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Background: Current radiomic non-small cell lung cancer prognostic models
predominantly depend on statistical correlations, lacking robust biological
validation. This study integrates multi-omics data to develop a preoperative
computed tomography (CT) radiomics model, systematically elucidating its
biological links to tumor molecular heterogeneity, immune microenvironment,
and clinicopathological phenotypes, advancing clinical translation of radiomics.
Methods: This retrospective study analyzed 334 surgically resected stage I-IlIA
NSCLC patients. Radiomic features were extracted from preoperative contrast-
enhanced CT images. LASSO-Cox regression developed the Rad-score. Cross-
cohort validation applied fixed feature thresholds. Integrated gene set
enrichment analysis, differential gene expression, and immune
microenvironment analyses revealed biological disparities between radiomics
risk-stratified groups. Integrated clinicopathological data explored radiomics risk
stratification and clinical phenotype associations, constructing a tripartite cross-
scale explanatory framework of radiomics-genomics-clinical phenotypes.
Results: The Rad-score demonstrated robust prognostic stratification capacity
across the training, internal validation, and external validation cohorts. Gene set
enrichment analysis revealed significant enrichment of tumor invasion and
proliferation-related pathways—including hypoxia, TNFA-NF-xB signaling,
inflammatory response, and angiogenesis—in the high-risk group. Differential
gene analysis further identified marked disparities in cell cycle regulation, DNA
repair, and platinum resistance between risk groups. Immune microenvironment
profiling showed significantly reduced immune scores and decreased
proportions of naive B cells in high-risk patients, indicating impaired immune
activity. At the macro level, the high-risk group exhibited stronger inflammatory
responses, more aggressive clinicopathological phenotypes, and poorer
nutritional status, mutually validated by micro-genomic characteristics.
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Conclusion: This study demonstrates that radiomics can non-invasively reveal
tumor molecular heterogeneity and immune microenvironment characteristics,
elucidating direct associations between imaging features and tumor biological
behavior. These findings provide a critical theoretical foundation for the clinical
translation of radiomics.

non-small cell lung cancer, radiomics, prognostic stratification, tumor immune
microenvironment, biological basis

1 Introduction

Lung cancer remains the malignancy with the highest incidence
and mortality rates worldwide, with non-small cell lung cancer
(NSCLC) accounting for 85% of all cases (1, 2). Despite significant
improvements in patient survival rates achieved through
advancements in curative surgical resection and postoperative
adjuvant therapies (3, 4), exemplified by early screening and
standardized surgical techniques, current prognostic evaluation
systems dependent on static parameters such as pathological
staging and histological subtypes remain inadequate in explaining
the heterogeneity of clinical outcomes among patients with
comparable clinicopathological profiles (5-7). Despite achieving
complete tumor resection and adhering to standardized adjuvant
therapy protocols, 20-25% of NSCLC patients ultimately develop
disease recurrence or distant metastases, demanding intensified
therapeutic interventions (8, 9). This persistent clinical challenge
underscores that refined risk stratification has emerged as a critical
imperative for optimizing therapeutic decision-making.

Tumors exhibit spatial and temporal heterogeneity at multiple
biological levels, including genetic, proteomic, cellular, tissue, and
organ levels, which contribute significantly to tumor invasiveness
and therapeutic resistance (10, 11). Tumor heterogeneity refers to
the inherent diversity within a tumor, encompassing genetic,
phenotypic, and microenvironmental variations (12). This
heterogeneity is observed not only between different patients but
also within distinct regions of the same tumor in an individual
patient. Such diversity allows cancer cells to exhibit variable
characteristics, such as differential growth rates, metabolic
profiles, and drug resistance, thereby enabling tumors to evade
therapeutic pressures and facilitating tumor progression and
metastasis (13). Additionally, tumor heterogeneity extends to the
immune microenvironment, wherein variations in immune cell
infiltration and immune evasion mechanisms further compromise
immune surveillance, thereby influencing patient prognosis (14).
Extensive research has established that tumor heterogeneity is
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closely associated with patient outcomes, particularly with respect
to genomic and immune microenvironmental factors (15-17).

Medical imaging offers a non-invasive approach for the
dynamic observation of tumors and their microenvironment,
facilitating a comprehensive evaluation of tumor heterogeneity.
Recent advancements in imaging technologies, including
innovations in medical imaging equipment, contrast agents, and
image analysis techniques, have led to the standardization of image
acquisition, driving the progression of medical imaging toward a
more quantitative paradigm. Radiomics involves the extraction of
quantitative features from medical image data, which, when
coupled with machine learning algorithms, can elucidate the
biological characteristics of tumors and their relationship with
patient prognosis (18). Since its inception, radiomics has achieved
substantial progress in various domains, including early cancer
detection, treatment monitoring, and prognostic assessment
(9, 19-21). Radiomic features are primarily characterized by
mathematical descriptions of attributes such as grayscale
distribution, texture patterns, and shape features within medical
images, reflecting the macroscopic aspects of the images. However,
the specific relationships between these quantitative features and
the molecular biological characteristics of tumors (such as gene
expression, tumor microenvironment) as well as cellular
pathological changes remain inadequately understood.
Consequently, the absence of a robust biological foundation in
radiomic features limits their capacity to elucidate the causal
relationships underlying tumor behaviors, such as invasiveness,
growth dynamics, treatment sensitivity, and prognosis, thereby
hindering their broader clinical application.

To bridge this translational gap, our study pioneers a
multidimensional analysis integrating radiomic profiles, genomic
landscapes, and clinical-pathological parameters. We systematically
interrogate radiomic signatures through a dual-scale framework
encompassing molecular-level biological mechanisms
(microscopic) and tumor-host interface dynamics (macroscopic).
This innovative paradigm aims to elucidate the biological
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underpinnings of radiomic signatures while enhancing their
translational utility through mechanistic correlations with tumor
evolution patterns and therapeutic vulnerabilities.

