Associated with increased regulatory
signals and reduced pathogenic T cell

activation

Acetate reduced gut bacteria–
induced IgA and decreased insulitis

severity, suggesting protective
immunoregulatory effects.

(100)

AIH

Bile-acid derivatives
Mouse models and
mechanistic in vitro

assays

3-oxoLCA → ↓ Th17 (RORgt binding);
isoalloLCA → ↑ Treg (Foxp3

enhancement)

3-oxoLCA inhibited Th17
differentiation via direct RORgt
binding; isoalloLCA promoted
Foxp3 expression and Treg

differentiation via CNS3-dependent
mechanism.

(100)

3-oxoLCA; isoLCA
(human bacterial

producers)

Screening of human
isolates; cohort

association analyses
↓ Th17; supports regulatory milieu

Identified human bacteria and
enzymes producing these bile-acid
derivatives; metabolites associate
negatively with Th17 signatures in

cohorts.

(92)

isoallolithocholic acid
(isoalloLCA)

Mechanistic in vitro
and mouse studies

↑ Treg via mitochondrial/
transcriptional pathways

isoalloLCA enhances Treg
differentiation and function;

mechanistic evidence of bile-acid-
mediated promotion of regulatory

responses.

(101)
Treg, regulatory T cell; Th17, T helper 17 cell; RA, rheumatoid arthritis; SCFAs, short-chain fatty acids; CAIA, Collagen Antibody-Induced Arthritis; MS, multiple sclerosis; EAE, experimental
autoimmune encephalomyelitis; SLE, systemic lupus erythematosus; AhR, aryl hydrocarbon receptor; IPA, indole-3-propionic acid; IAld, indole-3-aldehyde; T1D, type 1 diabetes; NOD, Non-
Obese Diabetic; AIH, autoimmune hepatitis; FMT, fecal microbiota transplantation. "↑" represents increase; "↓" represents decrease.
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in the balance of SCFAs and LPS has been implicated in disease

pathogenesis (119). Hence, deciphering the roles of these microbial

products provides an important foundation for developing

novel immunotherapies.
4.3 Graves’ disease

In patients with Graves’ disease (GD), gut microbiota dysbiosis has

been identified as a key contributing factor. Studies have demonstrated

that supplementation with Bacteroides fragilis and its metabolite

propionate can effectively modulate the Th17/Treg ratio, thereby

attenuating inflammatory responses and improving immune

homeostasis (120). Specifically, experimental evidence indicates that

oral administration of Bacteroides fragilis or propionate markedly

reduced levels of pro-inflammatory cytokines, total thyroxine, and

thyrotropin receptor antibodies in GD mouse models, while

simultaneously decreasing the proportion of circulating Th17 and

increasing the frequency of Treg (121). These immunological shifts

not only alleviated systemic inflammation but also ameliorated

hyperthyroid symptoms and diminished the autoimmune response

against thyroid-stimulating hormone receptor.

Moreover, Bacteroides fragilis and propionate significantly reduced

pro-inflammatory cytokines and the proportion of M1macrophages in

thyroid tissues, while enhancing Treg cells and M2 macrophages,

collectively mitigating thyroid inflammation and hypertrophy. These

findings highlight the pivotal role of gut microbes and their metabolites

in GD pathogenesis and underscore their therapeutic potential.

Importantly, combining Bacteroides fragilis or propionate with the

conventional drug methimazole significantly improved pathological

changes in GD mice and allowed for a reduced methimazole dosage

(121). This synergistic effect not only enhanced therapeutic efficacy but

also minimized adverse drug reactions, providing a rationale for

microbiota-based therapies as adjuncts to standard regimens. Such

strategies may represent safer and more effective treatment paradigms

for GD.

Additionally, analysis of the gut microbiota in 162 patients with

mild and severe GD, compared with healthy controls, revealed

significant taxonomic and functional alterations (122). These distinct

microbial signatures hold promise as non-invasive diagnostic

biomarkers for GD and provide a foundation for future

clinical applications.
4.4 Autoimmune hepatitis

Autoimmune hepatitis (AIH) is a chronic, immune-mediated

liver disease characterized by the breakdown of immune tolerance

and aberrant immune attacks against hepatic autoantigens (123).

