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Background: Understanding the interplay between immunogenic cell death
(ICD), ferroptosis, and prostate cancer (PCa) is critical for elucidating the
underlying mechanisms of PCa pathogenesis. This study aimed to establish a
prognostic model for PCa based on ICD- and ferroptosis-related genes (IFRGs)
and to evaluate its potential clinical applicability.

Methods: RNA sequencing data and clinical information of PCa patients were
obtained from The Cancer Genome Atlas (TCGA-PRAD) database. Candidate
IFRGs were identified through Pearson correlation and differential expression
analyses. A prognostic model was constructed using univariate Cox regression,
least absolute shrinkage and selection operator (LASSO) regression, and Kaplan—
Meier survival analyses, and subsequently validated in an external cohort
(GSE70769). In addition, siRNA-mediated knockdown of the key gene TREX1
was performed in PC-3 cells, and EdU and Transwell assays were conducted to
assess its effects on tumor cell proliferation, migration, and invasion.

Results: A three-gene IFRG-based prognostic model was developed, which
effectively stratified PCa patients into high- and low-risk groups with
significantly different survival outcomes. Multivariate Cox regression analysis
confirmed the model as an independent prognostic factor. Functional
experiments further demonstrated that TREX1 serves as a critical risk gene, and
its knockdown markedly suppressed the proliferative, migratory, and invasive
capacities of PCa cells.

Conclusion: The three-gene IFRG-based prognostic model may serve as a
promising prognostic biomarker for PCa, providing predictive value and novel
insights into the complex interactions between IFRGs and PCa progression.
Moreover, TREX1 was identified as a potential therapeutic target, offering new
perspectives for prognostic assessment and the development of immunotherapy
strategies in PCa.

immunogenic cell death, ferroptosis, prostate cancer, prognostic model, TREX1, tumor
immune microenvironment
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1 Introduction

Prostate cancer ranks among the most prevalent malignancies
affecting men globally. In the United States, projections indicate
that approximately 299,000 new cases of prostate cancer will be
diagnosed in 2024, representing roughly 29% of all newly identified
cancers in the male population (1). The conventional treatment
regimen for prostate cancer generally includes surgery and
endocrine therapy combined with chemotherapy or radiotherapy
(2, 3). Nonetheless, a significant number of patients ultimately
advance to castration-resistant prostate cancer (CRPC), a phase
marked by an insensitivity to standard therapeutic approaches (4,
5). Unfortunately, diagnostic and prognostic instruments, including
prostate-specific antigen (PSA), exhibit significant limitations in
accurately predicting outcomes for high-risk patients and may
produce false positive results attributable to benign conditions.
Consequently, there is a pressing necessity for the development of
more dependable prognostic biomarkers and therapeutic targets for
prostate cancer.

Immunogenic cell death (ICD) represents a regulated mechanism
of cell death that promotes the activation of both innate and adaptive
immune responses. This process is characterized by a complex
interaction of signaling pathways between dying tumor cells and
elements of the immune system (6). During ICD, dying cancer cells
release a series of damage-associated molecular patterns (DAMPs),
such as calreticulin (CALR), high mobility group box 1 (HMGBI1),
and ATP (7). These molecules serve as “danger signals” which
activate dendritic cells and other antigen-presenting cells,
consequently enhancing both innate and adaptive immune
responses (8, 9). As a result, ICD facilitates efficient immune
surveillance, inhibits tumor advancement, and improves the
effectiveness of immunotherapeutic approaches.

Ferroptosis is a form of regulated cell death characterized by its
dependence on iron and the mediation of lipid peroxidation,
distinguishing it from traditional apoptosis (10). Ferroptosis is
defined by the buildup of lipid hydroperoxides resulting from
impairments in antioxidant mechanisms, notably those associated
with glutathione peroxidase 4 (GPX4) (11). Excessive lipid
peroxidation results in irreversible damage to the plasma membrane,
ultimately leading to cellular death. Recent studies suggest that
ferroptosis may affect the tumor immune microenvironment by
releasing damage-associated molecular patterns (DAMPs) and other
immunogenic factors from dying cancer cells, thereby stimulating
immune responses (11, 12). This enhances anti-tumor immune
responses and represents a promising therapeutic strategy when
utilized in conjunction with immunotherapies.

Despite their mechanistic differences, ferroptosis and ICD exhibit
a significant interrelationship. Ferroptosis facilitates ICD by DAMPs
and lipid peroxides. Conversely, immune responses elicited by ICD,
including the secretion of interferon-y by CD8" T cells, can further
enhance ferroptosis in tumor cells (12). Existing literature indicates
that ferroptosis and ICD are crucial factors in the pathogenesis,
therapeutic response, and immune microenvironment associated
with prostate cancer (13, 14). Although gene signatures associated
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with ICD and ferroptosis have been examined separately in the
context of prostate cancer, the synergistic impact of these two
processes on prognosis and therapeutic outcomes in prostate
cancer has not been thoroughly investigated.

In this study, we conducted a comprehensive analysis to identify
Immunogenic Cell Death/Ferroptosis-Related Genes (IFRGs) that
are associated with prostate cancer, and subsequently developed a
prognostic model based on these genes. Additionally, we
investigated the expression levels of the model key gene TREX1
in prostate cancer tissues and assessed its functional implications in
the proliferation, migration, and invasion of prostate cancer cells.
Overall, this study establishes a novel prognostic signature for
prostate cancer and elucidates the potential role of ICD/
ferroptosis-related pathways, particularly the TREX1-mediated
DNA sensing mechanism, in the progression of prostate cancer.
This research provides valuable insights for prognostic evaluation
and the development of personalized treatment strategies in the
context of prostate cancer.

2 Materials and methods
2.1 Experimental materials

In this study, we conducted an analysis of prostate cancer data
utilizing two distinct datasets: TCGA-PRAD and GSE70769. The
TCGA-PRAD dataset encompasses information from 549 patients,
while the GSE70769 dataset consists of data from 94 patients. Gene
and clinical data for the TCGA-PRAD dataset were retrieved from
the TCGA database (https://portal.gdc.cancer.gov/). The clinical
data includes variables such as age, Gleason score, pathological T
stage, N stage, M stage, disease progression status, and duration of
disease progression. Additionally, gene expression data along
with corresponding clinical information were sourced from
the GSE70769 dataset through the GEO database (https://
www.ncbi.nlm.nih.gov/geo/).

2.2 Data acquisition and preprocessing

The raw data were analyzed utilizing the “LIMMA” package in
R software to normalize the gene expression files, adjusting them to
fragments per kilobase of transcript per million mapped reads
(FPKM). The FPKM data format from The Cancer Genome
Atlas Prostate Adenocarcinoma (TCGA-PRAD) dataset was
subsequently converted to transcripts per million (TPM).

