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Background: Current radiomic non-small cell lung cancer prognostic models

predominantly depend on statistical correlations, lacking robust biological

validation. This study integrates multi-omics data to develop a preoperative

computed tomography (CT) radiomics model, systematically elucidating its

biological links to tumor molecular heterogeneity, immune microenvironment,

and clinicopathological phenotypes, advancing clinical translation of radiomics.

Methods: This retrospective study analyzed 334 surgically resected stage I-IIIA

NSCLC patients. Radiomic features were extracted from preoperative contrast-

enhanced CT images. LASSO-Cox regression developed the Rad-score. Cross-

cohort validation applied fixed feature thresholds. Integrated gene set

enr ichment analys is , d i fferent ia l gene express ion, and immune

microenvironment analyses revealed biological disparities between radiomics

risk-stratified groups. Integrated clinicopathological data explored radiomics risk

stratification and clinical phenotype associations, constructing a tripartite cross-

scale explanatory framework of radiomics-genomics-clinical phenotypes.

Results: The Rad-score demonstrated robust prognostic stratification capacity

across the training, internal validation, and external validation cohorts. Gene set

enrichment analysis revealed significant enrichment of tumor invasion and

proliferation-related pathways—including hypoxia, TNFA-NF-kB signaling,

inflammatory response, and angiogenesis—in the high-risk group. Differential

gene analysis further identified marked disparities in cell cycle regulation, DNA

repair, and platinum resistance between risk groups. Immune microenvironment

profiling showed significantly reduced immune scores and decreased

proportions of naive B cells in high-risk patients, indicating impaired immune

activity. At the macro level, the high-risk group exhibited stronger inflammatory

responses, more aggressive clinicopathological phenotypes, and poorer

nutritional status, mutually validated by micro-genomic characteristics.
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Conclusion: This study demonstrates that radiomics can non-invasively reveal

tumor molecular heterogeneity and immune microenvironment characteristics,

elucidating direct associations between imaging features and tumor biological

behavior. These findings provide a critical theoretical foundation for the clinical

translation of radiomics.
KEYWORDS

non-small cell lung cancer, radiomics, prognostic stratification, tumor immune
microenvironment, biological basis
1 Introduction

Lung cancer remains the malignancy with the highest incidence

and mortality rates worldwide, with non-small cell lung cancer

(NSCLC) accounting for 85% of all cases (1, 2). Despite significant

improvements in patient survival rates achieved through

advancements in curative surgical resection and postoperative

adjuvant therapies (3, 4), exemplified by early screening and

standardized surgical techniques, current prognostic evaluation

systems dependent on static parameters such as pathological

staging and histological subtypes remain inadequate in explaining

the heterogeneity of clinical outcomes among patients with

comparable clinicopathological profiles (5–7). Despite achieving

complete tumor resection and adhering to standardized adjuvant

therapy protocols, 20-25% of NSCLC patients ultimately develop

disease recurrence or distant metastases, demanding intensified

therapeutic interventions (8, 9). This persistent clinical challenge

underscores that refined risk stratification has emerged as a critical

imperative for optimizing therapeutic decision-making.

Tumors exhibit spatial and temporal heterogeneity at multiple

biological levels, including genetic, proteomic, cellular, tissue, and

organ levels, which contribute significantly to tumor invasiveness

and therapeutic resistance (10, 11). Tumor heterogeneity refers to

the inherent diversity within a tumor, encompassing genetic,

phenotypic, and microenvironmental variations (12). This

heterogeneity is observed not only between different patients but

also within distinct regions of the same tumor in an individual

patient. Such diversity allows cancer cells to exhibit variable

characteristics, such as differential growth rates, metabolic

profiles, and drug resistance, thereby enabling tumors to evade

therapeutic pressures and facilitating tumor progression and

metastasis (13). Additionally, tumor heterogeneity extends to the

immune microenvironment, wherein variations in immune cell

infiltration and immune evasion mechanisms further compromise

immune surveillance, thereby influencing patient prognosis (14).

Extensive research has established that tumor heterogeneity is
02
closely associated with patient outcomes, particularly with respect

to genomic and immune microenvironmental factors (15–17).

Medical imaging offers a non-invasive approach for the

dynamic observation of tumors and their microenvironment,

facilitating a comprehensive evaluation of tumor heterogeneity.

Recent advancements in imaging technologies, including

innovations in medical imaging equipment, contrast agents, and

image analysis techniques, have led to the standardization of image

acquisition, driving the progression of medical imaging toward a

more quantitative paradigm. Radiomics involves the extraction of

quantitative features from medical image data, which, when

coupled with machine learning algorithms, can elucidate the

biological characteristics of tumors and their relationship with

patient prognosis (18). Since its inception, radiomics has achieved

substantial progress in various domains, including early cancer

detection, treatment monitoring, and prognostic assessment

(9, 19–21). Radiomic features are primarily characterized by

mathematical descriptions of attributes such as grayscale

distribution, texture patterns, and shape features within medical

images, reflecting the macroscopic aspects of the images. However,

the specific relationships between these quantitative features and

the molecular biological characteristics of tumors (such as gene

expression, tumor microenvironment) as well as cellular

pathological changes remain inadequately understood.

Consequently, the absence of a robust biological foundation in

radiomic features limits their capacity to elucidate the causal

relationships underlying tumor behaviors, such as invasiveness,

growth dynamics, treatment sensitivity, and prognosis, thereby

hindering their broader clinical application.

To bridge this translational gap, our study pioneers a

multidimensional analysis integrating radiomic profiles, genomic

landscapes, and clinical-pathological parameters. We systematically

interrogate radiomic signatures through a dual-scale framework

encompassing molecular- level biological mechanisms

(microscopic) and tumor-host interface dynamics (macroscopic).