2 Methods
2.1 Patients

The patient enrollment process and the study flowchart are
presented in Figure 1. The study population consisted of a training
set, an internal validation set, and an external validation set. NSCLC
patients who underwent radical surgical resection at Sichuan
Cancer Hospital and Chengdu First People’s Hospital between
January 1, 2018, and April 1, 2020, were included. The inclusion
criteria were: (1) post-operative histopathological confirmation of
NSCLG; (2) a chest-enhanced computed tomography (CT) scan
within one month prior to surgery; (3) preoperative imaging
confirming the absence of distant metastasis; (IV) availability of
complete follow-up data. Exclusion criteria included: (1) prior
chemotherapy, radiotherapy, or other anti-tumor treatments
before surgery; (2) presence of a second primary malignancy or
other types of malignant tumors; (3) perioperative mortality; (4)
incomplete clinical-pathological data. A total of 354 patients from
Sichuan Cancer Hospital and 183 patients from Chengdu First
People’s Hospital underwent radical resection for NSCLC between
January 1, 2018, and April 1, 2020. After applying the inclusion and
exclusion criteria, 238 patients were ultimately enrolled (160 from
Sichuan Cancer Hospital and 78 from Chengdu First People’s
Hospital). All patients were randomly assigned to either the
training set (166 patients) or the internal validation set (72
patients) in a 7:3 ratio. The external validation set was derived
from the NSCLC Radiogenomics database within The Cancer
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Imaging Archive (TCIA) (https://www.cancerimagingarchive.net/
), initially including 211 patients (22). After excluding those without
genomic data or with CT images that could not delineate the
lesions, 96 patients were ultimately included. This study was
conducted in accordance with the Helsinki Declaration (revised
in 2013) and was approved by Ethics Committee for Medical
Research and New Medical Technology of Sichuan Cancer
Hospital (Approval No. SCCHEC-2022-118). Informed consent
was waived due to the retrospective study design.

2.2 Study endpoints and follow-up

The primary endpoint of this study is disease-free survival
(DES), defined as the interval from the date of surgery to the first
occurrence of tumor recurrence, metastasis, or death from any
cause. The secondary endpoint is overall survival (OS), defined as
the interval from the date of surgery to either death or the last
follow-up. All enrolled patients underwent preoperative imaging,
including enhanced chest CT, upper abdominal enhanced CT or
ultrasound, and enhanced head magnetic resonance imaging (MRI)
or CT, to determine the disease stage. Postoperatively, patients were
monitored according to a standardized follow-up protocol: follow-
up every three months during the first two years, every six months
between two and five years, and annually thereafter. The follow-up
assessments included unenhanced chest CT, abdominal CT or
ultrasound, complete blood counts, and liver and kidney function
tests. If suspicious lesions or clinical symptoms were identified,
patients could undergo further diagnostic tests, such as enhanced
CT, MRI, or positron emission tomography/CT (PET/CT), as
necessary. The follow-up concluded on December 31, 2023. Data
for the external validation set were sourced from TCIA.

Patients with NSCLC surgically resected between January
2018 to April 2020 from Sichuan Cancer Hospital(n=354)

Patients with NSCLC surgically resected between January 2018
to April 2020 from Chengdu First People's Hospital(n=183)

Patients with NSCLC in TCIA(n=211)

Patients were excluded(n=299)
-Anti-tumor therapy has been performed before surgery(n=84)
-Complicated with the second primary malignant tumor(n=15)
-perioperative death(n=4)

-incomplete clinical pathological data(n=68)
-Preoperative CT scan is not standardized(n=128

Patients were excluded(n=115)

-No corresponding genomic data(n=81)

-The region of interest cannot be segmented(n=29)
-Stage IV NSCLC(n=5)

160 patients from Sichuan Cancer Hospital were included |

[78 patients from Chengdu First People's Hospital were included

l

|Random division into groups with a 7:3 allocation ratio]

Training set (n=166)

Rad-score Rad-score

High risk and Low risk

Clinical Pathological Phenotype‘

FIGURE 1
The overview of this study workflow.
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2.3 CT image acquisition

Preoperative chest contrast-enhanced CT imaging was
conducted on all patients using a Siemens 64-slice spiral CT
scanner. The scan range extended from the apex to the base of
the lungs. Initially, a routine non-contrast scan was performed,
followed by a contrast-enhanced scan. For the enhanced scan,
iodixanol (100 ml, containing 65.2 g of iodine) was administered
via the antecubital vein using a high-pressure injector, at a dose of
1.5 mg/kg, followed by 20 ml of saline at an injection rate of 2.5 ml/
s. Arterial-phase and venous-phase imaging were acquired at 25-
and 60-seconds post-injection, respectively. The scan parameters
were as follows: tube voltage 120 kV, tube current 250 mAs, slice
thickness of 5 mm with a 5 mm slice interval, and a matrix size of
512x512. The CT images for the external validation set were
obtained from TCIA.

2.4 Image segmentation and feature
extraction

A radiation oncologist with over 10 years of experience in lung
cancer radiotherapy manually delineated the tumor boundaries and
defined the regions of interest (ROI) on preoperative contrast-
enhanced CT axial images using 3D Slicer 5.6.2 software. The tumor
was fully covered during ROI delineation, with regions
corresponding to large blood vessels, bronchi, and surrounding
healthy lung tissue excluded. Subsequently, image preprocessing
and radiomic feature extraction were performed using the
PyRadiomics 3.0.1 package. A total of 851 radiomic features were
extracted for each patient, including: (1) 14 shape features; (2) 18
first-order features; (3) 24 Gray-Level Co-occurrence Matrix
(GLCM) features; (4) 16 Gray-Level Run-Length Matrix
(GLRLM) features; (5) 16 Gray-Level Size Zone Matrix (GLSZM)
features; (6) 5 Neighboring Gray Tone Difference Matrix
(NGTDM) features; (7) 14 Gray-Level Dependence Matrix
(GLDM) features; and (8) 744 wavelet features. All feature
parameters were Z-score normalized using data from the training
set. To assess intra-observer reproducibility, the radiation
oncologist repeated the ROI delineation and feature extraction for
50 randomly selected patients within one week. For inter-observer
reproducibility, another senior radiation oncologist with extensive
experience in lung cancer radiotherapy performed the same tasks
on the same set of 50 patients. The intra-class correlation coefficient
(ICC) was calculated through consistency testing to evaluate
feature stability.