To maintain the integrity of the analysis, 124 prostate cancer
samples with incomplete clinical data were excluded from further
clinical-related analyses. We sourced clinical data from the Gene
Expression Omnibus (GEO) database (GSE70769), which included
94 prostate cancer samples. Following quality control and
normalization procedures, the TCGA-PRAD cohort was
designated as the training set, while the GSE70769 cohort served
as the validation set for subsequent analyses.
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2.3 ldentification of IFRGs

Through a comprehensive literature review, we identified a total
of 44 genes associated with ICD, which were sourced from various
published studies (14, 15). The ICD-related genes include: CALR,
CASP1, CD4, CD8A, CD8B, CXCR3, EIF2AK3, HMGBI,
HSP90AA1, IFNAI1, IFNBI, IFNG, IFNGRI, IL10, IL17A,
IL17RA, IL1B, IL1R1, IL6, LY96, MYD88, NLRP3, P2RX7,
PIK3CA, PRF1, TLR4, TNF, PANXI1, ANXA1, FPR1, PDIA3,
LRP1, STINGI1, ENTPD1, NT5E, FOXP3, BCL2, CASP8, CFLAR,
PPPIRI15A, VTCNI1, STC1, CD47, TREXI. Additionally, we
retrieved a dataset of 259 genes associated with ferroptosis from
the FerrDb V2 database (16) (Supplementary Table).

To identify IFRGs in prostate cancer, we conducted a Pearson
correlation analysis between the gene sets associated with ICD and
ferroptosis, utilizing expression data from TCGA-PRAD. Genes
demonstrating significant correlations (|R| > 0.4, P < 0.05) were first
identified. Subsequently, differential expression analysis between tumor
and normal tissue samples was conducted employing volcano plot
methodology with more rigorous thresholds (|fold-change| > 1.3, P <
0.001, FDR<0.05). Genes satisfying both the correlation and differential
expression criteria were collectively classified as “IFRGs.” The
expression differences of these IFRGs between tumor and normal
tissues were then illustrated using boxplot visualizations.

2.4 Mutation and copy-number analysis of
IFRGs

We conducted an analysis of the mutation status of the IFRGs
within the TCGA-PRAD cohort. The somatic mutation data were
processed utilizing the “maftools” R package (17) to extract mutation
information pertinent to each IFRG. We conducted an analysis of
mutation frequency across the samples and created waterfall plots to
illustrate the various types and frequencies of mutations observed. To
assess copy-number variations (CNVs), we utilized Perl scripts on the
TCGA copy-number data to identify gains and losses associated with
each IFRG. The frequencies of CNVs (gains versus losses) were
visualized, and the chromosomal locations of the IFRGs were plotted
accordingly. Furthermore, we developed a protein—protein interaction
(PPI) network for the IFRGs using the STRING database to investigate
potential functional relationships among these genes. Additionally, we
compared the expression of these IFRGs between normal and tumor
tissues using limma. The prognostic impact of each gene was evaluated
with Kaplan-Meier analysis by stratifying patients into high vs. low
expression groups.

2.5 Unsupervised clustering and survival
analysis

Utilizing the expression profiles of the IFRGs, we conducted
consensus clustering of the TCGA-PRAD samples employing the
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“ConsensusClusterPlus” R package (18) in order to delineate
molecular subtypes. The consensus cumulative distribution
function (CDF) and delta area plots were employed to ascertain
the optimal number of clusters. Following these analyses, the
samples were categorized into two distinct clusters, designated as
ClI and C2. A Kaplan-Meier analysis was conducted to compare
Progression-Free Survival (PFS) rates between these subtypes.

2.6 Analysis of the immune
microenvironment

To investigate the association between IFRG subtypes and the
tumor immune microenvironment, we employed the CIBERSORT
algorithm to quantify the relative proportions of various immune
cell types present in each tumor sample, and further validated the
results using the EPIC and MCP-counter methods. We created bar
plots to illustrate the immune cell composition across the samples
and generated heatmaps to depict the correlations among the
immune cell fractions. We conducted a comparative analysis of
immune cell infiltration between high- and low-IFRG subtypes
utilizing violin plots, which revealed significant disparities,
particularly in the populations of CD8+ T cells, M2 macrophages,
and regulatory T cells. Additionally, we analyzed the expression
levels of HLA-related genes and immune checkpoint genes across
the subtypes using boxplots. We also calculated ESTIMATE scores,
which encompass stromal score, immune score, and tumor purity,
for each sample through the application of the “ESTIMATE”
algorithm (19). Subsequently, we compared these metrics between
the different subtypes, assessing variations in tumor purity and the
immune/stromal components.

2.7 Differential expression and functional
enrichment

We conducted a differential expression analysis between the two
IFRG-based subtypes utilizing the “limma” package, applying the
criteria of [log2 fold change| > 1 and P < 0.05 (20). A total of 1,032
differentially expressed genes (DEGs) were identified in this study.
These DEGs were subsequently visualized using a heatmap and a
volcano plot. To further analyze the DEGs, Gene Ontology (GO)
and KEGG pathway enrichment analyses were performed to
ascertain the overrepresented biological processes, cellular
components, molecular functions, and pathways, utilizing the
clusterProfiler R package (21). In the context of GO, we assessed
enrichments across the categories of Biological Process (BP),
Cellular Component (CC), and Molecular Function (MF). For
KEGG analysis, we identified significantly enriched signaling
pathways. Additionally, Gene Set Enrichment Analysis (GSEA)
was conducted to compare high-IFRG and low-IFRG groups,
aiming to identify hallmark pathways that were enriched in
each group.
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2.8 Construction of the IFRG-based
prognostic model

Utilizing the TCGA training dataset, we conducted univariate
Cox proportional hazards regression analyses on each of the 18
IFRGs to identify genes that exhibited a significant association with
PES (P < 0.05). This analysis led to the selection of three genes:
TREX1, NOX4, and RRM2. Subsequently, we employed LASSO-
Cox regression with the glmnet package, which automatically
standardizes the input data prior to model fitting, to construct a
multivariate prognostic model. The optimal lambda value was
established through cross-validation, culminating in the
formulation of a final model. The risk score for each patient was
computed as a weighted sum of the gene expression levels,
represented mathematically as:

> (expression of gene x coef)

Patients were categorized into high-risk and low-risk groups
based on the median risk score. To assess PFS differences between
these risk groups, we performed Kaplan-Meier survival analysis
within both the TCGA cohort and an independent GEO validation
cohort. The predictive accuracy of the model was further evaluated
using time-dependent receiver operating characteristic (ROC)
curves and the concordance index.

