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genes and the study of TREX1
effects on prostate cancer cells
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Dandong Chen2, Song Zheng1* and Shaoxing Zhu1*

1Department of Urology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China, 2Department
of Urology, Fujian Provincial Geriatric Hospital, Fuzhou, Fujian, China
Background: Understanding the interplay between immunogenic cell death

(ICD), ferroptosis, and prostate cancer (PCa) is critical for elucidating the

underlying mechanisms of PCa pathogenesis. This study aimed to establish a

prognostic model for PCa based on ICD- and ferroptosis-related genes (IFRGs)

and to evaluate its potential clinical applicability.

Methods: RNA sequencing data and clinical information of PCa patients were

obtained from The Cancer Genome Atlas (TCGA-PRAD) database. Candidate

IFRGs were identified through Pearson correlation and differential expression

analyses. A prognostic model was constructed using univariate Cox regression,

least absolute shrinkage and selection operator (LASSO) regression, and Kaplan–

Meier survival analyses, and subsequently validated in an external cohort

(GSE70769). In addition, siRNA-mediated knockdown of the key gene TREX1

was performed in PC-3 cells, and EdU and Transwell assays were conducted to

assess its effects on tumor cell proliferation, migration, and invasion.

Results: A three-gene IFRG-based prognostic model was developed, which

effectively stratified PCa patients into high- and low-risk groups with

significantly different survival outcomes. Multivariate Cox regression analysis

confirmed the model as an independent prognostic factor. Functional

experiments further demonstrated that TREX1 serves as a critical risk gene, and

its knockdown markedly suppressed the proliferative, migratory, and invasive

capacities of PCa cells.

Conclusion: The three-gene IFRG-based prognostic model may serve as a

promising prognostic biomarker for PCa, providing predictive value and novel

insights into the complex interactions between IFRGs and PCa progression.

Moreover, TREX1 was identified as a potential therapeutic target, offering new

perspectives for prognostic assessment and the development of immunotherapy

strategies in PCa.
KEYWORDS
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1 Introduction

Prostate cancer ranks among the most prevalent malignancies

affecting men globally. In the United States, projections indicate

that approximately 299,000 new cases of prostate cancer will be

diagnosed in 2024, representing roughly 29% of all newly identified

cancers in the male population (1). The conventional treatment

regimen for prostate cancer generally includes surgery and

endocrine therapy combined with chemotherapy or radiotherapy

(2, 3). Nonetheless, a significant number of patients ultimately

advance to castration-resistant prostate cancer (CRPC), a phase

marked by an insensitivity to standard therapeutic approaches (4,

5). Unfortunately, diagnostic and prognostic instruments, including

prostate-specific antigen (PSA), exhibit significant limitations in

accurately predicting outcomes for high-risk patients and may

produce false positive results attributable to benign conditions.

Consequently, there is a pressing necessity for the development of

more dependable prognostic biomarkers and therapeutic targets for

prostate cancer.

Immunogenic cell death (ICD) represents a regulated mechanism

of cell death that promotes the activation of both innate and adaptive

immune responses. This process is characterized by a complex

interaction of signaling pathways between dying tumor cells and

elements of the immune system (6). During ICD, dying cancer cells

release a series of damage-associated molecular patterns (DAMPs),

such as calreticulin (CALR), high mobility group box 1 (HMGB1),

and ATP (7). These molecules serve as “danger signals” which

activate dendritic cells and other antigen-presenting cells,

consequently enhancing both innate and adaptive immune

responses (8, 9). As a result, ICD facilitates efficient immune

surveillance, inhibits tumor advancement, and improves the

effectiveness of immunotherapeutic approaches.

Ferroptosis is a form of regulated cell death characterized by its

dependence on iron and the mediation of lipid peroxidation,

distinguishing it from traditional apoptosis (10). Ferroptosis is

defined by the buildup of lipid hydroperoxides resulting from

impairments in antioxidant mechanisms, notably those associated

with glutathione peroxidase 4 (GPX4) (11). Excessive lipid

peroxidation results in irreversible damage to the plasma membrane,

ultimately leading to cellular death. Recent studies suggest that

ferroptosis may affect the tumor immune microenvironment by

releasing damage-associated molecular patterns (DAMPs) and other

immunogenic factors from dying cancer cells, thereby stimulating

immune responses (11, 12). This enhances anti-tumor immune

responses and represents a promising therapeutic strategy when

utilized in conjunction with immunotherapies.