2.5 Feature selection and radiomic score
construction

This study employs a multi-step algorithmic approach for
dimensionality reduction of high-dimensional data. The process is
outlined as follows: (1) Selection of feature parameters exhibiting
high stability, as evidenced by both intra- and inter-observer
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consistency tests, with ICC greater than 0.90. (2) Integration of
the maximal relevance and minimal redundancy (MRMR) and
random survival forest (RSF) algorithms to identify the top 20
radiomic features based on their scores or importance rankings. (3)
Further feature selection is performed using the Least Absolute
Shrinkage and Selection Operator (LASSO)-Cox method, with 10-
fold cross-validation used to determine the optimal weight
parameter A, resulting in the formulation of a linear combination
for the radiomics score (Rad-score).

2.6 Prognostic significance of Rad-score

The association between the Rad-score and DFS was evaluated
in both the training and validation cohorts. The predictive
performance of the Rad-score was assessed through time-
dependent receiver operating characteristic (ROC) curves, with
the optimal cutoff value determined. Patients were then stratified
into high risk and low risk groups based on this cutoff. The
prognostic value of the Rad-score was further validated externally
using the NSCLC Radiogenomics cohort from TCIA. The same
radiomic scoring formula and cutoff value were applied to
categorize patients in the external validation set into high risk
and low risk groups. Finally, survival differences between the risk
groups were analyzed using Kaplan-Meier survival curves.

2.7 Construction and validation of the
prognostic model

Clinical parameters were incorporated into both univariate and
multivariate Cox regression models to identify independent
prognostic factors and develop a clinical prognostic model. A
combined prognostic model was subsequently established by
integrating clinical parameters with the Rad-score. This model
was first assessed in the training cohort and later validated in
both internal and external validation cohorts.

2.8 Gene enrichment analysis of risk
groups based on Rad-score

To investigate the biological significance of the Rad-score, this
study included 96 NSCLC patients with RNA-seq data from the
NSCLC Radiogenomics cohort in the NCBI (https://
www.ncbi.nlm.nih.gov/). These patients were stratified into three
groups based on the Rad-score: the top 36 were classified as the
high-risk group, the middle 32 as the normal-risk group, and the
bottom 32 as the low-risk group. RNA-seq data for these patients
were subsequently retrieved from the GSE45603 dataset in the GEO
database. Gene set enrichment analysis (GSEA) was conducted
using the MSigDB Hallmark gene set to identify biological
pathways associated with the high-risk and low-risk groups. A
false discovery rate (FDR) of less than 0.25 was deemed
statistically significant.
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2.9 Differential expressed genes of risk
groups based on Rad-score

Differentially expressed genes between the high-risk and low-
risk groups were identified using the “limma” and “edgeR” packages
in R, applying selection criteria of Log2|FC| > 0.1 and P < 0.05. Gene
Ontology (GO) enrichment analysis and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis were subsequently
conducted based on these differentials expressed genes, utilizing the
Metascape and “clusterProfiler” packages.

2.10 Immune microenvironment of risk
groups based on Rad-score

The ESTIMATE algorithm was employed to estimate tumor
purity in the high-risk and low-risk patient groups (23). Immune
phenotyping scores were derived for each patient (https://tcia.at/
tools/toolsMain), and differences in immune phenotypes were
assessed using the Kolmogorov-Smirnov test to identify potential
variations in immune profiles (24). The cell-type identification by
estimating relative subsets of RNA transcripts(CIBERSORT)
algorithm from the R package immuno-oncology biological
research (IOBR) was utilized to quantify the infiltration levels of
22 distinct immune cell types in each sample (25). Chi-square tests
were applied to compare the abundance of these immune cell types
between the high-risk and low-risk groups, providing insights into
the potential immune microenvironmental differences between the
two groups.

2.11 Correlation of clinical pathological
parameters with Rad-score

At the macro level, this study examined the association between
Rad-score and clinical pathological parameters in 238 patients with
NSCLC. Specifically, inflammatory and nutritional markers, such as
white blood cell (WBC) count, neutrophil count, monocyte count,
neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio
(PLR), systemic immune-inflammation index (SII), prognostic
nutritional index (PNI), and albumin levels, were analyzed.
Furthermore, the relationship between Rad-score and pathological
phenotypes was assessed, including T-stage, N-stage, tumor
differentiation, number of positive lymph nodes, tumor diameter,
and Ki67 expression levels.

2.12 Statistical analysis

Statistical analyses were conducted using RStudio 4.3.1. The
“survminer” R package was employed to determine the optimal cut-
off values for continuous variables via the surv_cutpoint function.
For skewed data, the interquartile range (IQR) was utilized to
summarize the data, and inter-group comparisons were
performed using the Mann-Whitney U test. Categorical data were
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expressed as counts or percentages, with comparisons between
groups carried out using the %’ test. The cut-off value for the
Rad-score was established through ROC curve analysis, with its
discriminatory power assessed by the area under the curve (AUC).
Kaplan-Meier survival curves were constructed to estimate survival
rates, and the Log-rank test was employed to evaluate differences in
survival between groups. Furthermore, the concordance index (C-
index) was computed, along with time-dependent ROC curves and
decision curve analysis (DCA) to assess the predictive performance
of the model. The DeLong test was used to compare AUC
differences between models. Nomograms and calibration curves
were generated based on the optimal model to evaluate the
agreement between predicted and actual outcomes. A P-value of
<0.05 was considered statistically significant.