Increasing evidence indicates that gut microbiota and their

metabolites play pivotal roles in the pathogenesis of AIH. Patients

with AIH commonly exhibit gut dysbiosis, with markedly reduced

microbial diversity compared with healthy individuals (124). Such
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alterations not only reshape the intestinal immune milieu but may

also influence hepatic immunity via the gut–liver axis.

Changes in gut microbial composition have been shown to

directly affect T cell function, particularly the balance between Treg

and Th17 (125). Tregs are critical for maintaining immune

tolerance and suppressing autoimmunity, whereas Th17 cells are

strongly associated with pro-inflammatory responses. In AIH

models, disruption of the Treg/Th17 balance exacerbates hepatic

injury (126). For example, dysregulation of Trp metabolism can

impair SCFAs production, resulting in diminished Treg function

and enhanced Th17 activation (127).

Modulating gut microbiota composition and its metabolites has

emerged as a promising strategy to restore Treg/Th17 homeostasis and

attenuate liver injury. Studies have demonstrated that supplementation

with specific probiotics enhances Treg proportions while suppressing

Th17 activity in AIH mouse models (128, 129). For instance,

Bifidobacterium animalis ssp. lactis has shown therapeutic potential

by strengthening intestinal barrier integrity and modulating hepatic

immune cell responses (130).

Moreover, metabolites such as SCFAs possess potent

immunomodulatory properties, promoting Treg differentiation while

inhibiting Th17 activation (127). In AIH, restoration of a healthy gut

microbiota not only improves systemic immune regulation but also

mitigates hepatic inflammation and tissue damage. By targeting gut

microbial communities and their metabolic pathways to re-establish

Treg/Th17 equilibrium, significant hepatoprotective effects can be

achieved, offering novel therapeutic targets and translational

strategies for AIH management (131, 132). Thus, interventions

focused on gut microbes and their metabolites represent a promising

avenue for AIH therapy.
4.5 Myasthenia Gravis

Myasthenia Gravis (MG) is an acquired neuromuscular

autoimmune disorder characterized by impaired signal

transmission at the neuromuscular junction, resulting in muscle

weakness and fatigability (133). Recent studies have implicated gut

microbial dysbiosis in the onset and progression of MG, with

evidence pointing to a concurrent functional imbalance between

Treg and Th17 as a key pathogenic mechanism (134).

Compared with healthy controls, patients withMG exhibit reduced

gut microbial diversity and abundance, notably a depletion of bacterial

taxa that produce SCFAs, which is considered a contributor to immune

dysregulation (135). For example, marked decreases in beneficial

genera such as Faecalibacterium have been directly associated with

impaired Treg function, a deficit that may permit excessive activation

of Th17 and thereby exacerbate the pathological cascade of MG (136).

These observations suggest that restoring microbial balance could

ameliorate symptoms by re-establishing the equilibrium between

Treg and Th17 and dampening autoreactive immune responses.

Modulating the gut microbiota and its metabolites has therefore

been proposed as a novel therapeutic avenue. Several investigations
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report that supplementation with specific probiotics or with SCFAs

improves clinical and immunological features of MG, promoting

immune rebalancing (137). For instance, butyrate supplementation

increases Treg numbers and suppresses Th17 activity, thereby restoring

the Treg/Th17 balance and mitigating pathological manifestations in

experimental models (137). In addition, certain phytochemicals such as

curcumin have shown potential in MG mouse models, apparently

acting via modulation of the gut microbiome and elevation of SCFA

levels (138).

Together, these findings indicate that targeted interventions —

including probiotic therapy and dietary or metabolite supplementation

— may offer new treatment options for patients with MG. Such

strategies aim not only to restore immune homeostasis but also to

improve patient quality of life and reduce reliance on conventional

immunosuppressants. Future clinical research should prioritize

rigorous evaluation of diverse microbiome-modulating approaches to

determine their safety, efficacy and translational potential in

MG management.
5 Therapeutic translation of gut
microbial metabolites in regulating
Treg/Th17 balance

5.1 Microbial and metabolite
supplementation therapies

Recent years have seen growing interest in the capacity of

probiotics and their metabolites to shape the gut microbiome and

modulate host immune responses. Evidence indicates that oral

probiotic supplementation can ameliorate clinical features of

various autoimmune disorders. For example, administration of

Limosilactobacillus reuteri DSM 17938 was reported to improve

the balance between Treg and Th17, thereby slowing autoimmune

progression driven by Treg deficiency (139). SCFAs, such as

butyrate, are key microbial metabolites that suppress activation of

Th17 while promoting proliferation of Treg, and have been shown

to reduce intestinal inflammation in murine models (33).