Despite their mechanistic differences, ferroptosis and ICD exhibit

a significant interrelationship. Ferroptosis facilitates ICD by DAMPs

and lipid peroxides. Conversely, immune responses elicited by ICD,

including the secretion of interferon-g by CD8+ T cells, can further

enhance ferroptosis in tumor cells (12). Existing literature indicates

that ferroptosis and ICD are crucial factors in the pathogenesis,

therapeutic response, and immune microenvironment associated

with prostate cancer (13, 14). Although gene signatures associated
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with ICD and ferroptosis have been examined separately in the

context of prostate cancer, the synergistic impact of these two

processes on prognosis and therapeutic outcomes in prostate

cancer has not been thoroughly investigated.

In this study, we conducted a comprehensive analysis to identify

Immunogenic Cell Death/Ferroptosis-Related Genes (IFRGs) that

are associated with prostate cancer, and subsequently developed a

prognostic model based on these genes. Additionally, we

investigated the expression levels of the model key gene TREX1

in prostate cancer tissues and assessed its functional implications in

the proliferation, migration, and invasion of prostate cancer cells.

Overall, this study establishes a novel prognostic signature for

prostate cancer and elucidates the potential role of ICD/

ferroptosis-related pathways, particularly the TREX1-mediated

DNA sensing mechanism, in the progression of prostate cancer.

This research provides valuable insights for prognostic evaluation

and the development of personalized treatment strategies in the

context of prostate cancer.
2 Materials and methods

2.1 Experimental materials

In this study, we conducted an analysis of prostate cancer data

utilizing two distinct datasets: TCGA-PRAD and GSE70769. The

TCGA-PRAD dataset encompasses information from 549 patients,

while the GSE70769 dataset consists of data from 94 patients. Gene

and clinical data for the TCGA-PRAD dataset were retrieved from

the TCGA database (https://portal.gdc.cancer.gov/). The clinical

data includes variables such as age, Gleason score, pathological T

stage, N stage, M stage, disease progression status, and duration of

disease progression. Additionally, gene expression data along

with corresponding clinical information were sourced from

the GSE70769 dataset through the GEO database (https://

www.ncbi.nlm.nih.gov/geo/).
2.2 Data acquisition and preprocessing

The raw data were analyzed utilizing the “LIMMA” package in

R software to normalize the gene expression files, adjusting them to

fragments per kilobase of transcript per million mapped reads

(FPKM). The FPKM data format from The Cancer Genome

Atlas Prostate Adenocarcinoma (TCGA-PRAD) dataset was

subsequently converted to transcripts per million (TPM).

To maintain the integrity of the analysis, 124 prostate cancer

samples with incomplete clinical data were excluded from further

clinical-related analyses. We sourced clinical data from the Gene

Expression Omnibus (GEO) database (GSE70769), which included

94 prostate cancer samples. Following quality control and

normalization procedures, the TCGA-PRAD cohort was

designated as the training set, while the GSE70769 cohort served

as the validation set for subsequent analyses.
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2.3 Identification of IFRGs

Through a comprehensive literature review, we identified a total

of 44 genes associated with ICD, which were sourced from various

published studies (14, 15). The ICD-related genes include: CALR,

CASP1, CD4, CD8A, CD8B, CXCR3, EIF2AK3, HMGB1,

HSP90AA1, IFNA1, IFNB1, IFNG, IFNGR1, IL10, IL17A,

IL17RA, IL1B, IL1R1, IL6, LY96, MYD88, NLRP3, P2RX7,

PIK3CA, PRF1, TLR4, TNF, PANX1, ANXA1, FPR1, PDIA3,

LRP1, STING1, ENTPD1, NT5E, FOXP3, BCL2, CASP8, CFLAR,

PPP1R15A, VTCN1, STC1, CD47, TREX1. Additionally, we

retrieved a dataset of 259 genes associated with ferroptosis from

the FerrDb V2 database (16) (Supplementary Table).