This innovative paradigm aims to elucidate the biological
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underpinnings of radiomic signatures while enhancing their

translational utility through mechanistic correlations with tumor

evolution patterns and therapeutic vulnerabilities.
2 Methods

2.1 Patients

The patient enrollment process and the study flowchart are

presented in Figure 1. The study population consisted of a training

set, an internal validation set, and an external validation set. NSCLC

patients who underwent radical surgical resection at Sichuan

Cancer Hospital and Chengdu First People’s Hospital between

January 1, 2018, and April 1, 2020, were included. The inclusion

criteria were: (1) post-operative histopathological confirmation of

NSCLC; (2) a chest-enhanced computed tomography (CT) scan

within one month prior to surgery; (3) preoperative imaging

confirming the absence of distant metastasis; (IV) availability of

complete follow-up data. Exclusion criteria included: (1) prior

chemotherapy, radiotherapy, or other anti-tumor treatments

before surgery; (2) presence of a second primary malignancy or

other types of malignant tumors; (3) perioperative mortality; (4)

incomplete clinical-pathological data. A total of 354 patients from

Sichuan Cancer Hospital and 183 patients from Chengdu First

People’s Hospital underwent radical resection for NSCLC between

January 1, 2018, and April 1, 2020. After applying the inclusion and

exclusion criteria, 238 patients were ultimately enrolled (160 from

Sichuan Cancer Hospital and 78 from Chengdu First People’s

Hospital). All patients were randomly assigned to either the

training set (166 patients) or the internal validation set (72

patients) in a 7:3 ratio. The external validation set was derived

from the NSCLC Radiogenomics database within The Cancer
Frontiers in Immunology 03
Imaging Archive (TCIA) (https://www.cancerimagingarchive.net/

), initially including 211 patients (22). After excluding those without

genomic data or with CT images that could not delineate the

lesions, 96 patients were ultimately included. This study was

conducted in accordance with the Helsinki Declaration (revised

in 2013) and was approved by Ethics Committee for Medical

Research and New Medical Technology of Sichuan Cancer

Hospital (Approval No. SCCHEC-2022-118). Informed consent

was waived due to the retrospective study design.
2.2 Study endpoints and follow-up

The primary endpoint of this study is disease-free survival

(DFS), defined as the interval from the date of surgery to the first

occurrence of tumor recurrence, metastasis, or death from any

cause. The secondary endpoint is overall survival (OS), defined as

the interval from the date of surgery to either death or the last

follow-up. All enrolled patients underwent preoperative imaging,

including enhanced chest CT, upper abdominal enhanced CT or

ultrasound, and enhanced head magnetic resonance imaging (MRI)

or CT, to determine the disease stage. Postoperatively, patients were

monitored according to a standardized follow-up protocol: follow-

up every three months during the first two years, every six months

between two and five years, and annually thereafter. The follow-up

assessments included unenhanced chest CT, abdominal CT or

ultrasound, complete blood counts, and liver and kidney function

tests. If suspicious lesions or clinical symptoms were identified,

patients could undergo further diagnostic tests, such as enhanced

CT, MRI, or positron emission tomography/CT (PET/CT), as

necessary. The follow-up concluded on December 31, 2023. Data

for the external validation set were sourced from TCIA.
FIGURE 1

The overview of this study workflow.
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2.3 CT image acquisition

Preoperative chest contrast-enhanced CT imaging was

conducted on all patients using a Siemens 64-slice spiral CT

scanner. The scan range extended from the apex to the base of

the lungs. Initially, a routine non-contrast scan was performed,

followed by a contrast-enhanced scan. For the enhanced scan,

iodixanol (100 ml, containing 65.2 g of iodine) was administered

via the antecubital vein using a high-pressure injector, at a dose of

1.5 mg/kg, followed by 20 ml of saline at an injection rate of 2.5 ml/

s. Arterial-phase and venous-phase imaging were acquired at 25-

and 60-seconds post-injection, respectively. The scan parameters

were as follows: tube voltage 120 kV, tube current 250 mAs, slice

thickness of 5 mm with a 5 mm slice interval, and a matrix size of

512×512. The CT images for the external validation set were

obtained from TCIA.
2.4 Image segmentation and feature
extraction

A radiation oncologist with over 10 years of experience in lung

cancer radiotherapy manually delineated the tumor boundaries and

defined the regions of interest (ROI) on preoperative contrast-

enhanced CT axial images using 3D Slicer 5.6.2 software. The tumor

was fully covered during ROI delineation, with regions

corresponding to large blood vessels, bronchi, and surrounding

healthy lung tissue excluded. Subsequently, image preprocessing

and radiomic feature extraction were performed using the

PyRadiomics 3.0.1 package. A total of 851 radiomic features were

extracted for each patient, including: (1) 14 shape features; (2) 18

first-order features; (3) 24 Gray-Level Co-occurrence Matrix

(GLCM) features; (4) 16 Gray-Level Run-Length Matrix

(GLRLM) features; (5) 16 Gray-Level Size Zone Matrix (GLSZM)

features; (6) 5 Neighboring Gray Tone Difference Matrix

(NGTDM) features; (7) 14 Gray-Level Dependence Matrix

(GLDM) features; and (8) 744 wavelet features. All feature

parameters were Z-score normalized using data from the training

set. To assess intra-observer reproducibility, the radiation

oncologist repeated the ROI delineation and feature extraction for

50 randomly selected patients within one week. For inter-observer

reproducibility, another senior radiation oncologist with extensive

experience in lung cancer radiotherapy performed the same tasks

on the same set of 50 patients. The intra-class correlation coefficient

(ICC) was calculated through consistency testing to evaluate

feature stability.
2.5 Feature selection and radiomic score
construction

This study employs a multi-step algorithmic approach for

dimensionality reduction of high-dimensional data. The process is

outlined as follows: (1) Selection of feature parameters exhibiting

high stability, as evidenced by both intra- and inter-observer
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consistency tests, with ICC greater than 0.90. (2) Integration of

the maximal relevance and minimal redundancy (MRMR) and

random survival forest (RSF) algorithms to identify the top 20

radiomic features based on their scores or importance rankings. (3)