3 Results
3.1 Patient characteristics

In this study, 238 patients with NSCLC who underwent radical
surgical resection were enrolled and followed up. The cohort
included 165 males and 73 females, with a median age of 61 years
(range: 30-82 years) and a median follow-up duration of 50
months. During the follow-up period, 97 patients died, and 121
developed recurrence or metastasis. In the training cohort, the
median follow-up duration was 49 months (range: 3-72 months).
The DES rates at 1, 3, and 5 years were 73%, 54%, and 49%,
respectively, while the OS rates were 91%, 67%, and 57%,
respectively. In the internal validation cohort, the median follow-
up duration was 51 months (range: 3-71 months). The 1, 3, and 5-
year DFS rates were 81%, 54%, and 45%, respectively, with
corresponding OS rates of 92%, 70%, and 59%. No statistically
significant differences in survival outcomes were observed between
the training and internal validation cohorts (P >0.05). Additionally,
comparisons of clinicopathological characteristics between the two
cohorts revealed no significant differences (P >0.05), indicating high
comparability between the groups. Detailed results are presented
in Table 1.

3.2 Radiomics feature extraction, selection,
and Rad-score construction

Radiomic features were extracted from the ROIs for all patients,
generating 851 features per ROI. Among these, 452 features
demonstrating high reproducibility (ICC > 0.90) were selected for
subsequent analysis. Using MRMR scores and RSF importance
rankings, the top 20 features were identified, from which 38
relevant features were retained (Supplementary Figure S1).
Dimensionality reduction was subsequently performed using
Least Absolute Shrinkage and Selection Operator (LASSO)-Cox
regression, resulting in the selection of 4 key radiomic features. The
definitions and implications of these four features are detailed in
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TABLE 1 The baseline characteristics of patients with NSCLC in the training and validation cohorts.

Variables Total(n = 2 Training(n = 166) Validation(n =72) P

Male 165(69.3%) 120(50.4%) 45(18.9%) 0.132
Gender

Female 73(30.7%) 46(19.3%) 27(11.4%)
Age (year) median [IQR] 61[54-66] 60.5[54-67] 62[56-65] 0.723

Smoker 132(55.5%) 94(39.5%) 38(16.0%) 0.583
Smoking history

Non-smoker 106(44.5%) 72(30.2%) 34(14.3%)

Lobectomy 196(82.3%) 139(58.4%) 57(23.9%) 0.690
Type of surgery Bilobectomy 23(9.7%) 15(6.3%) 8(3.4%)

Pneumonectomy 19(8.0%) 12(5.0%) 7(2.9%)

Adenocarcinoma 135(56.7%) 89(37.4%) 46(19.3%) 0.135
Histopathology Squamous cell 97(40.8%) 74(31.1%) 23(9.7%)

Adenosquamous 6(2.5%) 3(1.3%) 3(1.3%)

T1-2 184(77.3%) 129(54.2%) 55(23.1%) 0.823
T stage

T3-4 54(22.7%) 37(15.5%) 17(7.1%)

NO-1 169(71%) 115(48.3%) 54(22.7%) 0.371
N stage

N2 69(29%) 51(21.4%) 18(7.6%)

I-1I 150(63%) 103(43.3%) 47(19.7%) 0.635
UICC stage

I 88(37%) 63(26.5%) 25(10.5%)
Number of lymph node <16 103(43.3%) 69(29.0%) 34(14.3%) 0.419
dissection >16 135(56.7%) 97(40.8%) 38(16.0%)

Negative 130(54.6%) 87(36.6%) 43(18.1%) 0.298
Lymph node status

Positive 108(45.4%) 79(33.2%) 29(12.2%)

Poor 142(59.7%) 103(43.3%) 39(16.4%) 0.255
Differentiation

Moderate and well 96(40.3%) 63(26.5%) 33(13.9%)

Yes 14(5.9%) 12(5.0%) 2(0.8%) 0.180
Radiotherapy

No 224(94.1%) 154(64.7%) 70(29.4%)

Yes 123(51.7%) 75(31.5%) 40(16.8%) 0.141
Chemotherapy

No 115(48.3%) 91(38.2%) 32(13.4%)
Hemoglobin, g/L median [IQR] 134[122-144] 135[122-144] 130[121-142] 0.418
Albumin, g/L median [IQR] 43[40-45] 43[40-45] 43[39-45] 0.698
NLR median [IQR] 2.8[2.0-3.7] 3.0[2.0-3.7] 2.4[1.8-34] 0.104
PLR median [IQR] 122[93-168] 121[93-170] 131[93-167] 0.555
SIT median [IQR] 519[333-809] 540[338-830] 462[284-695] 0.160
PNI median [IQR] 51[47-54] 51[48-54] 50[47-53] 0.191
GNRI median [IQR] 107[100-113] 107[101-113] 105[98-113] 0.268

<3 214(89.9%) 151(63.4%) 63(26.5%) 0.415
CONUT score

>3 24(10.1%) 15(6.3%) 9(3.8%)

Yes 121(50.8%) 83(34.9%) 38(16%) 0.694
Recurrence

No 117(49.2%) 83(34.9%) 34(14.3%)

IQR, interquartile ranges; UICC, Union for International Cancer Control; NLR, neutrophil-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; SII, systemic immune-inflammation index; PNI,
prognostic nutritional index; GNRI, geriatric nutritional risk index; CONUT, controlling nutritional status score.
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Supplementary Table S1. These features were utilized to develop the
Rad-score (Supplementary Figure S2).