To identify IFRGs in prostate cancer, we conducted a Pearson

correlation analysis between the gene sets associated with ICD and

ferroptosis, utilizing expression data from TCGA-PRAD. Genes

demonstrating significant correlations (|R| > 0.4, P < 0.05) were first

identified. Subsequently, differential expression analysis between tumor

and normal tissue samples was conducted employing volcano plot

methodology with more rigorous thresholds (|fold-change| > 1.3, P <

0.001, FDR<0.05). Genes satisfying both the correlation and differential

expression criteria were collectively classified as “IFRGs.” The

expression differences of these IFRGs between tumor and normal

tissues were then illustrated using boxplot visualizations.
2.4 Mutation and copy-number analysis of
IFRGs

We conducted an analysis of the mutation status of the IFRGs

within the TCGA-PRAD cohort. The somatic mutation data were

processed utilizing the “maftools” R package (17) to extract mutation

information pertinent to each IFRG. We conducted an analysis of

mutation frequency across the samples and created waterfall plots to

illustrate the various types and frequencies of mutations observed. To

assess copy-number variations (CNVs), we utilized Perl scripts on the

TCGA copy-number data to identify gains and losses associated with

each IFRG. The frequencies of CNVs (gains versus losses) were

visualized, and the chromosomal locations of the IFRGs were plotted

accordingly. Furthermore, we developed a protein–protein interaction

(PPI) network for the IFRGs using the STRING database to investigate

potential functional relationships among these genes. Additionally, we

compared the expression of these IFRGs between normal and tumor

tissues using limma. The prognostic impact of each gene was evaluated

with Kaplan–Meier analysis by stratifying patients into high vs. low

expression groups.
2.5 Unsupervised clustering and survival
analysis

Utilizing the expression profiles of the IFRGs, we conducted

consensus clustering of the TCGA-PRAD samples employing the
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“ConsensusClusterPlus” R package (18) in order to delineate

molecular subtypes. The consensus cumulative distribution

function (CDF) and delta area plots were employed to ascertain

the optimal number of clusters. Following these analyses, the

samples were categorized into two distinct clusters, designated as

C1 and C2. A Kaplan–Meier analysis was conducted to compare

Progression-Free Survival (PFS) rates between these subtypes.
2.6 Analysis of the immune
microenvironment

To investigate the association between IFRG subtypes and the

tumor immune microenvironment, we employed the CIBERSORT

algorithm to quantify the relative proportions of various immune

cell types present in each tumor sample, and further validated the

results using the EPIC and MCP-counter methods. We created bar

plots to illustrate the immune cell composition across the samples

and generated heatmaps to depict the correlations among the

immune cell fractions. We conducted a comparative analysis of

immune cell infiltration between high- and low-IFRG subtypes

utilizing violin plots, which revealed significant disparities,

particularly in the populations of CD8+ T cells, M2 macrophages,

and regulatory T cells. Additionally, we analyzed the expression

levels of HLA-related genes and immune checkpoint genes across

the subtypes using boxplots. We also calculated ESTIMATE scores,

which encompass stromal score, immune score, and tumor purity,

for each sample through the application of the “ESTIMATE”

algorithm (19). Subsequently, we compared these metrics between

the different subtypes, assessing variations in tumor purity and the

immune/stromal components.
2.7 Differential expression and functional
enrichment

We conducted a differential expression analysis between the two

IFRG-based subtypes utilizing the “limma” package, applying the

criteria of |log2 fold change| > 1 and P < 0.05 (20). A total of 1,032

differentially expressed genes (DEGs) were identified in this study.

These DEGs were subsequently visualized using a heatmap and a

volcano plot. To further analyze the DEGs, Gene Ontology (GO)

and KEGG pathway enrichment analyses were performed to

ascertain the overrepresented biological processes, cellular

components, molecular functions, and pathways, utilizing the

clusterProfiler R package (21). In the context of GO, we assessed

enrichments across the categories of Biological Process (BP),

Cellular Component (CC), and Molecular Function (MF). For

KEGG analysis, we identified significantly enriched signaling

pathways. Additionally, Gene Set Enrichment Analysis (GSEA)

was conducted to compare high-IFRG and low-IFRG groups,

aiming to identify hallmark pathways that were enriched in

each group.
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2.8 Construction of the IFRG-based
prognostic model