Further feature selection is performed using the Least Absolute

Shrinkage and Selection Operator (LASSO)-Cox method, with 10-

fold cross-validation used to determine the optimal weight

parameter l, resulting in the formulation of a linear combination

for the radiomics score (Rad-score).
2.6 Prognostic significance of Rad-score

The association between the Rad-score and DFS was evaluated

in both the training and validation cohorts. The predictive

performance of the Rad-score was assessed through time-

dependent receiver operating characteristic (ROC) curves, with

the optimal cutoff value determined. Patients were then stratified

into high risk and low risk groups based on this cutoff. The

prognostic value of the Rad-score was further validated externally

using the NSCLC Radiogenomics cohort from TCIA. The same

radiomic scoring formula and cutoff value were applied to

categorize patients in the external validation set into high risk

and low risk groups. Finally, survival differences between the risk

groups were analyzed using Kaplan-Meier survival curves.
2.7 Construction and validation of the
prognostic model

Clinical parameters were incorporated into both univariate and

multivariate Cox regression models to identify independent

prognostic factors and develop a clinical prognostic model. A

combined prognostic model was subsequently established by

integrating clinical parameters with the Rad-score. This model

was first assessed in the training cohort and later validated in

both internal and external validation cohorts.
2.8 Gene enrichment analysis of risk
groups based on Rad-score

To investigate the biological significance of the Rad-score, this

study included 96 NSCLC patients with RNA-seq data from the

NSCLC Radiogenomics cohort in the NCBI (https : / /

www.ncbi.nlm.nih.gov/). These patients were stratified into three

groups based on the Rad-score: the top 36 were classified as the

high-risk group, the middle 32 as the normal-risk group, and the

bottom 32 as the low-risk group. RNA-seq data for these patients

were subsequently retrieved from the GSE45603 dataset in the GEO

database. Gene set enrichment analysis (GSEA) was conducted

using the MSigDB Hallmark gene set to identify biological

pathways associated with the high-risk and low-risk groups. A

false discovery rate (FDR) of less than 0.25 was deemed

statistically significant.
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2.9 Differential expressed genes of risk
groups based on Rad-score

Differentially expressed genes between the high-risk and low-

risk groups were identified using the “limma” and “edgeR” packages

in R, applying selection criteria of Log2|FC| > 0.1 and P < 0.05. Gene

Ontology (GO) enrichment analysis and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway analysis were subsequently

conducted based on these differentials expressed genes, utilizing the

Metascape and “clusterProfiler” packages.
2.10 Immune microenvironment of risk
groups based on Rad-score

The ESTIMATE algorithm was employed to estimate tumor

purity in the high-risk and low-risk patient groups (23). Immune

phenotyping scores were derived for each patient (https://tcia.at/

tools/toolsMain), and differences in immune phenotypes were

assessed using the Kolmogorov-Smirnov test to identify potential

variations in immune profiles (24). The cell-type identification by

estimating relative subsets of RNA transcripts(CIBERSORT)

algorithm from the R package immuno-oncology biological

research (IOBR) was utilized to quantify the infiltration levels of

22 distinct immune cell types in each sample (25). Chi-square tests

were applied to compare the abundance of these immune cell types

between the high-risk and low-risk groups, providing insights into

the potential immune microenvironmental differences between the

two groups.
2.11 Correlation of clinical pathological
parameters with Rad-score

At the macro level, this study examined the association between

Rad-score and clinical pathological parameters in 238 patients with

NSCLC. Specifically, inflammatory and nutritional markers, such as

white blood cell (WBC) count, neutrophil count, monocyte count,

neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio

(PLR), systemic immune-inflammation index (SII), prognostic

nutritional index (PNI), and albumin levels, were analyzed.

Furthermore, the relationship between Rad-score and pathological

phenotypes was assessed, including T-stage, N-stage, tumor

differentiation, number of positive lymph nodes, tumor diameter,

and Ki67 expression levels.
2.12 Statistical analysis

Statistical analyses were conducted using RStudio 4.3.1. The

“survminer” R package was employed to determine the optimal cut-

off values for continuous variables via the surv_cutpoint function.

For skewed data, the interquartile range (IQR) was utilized to

summarize the data, and inter-group comparisons were

performed using the Mann-Whitney U test. Categorical data were
Frontiers in Immunology 05
expressed as counts or percentages, with comparisons between

groups carried out using the c² test. The cut-off value for the

Rad-score was established through ROC curve analysis, with its

discriminatory power assessed by the area under the curve (AUC).

Kaplan-Meier survival curves were constructed to estimate survival

rates, and the Log-rank test was employed to evaluate differences in

survival between groups. Furthermore, the concordance index (C-

index) was computed, along with time-dependent ROC curves and

decision curve analysis (DCA) to assess the predictive performance

of the model. The DeLong test was used to compare AUC

differences between models. Nomograms and calibration curves

were generated based on the optimal model to evaluate the

agreement between predicted and actual outcomes. A P-value of

<0.05 was considered statistically significant.
3 Results

3.1 Patient characteristics

In this study, 238 patients with NSCLC who underwent radical

surgical resection were enrolled and followed up. The cohort

included 165 males and 73 females, with a median age of 61 years

(range: 30–82 years) and a median follow-up duration of 50

months. During the follow-up period, 97 patients died, and 121

developed recurrence or metastasis. In the training cohort, the

median follow-up duration was 49 months (range: 3–72 months).