Supplementation with particular strains, notably members of

Bifidobacterium and Lactobacillus, has produced marked benefits in

preclinical and clinical studies. For instance, Bifidobacterium

supplementation not only remodels gut community structure but

also mitigates pathological changes in autoimmune hepatitis by

modulating host immune responses (115).

Beyond probiotics and SCFAs, secondary bile acids and their

derivatives exert important immunoregulatory effects. Secondary

bile acids influence intestinal immunity and microbial ecology by

engaging specific host receptors, and perturbations in bile acid pools

have been linked to autoimmune disease pathogenesis via effects on

barrier function and immune-cell activity (140).

FMT has emerged as a promising therapeutic modality: by

transferring a healthy donor microbiome to a patient, FMT aims to

restore microbial balance, improve immune function and reduce

inflammatory burden. Multiple studies report significant effects of
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FMT in the treatment of autoimmune conditions, supporting its

further investigation (141).

For example, studies in RA have shown that FMT can significantly

improve clinical symptoms, which correlates with increased gut

microbial diversity (142). Moreover, FMT has been found to

rebalance Treg/Th17 ratios, counteracting immune dysregulation

caused by gut microbiota disturbances (143).

Clinically, FMT has been applied in the treatment of several

autoimmune diseases, particularly inflammatory bowel diseases

such as Crohn’s disease and ulcerative colitis, with encouraging

outcomes (144). By restoring microbial diversity, FMT not only

alleviates gastrointestinal symptoms but also promotes systemic

immune reconstitution (145). However, further research is needed

to establish long-term efficacy and optimize procedural standards

for clinical application.
5.2 Metabolite-targeted delivery systems
and nanotechnology

The clinical application of microbial metabolites, which play a

crucial role in modulating immune responses, is often limited by

their low oral bioavailability. This is particularly true for polar

small-molecule metabolites such as itaconate (IA), whose

intracellular efficacy often requires high exogenous concentrations

to achieve therapeutic effects (146). To address this challenge,

nanotechnology-based delivery systems have been developed to

enhance metabolite bioavailability by improving solubility and

stability. For instance, polyester-based polymeric microparticles

enable endogenous delivery of small-molecule metabolites via

macrophage phagocytosis, significantly increasing their effective

concentration within immune cells while exhibiting low

cytotoxicity (147). Moreover, the design of nanocarriers allows for

targeted delivery, enabling selective release to specific cells or tissues

and maximizing therapeutic outcomes.

Stimuli-responsive release systems represent a principal application

of contemporary nanotechnology, enabling precise therapeutic release

under defined physiological conditions (148). Using this strategy,

nanoparticle-based carriers (nanocarriers) can remain stable within

the intestinal microenvironment while discharging their payloads in

response to specific triggers — for example, changes in pH or

temperature — thereby allowing tight control over both the gut

microbiota and immune-cell function. For instance, multifunctional

particles engineered by nanotechnology have been shown to adjust

their release profiles according to physiological variations in the

intestine, effectively reshaping local immune responses and offering

new therapeutic avenues for autoimmune disease (149). Moreover,

combining targeted delivery of microbial metabolites with stimuli-

responsive release increases treatment selectivity and reduces systemic

adverse effects, thereby strengthening the clinical potential of

metabolite-based interventions.

By integrating advanced nanotechnologies with intelligent release

modalities, researchers are accelerating the clinical translation of

metabolite-centered therapies for autoimmune disorders; these
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platforms substantially improve the precision and efficacy of drug

delivery and help address many of the current therapeutic challenges.
5.3 Dietary interventions and lifestyle
modifications

High-fiber diets have garnered increasing research interest,

particularly in the context of managing autoimmune diseases. Studies

have shown that dietary fiber is fermented by gut microbiota to

produce SCFAs — such as butyrate, propionate, and acetate —

which play essential roles in regulating immune balance (150). High-

fiber intake has been demonstrated to significantly improve the

immune profile in mouse models of RA, particularly by modulating

the balance between Th17 and Treg. For example, one study revealed

that a diet rich in pectin and inulin markedly reduced the severity of

collagen-induced arthritis in mice and corrected aberrant T-cell

differentiation by enhancing SCFAs production, thereby ameliorating

immune responses (85). SCFAs not only promote Treg expansion via

activation of the GPR43 receptor but also inhibit Th17 polarization,

contributing to improved autoimmune outcomes (8).