Utilizing the TCGA training dataset, we conducted univariate

Cox proportional hazards regression analyses on each of the 18

IFRGs to identify genes that exhibited a significant association with

PFS (P < 0.05). This analysis led to the selection of three genes:

TREX1, NOX4, and RRM2. Subsequently, we employed LASSO-

Cox regression with the glmnet package, which automatically

standardizes the input data prior to model fitting, to construct a

multivariate prognostic model. The optimal lambda value was

established through cross-validation, culminating in the

formulation of a final model. The risk score for each patient was

computed as a weighted sum of the gene expression levels,

represented mathematically as:

o(expression of  gene� coef)

Patients were categorized into high-risk and low-risk groups

based on the median risk score. To assess PFS differences between

these risk groups, we performed Kaplan–Meier survival analysis

within both the TCGA cohort and an independent GEO validation

cohort. The predictive accuracy of the model was further evaluated

using time-dependent receiver operating characteristic (ROC)

curves and the concordance index.
2.9 Validation and nomogram construction

To assess the validity of the prognostic model, we visualized the

distribution of risk scores alongside the corresponding survival

status of patients, and created heatmaps illustrating the

expression levels of the three risk-associated genes across different

risk groups. Both univariate and multivariate Cox regression

analyses were conducted to determine the independence of the

risk score in relation to clinical covariates, including Gleason score,

tumor stage, and nodal status. A prognostic nomogram was

developed utilizing the “rms” package to estimate the probabilities

of survival at 1-year, 3-year, and 5-year intervals, based on the risk

score and various clinicopathological factors. The predictive

accuracy of the nomogram was further evaluated through

calibration curves and additional receiver operating characteristic

(ROC) analyses.
2.10 Immune cell correlation and drug
sensitivity analyses

We examined the association between the risk score and the

infiltration of immune cells. Spearman correlation analyses were

employed to assess the relationship between the risk score and the

relative abundances of various immune cell types across the

samples. Statistically significant correlations were visualized using

scatter plots. Furthermore, drug sensitivity analysis was conducted

utilizing the pRRophetic R package (22), which predicts the half-

maximal inhibitory concentration (IC50) of chemotherapeutic
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with data from the Genomics of Drug Sensitivity in Cancer

(GDSC) database. To address batch effects across datasets, the

ComBat algorithm was applied, and ridge regression models were

used to estimate drug response.
2.11 Somatic mutation and tumor mutation
burden

We conducted a comparative analysis of somatic mutation

landscapes between high-risk and low-risk cohorts by creating

distinct waterfall plots. The most frequently mutated genes were

identified. The tumor mutation burden (TMB) was calculated for

each individual patient. We then compared TMB across the

different risk groups using boxplots and performed Kaplan–Meier

survival analyses stratified by TMB (high versus low) and risk

group. Survival curves were generated for four subgroups (TMB-

high/high-risk, TMB-high/low-risk, TMB-low/high-risk, TMB-low/

low-risk) to evaluate the interactions between TMB and risk score

in relation to prognosis. We conducted an additional analysis to

examine the relationship between TMB and both microsatellite

instability (MSI) and programmed death-ligand 1 (PD-L1)

expression. The MSI data were obtained from the cBioPortal for

Cancer Genomics (https://www.cbioportal.org/). MSI scores were

compared between cohorts characterized by high and low TMB to

investigate whether elevated mutational loads correspond with

increased genomic instability. Furthermore, PD-L1 expression

levels were assessed across these TMB-defined groups to explore

potential associations between tumor mutational burden and

immune checkpoint activation. Differences between groups were

statistically evaluated using the Wilcoxon rank-sum test.
2.12 TREX1-associated immune
microenvironment analysis

Utilizing bioinformatic approaches, TREX1 was identified as

the gene with the most significant risk coefficient. Consequently, we

conducted an in-depth examination of its expression profiles,

immune-related associations, and functional roles. To elucidate

the potential involvement of TREX1 in regulating the tumor

microenvironment, correlation analyses, immune infiltration

assessments, and gene set enrichment analyses were performed.
2.13 Immunohistochemistry

To further assess its clinical significance and biological function

in prostate cancer, we conducted immunohistochemical staining

alongside subsequent functional assays. A commercially obtained

tissue microarray (TMA) containing 60 primary prostate cancer

samples and 57 adjacent normal prostate tissues was utilized

(HProA120Su02, Shanghai Xinchao Biotechnology). The TMA

encompassed both prostate cancer tissues and matched adjacent
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non-tumor tissues, supplemented with comprehensive clinical

parameters including patient age, pathological stage, Gleason

score, and metastatic status.