The DFS rates at 1, 3, and 5 years were 73%, 54%, and 49%,

respectively, while the OS rates were 91%, 67%, and 57%,

respectively. In the internal validation cohort, the median follow-

up duration was 51 months (range: 3–71 months). The 1, 3, and 5-

year DFS rates were 81%, 54%, and 45%, respectively, with

corresponding OS rates of 92%, 70%, and 59%. No statistically

significant differences in survival outcomes were observed between

the training and internal validation cohorts (P >0.05). Additionally,

comparisons of clinicopathological characteristics between the two

cohorts revealed no significant differences (P >0.05), indicating high

comparability between the groups. Detailed results are presented

in Table 1.
3.2 Radiomics feature extraction, selection,
and Rad-score construction

Radiomic features were extracted from the ROIs for all patients,

generating 851 features per ROI. Among these, 452 features

demonstrating high reproducibility (ICC > 0.90) were selected for

subsequent analysis. Using MRMR scores and RSF importance

rankings, the top 20 features were identified, from which 38

relevant features were retained (Supplementary Figure S1).

Dimensionality reduction was subsequently performed using

Least Absolute Shrinkage and Selection Operator (LASSO)-Cox

regression, resulting in the selection of 4 key radiomic features. The

definitions and implications of these four features are detailed in
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TABLE 1 The baseline characteristics of patients with NSCLC in the training and validation cohorts.

Variables Total(n = 238) Training(n = 166) Validation(n = 72) P

Gender
Male 165(69.3%) 120(50.4%) 45(18.9%) 0.132

Female 73(30.7%) 46(19.3%) 27(11.4%)

Age (year) median [IQR] 61[54-66] 60.5[54-67] 62[56-65] 0.723

Smoking history
Smoker 132(55.5%) 94(39.5%) 38(16.0%) 0.583

Non-smoker 106(44.5%) 72(30.2%) 34(14.3%)

Type of surgery

Lobectomy 196(82.3%) 139(58.4%) 57(23.9%) 0.690

Bilobectomy 23(9.7%) 15(6.3%) 8(3.4%)

Pneumonectomy 19(8.0%) 12(5.0%) 7(2.9%)

Histopathology

Adenocarcinoma 135(56.7%) 89(37.4%) 46(19.3%) 0.135

Squamous cell 97(40.8%) 74(31.1%) 23(9.7%)

Adenosquamous 6(2.5%) 3(1.3%) 3(1.3%)

T stage
T1-2 184(77.3%) 129(54.2%) 55(23.1%) 0.823

T3-4 54(22.7%) 37(15.5%) 17(7.1%)

N stage
N0-1 169(71%) 115(48.3%) 54(22.7%) 0.371

N2 69(29%) 51(21.4%) 18(7.6%)

UICC stage
I-II 150(63%) 103(43.3%) 47(19.7%) 0.635

I 88(37%) 63(26.5%) 25(10.5%)

Number of lymph node
dissection

<16 103(43.3%) 69(29.0%) 34(14.3%) 0.419

≥16 135(56.7%) 97(40.8%) 38(16.0%)

Lymph node status
Negative 130(54.6%) 87(36.6%) 43(18.1%) 0.298

Positive 108(45.4%) 79(33.2%) 29(12.2%)

Differentiation
Poor 142(59.7%) 103(43.3%) 39(16.4%) 0.255

Moderate and well 96(40.3%) 63(26.5%) 33(13.9%)

Radiotherapy
Yes 14(5.9%) 12(5.0%) 2(0.8%) 0.180

No 224(94.1%) 154(64.7%) 70(29.4%)

Chemotherapy
Yes 123(51.7%) 75(31.5%) 40(16.8%) 0.141

No 115(48.3%) 91(38.2%) 32(13.4%)

Hemoglobin, g/L median [IQR] 134[122-144] 135[122-144] 130[121-142] 0.418

Albumin, g/L median [IQR] 43[40-45] 43[40-45] 43[39-45] 0.698

NLR median [IQR] 2.8[2.0-3.7] 3.0[2.0-3.7] 2.4[1.8-3.4] 0.104

PLR median [IQR] 122[93-168] 121[93-170] 131[93-167] 0.555

SII median [IQR] 519[333-809] 540[338-830] 462[284-695] 0.160

PNI median [IQR] 51[47-54] 51[48-54] 50[47-53] 0.191

GNRI median [IQR] 107[100-113] 107[101-113] 105[98-113] 0.268

CONUT score
<3 214(89.9%) 151(63.4%) 63(26.5%) 0.415

≥3 24(10.1%) 15(6.3%) 9(3.8%)

Recurrence
Yes 121(50.8%) 83(34.9%) 38(16%) 0.694

No 117(49.2%) 83(34.9%) 34(14.3%)
F
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IQR, interquartile ranges; UICC, Union for International Cancer Control; NLR, neutrophil-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; SII, systemic immune-inflammation index; PNI,
prognostic nutritional index; GNRI, geriatric nutritional risk index; CONUT, controlling nutritional status score.
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Supplementary Table S1. These features were utilized to develop the

Rad-score (Supplementary Figure S2).
3.3 Prognostic performance of the Rad-
Score