Furthermore, SCFAs are closely associated with intestinal barrier

integrity. By enhancing tight junctions between intestinal epithelial cells

and increasing the expression of mucin Muc2, SCFAs help maintain

gut barrier function, thereby reducing systemic inflammation (151).

Increased SCFAs levels have been correlated with elevated Treg

frequencies and reduced populations of Th1 and Th17, further

supporting their therapeutic potential in autoimmune conditions

(152). Therefore, implementing high-fiber diets as an intervention

strategy can not only reshape the gut microbial composition but also

modulate immune responses through enhanced SCFAs production,

offering a novel non-pharmacological approach to autoimmune

disease management.

The design of personalized dietary regimens should take into

account individual gut microbial compositions. Advances in

microbiome research have revealed considerable interindividual

variability in gut microbiota, suggesting that uniform dietary

interventions may not be effective for all patients. Tailored nutritional

strategies can more effectively improve an individual’s immune status

and overall health. For instance, one study showed that different dietary

compositions variably influenced gut microbiota, which in turn affected

immune responses and disease progression in mice (153).

In the management of autoimmune diseases, designing diet plans

based on an individual’s microbiome profile may help optimize SCFAs

production. Certain individuals may respondmore favorably to specific

types of dietary fiber, which should be prioritized in their nutritional

intake. Such personalized dietary interventions can enhance microbial

diversity and modulate immune cell ratios — particularly the Treg/

Th17 balance— thereby alleviating autoimmune responses (154, 155).
5.4 Combined pharmacotherapy strategies

In the treatment of autoimmune diseases, conventional

immunosuppressants, though effective, are often associated with
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significant side effects and high relapse rates (156). Consequently,

developing combined therapeutic strategies to enhance efficacy and

reduce drug dosage has become a major research focus.

Microecological modulators — particularly probiotics and their

metabolites — have recently demonstrated considerable potential in

modulating immune responses, offering novel avenues for the

treatment of autoimmune disorders.

For instance, studies have shown that Bacteroides fragilis and its

metabolite propionate can significantly ameliorate disease

manifestations in a mouse model of GD by restoring the Treg/Th17

balance (121). Oral supplementation with Bacteroides fragilis effectively

reduced inflammatory cytokine levels, increased the proportion of

Treg, and decreased Th17 cell frequency, thereby attenuating systemic

inflammation, hyperthyroidism, and autoimmune responses. More

importantly, the combination of Bacteroides fragilis with the

conventional immunosuppressant methimazole not only improved

pathological outcomes but also substantially reduced the required

dosage of methimazole, indicating a synergistic therapeutic effect

between microecological modulators and traditional drugs (121).

Further studies support the efficacy of combining microbial

modulators with immunosuppressants. In RA, for example, probiotic

administration has been shown to modulate gut microbiota

composition and promote the production of anti-inflammatory

metabolites such as SCFAs, leading to improved immune function

and alleviated disease symptoms. Clinical evidence indicates that

probiotics can reduce the abundance of harmful bacteria, enhance

Treg functionality, and suppress Th17 activity, ultimately contributing

to effective RA management (157, 158).

Combining microbiome-directed interventions with conventional

immunosuppressive agents can both potentiate therapeutic benefit and

mitigate drug-related adverse effects, thereby improving patients’

quality of life. Such combination strategies open new avenues for

managing autoimmune diseases; future work should continue to define

the mechanisms of action of distinct microbiome modulators and

determine their optimal pairings with standard drugs to enable

personalized regimens and enhanced clinical efficacy.

In GD, co-administration of Bacteroides fragilis and methimazole

has produced marked therapeutic effects. Experimental data indicate

that Bacteroides fragilis not only attenuates disease manifestations by

recalibrating immune-cell populations but also acts synergistically with

methimazole to permit dose reduction and lower side-effect burden.