The TMA underwent dewaxing and rehydration following

standard protocols, which included baking at 63°C for one hour

and sequential incubation in xylene, followed by 100%, 90%, 80%,

and 70% ethanol. Antigen retrieval was achieved using citrate buffer

(pH 6.0) via microwave or water bath methods. Endogenous

peroxidase activity was inhibited with 3% H2O2 in methanol for

a duration of 10 minutes. Subsequently, the slides were blocked with

5% BSA in PBS for 30 minutes at room temperature. The primary

antibody targeting TREX1 (rabbit anti-TREX1 [EPR14985],

ab185228, Abcam) was applied at a dilution of 1:200 and

incubated overnight at 4°C. The following day, sections were

washed with PBS and incubated with HRP-conjugated goat anti-

rabbit secondary antibody for one hour at room temperature. After

washing, staining was visualized using DAB substrate, and the slides

were counterstained with hematoxylin, dehydrated, and

coverslipped using mounting medium. TREX1 immunoreactivity

was evaluated by two independent pathologists, with cytoplasmic

staining scored on a scale of 0 to 3 for intensity (0, negative; 1,

weakly positive; 2, intermediately positive; and 3, strongly positive)

and 0 to 3 for the percentage of positive cells (0, no staining; 1: <25%

cells; 2: 25%–75% cells; and 3: >75% cells), resulting in a combined

score ranging from 0 to 9. Samples were classified as exhibiting low

expression (0–3) or high expression (4–9). Statistical analysis was

performed to compare TREX1 expression levels between cancerous

and adjacent tissues using the Chi-square test.
2.14 Cell culture and functional assays

The human prostate cancer cell line PC-3 (ATCC CRL-1435)

was maintained in RPMI-1640 medium supplemented with 10%

fetal bovine serum (FBS) (Gibco) and 1% penicillin-streptomycin,

under conditions of 37°C and 5% CO2. For experimental

procedures, the cells were plated in suitable culture dishes and

subsequently transfected as outlined in the following sections.
2.15 siRNA transfection

TREX1-targeting small interfering RNA (siRNA) was

synthesized, comprising a sense strand (5′-CCAAGACCAT
CTGCTGTCA-3′) and an antisense strand (5′-TGACAGCA
GATGGTCTTGG-3′). Additionally, a validated non-targeting

control siRNA was produced, with a sense strand (5′-
UUCUCCGAACGUGUCACGUTT-3′) and an antisense strand

(5′-ACGUGACACGUUCGGAGAATT-3′). For the transfection

process, PC-3 cells, which were at 60–70% confluence, were

treated with 50 nM of the respective siRNA using Lipofectamine

3000 (Invitrogen), following the manufacturer’s protocol. The

transfection complexes were prepared in Opti-MEM, where
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solution A consisted of 15 mL of Lipofectamine 3000 mixed with