In the training cohort, ROC analysis for DFS identified a Rad-score

cutoff of -0.051 (AUC = 0.643, 95% CI: 0.560-0.727), stratifying

patients into risk groups with significant DFS difference (P < 0.001,

Figure 2A). For OS, cutoff -0.043 (AUC = 0.634, 95% CI: 0.549-0.719)

yielded significant OS differences in both training (P < 0.05, Figure 2B)
Frontiers in Immunology 07
and internal validation cohorts (P < 0.05, Figure 2D). Although internal

validation showed non-significant DFS trend (P = 0.329, Figure 2C),

external validation (TCIA cohort) confirmed significantly shorter DFS

and OS in high-risk patients (Figures 2E, F).
3.4 Univariate and multivariate prognostic
analyses in NSCLC

Cox univariate analysis identified tumor diameter,

differentiation, T stage, N stage, WBC, PLT, and Rad-score as

significant risk factors for DFS (P < 0.05). For OS, differentiation,
FIGURE 2

Kaplan-Meier survival analysis according to the best cut off value of the radiomics score in the training set (A, B), internal validation set (C, D) and
external validation set (E, F).
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T stage, N stage, WBC, PLT, PLR, SII, PNI, and Rad-score were

significant prognostic factors (P < 0.05), as detailed in Table 2. Cox

multivariate analysis confirmed that T stage, N stage, and Rad-score

were independent predictors of DFS (P < 0.05). Similarly, N stage,

PLT, PNI, and Rad-score were identified as independent prognostic

factors for OS (P < 0.05), as shown in Table 3.
3.5 Construction and validation of the
prognostic model

A clinical model was established using significant clinical

parameters identified through multivariate analysis. Subsequently,

a combined model was developed by incorporating the Rad-score

with these clinical parameters. The combined model demonstrated
Frontiers in Immunology 08
superior predictive efficacy for both DFS and OS compared to the

clinical model. In the training cohort, the C-index values for DFS

and OS were 0.704 and 0.748, respectively, exceeding the clinical

model’s C-index values of 0.655 and 0.684. Similarly, in the

validation cohort, the combined model achieved higher C-index

values than the clinical model (0.674 vs 0.635 and 0.693 vs 0.664,

respectively) (Supplementary Table S2). Time-dependent ROC

curve analysis indicated that the combined model substantially

improved prediction accuracy and diagnostic performance in the

training cohort (Figures 3A–F). Likewise, in the validation cohort,

the combined model outperformed the clinical model in predictive

accuracy (Supplementary Figure S3). Furthermore, DCA

demonstrated that the combined model provided the highest net

benefit for predicting both DFS and OS (Figures 3G–L,

Supplementary Figure S4).
3.6 Development and validation of the
predictive nomogram

A prognostic nomogram for NSCLC was developed based on

the combined model by integrating significant prognostic factors.

The nomogram serves as an individualized prediction tool for

estimating 1-, 3-, and 5-year DFS and OS (Figure 4).

Incorporating the Rad-score markedly enhanced the model’s

predictive accuracy. Calibration curve analysis demonstrated

excellent concordance between the nomogram’s predictions and

actual observed outcomes for both DFS and OS, indicating the

model’s ability to reliably reflect patient survival. These results

further confirmed the nomogram’s high reliability in estimating

time-specific survival probabilities and underscored its robustness

and potential for clinical application (Supplementary Figure S5).
TABLE 2 Univariate analysis of prognostic factors in training cohort.

Factors DFS OS

HR 95% CI P HR 95% CI P

Gender 1.020 0.634-1.639 0.935 1.137 0.665-1.947 0.639

Age 1.124 0.729-1.734 0.596 1.428 0.883-2.310 0.146

Smoking history 1.013 0.657-1.562 0.954 1.065
0.660
-1.718

0.795

Tumor diameter 1.602 1.020-2.517 0.041 1.536
0.931-
2.535

0.093

Pathology 1.525 0.977-2.382 0.064 1.508 0.989-2.298 0.056

Differentiation 1.825 1.128-2.953 0.014 1.859 1.084-3.174 0.024

Number of lymph
node dissection

1.404 0.913-2.161 0.123 1.117 0.694-1.798 0.649

T stage 1.834 1.146-2.934 0.011 1.750 1.047-2.925 0.033

N stage 3.030 1.958-4.689 <0.001 3.106 1.930-4.997 <0.001

Radiotherapy 1.717 0.827-3.566 0.147 1.353 0.585-3.127 0.480

Chemotherapy 1.540 0.987-2.403 0.057 1.273 0.787-2.059 0.326

WBC 1.727 1.060-2.813 0.028 1.726 1.008-2.956 0.047

NEUT 1.774 0.981-3.209 0.058 1.655 0.869-3.154 0.126

LY 1.419 0.903-2.229 0.129 1.494 0.910-2.454 0.113

MONO 1.353 0.855-2.143 0.197 1.496 0.911-2.455 0.111

PLT 1.776 1.149-2.745 0.010 2.574 1.603-4.132 <0.001

CRP 1.151 0.712-1.862 0.566 1.380 0.826-2.305 0.219

NLR 1.246 0.800-1.939 0.331 1.387
0.849
-2.267

0.192

PLR 1.166 0.758-1.793 0.485 1.876 1.159-3.035 0.010

SII 1.310 0.850-2.018 0.221 1.649 1.019-2.668 0.041

PNI 1.472 0.957-2.264 0.079 1.804 1.123-2.898 0.015

GNRI 1.201 0.686-2.102 0.521 1.597 0.901-2.832 0.109

CONUT 1.248 0.602-2.589 0.551 1.197 0.548-2.616 0.652

Rad-score 2.793 1.593-4.896 <0.001 2.800 1.499-5.231 0.001
DFS, disease-free survival; HR, hazard ratio; CI, confidence interval; WBC, white blood cell;
NEUT, Neutrophil; LY, lymphocyte; MONO, monocyte; PLT, platelet; CRP, C-reactive
protein; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; SII,
systemic immune-inflammation index; PNI, prognostic nutritional index; GNRI, geriatric
nutritional risk index; CONUT, controlling nutritional status score.
TABLE 3 Multivariate analysis of prognostic factors in training cohort.