2.9 Validation and nomogram construction

To assess the validity of the prognostic model, we visualized the
distribution of risk scores alongside the corresponding survival
status of patients, and created heatmaps illustrating the
expression levels of the three risk-associated genes across different
risk groups. Both univariate and multivariate Cox regression
analyses were conducted to determine the independence of the
risk score in relation to clinical covariates, including Gleason score,
tumor stage, and nodal status. A prognostic nomogram was
developed utilizing the “rms” package to estimate the probabilities
of survival at 1-year, 3-year, and 5-year intervals, based on the risk
score and various clinicopathological factors. The predictive
accuracy of the nomogram was further evaluated through
calibration curves and additional receiver operating characteristic
(ROC) analyses.

2.10 Immune cell correlation and drug
sensitivity analyses

We examined the association between the risk score and the
infiltration of immune cells. Spearman correlation analyses were
employed to assess the relationship between the risk score and the
relative abundances of various immune cell types across the
samples. Statistically significant correlations were visualized using
scatter plots. Furthermore, drug sensitivity analysis was conducted
utilizing the pRRophetic R package (22), which predicts the half-
maximal inhibitory concentration (IC50) of chemotherapeutic
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agents for each sample by integrating gene expression profiles
with data from the Genomics of Drug Sensitivity in Cancer
(GDSC) database. To address batch effects across datasets, the
ComBat algorithm was applied, and ridge regression models were
used to estimate drug response.

2.11 Somatic mutation and tumor mutation
burden

We conducted a comparative analysis of somatic mutation
landscapes between high-risk and low-risk cohorts by creating
distinct waterfall plots. The most frequently mutated genes were
identified. The tumor mutation burden (TMB) was calculated for
each individual patient. We then compared TMB across the
different risk groups using boxplots and performed Kaplan-Meier
survival analyses stratified by TMB (high versus low) and risk
group. Survival curves were generated for four subgroups (TMB-
high/high-risk, TMB-high/low-risk, TMB-low/high-risk, TMB-low/
low-risk) to evaluate the interactions between TMB and risk score
in relation to prognosis. We conducted an additional analysis to
examine the relationship between TMB and both microsatellite
instability (MSI) and programmed death-ligand 1 (PD-L1)
expression. The MSI data were obtained from the cBioPortal for
Cancer Genomics (https://www.cbioportal.org/). MSI scores were
compared between cohorts characterized by high and low TMB to
investigate whether elevated mutational loads correspond with
increased genomic instability. Furthermore, PD-L1 expression
levels were assessed across these TMB-defined groups to explore
potential associations between tumor mutational burden and
immune checkpoint activation. Differences between groups were
statistically evaluated using the Wilcoxon rank-sum test.

2.12 TREX1-associated immune
microenvironment analysis

Utilizing bioinformatic approaches, TREX1 was identified as
the gene with the most significant risk coefficient. Consequently, we
conducted an in-depth examination of its expression profiles,
immune-related associations, and functional roles. To elucidate
the potential involvement of TREXI in regulating the tumor
microenvironment, correlation analyses, immune infiltration
assessments, and gene set enrichment analyses were performed.

2.13 Immunohistochemistry

To further assess its clinical significance and biological function
in prostate cancer, we conducted immunohistochemical staining
alongside subsequent functional assays. A commercially obtained
tissue microarray (TMA) containing 60 primary prostate cancer
samples and 57 adjacent normal prostate tissues was utilized
(HProA120Su02, Shanghai Xinchao Biotechnology). The TMA
encompassed both prostate cancer tissues and matched adjacent
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non-tumor tissues, supplemented with comprehensive clinical
parameters including patient age, pathological stage, Gleason
score, and metastatic status.

The TMA underwent dewaxing and rehydration following
standard protocols, which included baking at 63°C for one hour
and sequential incubation in xylene, followed by 100%, 90%, 80%,
and 70% ethanol. Antigen retrieval was achieved using citrate buffer
(pH 6.0) via microwave or water bath methods. Endogenous
peroxidase activity was inhibited with 3% H2O2 in methanol for
a duration of 10 minutes. Subsequently, the slides were blocked with
5% BSA in PBS for 30 minutes at room temperature. The primary
antibody targeting TREX1 (rabbit anti-TREX1 [EPR14985],
ab185228, Abcam) was applied at a dilution of 1:200 and
incubated overnight at 4°C. The following day, sections were
washed with PBS and incubated with HRP-conjugated goat anti-
rabbit secondary antibody for one hour at room temperature. After
washing, staining was visualized using DAB substrate, and the slides
were counterstained with hematoxylin, dehydrated, and
coverslipped using mounting medium. TREX1 immunoreactivity
was evaluated by two independent pathologists, with cytoplasmic
staining scored on a scale of 0 to 3 for intensity (0, negative; 1,
weakly positive; 2, intermediately positive; and 3, strongly positive)
and 0 to 3 for the percentage of positive cells (0, no staining; 1: <25%
cells; 2: 25%-75% cells; and 3: >75% cells), resulting in a combined
score ranging from 0 to 9. Samples were classified as exhibiting low
expression (0-3) or high expression (4-9). Statistical analysis was
performed to compare TREX1 expression levels between cancerous
and adjacent tissues using the Chi-square test.

2.14 Cell culture and functional assays

The human prostate cancer cell line PC-3 (ATCC CRL-1435)
was maintained in RPMI-1640 medium supplemented with 10%
fetal bovine serum (FBS) (Gibco) and 1% penicillin-streptomycin,
under conditions of 37°C and 5% CO2. For experimental
procedures, the cells were plated in suitable culture dishes and
subsequently transfected as outlined in the following sections.

2.15 siRNA transfection

TREXI-targeting small interfering RNA (siRNA) was
synthesized, comprising a sense strand (5'-CCAAGACCAT
CTGCTGTCA-3’) and an antisense strand (5'-TGACAGCA
GATGGTCTTGG-3"). Additionally, a validated non-targeting
control siRNA was produced, with a sense strand (5'-
UUCUCCGAACGUGUCACGUTT-3’) and an antisense strand
(5'-ACGUGACACGUUCGGAGAATT-3’). For the transfection
process, PC-3 cells, which were at 60-70% confluence, were
treated with 50 nM of the respective siRNA using Lipofectamine
3000 (Invitrogen), following the manufacturer’s protocol. The
transfection complexes were prepared in Opti-MEM, where
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solution A consisted of 15 pL of Lipofectamine 3000 mixed with
380 uL of Opti-MEM, and solution B contained 50 nM siRNA
combined with 190 puL of Opti-MEM. These solutions were
incubated for 15 minutes before being mixed and applied to the
cells. After a duration of 6 hours, the medium was replaced with
complete culture medium. The efficiency of the knockdown was
subsequently assessed via Western blot analysis conducted 48 hours
post-transfection.