3.3 Prognostic performance of the Rad-
Score

In the training cohort, ROC analysis for DFS identified a Rad-score
cutoft of -0.051 (AUC = 0.643, 95% CI: 0.560-0.727), stratifying
patients into risk groups with significant DFS difference (P < 0.001,
Figure 2A). For OS, cutoff -0.043 (AUC = 0.634, 95% CI: 0.549-0.719)
yielded significant OS differences in both training (P < 0.05, Figure 2B)

>

Training set «Low risk- High risk
1.00
s
£
3075
3
2
w
8 0.50:
©
o
2
o
0.25 P<0.001
HR (95%Cl): 2.486 (1.501 - 4.118)
0.00:

0 6 12 18 24 30 36 42 48 54 60 66 72
Time(months)

Number at risk
Low risk 63 58 53 50 48 a7 46 46 37 31 24 14
High risk 103 84 k! 64 53 48 45 43 37 26 16 10

o =

C

Internal validation set ~Low risk- High risk

1.00.

2

g

a 0.75.

3

[

'S

g 0.50

©

Q

2

a
0.25 P=0.329

HR (95%Cl): 1.379 (0.724 - 2.629)

0.00

0 6 12 18 24 30__ 36 42 48
Time(months)
Number at risk

Low risk 32 30 29 27 25 23 21 20 18 13 9 3

o

High risk 40 34 3 28 24 20 18 18 16 14 9 7

o

E

External validation set ~Low risk- High risk

1.00

g

2

30.75;

n

o

o

w

®0.50

I

«©

o

2

a
0.25 P=0.033

HR (95%Cl): 2.367 (1.042 - 5.378)

0.00

0 6 12 18 24 30 36 42 43 54 60 66 72 78 84 90 96 102 108114
Time (months)

Number at risk
Lowrisk43 40 37 35 33 31 30 25 21 18 13 6 2 1 1 1 1 1 1
Highrisk63 47 37 36 33 30 28 21 16 13 12 9 2 1 0 0 0 0 0

FIGURE 2

10.3389/fimmu.2025.1708692

and internal validation cohorts (P < 0.05, Figure 2D). Although internal
validation showed non-significant DFS trend (P = 0.329, Figure 2C),
external validation (TCIA cohort) confirmed significantly shorter DFS
and OS in high-risk patients (Figures 2E, F).

3.4 Univariate and multivariate prognostic
analyses in NSCLC

Cox univariate analysis identified tumor diameter,
differentiation, T stage, N stage, WBC, PLT, and Rad-score as
significant risk factors for DFS (P < 0.05). For OS, differentiation,
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T stage, N stage, WBC, PLT, PLR, SII, PNI, and Rad-score were
significant prognostic factors (P < 0.05), as detailed in Table 2. Cox
multivariate analysis confirmed that T stage, N stage, and Rad-score
were independent predictors of DFS (P < 0.05). Similarly, N stage,
PLT, PNI, and Rad-score were identified as independent prognostic
factors for OS (P < 0.05), as shown in Table 3.

3.5 Construction and validation of the
prognostic model

A clinical model was established using significant clinical
parameters identified through multivariate analysis. Subsequently,
a combined model was developed by incorporating the Rad-score
with these clinical parameters. The combined model demonstrated

TABLE 2 Univariate analysis of prognostic factors in training cohort.

Factors

Gender 1.020 = 0.634-1.639 0.935 1137 = 0.665-1.947 0.639
Age 1124 0.729-1.734 | 0.596 1.428 0.883-2.310 0.146
Smoking history 1.013 = 0.657-1.562 = 0.954 1.065 ?1676?8 0.795
Tumor diameter 1.602 1.020-2.517 0.041 1.536 gg;;- 0.093
Pathology 1.525 0.977-2.382 0.064 1.508 0.989-2.298 0.056
Differentiation 1.825 1.128-2.953 0.014 1.859 1.084-3.174 = 0.024
Number of lymph

node dissection 1.404 = 0913-2.161 0.123 1117 0.694-1.798 0.649
T stage 1.834 = 1.146-2.934 | 0.011 1.750 = 1.047-2.925 = 0.033
N stage 3.030 1.958-4.689 <0.001 3.106 1.930-4.997 <0.001
Radiotherapy 1717 = 0.827-3.566 0.147 1.353 0.585-3.127 0.480
Chemotherapy 1.540 = 0.987-2.403 0.057 1.273 0.787-2.059 0.326
WBC 1.727 1.060-2.813 0.028 1.726 1.008-2.956 0.047
NEUT 1774 = 0.981-3.209 0.058 1.655 0.869-3.154 = 0.126
LY 1419 = 0.903-2.229 0.129 1494  0910-2.454  0.113
MONO 1.353 0.855-2.143 0.197 1496 = 0.911-2.455 0.111
PLT 1.776  1.149-2.745 = 0.010 2.574  1.603-4.132 = <0.001
CRP 1.151 0.712-1.862 0.566 1.380  0.826-2.305 0.219
NLR 1.246  0.800-1.939 0.331 1.387 0849 0.192

-2.267

PLR 1.166 = 0.758-1.793 0.485 1.876 1.159-3.035 0.010
SIT 1310 0.850-2.018 0.221 1.649 1.019-2.668 0.041
PNI 1472 0.957-2.264 = 0.079 1.804 = 1.123-2.898 = 0.015
GNRI 1.201 = 0.686-2.102 | 0.521 1.597 = 0.901-2.832  0.109
CONUT 1.248 = 0.602-2.589 | 0.551 1.197 = 0.548-2.616 = 0.652
Rad-score 2.793 1.593-4.896 <0.001 2.800 1.499-5.231 0.001