Factors DFS OS

HR 95% CI P HR 95% CI P

Length 1.333 0.672-2.645 0.411 1.798 0.801-4.032 0.155

Differentiation 1.335 0.787-2.262 0.284 1.271 0.691-2.336 0.442

T stage 2.220 1.144-8.704 0.026 1.224 0.688-2.179 0.492

N stage 3.113 1.947-4.978 <0.001 3.164 1.900-5.268 <0.001

WBC 1.746 0.861-3.540 0.122 1.979 0.868-4.511 0.104

PLT 1.503 0.850-2.655 0.161 1.989 1.058-3.739 0.033

PLR 1.239 0.628-2.445 0.537 1.458 0.663-3.208 0.349

SII 1.175 0.610-2.262 0.629 1.426 0.677-3.003 0.350

PNI 1.664 0.979-2.825 0.060 1.842 1.021-3.311 0.042

Rad-score 2.906 1.393-6.060 0.004 3.145 1.391-7.111 0.001
frontier
WBC, white blood cell; PLT, platelet; PLR, platelet-to-lymphocyte ratio; SII, systemic
immune-inflammation index; PNI, prognostic nutritional index.
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3.7 Gene set enrichment analysis

In the external validation cohort comprising 96 NSCLC patients

with RNA-seq data, individuals were stratified into high-risk,

normal, and low-risk groups based on the Rad-score. GSEA

revealed significant enrichment in the high-risk group for
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pathways related to epithelial-mesenchymal transition (EMT),

hypoxia, TNFA-NF-kB signaling, inflammatory response,

angiogenesis, KRAS signaling. Conversely, pathways associated

with the P53 signaling pathway, interferon-a response, reactive

oxygen species pathway, and oxidative phosphorylation were

significantly downregulated in the high-risk group (Figure 5). The
FIGURE 3

The ROC curves of the models for evaluating the DFS and OS in the training cohorts (A-F). The DCA curves of the models in training cohorts (G-L).
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significant differences in these pathways suggest that tumors in the

high-risk group exhibit stronger invasiveness, metastatic potential,

immune evasion capability, and drug resistance, along with

potential metabolic reprogramming and genomic instability.

These biological characteristics may explain the poorer prognosis

observed in high-risk group patients.
3.8 Differential expressed genes

Differentially expressed gene (DEG) analysis between high-risk

and low-risk group identified 71 DEGs significantly upregulated

and 116 DEGs significantly downregulated in the high-risk group

(Figure 6A). These results highlight distinct gene expression profiles

distinguishing the high-risk group from the low-risk group

(Figure 6B). GO enrichment and KEGG pathway analyses of

these DEGs revealed significant pathway alterations, including

those related to the cell cycle, DNA repair, apoptosis, platinum-

based drug resistance, amino acid metabolism, and epithelial cell

differentiation (Figures 6C–F). These findings reflect distinct

biological mechanisms underlying tumor initiation and

progression across risk groups and provide a theoretical basis for

the biological relevance of radiomics.
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3.9 Immune microenvironment

Tumor purity was assessed using the ESTIMATE algorithm,

revealing no significant difference in the ESTIMATE Score between

the high-risk and low-risk group, indicating comparable tumor purity.

In contrast, the Immune Score and Stromal score were significantly

lower in the high-risk group compared to the low-risk group (P < 0.05,

Figure 7A). Analysis of immune phenotype scores showed that the

MHC score was significantly reduced in the high-risk group, while

effector cells (EC), suppressor cells (SC), and checkpoints (CP) scores

were slightly elevated but did not reach statistical significance

(Figure 7B). Immune cell composition within the tumor

microenvironment was evaluated using CIBERSORTx, estimating the

proportions of 22 immune cell types in both groups (Figure 7C). The

analysis demonstrated a significantly lower proportion of naive B cells

in the high-risk group compared to the low-risk group (P = 0.043),

while follicular helper T cells were marginally reduced but not

statistically significant (P = 0.089). Additionally, the proportion of

activated mast cells was significantly higher in the high-risk group (P =

0.02), whereas neutrophils were slightly elevated but did not achieve

statistical significance (P = 0.087, Figure 7D). These results demonstrate

that the tumor microenvironment in high-risk group patients exhibits

stronger immunosuppressive properties, which may promote tumor
FIGURE 4

The nomogram combined with the Rad-score and the independent clinical risk factors to predict the risk of DFS (A) and OS (B).
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progression by impairing anti-tumor immune responses, thereby

accounting for their poorer prognosis.
3.10 Clinicopathological phenotype

At a macroscopic level, the correlation between Rad-score and

clinicopathological characteristics, including inflammatory-
Frontiers in Immunology 11
nutritional indices and pathological staging, was analyzed in 238

patients with NSCLC. The analysis revealed that inflammatory

markers, such as WBC, neutrophils (NEUT), monocytes

(MOMO), NLR, and SII, were significantly elevated in the high-

risk group compared to the low-risk group, while albumin (ALB)

levels were significantly reduced. These results suggest that the

high-risk group exhibits a heightened inflammatory response and

compromised nutritional status (Figure 8). Pathologically, the high-
FIGURE 5

The relationship between Rad-score and gene expression profiles evaluated by gene set enrichment analysis (GSEA). (A) GSEA comparing high-risk
and low-risk groups stratified by Rad-score. (B) Epithelial Mesenchymal Transition, Hypoxia, Inflammatory Response, TNF-a, Angiogenesis, and KRAS
signaling up pathways are significantly enriched in the high-risk group.
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risk group demonstrated significantly advanced T and N stages,

increased tumor diameter, elevated Ki67 expression, a higher

number of posit ive lymph nodes, and poorer tumor

differentiation compared to the low-risk group (Figure 8).