2.16 Western blot

At the indicated time points (typically 48 h post-transfection),
total protein was extracted using ice-cold RIPA buffer
supplemented with protease and phosphatase inhibitors. After
PBS wash, cells were lysed on ice for 20 min and clarified by
centrifugation (14,000 rpm, 15 min, 4°C). Protein concentration
was determined by BCA assay. Equal protein (30 pug) was mixed
with 5% loading buffer, denatured at 100°C for 5 min, resolved by
SDS-PAGE, and transferred to PVDF membranes using a semi-dry
apparatus (=300 mA, ~30 min; gel-dependent). Membranes were
blocked in 5% non-fat milk (TBST) for 1 h at room temperature and
incubated overnight (4°C) with primary antibodies: anti-TREX1
and anti-GAPDH. After TBST washes, HRP-conjugated secondary
antibodies were applied for 2 h at room temperature. Signals were
developed with ECL and imaged; band intensities were quantified in
Image] and normalized to GAPDH.

2.17 EdU incorporation assay

Cells were initially seeded in suitable culture vessels and allowed
to reach approximately 70% confluence. Subsequently, EAU was
introduced to the culture medium at a concentration of 10 uM and
incubated for a duration of 1 to 2 hours at 37°C. Post-incubation,
the cells were fixed using 4% paraformaldehyde for 15 minutes at
room temperature, followed by permeabilization with 0.5% Triton
X-100 in phosphate-buffered saline (PBS) for 20 minutes. A Click-
iT® reaction cocktail was then applied in accordance with the
manufacturer’s instructions. After thorough washing, the nuclei
were counterstained with Hoechst 33342 at a concentration of
2 ug/mL for 5 to 10 minutes, ensuring protection from light.
Finally, the cells were visualized using fluorescence microscopy at
the appropriate wavelengths.

2.18 Transwell migration and invasion
assays

For the migration assay, cells were trypsinized and resuspended
in serum-free medium 24 hours post-transfection. A total of
2x1074 cells in 200 pPL were introduced into the upper chamber
of a Transwell insert (8 pm pore size, devoid of Matrigel). The lower
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chamber was supplemented with 600 UL of medium containing 20%
fetal bovine serum (FBS). Following a 24-hour incubation period,
non-migrated cells were eliminated from the upper surface, while
the migrated cells adhering to the lower membrane were fixed using
4% paraformaldehyde for 30 minutes. Subsequently, these cells were
stained with 0.1% crystal violet for an additional 30 minutes and
counted in five randomly selected fields using a microscope.

For invasion, inserts were pre-coated with Matrigel (300 uL of
1:6 diluted Matrigel, incubated at 37°C for 4 h to form a gel).
5x1074 cells in 200 UL serum-free medium were added to the upper
chamber; the lower chamber contained 600 UL medium with 20%
FBS. After 24 h, invasion assays proceeded as above (fixation,
staining, counting in five fields).

2.19 Statistical analysis

All experiments were conducted with a minimum of three
replicates. The data are expressed as mean + standard deviation.
Group differences were evaluated using either Student’s t-test or
Chi-square test, as deemed appropriate. Survival curves were
analyzed through the log-rank test. Correlation analyses were
performed using Spearman’s rank correlation coefficient. A two-
sided P-value of less than 0.05 was regarded as statistically
significant. Statistical analyses were carried out utilizing R
software (version 4.2.0) and GraphPad Prism 9.

3 Results

3.1 Identification of immunogenic cell
death/ferroptosis-related genes and
differential expression

A comprehensive multi-step screening approach was employed
to identify genes that are associated with both ICD and ferroptosis,
which exhibit differential expression in prostate cancer. Utilizing
data from TCGA-PRAD, Pearson correlation analysis was
performed between 44 ICD-related genes and 259 ferroptosis-
related genes, resulting in the identification of 219 genes with
significant correlations (|R| > 0.4, P < 0.05). Through further
screening, a total of 18 genes were identified with significant
expression changes based on the criteria of p-value < 0.001 and
fold-change > 1.3 and boxplots were generated to demonstrate their
pronounced expression differences (Figures 1A, B). Kaplan-Meier
survival analysis indicated that 11 of the identified IFRGs were
significantly correlated with PFS (Figure 1C), indicating that each of
these genes has prognostic value on its own and justifying their
inclusion in the model (Figure 1C). Notably, high expression levels
of CAV1, GPX2, TP63, DUOXI, and DUOX2 were associated with
improved prognosis, while elevated expression of CASP1, TREX1,
NOX4, ZFP69B, ALOX15, and RRM2 was linked to poorer
outcomes. Among these, NOX4, RRM2, and TREX1 exhibited
particularly strong associations (P < 0.001).
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3.2 Mutation, copy-number variation, and
expression analysis of IFRGs in prostate
cancer

The mutational profile of the 18 IFRGs was analyzed in a cohort
of 495 samples from the TCGA-PRAD database. Among these
samples, 10 (2.02%) exhibited mutations in the IFRGs, with a
predominance of missense mutations, alongside occasional
occurrences of nonsense and splice-site mutations. Notably, TP63
and DUOX2 exhibited the highest mutation frequencies
(Figure 2A). Additionally, genes such as TP63, CAVI1, NT5E,
TREX1, and GPX2 demonstrated significant copy number
variation (CNV) deletions, while all 18 IFRGs displayed CNV
across various chromosomes (Figure 2B). The analysis revealed
varying degrees of DNA copy number variation among these
IFRGs, which were distributed throughout the genome without
evident clustering (Figure 2C). A protein-protein interaction (PPI)
network, constructed using the STRING database, indicated
potential cooperative functions among these genes, suggesting
their involvement in various biological processes, including
signaling pathways, oxidative stress response, lipid metabolism,
and apoptosis (Figure 2D). Furthermore, heatmap analysis
revealed that TREX1 and RRM2 expression levels were
significantly higher in tumor tissues compared to normal tissues,
whereas GPX2, DUOX1, and DUOX2 were expressed at lower
levels in tumor tissues (Figure 2E). These findings may imply a
potential relationship between IFRGs and the pathogenesis of
prostate cancer.

3.3 Unsupervised clustering and survival
analysis

Using expression data from 18 IFRGs, consensus clustering was
conducted on a cohort of 549 samples obtained from the TCGA-
PRAD database. This analysis successfully categorized the 549
patients into two distinct subgroups, designated as Cl and C2
(Figures 3A-D). Subsequent heatmap analysis revealed that the
expression levels of IFRGs were significantly elevated in the C2
subtype (Figure 3E). Additionally, Kaplan-Meier survival analysis
(Figure 3F) indicated that patients classified in subtype C2
experienced significantly poorer survival outcomes compared to
those in subtype C1, with a statistically significant difference (P<0.01).