Specifically, supplementation with Bacteroides fragilis significantly

decreased serum levels of inflammatory mediators — including

proinflammatory cytokines and thyroid-associated autoantibodies —

while increasing the frequency of Treg and suppressing the activity of

Th17, thereby reducing systemic inflammation and the degree of

thyrotoxicosis (121).

The mechanistic basis for this synergy likely involves microbiota-

driven restoration of intestinal ecology and enhanced production of

SCFAs, metabolites that play important roles in shaping host immune

responses. In addition, combined treatment with Bacteroides fragilis

and methimazole has been shown to improve histopathological

features and to allow clinically meaningful reductions in

methimazole dosing, suggesting that adjunctive microbiome therapy

can preserve efficacy while improving tolerability (121).
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Future studies should evaluate the efficacy of Bacteroides fragilis or

other microbial modulators in combination with a broader range of

immunosuppressants, and systematically assess the impact of dose,

timing and route of administration on therapeutic outcomes. In

summary, integrating microbiome-directed agents with standard

pharmacotherapy offers a promising strategy for autoimmune disease

treatment and merits further mechanistic and clinical investigation.
6 Therapeutic perspectives

6.1 Integrating multi-omics technologies to
decipher the gut–immune axis

Recent advances inmulti-omics technologies have offered powerful

new perspectives for dissecting the complex interplay between the gut

microbiota and the host immune system, particularly in the dynamic

regulation of Treg and Th17 (159). Integrative applications of

metagenomics, metabolomics and transcriptomics show great

promise for resolving how microbial communities and their

biochemical products influence the differentiation, function and

cross-talk of Treg and Th17 (160). For example, SCFAs — key

metabolites produced by gut microbes — have been shown to

promote the expansion of Treg via receptors such as GPR41 and

GPR43 while concurrently restraining the differentiation of Th17,

thereby contributing to the maintenance of immune homeostasis

(161, 162).

Furthermore, transcriptomic approaches have enabled the

identification of specific gene expression profiles and signaling

pathways associated with Treg/Th17 balance (163). These studies not

only illustrate how microbial metabolites modulate immune responses

by altering the host transcriptome but also reveal potential therapeutic

targets. For example, certain microbial metabolites can influence the

secretion of cytokines such as IL-10 and IL-17, further modulating the

Treg/Th17 ratio and thereby affecting the progression of autoimmune

diseases (164, 165).

Constructing a cross-tissue regulatory network model of the “gut–

immune–target organ” axis is essential for understanding how gut

microbiota influence systemic immunity and organ function. Through

the integration of multi-omics data, it is possible to map the complex

interaction networks among the gut, immune system, and target organs

(e.g., liver, lungs) (166). For instance, in chronic inflammatory diseases,

gut microbial composition and metabolites can influence the immune

status of distant organs via systemic circulation, forming feedback loops

along the gut–immune–target organ axis.

Emerging evidence indicates that gut dysbiosis not only triggers

local inflammation but may also initiate or exacerbate systemic

autoimmune diseases by altering overall immune status. In

conditions such as SLE and RA, alterations in gut microbiota and

their metabolites are closely associated with disease progression. By

establishing cross-tissue regulatory network models, researchers can

identify key regulatory factors and their mechanisms, providing a

theoretical foundation for precision medicine (167, 168).
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6.2 Development of personalized
microecological therapeutics

The development of individualized microbiome-based therapeutic

regimens is a complex but essential undertaking that seeks to design

precise interventions by accounting for interindividual variation in gut

microbial composition and metabolic output. Studies have shown that

the structure of the gut microbiota closely correlates with an

individual’s health status, disease susceptibility and therapeutic

responsiveness; notably, specific bacterial taxa have been directly

linked to the development of metabolic disorders such as obesity and

type 2 diabetes (169). Accordingly, tailoring treatments to a patient’s

microbiome profile has the potential both to enhance efficacy and to

reduce adverse effects.

A first prerequisite for personalized microbiome therapy is the

construction of patient-specific gut microbiome databases using high-

throughput sequencing to characterize microbial community

composition and functional capacity (170, 171). Comparative

analyses between healthy subjects and patients enable identification

of microbial taxa that are associated with disease states (172). These

data can inform predictive models of treatment response and support

longitudinal monitoring to permit timely adjustment of

therapeutic strategies.