Enhanced inflammation likely facilitates tumor progression and

immune evasion, whereas malnutrition may impair immune

function and reduce treatment tolerance. The interplay between

these factors may synergistically drive tumor progression and

metastasis. This study demonstrates that the multidimensional

feature coherence across micro-level (e.g., gene pathway

dysregulation, immune microenvironment heterogeneity) and

macro-level (e.g., enhanced inflammation, advanced pathological
Frontiers in Immunology 12
staging, increased tumor invasiveness) aspects reveals the biological

mechanisms underlying tumor progression and poor prognosis in

the high-risk group, establishing a systematic closed-loop validation

from molecular mechanisms to clinical phenotypes.
4 Discussion

In the present study, we developed a Rad-score based on

preoperative CT imaging features and evaluated its stability and

reliability through both internal and external validation. The

clinical value of the Rad-score is reflected in its advantages of
FIGURE 6

Transcriptomic analysis of differentially expressed genes between radiomics-defined high- and low-risk groups. (A) Volcano plot showing
significantly upregulated and downregulated genes. (B) Heatmap displaying expression patterns of DEGs in high-risk and low-risk groups. (C) GO
analysis revealed enrichment in cellular catabolic processes, fatty acid metabolism, and extracellular matrix organization. (D) KEGG pathway analysis
identified enrichment in ribosome biogenesis, glutathione metabolism, and platinum drug resistance. (E, F) Gene-pathway network and KEGG chord
plot highlighted key pathways associated with tumor progression and drug resistance (26–28).
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multidimensional integration, support from biological mechanisms,

and its complementary role in clinical decision-making. First, as an

independent prognostic factor, the Rad-score significantly

enhanced the predictive efficacy of the model when integrated

with clinical parameters. Second, its association with key

biological pathways such as hypoxia/immune evasion provides an

interpretable molecular mechanism basis for the observed

prognostic differences. At the clinical application level, the

personalized nomogram constructed based on the combined

model can assist in identifying high-risk patients missed by

traditional TNM staging, thereby optimizing adjuvant

treatment decisions.

Radiomic features provide critical insights into the intrinsic

heterogeneity of tumors and their underlying biological

characteristics, thereby offering more precise tools for prognostic

assessment. For example, Dercle et al. demonstrated that baseline

CT radiomic features can robustly predict OS in NSCLC patients

undergoing immunotherapy or chemotherapy (29).Moreover, a

radiomic model developed by Wang et al., incorporating multi-

regional features, significantly enhanced the accuracy of

postoperative survival risk prediction in patients with stage IA

pure solid-type NSCLC31. Similarly, Chen et al. devised a

nomogram based on preoperative CT radiomic features and
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clinical variables, which efficiently predicted lymphovascular

invasion and OS in NSCLC patients, showcasing both strong

predictive power and clinical applicability (30). In the present

study, our multivariate analysis identified the Rad-score as an

independent prognostic factor for both DFS and OS, consistent

with the findings of Dercle and Wang et al. (29, 31). Although

current research primarily centers on the integration of radiomics

with clinical features in predictive modeling, it is also well

established that inflammation and nutritional status play crucial

roles in tumorigenesis, progression, and prognosis (32). Recent

studies have increasingly focused on the application of

hematological inflammatory and nutritional indices for prognostic

evaluation in cancer (33, 34). Our findings further corroborate that

the PNI and PLT count are independent risk factors for OS, in line

with previous research (35, 36). Notably, this study innovatively

integrates radiomic features with inflammatory and nutritional

parameters to construct a novel, multidimensional prognostic

model. Compared to traditional models based on individual

features, this integrated model offers a more comprehensive

framework by incorporating the critical roles of inflammation and

nutritional status in tumor progression and prognosis, thereby

significantly improving the model’s predictive accuracy and

clinical utility.
FIGURE 7

Differences in the immune microenvironment between high-risk and low-risk groups based on Rad-score. (A) Boxplots comparing Stromal Score,
Immune Score, and ESTIMATE Score between high risk and low risk groups. (B) Differences in immunophenotypic characteristics between high- and
low-risk groups. (C) Stacked bar plot depicting the relative composition of 22 distinct immune cell types between high risk and low risk groups. (D)
Boxplots comparing four immune cell types with notable differences between high risk and low-risk groups.
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This study provides a comprehensive analysis of the tumor

characteristics associated with high- and low-risk groups based on

Rad-score at the microscopic level. We observed that the high-risk

group is significantly enriched in several signaling pathways related

to tumor invasiveness and metastasis, including epithelial-

mesenchymal transition (EMT), hypoxia, TNFA-NF-kB signaling,

inflammatory response, angiogenesis, KRAS, apoptosis, mitosis,

and IL2/STAT5 signaling (37–45). Conversely, tumor-suppressive

pathways, such as P53, interferon-a response, reactive oxygen

species (ROS), and oxidative phosphorylation (46–49), were
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markedly downregulated in the high-risk group. These findings