3.4 Immune microenvironment analysis

CIBERSORT was employed to assess the infiltration levels of 22
distinct immune cell types. The results were illustrated through bar
plots (Figure 4A) and correlation heatmaps (Figure 4B), which
depicted the distribution of immune cells and their interrelations.
Furthermore, validation using the EPIC and MCP-counter methods
demonstrated that the overall immune landscape and major trends
remained consistent (Supplementary Figure 1). Notable differences
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FIGURE 1

Screening of IFRGs and prognostic analysis. (A) The volcano plot shows the significance distribution of differentially expressed genes. (B) The box
plot illustrates the differences in gene expression between tumor and normal tissues (“***" indicates p < 0.001). (C) Kaplan-Meier survival curve
analysis of patient Progression-free survival stratified by IFRG expression.

in immune cell populations were observed, particularly in CD8+ T
cells, M2 macrophages, and regulatory T cells (Figure 4C).
Additionally, gene expression profiles for HLA (Figure 4D) and

immune checkpoint genes (Figure 4E) revealed significant
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variations between subtypes. The ESTIMATE analysis further
demonstrated that the high-IFRG group had elevated immune
and stromal scores, accompanied by reduced tumor purity
(Figures 4F-T).
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Landscape of IFRGs: mutation spectrum, copy-number variations, and expression profiles. (A) The waterfall plot presents the mutation types and
frequencies of genes across samples. (B) The bar chart represents copy number variations (CNVs), with red dots indicating copy-number gains and
green dots indicating losses. (C) The Circos plot shows the chromosomal distribution of the studied genes. (D) The protein-protein interaction (PPI)
network illustrates interactions among the genes, with line color indicating interaction type and line thickness indicating interaction strength. (E) The
heatmap displays gene expression levels in tumor vs. normal tissues, with color intensity representing expression level (*** indicates p < 0.001).

3.5 Differential expression and enrichment
analyses of IFRG subtypes

The “limma” package was employed to identify differentially
expressed genes (DEGs) between the two subtypes, resulting in the
identification of 1,032 DEGs (Figure 5B). Following this, the study
focused on selecting significantly differential genes and created
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corresponding heatmaps (Figure 5A). Subsequently, Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analyses were conducted to investigate the molecular
mechanisms associated with differentially expressed transcripts
related to ICD and ferroptosis (Figures 5C-G). The findings from
the GO enrichment analysis revealed that immune-related
processes, including humoral immune response, complement
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activation, B cell receptor signaling pathway, and phagocytosis,
were the predominant enriched biological processes (BP). In terms
of cellular components (CC), the primary enriched items included
immune complexes, chromosomes, kinetochores, and platelet
microparticles. Regarding molecular functions (MF), the major
enrichments encompassed antigen binding, immunoglobulin
receptor binding, and activities related to microtubules
(Figures 5C-E). The KEGG pathway analysis highlighted tumor-
related processes such as cell cycle regulation, cytoskeletal
movement, immune signal transduction, and metabolic regulation
as the key enriched factors (Figures 5F, G).

To further investigate the molecular mechanisms associated
with the signature derived from IFRGs, we conducted Gene Set
Enrichment Analysis (GSEA), as illustrated in Figures 6A-D. The
functional enrichment analysis (Figures 6A, B) revealed that the C2
group had significant enrichment in pathways related to immune
response, antigen recognition, and T-cell receptor signaling.
Conversely, C1 group exhibited elevated expression of genes
associated with the muscular system. In the KEGG pathway
enrichment analysis (Figures 6C, D), C2 group was found to be
enriched in immune-related pathways, as well as those involved in
the cell cycle and cell adhesion molecules. In contrast, C1 group
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showed enrichment in pathways related to myocardial contraction
and oxidative phosphorylation.

3.6 Construction of the IFRG-based
prognostic model

A LASSO Cox regression analysis was conducted to develop a
prognostic signature utilizing the previously mentioned 18 IFRGs.
This analysis identified three specific IFRGs: TREX1, NOX4, and
RRM2 (Figure 7A). Cross-validation techniques were employed to
ascertain the optimal penalty coefficient (A.min) for the LASSO
regression, with the corresponding LASSO path diagram and cross-
validation curve illustrated in Figures 7B, C. The risk score was
computed using the following formula:

Risk score = (2.9692 x TREX1) + (0. 4886 x NOX4) + (0.1914 x RRM2)

Subsequently, patients were categorized into high-risk and low-
risk groups based on the median risk scores. Kaplan-Meier survival
analysis revealed that the high-risk cohort exhibited a significantly
poorer prognosis in both the TCGA (Figure 7D) and GEO
(Figure 7E) datasets.
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FIGURE 4

Immune microenvironment characterization based on IFRG subtypes. (A) Immune cell composition: A stacked bar plot of the relative fractions of 22
immune cell types in each sample, as estimated by the CIBERSORT algorithm. (B) Immune cell correlation heatmap: Spearman correlation
coefficients among the infiltration levels of the 22 immune cell types; color intensity denotes the strength of correlation. (C) Violin plots comparing
immune cell infiltration between the C2 group (red) and C1 group (blue). *, **, and *** indicate p < 0.05, 0.01, and 0.001, respectively. (D) Boxplot of
Differential Expression of HLA Genes. (E) Boxplot of Differential Expression of Immune Checkpoints. (F-1) ESTIMATE score comparisons (violin plots):
Comparison of the ESTIMATE composite score, StromalScore, ImmuneScore, and tumor purity between the two groups. The high-expression group
shows significantly higher ESTIMATE and stromal scores, a modest increase in ImmuneScore, and a marked reduction in tumor purity.

3.7 Validation of the prognostic model and recurrence compared with those in the low-risk group
nomogram construction (Figures 8A, B). The gene expression heatmap indicated a
significant upregulation of TREX1, NOX4, and RRM2 in the

Risk stratification analysis revealed that patients in the high-risk ~ high-risk group relative to the low-risk group (Figure 8C).
group exhibited a markedly higher incidence of biochemical  Univariate analysis established a significant correlation between
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the risk score, Gleason score, and T stage with PES in prostate
cancer patients (all P < 0.001) (Figure 8D). Furthermore,
multivariate Cox regression analysis validated that both the risk
score and T stage independently influenced patient prognosis (P =
0.046 and P < 0.001, respectively) (Figure 8E). Subsequently, an
individualized prognostic model was formulated in the form of a
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nomogram (Figures 8F, G), which demonstrated strong predictive
accuracy for estimating PFS at 1, 3, and 5 years. The calibration
plots indicated good concordance between the predicted and
observed outcomes at 1 and 3 years, while a noticeable deviation
was observed at 5 years, possibly due to the limited follow-up
duration and the influence of competing risks.
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Differential gene GSEA analyses. (A, B) Gene Set Enrichment Analysis (GSEA): (A) Gene sets significantly enriched in C1 group; (B) Gene sets
significantly enriched in C2 group. (C, D) KEGG-GSEA: (C) KEGG pathways enriched in C1 group; (D) KEGG pathways enriched in C2 group.