DFS, disease-free survival; HR, hazard ratio; CI, confidence interval; WBC, white blood cell;
NEUT, Neutrophil; LY, lymphocyte; MONO, monocyte; PLT, platelet; CRP, C-reactive
protein; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; SII,
systemic immune-inflammation index; PNI, prognostic nutritional index; GNRI, geriatric
nutritional risk index; CONUT, controlling nutritional status score.
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superior predictive efficacy for both DFS and OS compared to the
clinical model. In the training cohort, the C-index values for DES
and OS were 0.704 and 0.748, respectively, exceeding the clinical
model’s C-index values of 0.655 and 0.684. Similarly, in the
validation cohort, the combined model achieved higher C-index
values than the clinical model (0.674 vs 0.635 and 0.693 vs 0.664,
respectively) (Supplementary Table S2). Time-dependent ROC
curve analysis indicated that the combined model substantially
improved prediction accuracy and diagnostic performance in the
training cohort (Figures 3A-F). Likewise, in the validation cohort,
the combined model outperformed the clinical model in predictive
accuracy (Supplementary Figure S3). Furthermore, DCA
demonstrated that the combined model provided the highest net
benefit for predicting both DFS and OS (Figures 3G-L,
Supplementary Figure S4).

3.6 Development and validation of the
predictive nomogram

A prognostic nomogram for NSCLC was developed based on
the combined model by integrating significant prognostic factors.
The nomogram serves as an individualized prediction tool for
estimating 1-, 3-, and 5-year DFS and OS (Figure 4).
Incorporating the Rad-score markedly enhanced the model’s
predictive accuracy. Calibration curve analysis demonstrated
excellent concordance between the nomogram’s predictions and
actual observed outcomes for both DFS and OS, indicating the
model’s ability to reliably reflect patient survival. These results
further confirmed the nomogram’s high reliability in estimating
time-specific survival probabilities and underscored its robustness
and potential for clinical application (Supplementary Figure S5).

TABLE 3 Multivariate analysis of prognostic factors in training cohort.

Factors 0s
95% Cl
Length 1.333 0.672-2.645 0.411 1.798 0.801-4.032 0.155
Differentiation 1.335 0.787-2.262 0.284 1.271 0.691-2.336 0.442
T stage 2.220 1.144-8.704 0.026 1.224 0.688-2.179 0.492
N stage 3.113 1.947-4.978 <0.001 3.164 1.900-5.268 <0.001
WBC 1.746 0.861-3.540 0.122 1.979 0.868-4.511 0.104
PLT 1.503 0.850-2.655 0.161 1.989 1.058-3.739 0.033
PLR 1.239 | 0.628-2.445 0.537 1.458 | 0.663-3.208 0.349
SII 1.175 | 0.610-2.262 0.629 1.426 | 0.677-3.003 0.350
PNI 1.664 | 0.979-2.825 0.060 1.842 1.021-3.311 0.042
Rad-score 2.906 1.393-6.060 0.004 3.145 1.391-7.111 0.001

WBC, white blood cell; PLT, platelet; PLR, platelet-to-lymphocyte ratio; SII, systemic
immune-inflammation index; PNI, prognostic nutritional index.
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FIGURE 3

The ROC curves of the models for evaluating the DFS and OS in the training cohorts (A-F). The DCA curves of the models in training cohorts (G-L).

3.7 Gene set enrichment analysis

pathways related to epithelial-mesenchymal transition (EMT),
hypoxia, TNFA-NF-kB signaling, inflammatory response,

In the external validation cohort comprising 96 NSCLC patients ~ angiogenesis, KRAS signaling. Conversely, pathways associated
with RNA-seq data, individuals were stratified into high-risk, ~ with the P53 signaling pathway, interferon-o response, reactive
normal, and low-risk groups based on the Rad-score. GSEA  oxygen species pathway, and oxidative phosphorylation were
revealed significant enrichment in the high-risk group for  significantly downregulated in the high-risk group (Figure 5). The
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FIGURE 4

The nomogram combined with the Rad-score and the independent clinical risk factors to predict the risk of DFS (A) and OS (B).

significant differences in these pathways suggest that tumors in the
high-risk group exhibit stronger invasiveness, metastatic potential,
immune evasion capability, and drug resistance, along with
potential metabolic reprogramming and genomic instability.
These biological characteristics may explain the poorer prognosis
observed in high-risk group patients.

3.8 Differential expressed genes

Differentially expressed gene (DEG) analysis between high-risk
and low-risk group identified 71 DEGs significantly upregulated
and 116 DEGs significantly downregulated in the high-risk group
(Figure 6A). These results highlight distinct gene expression profiles
distinguishing the high-risk group from the low-risk group
(Figure 6B). GO enrichment and KEGG pathway analyses of
these DEGs revealed significant pathway alterations, including
those related to the cell cycle, DNA repair, apoptosis, platinum-
based drug resistance, amino acid metabolism, and epithelial cell
differentiation (Figures 6C-F). These findings reflect distinct
biological mechanisms underlying tumor initiation and
progression across risk groups and provide a theoretical basis for
the biological relevance of radiomics.
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3.9 Immune microenvironment

Tumor purity was assessed using the ESTIMATE algorithm,
revealing no significant difference in the ESTIMATE Score between
the high-risk and low-risk group, indicating comparable tumor purity.
In contrast, the Immune Score and Stromal score were significantly
lower in the high-risk group compared to the low-risk group (P < 0.05,
Figure 7A). Analysis of immune phenotype scores showed that the
MHC score was significantly reduced in the high-risk group, while
effector cells (EC), suppressor cells (SC), and checkpoints (CP) scores
were slightly elevated but did not reach statistical significance
(Figure 7B). Immune cell composition within the tumor
microenvironment was evaluated using CIBERSORTYX, estimating the
proportions of 22 immune cell types in both groups (Figure 7C). The
analysis demonstrated a significantly lower proportion of naive B cells
in the high-risk group compared to the low-risk group (P = 0.043),
while follicular helper T cells were marginally reduced but not
statistically significant (P = 0.089). Additionally, the proportion of
activated mast cells was significantly higher in the high-risk group (P =
0.02), whereas neutrophils were slightly elevated but did not achieve
statistical significance (P = 0.087, Figure 7D). These results demonstrate
that the tumor microenvironment in high-risk group patients exhibits
stronger immunosuppressive properties, which may promote tumor
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FIGURE 5

The relationship between Rad-score and gene expression profiles evaluated by gene set enrichment analysis (GSEA). (A) GSEA comparing high-risk
and low-risk groups stratified by Rad-score. (B) Epithelial Mesenchymal Transition, Hypoxia, Inflammatory Response, TNF-o., Angiogenesis, and KRAS

signaling up pathways are significantly enriched in the high-risk group.

progression by impairing anti-tumor immune responses, thereby
accounting for their poorer prognosis.