provide robust evidence for the biological foundation of radiomics

and elucidate the intrinsic relationship between imaging features

and tumor molecular mechanisms. Differential gene analysis

revealed significant differences between the high- and low-risk

groups in various biological processes, including the cell cycle,

DNA repair, apoptosis, platinum resistance, amino acid

metabolism, and epithelial cell differentiation. These findings

suggest that tumors in the high-risk group may exhibit

heightened invasiveness, drug resistance, and metabolic
FIGURE 8

Association analyses between radiomics-based risk stratification with inflammatory-nutritional biomarkers and pathological phenotypes.
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adaptability, potentially facilitating accelerated tumor progression

and enhancing resistance to therapeutic interventions. Further

analysis of the immune microenvironment showed that, although

tumor purity was similar between the two groups, the high-risk

group exhibited significantly lower immune and stromal scores,

indicating reduced immune activity and stromal support. This may

contribute to immune escape mechanisms and promote tumor

invasiveness and drug resistance. Immune phenotype scoring

revealed that the high-risk group had a lower MHC score,

reflecting impaired antigen presentation capacity, which further

suggests the presence of immune escape mechanisms that could

undermine immune surveillance and anti-tumor immune

responses. Immune cell composition analysis demonstrated a

significantly higher proportion of activated mast cells and a lower

proportion of naïve B cells in the high-risk group compared to the

low-risk group. These observations suggest a distinct immune cell

infiltration pattern in the high-risk group, where an increase in

activated mast cells may be linked to inflammatory responses and

immune escape mechanisms within the tumor microenvironment

(50), while the reduction in B cells may impair immune surveillance

and foster tumor progression (51). These findings are consistent

with previous studies (23, 52–55). These specific changes in

immune cells, combined with the observed decrease in overall

immune score and MHC score, collectively characterize an

immunosuppressive tumor microenvironment featuring enhanced

immunosuppression and a pro-inflammatory state in high-risk

tumors. This provides a potential immunological basis for

understanding the more aggressive clinicopathological phenotype

and poorer prognosis observed in high-risk patient groups. By

integrating genomic data, this study identified biological

mechanisms and immune microenvironment features significantly

associated with Rad-score-based risk stratification. It is crucial to

emphasize that these findings (including enriched signaling

pathways, differentially expressed genes, and changes in immune

cell proportions) represent correlative results from a retrospective

observational study, revealing potential biological relationships, and

cannot directly prove a causal relationship between radiomic

features and molecular/immune alterations.

At the macroscopic phenotypic level, we analyzed the

differences between the two groups in terms of inflammatory

nutritional indices, pathological staging, and proliferative activity.

The findings demonstrated that the high-risk group, as determined

by Rad-score, exhibited a pronounced inflammatory response,

characterized by elevated levels of WBC, neutrophils, monocytes,

NLR, and systemic SII. Additionally, the high-risk group displayed

poorer nutritional status, as evidenced by significantly lower

albumin levels. Inflammatory responses, through immune system

activation and cytokine release, disrupt metabolic processes and

exacerbate malnutrition. Inflammation stimulates the release of

various pro-inflammatory cytokines, which not only enhance

tumor proliferation and invasiveness but also suppress anti-tumor

immune responses by secreting immunosuppressive factors,

enabling tumor cells to evade immune surveillance and thereby
Frontiers in Immunology 15
promoting tumor progression (56, 57). Simultaneously,

malnutrition leads to deficiencies in proteins and trace elements,

impairing immune cell function and hindering the immune

system’s ability to recognize and eliminate tumor cells effectively,

which further accelerates tumor growth and metastasis (58, 59). The

vicious cycle between inflammation and malnutrition not only

enhances tumor invasiveness and metabolic adaptability but also

reduces treatment tolerance, ultimately contributing to tumor

progression. At the pathological phenotypic level, we observed

that the high-risk group had more advanced postoperative T and

N staging, larger tumor size, higher lymph node involvement,

poorer differentiation, and elevated Ki67 expression, underscoring

the substantial potential of radiomics in reflecting immune-

inflammatory responses within the tumor microenvironment, as

well as the processes of tumor proliferation and invasiveness.

While this study has provided valuable insights, several

limitations should be acknowledged. First, the sample size

restricts the generalizability and predictive accuracy of the clinical

prediction model. Although the cases in this study were derived

from two centers, the relatively small sample size may undermine

the model’s ability to generalize across broader populations. Thus,

future research should prioritize increasing the sample size to

enhance the model’s robustness and reliability. Second, the

external validation cohort (TCIA) exhibits inherent heterogeneity

in CT scanning equipment and acquisition parameters, which may

compromise the stability of radiomic features. Furthermore, the

limited availability of genomic data in the external validation cohort

may introduce potential variability and bias. Therefore,

larger, independent cohorts with comprehensive genomic data

are essential to validate the model’s broader applicability.

Lastly, although this study revealed significant differences

in molecular pathways and immune infiltration between

Rad-score risk stratification groups, these results are inherently

observational associations, not proof of causality. Whether these

molecular and immune features drive the imaging phenotypes

and influence prognostic mechanisms still requires further

experimental validation.
5 Conclusion

In conclusion, this study provides an innovative examination of

the biological foundation of radiomic features, incorporating both

the microscopic dimensions of gene pathways and the immune

microenvironment, alongside the macroscopic perspectives of

inflammatory nutritional indices and clinical pathological

phenotypes. This approach offers a novel biological framework

for the clinical application of radiomics. The results demonstrate

that preoperative CT Rad-score not only predict the prognosis of

NSCLC patients undergoing complete surgical resection, but also

elucidate the molecular heterogeneity of the tumor and its

microenvironment. These findings establish a critical theoretical

foundation for the clinical translation of radiomics.
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