3.8 Correlation of risk score with immune
infiltration and drug sensitivity

To further clarify the immunological implications associated
with the prognostic model, we performed an analysis of immune
cell correlations. The findings indicated a negative correlation
between the risk score and the presence of CD8" T cells
(Figure 9A). Conversely, M2-type macrophages and resting
dendritic cells exhibited a positive correlation with the risk score
(Figures 9B, C). These results imply that individuals with elevated
risk scores may experience some immune suppression or
dysfunction, evidenced by fewer CD8" T cells. Furthermore, the
drug sensitivity analysis (Figures 9D-G) revealed that the high-risk
group demonstrated significantly reduced half-maximal inhibitory
concentrations (ICs,) for ABT-263, ABT-888, AICAR, and ATRA.

3.9 Risk score and somatic mutation/tumor
mutation burden

To gain additional insights into the reliability of the prognostic
model, we conducted an analysis of the somatic mutation
landscape. The mutation plots indicate that the four most
frequently mutated genes in the high-risk cohort (Figure 10A)
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were SPOP, TTN, TP53, and KMT2D, which were also the
predominant mutated genes in the low-risk cohort (Figure 10B).
This observation suggests that there is no significant disparity in
somatic mutation patterns between the high- and low-risk groups.
Regarding tumor mutation burden (TMB) (Figure 10C), the high-
risk group demonstrated a markedly elevated TMB. Kaplan-Meier
survival analyses (Figures 10D, E) illustrated that both the risk score
and TMB levels were significantly correlated with patient prognosis,
with lower TMB and risk scores associated with improved survival
outcomes. TMB levels were positively correlated with microsatellite
instability (MSI) and PD-L1 expression (Figures 10F, G), suggesting
that increased mutational load may contribute to enhanced
immunogenicity and immune checkpoint activation in
prostate cancer.

3.10 TREX1-associated tumor
microenvironment alterations

Within the IFRG model, TREX1 showed the highest coefficient,
underscoring its potential importance in prostate cancer
progression. Additional analyses focusing on its immunological
role revealed that TREXI expression was negatively correlated
with the infiltration of activated NK cells and regulatory T cells,
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Kaplan-Meier survival analysis for the TCGA cohort. (E) Kaplan-Meier survival analysis for the GEO validation cohort.

while showing a modest positive correlation with plasma cells
(Figures 11A, B). Moreover, TREX1 expression was positively
associated with several immune checkpoint genes, including
CD160, TNFRSF25, TNFSF9, and ADORA2A, suggesting
potential co-expression patterns relevant to immune
regulation (Figure 11C).

Gene set enrichment analysis (GSEA) further indicated that
tumors with lower TREX1 expression were enriched in immune
activation pathways, such as positive regulation of immune
response and lymphocyte migration, whereas tumors with higher
TREXI1 expression were enriched in pathways related to cell cycle
progression, extracellular matrix organization, and collagen
metabolism (Figures 11D, E). Complementary enrichment
analyses supported these findings, with GO analysis (Figure 11F)
highlighting extracellular matrix-related processes, including
structural organization and collagen binding, and KEGG analysis
(Figure 11G) showing enrichment in pathways related to
extracellular matrix remodeling, cell adhesion, and cell cycle
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regulation. Collectively, these results suggest that TREXI
expression is closely linked to changes in immune activity,
proliferative capacity, and extracellular matrix dynamics within
the tumor microenvironment.

3.11 TREX1 expression in prostate cancer
tissues

Subsequently, we examined the expression of the TREXI
protein in clinical specimens. Immunohistochemical (IHC)
analysis was conducted on a tissue microarray comprising 60
prostate cancer samples and 57 corresponding adjacent non-
tumor tissues (Figures 12A-D). The IHC results revealed that
TREXI1 protein was localized in the cytoplasm of tumor cells, as
indicated by brown-yellow staining, which was considered positive,
whereas blue staining denoted negative expression. Based on
staining intensity and distribution, prostate tissue samples were
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FIGURE 8

Validation of the risk score model and prognostic evaluation. (A) Risk score distribution: Patients are ranked by risk score and divided into a high-risk
group (red) and a low-risk group (green). The x-axis represents the sorted patients (low to high risk) and the y-axis is the risk score. (B) Survival status
plot for prostate cancer PFS: Patients are ordered by their risk score on the x-axis, and progression-free survival time (in years) is on the y-axis. Red
dots represent patients who experienced progression, while green dots represent those who remain progression-free. (C) Heatmap of gene
expression: Shows expression of immunogenic cell death/ferroptosis-related genes (TREX1, NOX4, RRM2) in the high- and low-risk groups (red =
high, green = low) (In panels A-C, patients on the x-axis are ordered by increasing risk score). (D) Univariate Cox regression analysis (forest plot): The
impact of different clinical factors (Gleason score, tumor stage T, lymph node status N, and risk score) on prognosis. The x-axis is the hazard ratio
(HR); green squares denote HR < 1 (protective factors) and blue squares denote HR > 1 (risk factors). (E) Multivariate Cox regression analysis: The risk
score remains an independent prognostic factor (HR = 1.71, P = 0.046). (F) Construction of a prognostic nomogram for estimating the 1-, 3-, and 5-
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stratified into two groups: low expression (scores 0-3) and high
expression (scores 4-9). Among the prostate cancer specimens, 45
cases (75%) exhibited high TREX1 expression, while 15 cases (25%)
showed low expression. Conversely, in the adjacent normal tissues,
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24 cases (42%) demonstrated high TREX1 expression, and 33 cases
(58%) were classified as low expression (Table 1). Statistical analysis
confirmed that the difference in TREX1 expression between tumor
and adjacent tissues was significant (P = 0.0003) (Table 2).
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Correlation of the risk score with immune-cell infiltration and drug sensitivity. (A-C) Correlation between the risk score and immune cell infiltration
levels (scatter plots for different immune cell types). (D-G) Drug sensitivity: A box plot comparing the half-maximal inhibitory concentration (IC50) in

the high-risk vs. low-risk groups.