Therapeutic options for microbiome modulation include

administration of probiotics, provision of prebiotics, and FMT,

among other approaches (173). For example, particular probiotic

strains have been reported to increase microbial diversity and

bolster immune competence, thereby improving clinical outcomes

(174). Dietary interventions likewise exert a demonstrable effect on

the intestinal microbiota; specific dietary components can

selectively promote the growth of beneficial microbes and thereby

contribute to overall health (33).

Finally, successful implementation of individualized microbiome

therapies depends on multidisciplinary collaboration among clinicians,

microbiologists and nutrition scientists. Integrating mechanistic

insights into the “microbiome–metabolite–host” axis will support

more finely tuned, patient-centered interventions that enhance

therapeutic benefit and improve quality of life for patients (175).
6.3 Clinical translation and multicenter
large-scale trials

The contributions of the gut microbiota and their metabolites to

the study and treatment of autoimmune diseases have attracted

growing attention. Recent studies indicate that alterations of the gut

microbiota can promote the onset and progression of diverse

autoimmune disorders (176). For example, dysbiosis observed in

patients with MG is closely associated with an imbalance between

Treg and Th17, providing a rationale for microbiota-directed

approaches to restore immune equilibrium (177). To facilitate

clinical translation of microbiome-based therapies, stronger

integration of fundamental research and clinical practice is essential
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so that mechanistic insights can be reliably converted into

effective interventions.

Furthermore, the clinical development of microbiome therapeutics

requires well-designed, multicenter, large-scale trials that include

geographically and demographically diverse populations to ensure

broad applicability and robust evidence. For instance, investigations

into postmenopausal osteoporosis have demonstrated that the gut

microbiota and its metabolites modulate bone metabolism via the

gut–bone axis and the gut–brain axis (178). Systematic evaluation of

therapeutic efficacy and safety, together with exploration of

applications across different autoimmune conditions, will be critical

to inform future clinical practice.
7 Limitations and future directions

As our understanding of the gut microbiota and its metabolites

deepens, their central role in regulating the balance between Treg and

Th17 has become increasingly evident. Treg and Th17 operate as

opposing forces within immune networks, and microbial-derived

signals that shift their equilibrium provide fresh mechanistic insight

into autoimmune disease pathogenesis. A growing body of

experimental and clinical evidence shows that restoring a healthy

microbial ecology and correcting metabolite profiles can re-establish

immune homeostasis and ameliorate disease manifestations across

multiple autoimmune disorders. These observations underscore that

the integrity of the gut microbiome closely informs systemic immune

stability and thereby influences both disease onset and progression.

Building on these mechanistic insights, a range of translational

strategies targeting microbial metabolites has emerged. Approaches

span direct metabolite supplementation, targeted delivery platforms

(including nano-formulations), microbiome-informed personalized

regimens, and rational combinations with conventional

immunosuppressive agents. Such multidimensional strategies aim to

improve therapeutic efficacy while minimizing adverse effects, and

individualized treatment programs in particular hold promise for

tailoring interventions to patients’ distinct microbiome and

immune profiles.

Despite this promise, significant heterogeneity and limitations

remain across the literature. Conflicting results often reflect small

cohort sizes, divergent study designs, variable analytical pipelines,

and limited longitudinal follow-up. These constraints impede causal

inference and the identification of robust, generalizable biomarkers.

Addressing these gaps will require rigorously powered studies with

standardized methods and transparent reporting.

Looking ahead, advancing precision therapies that harness

microbial metabolites to recalibrate immune function will depend on

tighter integration with clinical practice. Systematic application of

multi-omics platforms combined with deep clinical phenotyping can

reveal mechanistic links and predictive signatures suitable for clinical

translation. Equally important are large-scale, well-controlled clinical

trials and long-term follow-up studies to establish safety, efficacy, and

durability of microbiome-targeted interventions.

In summary, the gut microbiota and its metabolic products are

pivotal determinants of the Treg/Th17 axis and thus of autoimmune
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disease biology. Modulating microbial communities and their

metabolites offers a compelling avenue to restore immune balance

and develop innovative treatments. Future efforts that combine

multidisciplinary science, rigorous clinical evaluation, and patient-

centered design are essential to realize safe, effective, and

personalized microbiome-based therapies for autoimmune disease.
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