3.10 Clinicopathological phenotype

At a macroscopic level, the correlation between Rad-score and
clinicopathological characteristics, including inflammatory-
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nutritional indices and pathological staging, was analyzed in 238
patients with NSCLC. The analysis revealed that inflammatory
markers, such as WBC, neutrophils (NEUT), monocytes
(MOMO), NLR, and SII, were significantly elevated in the high-
risk group compared to the low-risk group, while albumin (ALB)
levels were significantly reduced. These results suggest that the
high-risk group exhibits a heightened inflammatory response and
compromised nutritional status (Figure 8). Pathologically, the high-
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plot highlighted key pathways associated with tumor progression and drug resistance (26-28).

risk group demonstrated significantly advanced T and N stages,
increased tumor diameter, elevated Ki67 expression, a higher
number of positive lymph nodes, and poorer tumor
differentiation compared to the low-risk group (Figure 8).
Enhanced inflammation likely facilitates tumor progression and
immune evasion, whereas malnutrition may impair immune
function and reduce treatment tolerance. The interplay between
these factors may synergistically drive tumor progression and
metastasis. This study demonstrates that the multidimensional
feature coherence across micro-level (e.g., gene pathway
dysregulation, immune microenvironment heterogeneity) and
macro-level (e.g., enhanced inflammation, advanced pathological
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staging, increased tumor invasiveness) aspects reveals the biological
mechanisms underlying tumor progression and poor prognosis in
the high-risk group, establishing a systematic closed-loop validation
from molecular mechanisms to clinical phenotypes.

4 Discussion

In the present study, we developed a Rad-score based on
preoperative CT imaging features and evaluated its stability and
reliability through both internal and external validation. The
clinical value of the Rad-score is reflected in its advantages of
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Differences in the immune microenvironment between high-risk and low-risk groups based on Rad-score. (A) Boxplots comparing Stromal Score,
Immune Score, and ESTIMATE Score between high risk and low risk groups. (B) Differences in immunophenotypic characteristics between high- and
low-risk groups. (C) Stacked bar plot depicting the relative composition of 22 distinct immune cell types between high risk and low risk groups. (D)
Boxplots comparing four immune cell types with notable differences between high risk and low-risk groups.

multidimensional integration, support from biological mechanisms,
and its complementary role in clinical decision-making. First, as an
independent prognostic factor, the Rad-score significantly
enhanced the predictive efficacy of the model when integrated
with clinical parameters. Second, its association with key
biological pathways such as hypoxia/immune evasion provides an
interpretable molecular mechanism basis for the observed
prognostic differences. At the clinical application level, the
personalized nomogram constructed based on the combined
model can assist in identifying high-risk patients missed by
traditional TNM staging, thereby optimizing adjuvant
treatment decisions.

Radiomic features provide critical insights into the intrinsic
heterogeneity of tumors and their underlying biological
characteristics, thereby offering more precise tools for prognostic
assessment. For example, Dercle et al. demonstrated that baseline
CT radiomic features can robustly predict OS in NSCLC patients
undergoing immunotherapy or chemotherapy (29).Moreover, a
radiomic model developed by Wang et al.,, incorporating multi-
regional features, significantly enhanced the accuracy of
postoperative survival risk prediction in patients with stage IA
pure solid-type NSCLC31. Similarly, Chen et al. devised a
nomogram based on preoperative CT radiomic features and
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clinical variables, which efficiently predicted lymphovascular
invasion and OS in NSCLC patients, showcasing both strong
predictive power and clinical applicability (30). In the present
study, our multivariate analysis identified the Rad-score as an
independent prognostic factor for both DFS and OS, consistent
with the findings of Dercle and Wang et al. (29, 31). Although
current research primarily centers on the integration of radiomics
with clinical features in predictive modeling, it is also well
established that inflammation and nutritional status play crucial
roles in tumorigenesis, progression, and prognosis (32). Recent
studies have increasingly focused on the application of
hematological inflammatory and nutritional indices for prognostic
evaluation in cancer (33, 34). Our findings further corroborate that
the PNI and PLT count are independent risk factors for OS, in line
with previous research (35, 36). Notably, this study innovatively
integrates radiomic features with inflammatory and nutritional
parameters to construct a novel, multidimensional prognostic
model. Compared to traditional models based on individual
features, this integrated model offers a more comprehensive
framework by incorporating the critical roles of inflammation and
nutritional status in tumor progression and prognosis, thereby
significantly improving the model’s predictive accuracy and
clinical utility.
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FIGURE 8

Association analyses between radiomics-based risk stratification with inflammatory-nutritional biomarkers and pathological phenotypes.