3.12 Effect of TREX1 knockdown on
proliferation, migration, and invasion of
prostate cancer cells

To investigate the functional role of TREX1 in prostate cancer,
small interfering RNA (siRNA)-mediated knockdown experiments
were conducted utilizing PC-3 cells. Western blot analysis confirmed
a marked reduction in TREXI protein expression following
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transfection with TREXI-specific siRNA compared with negative
control (Si-NC) (Figure 13A). Transwell assays demonstrated that
TREXI1 knockdown significantly suppressed both cell migration and
invasion, with markedly fewer migrating and invading cells observed in
the si-TREX1 group relative to Si-NC (P < 0.01) (Figures 13B, C). EdU
incorporation assays further revealed a substantial decrease in
proliferating cells in the si-TREX1 group compared to controls (P <
0.01) (Figures 13D, E). These findings indicate that TREX1 promotes
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Association of risk score with somatic mutations and tumor mutation burden. (A, B) Somatic mutation profiles: (A) Gene mutation profile of high-risk
group; (B) Gene mutation profile of the low-risk group. (C) Tumor mutation burden (TMB) comparison between groups. (D) Impact of TMB on
Progression-free survival. (E) Combined effect of TMB status and risk score on Progression-free survival. (F) Comparison of MSI scores between the
high-TMB and low-TMB groups. (G) Comparison of PD-L1 expression between the high-TMB and low-TMB groups.

prostate cancer progression by facilitating tumor cell proliferation,
migration, and invasion.

4 Discussion

Prostate cancer is recognized as one of the most prevalent
malignant neoplasms within the urinary system, exhibiting the
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highest incidence among male urogenital cancers, thereby posing
a significant threat to public health (1). ICD and ferroptosis are two
recently recognized forms of regulated cell death, and accumulating
evidence indicates that both processes play crucial roles in the
progression of various malignancies, including prostate cancer (23,
24). Furthermore, emerging evidence suggests that ferroptosis may
alter the tumor immune microenvironment through the release of
cytokines and DAMPs, which in turn can enhance immunogenic
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Immune infiltration and functional enrichment analyses related to TREX1 in prostate cancer. (A) Correlation between TREX1 expression and 22
immune cell types. (B) Immune cell abundance comparison between high and low TREX1 expression groups. (C) Correlation of TREX1 with key
immune checkpoint genes. (D, E) GSEA showing immune-related pathway enrichment in TREX1 high vs. low groups. (F) GO enrichment bubble plot

of TREXL. (G) KEGG pathway enrichment bar plot of TREX1.

cell death. In cases of high-risk prostate cancer, sustained
ferroptotic and inflammatory stress may facilitate the recruitment
of immunosuppressive myeloid cells, such as M2-type
macrophages, thereby promoting immune evasion (25, 26). This
study undertakes a systematic examination of the transcriptional
changes and interactions between gene sets associated with ICD and
ferroptosis in prostate cancer, with the objective of elucidating their
combined influence on tumor progression and immune regulation.
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Our bioinformatics analysis identified 18 IFRGs through the
intersection of ICD and ferroptosis gene networks. It is noteworthy
that prior research has examined gene signatures associated with
either immunogenic cell death or ferroptosis in the context of
prostate cancer independently. For instance, Kang et al.
established an ICD-related gene signature in prostate cancer that
effectively stratified patients based on their prognosis (14), while
Wang et al. developed a ferroptosis-associated risk model that
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FIGURE 12

Immunohistochemistry and cellular function analysis. (A-D) Representative images of staining results (A) Adjacent normal tissue, negative; (B) Cancer
tissue, weak positive (+); (C) Cancer tissue, moderate positive (++); (D) Cancer tissue, strong(+++).

demonstrated a correlation with the tumor immune
microenvironment (13). In contrast, our study uniquely integrates
both ICD and ferroptosis into a cohesive model, thereby reflecting
the potential interactions between these two cell death pathways.
We have combined ICD and ferroptosis to create a prognostic
model for prostate cancer, utilizing differentially expressed IFRGs.
This model demonstrated significant prognostic value,
underscoring the clinical relevance of these biomarkers in the
context of prostate cancer.

The clustering analysis based on the IFRG identified two
distinct subtypes of prostate cancer, designated as Cl1 and C2,
which exhibit significant disparities in survival outcomes. This
finding suggests that the interaction between the pathways of ICD
and ferroptosis may influence the aggressiveness of the disease.
Subtype C2 is associated with a poorer prognosis and is
characterized by an enrichment of immune-related pathways.
This seemingly paradoxical characterization of C2 as an
“immune-active” yet high-risk tumor subtype may be elucidated
by the quality and context of the immune response. Our analyses of

TABLE 1 Differential expression of TREX1 in prostate cancer and
adjacent normal tissues.

Tissue Low expression = High expression Total
type (0-3) (4-9)

Tumor 15 45 60

Adjacent

Normal 33 24 57
Total 48 69 117

Frontiers in Immunology

18

immune cell populations indicate that C2 tumors are infiltrated by
elevated levels of M2 macrophages and other immunosuppressive
components, which likely foster a tumor-promoting inflammatory
milieu. Similar patterns have been observed in other malignancies
(27-29) where an influx of tumor-associated macrophages and
regulatory T cells correlates with accelerated tumor progression,
even in the presence of a substantial number of T cells. In contrast,
subtype Cl is characterized by a lower overall immune cell presence
(immune-cold) but a relatively higher proportion of cytotoxic
lymphocytes, which may contribute to more effective
tumor control.

In order to address the variability among patients, we have
created and validated an innovative prognostic model for prostate
cancer that is grounded in genes associated with immunogenic cell
death and ferroptosis. The risk score derived from this model
demonstrated a strong correlation with patient outcomes, levels of
immune checkpoint expression, and the extent of immune cell
infiltration, underscoring its potential utility in characterizing the
tumor immune landscape.

Moreover, drug sensitivity analysis derived from the current
model indicates that patients classified within the high-risk group
may exhibit increased susceptibility to specific therapeutic agents.
Specifically, the BCL-2/BCL-XL inhibitor ABT-263 (Navitoclax)
showed lower ICs, values, consistent with reports that inhibition
of BCL-2 family proteins enhances apoptosis and chemosensitivity
(30). The PARP inhibitor ABT-888 (Veliparib) showed a trend
toward increased activity, with case reports and early-phase studies
suggesting that tumors harboring homologous recombination
repair deficiencies, particularly BRCA2 alterations, may be more
susceptible; however, evidence in prostate cancer remains limited
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TABLE 2 Differential expression statistics of TREX1 in prostate cancer and adjacent normal tissues.

TREX1 expression
Tissue type Total (n) P value
Tumor 60 45 15
13.08 0.0003
Adjacent Normal 57 24 33

(31). Similarly, the AMPK activator AICAR exhibited greater
potency, aligning with preclinical evidence that AICAR
suppresses proliferation, induces apoptosis, and impairs
metastasis via the AMPK/mTOR pathway (32). In addition, all-
trans retinoic acid (ATRA) showed enhanced efficacy in high-risk
cases, which may be linked to its ability to induce differentiation,
apoptosis, and immune modulation (33). Collectively, these
findings underscore that tumors classified as high-risk by the
IFRG signature may possess distinct therapeutic susceptibilities.

Further preclinical and clinical studies are warranted to validate
these strategies.

Furthermore, our results demonstrate that the DNA
exonuclease TREXI, a key element of our gene signature, is
upregulated in prostate cancer tissues and exhibits pro-
tumorigenic properties in vitro. TREXI, a 3’ to 5° DNA
exonuclease encoded by a gene located on human chromosome
3p21.31 (34, 35), is ubiquitously expressed and plays a vital role in
degrading cytosolic DNA, thereby preventing inappropriate
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FIGURE 13

TREX1 knockdown suppresses proliferation, migration, and invasion of PC-3 cells. (A) Western blot analysis confirming efficient knockdown of TREX1
expression in PC-3 cells transfected with TREX1-specific siRNA (Si-TREX1) compared with negative control (Si-NC), with GAPDH as the loading
control. (B) Representative images of Transwell migration and invasion assays showing reduced numbers of migrating and invading cells after TREX1

silencing. (C) Quantification of migrating and invading cells demonstrating a significant reduction in the si-TREX1 group compared to Si-

NC. **P <

0.01.(D) EdU incorporation assay showing decreased numbers of proliferating cells in TREX1-knockdown cells. Hoechst (blue) stains nuclei, EdU
(green) labels proliferating cells, and merged images are shown. (E) Quantification of proliferating cells indicating a significant reduction in the si-

TREX1 group compared with controls. **P < 0.01
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activation of the innate immune system (36). Impairment of TREX1
function leads to the accumulation of cytoplasmic double-stranded
DNA, which subsequently triggers hyperactivation of the cGAS-
STING interferon signaling pathway, contributing significantly to
the pathogenesis of autoimmune disorders (37). Recent evidence
(38-40) indicates that TREX1 plays a significant role in cancer
progression and immune evasion. For instance, increased TREX1
expression enables pancreatic ductal adenocarcinoma cells to evade
immune detection by inhibiting the cGAS-STING pathway (38).
Similarly, elevated TREXI levels have been observed in drug-
resistant small-cell lung cancer, potentially facilitating the survival
of therapy-resistant tumor cells (39). In alignment with these
findings, our data reveal that TREX1 is overexpressed in prostate
cancer tissues and exerts pro-tumorigenic effects in vitro.
Additionally, higher TREX1 expression correlates with an
immune microenvironment characterized by diminished effector
cell activity and enrichment of immunoregulatory pathways in our
analyses. These observations suggest that TREX1 may represent a
promising target for immunotherapeutic intervention in prostate
cancer. We hypothesize that TREXI functions as an “innate
immune checkpoint” in prostate cancer by attenuating cGAS-
STING signaling, thereby facilitating immune evasion and disease
progression; nonetheless, this proposition warrants further
experimental validation.

The prognostic signature we have constructed includes TREX1,
NOZX4, and RRM2, with the latter two also being closely associated
with cancer progression. NOX4, a member of the NADPH oxidase
enzyme family, constitutes a principal source of reactive
oxygen species (ROS) that modulate tumor cell proliferation,
migration, and invasion. Elevated expression of NOX4 has been
demonstrated to promote fibroblast activation and facilitate
stromal-epithelial interactions, thereby contributing to the
progression of prostate tumors (41). Moreover, increased NOX4
levels are generally correlated with advanced stages of disease (42,
43). Mechanistically, NOX4 activates ROS-dependent PI3K/AKT
signaling and promotes M2 macrophage recruitment, shaping an
immunosuppressive microenvironment. Under certain stress
conditions, NOX4-derived ROS may also increase ferroptosis
sensitivity, linking oxidative stress to regulated cell death (44).
Lastly, RRM2, the catalytic subunit of ribonucleotide reductase, is
critical for DNA synthesis and repair. Aberrant overexpression of
RRM2 is frequently observed in various aggressive malignancies,
including prostate cancer, where it facilitates cellular proliferation,
epithelial-mesenchymal transition (EMT), and is associated with
poor clinical outcomes (45-47). Recent studies have further
elucidated that RRM2 contributes to resistance against docetaxel
chemotherapy by stabilizing ANXA1 and activating the PI3K/AKT
signaling pathway, thereby enhancing tumor cell survival under
chemotherapeutic stress (48). Collectively, these findings indicate
that TREX1, NOX4, and RRM2 may be significant contributors to
the progression of prostate cancer; however, their precise roles and
potential therapeutic implications warrant further investigation.

This study is subject to several limitations. Firstly, the
retrospective nature of the data sourced from TCGA and GEO,
coupled with the relatively small size of the validation cohort, may
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introduce potential biases. Secondly, our analyses were primarily
centered on biochemical recurrence; consequently, the capacity of
the IFRG signature’s ability to predict metastatic progression or
cancer-specific survival was not directly evaluated due to the
scarcity of long-term follow-up data. Thirdly, while we provided
functional evidence supporting the role of TREX1 in prostate cancer
cells, we did not elucidate the molecular mechanisms through
which TREX1 knockdown affects proliferation and invasion. We
acknowledge this limitation and suggest that future studies examine
whether loss of TREX1 activates the cGAS-STING pathway and
boosts interferon signaling in PCa cells, as this could explain the
immune-related impact of TREXI. If such activation occurs, the
combination of TREX1 inhibition with immune checkpoint
blockade may represent a promising strategy for prostate cancer
immunotherapy. Furthermore, the roles of NOX4 and RRM2 were
not experimentally examined in this study. Although some
investigations have addressed their involvement in prostate
cancer, the underlying mechanisms remain to be elucidated.

5 Conclusion

In summary, we have constructed a novel prognostic model that
integrates genes associated with ICD and ferroptosis, which
effectively stratifies prostate cancer patients according to their risk
of disease progression, as validated in an independent external
cohort. Notably, our analysis identified TREX1 as a critical
determinant of poor clinical outcome; TREXI is significantly
overexpressed in prostate tumor tissues, and its knockdown
markedly inhibits prostate cancer cell proliferation, migration,
and invasion in vitro. These results underscore the potential of
TREXI1 as a promising target for immunotherapeutic intervention
and suggest that modulation of ICD and ferroptosis pathways
may improve the precision of immunotherapy strategies in
prostate cancer.
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