This study provides a comprehensive analysis of the tumor
characteristics associated with high- and low-risk groups based on
Rad-score at the microscopic level. We observed that the high-risk
group is significantly enriched in several signaling pathways related
to tumor invasiveness and metastasis, including epithelial-
mesenchymal transition (EMT), hypoxia, TNFA-NF-xB signaling,
inflammatory response, angiogenesis, KRAS, apoptosis, mitosis,
and IL2/STATS5 signaling (37-45). Conversely, tumor-suppressive
pathways, such as P53, interferon-o response, reactive oxygen
species (ROS), and oxidative phosphorylation (46-49), were
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markedly downregulated in the high-risk group. These findings
provide robust evidence for the biological foundation of radiomics
and elucidate the intrinsic relationship between imaging features
and tumor molecular mechanisms. Differential gene analysis
revealed significant differences between the high- and low-risk
groups in various biological processes, including the cell cycle,
DNA repair, apoptosis, platinum resistance, amino acid
metabolism, and epithelial cell differentiation. These findings
suggest that tumors in the high-risk group may exhibit
heightened invasiveness, drug resistance, and metabolic
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adaptability, potentially facilitating accelerated tumor progression
and enhancing resistance to therapeutic interventions. Further
analysis of the immune microenvironment showed that, although
tumor purity was similar between the two groups, the high-risk
group exhibited significantly lower immune and stromal scores,
indicating reduced immune activity and stromal support. This may
contribute to immune escape mechanisms and promote tumor
invasiveness and drug resistance. Immune phenotype scoring
revealed that the high-risk group had a lower MHC score,
reflecting impaired antigen presentation capacity, which further
suggests the presence of immune escape mechanisms that could
undermine immune surveillance and anti-tumor immune
responses. Immune cell composition analysis demonstrated a
significantly higher proportion of activated mast cells and a lower
proportion of naive B cells in the high-risk group compared to the
low-risk group. These observations suggest a distinct immune cell
infiltration pattern in the high-risk group, where an increase in
activated mast cells may be linked to inflammatory responses and
immune escape mechanisms within the tumor microenvironment
(50), while the reduction in B cells may impair immune surveillance
and foster tumor progression (51). These findings are consistent
with previous studies (23, 52-55). These specific changes in
immune cells, combined with the observed decrease in overall
immune score and MHC score, collectively characterize an
immunosuppressive tumor microenvironment featuring enhanced
immunosuppression and a pro-inflammatory state in high-risk
tumors. This provides a potential immunological basis for
understanding the more aggressive clinicopathological phenotype
and poorer prognosis observed in high-risk patient groups. By
integrating genomic data, this study identified biological
mechanisms and immune microenvironment features significantly
associated with Rad-score-based risk stratification. It is crucial to
emphasize that these findings (including enriched signaling
pathways, differentially expressed genes, and changes in immune
cell proportions) represent correlative results from a retrospective
observational study, revealing potential biological relationships, and
cannot directly prove a causal relationship between radiomic
features and molecular/immune alterations.

At the macroscopic phenotypic level, we analyzed the
differences between the two groups in terms of inflammatory
nutritional indices, pathological staging, and proliferative activity.
The findings demonstrated that the high-risk group, as determined
by Rad-score, exhibited a pronounced inflammatory response,
characterized by elevated levels of WBC, neutrophils, monocytes,
NLR, and systemic SII. Additionally, the high-risk group displayed
poorer nutritional status, as evidenced by significantly lower
albumin levels. Inflammatory responses, through immune system
activation and cytokine release, disrupt metabolic processes and
exacerbate malnutrition. Inflammation stimulates the release of
various pro-inflammatory cytokines, which not only enhance
tumor proliferation and invasiveness but also suppress anti-tumor
immune responses by secreting immunosuppressive factors,
enabling tumor cells to evade immune surveillance and thereby
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promoting tumor progression (56, 57). Simultaneously,
malnutrition leads to deficiencies in proteins and trace elements,
impairing immune cell function and hindering the immune
system’s ability to recognize and eliminate tumor cells effectively,
which further accelerates tumor growth and metastasis (58, 59). The
vicious cycle between inflammation and malnutrition not only
enhances tumor invasiveness and metabolic adaptability but also
reduces treatment tolerance, ultimately contributing to tumor
progression. At the pathological phenotypic level, we observed
that the high-risk group had more advanced postoperative T and
N staging, larger tumor size, higher lymph node involvement,
poorer differentiation, and elevated Ki67 expression, underscoring
the substantial potential of radiomics in reflecting immune-
inflammatory responses within the tumor microenvironment, as
well as the processes of tumor proliferation and invasiveness.

While this study has provided valuable insights, several
limitations should be acknowledged. First, the sample size
restricts the generalizability and predictive accuracy of the clinical
prediction model. Although the cases in this study were derived
from two centers, the relatively small sample size may undermine
the model’s ability to generalize across broader populations. Thus,
future research should prioritize increasing the sample size to
enhance the model’s robustness and reliability. Second, the
external validation cohort (TCIA) exhibits inherent heterogeneity
in CT scanning equipment and acquisition parameters, which may
compromise the stability of radiomic features. Furthermore, the
limited availability of genomic data in the external validation cohort
may introduce potential variability and bias. Therefore,
larger, independent cohorts with comprehensive genomic data
are essential to validate the model’s broader applicability.
Lastly, although this study revealed significant differences
in molecular pathways and immune infiltration between
Rad-score risk stratification groups, these results are inherently
observational associations, not proof of causality. Whether these
molecular and immune features drive the imaging phenotypes
and influence prognostic mechanisms still requires further
experimental validation.

5 Conclusion

In conclusion, this study provides an innovative examination of
the biological foundation of radiomic features, incorporating both
the microscopic dimensions of gene pathways and the immune
microenvironment, alongside the macroscopic perspectives of
inflammatory nutritional indices and clinical pathological
phenotypes. This approach offers a novel biological framework
for the clinical application of radiomics. The results demonstrate
that preoperative CT Rad-score not only predict the prognosis of
NSCLC patients undergoing complete surgical resection, but also
elucidate the molecular heterogeneity of the tumor and its
microenvironment. These findings establish a critical theoretical
foundation for the clinical translation of radiomics.
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