380 mL of Opti-MEM, and solution B contained 50 nM siRNA

combined with 190 mL of Opti-MEM. These solutions were

incubated for 15 minutes before being mixed and applied to the

cells. After a duration of 6 hours, the medium was replaced with

complete culture medium. The efficiency of the knockdown was

subsequently assessed via Western blot analysis conducted 48 hours

post-transfection.
2.16 Western blot

At the indicated time points (typically 48 h post-transfection),

total protein was extracted using ice-cold RIPA buffer

supplemented with protease and phosphatase inhibitors. After

PBS wash, cells were lysed on ice for 20 min and clarified by

centrifugation (14,000 rpm, 15 min, 4°C). Protein concentration

was determined by BCA assay. Equal protein (30 μg) was mixed

with 5× loading buffer, denatured at 100°C for 5 min, resolved by

SDS-PAGE, and transferred to PVDF membranes using a semi-dry

apparatus (≈300 mA, ~30 min; gel-dependent). Membranes were

blocked in 5% non-fat milk (TBST) for 1 h at room temperature and

incubated overnight (4°C) with primary antibodies: anti-TREX1

and anti-GAPDH. After TBST washes, HRP-conjugated secondary

antibodies were applied for 2 h at room temperature. Signals were

developed with ECL and imaged; band intensities were quantified in

ImageJ and normalized to GAPDH.
2.17 EdU incorporation assay

Cells were initially seeded in suitable culture vessels and allowed

to reach approximately 70% confluence. Subsequently, EdU was

introduced to the culture medium at a concentration of 10 mM and

incubated for a duration of 1 to 2 hours at 37°C. Post-incubation,

the cells were fixed using 4% paraformaldehyde for 15 minutes at

room temperature, followed by permeabilization with 0.5% Triton

X-100 in phosphate-buffered saline (PBS) for 20 minutes. A Click-

iT® reaction cocktail was then applied in accordance with the

manufacturer’s instructions. After thorough washing, the nuclei

were counterstained with Hoechst 33342 at a concentration of

2 mg/mL for 5 to 10 minutes, ensuring protection from light.

Finally, the cells were visualized using fluorescence microscopy at

the appropriate wavelengths.
2.18 Transwell migration and invasion
assays

For the migration assay, cells were trypsinized and resuspended

in serum-free medium 24 hours post-transfection. A total of

2×10^4 cells in 200 mL were introduced into the upper chamber

of a Transwell insert (8 mm pore size, devoid of Matrigel). The lower
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chamber was supplemented with 600 mL of medium containing 20%

fetal bovine serum (FBS). Following a 24-hour incubation period,

non-migrated cells were eliminated from the upper surface, while

the migrated cells adhering to the lower membrane were fixed using

4% paraformaldehyde for 30 minutes. Subsequently, these cells were

stained with 0.1% crystal violet for an additional 30 minutes and

counted in five randomly selected fields using a microscope.

For invasion, inserts were pre-coated with Matrigel (300 mL of

1:6 diluted Matrigel, incubated at 37°C for 4 h to form a gel).

5×10^4 cells in 200 mL serum-free medium were added to the upper

chamber; the lower chamber contained 600 mL medium with 20%

FBS. After 24 h, invasion assays proceeded as above (fixation,

staining, counting in five fields).
2.19 Statistical analysis

All experiments were conducted with a minimum of three

replicates. The data are expressed as mean ± standard deviation.

Group differences were evaluated using either Student’s t-test or

Chi-square test, as deemed appropriate. Survival curves were

analyzed through the log-rank test. Correlation analyses were

performed using Spearman’s rank correlation coefficient. A two-

sided P-value of less than 0.05 was regarded as statistically

significant. Statistical analyses were carried out utilizing R

software (version 4.2.0) and GraphPad Prism 9.
3 Results

3.1 Identification of immunogenic cell
death/ferroptosis-related genes and
differential expression

A comprehensive multi-step screening approach was employed

to identify genes that are associated with both ICD and ferroptosis,

which exhibit differential expression in prostate cancer. Utilizing

data from TCGA-PRAD, Pearson correlation analysis was

performed between 44 ICD-related genes and 259 ferroptosis-

related genes, resulting in the identification of 219 genes with

significant correlations (|R| > 0.4, P < 0.05). Through further

screening, a total of 18 genes were identified with significant

expression changes based on the criteria of p-value < 0.001 and

fold-change > 1.3 and boxplots were generated to demonstrate their

pronounced expression differences (Figures 1A, B). Kaplan-Meier

survival analysis indicated that 11 of the identified IFRGs were

significantly correlated with PFS (Figure 1C), indicating that each of

these genes has prognostic value on its own and justifying their

inclusion in the model (Figure 1C). Notably, high expression levels

of CAV1, GPX2, TP63, DUOX1, and DUOX2 were associated with

improved prognosis, while elevated expression of CASP1, TREX1,

NOX4, ZFP69B, ALOX15, and RRM2 was linked to poorer

outcomes. Among these, NOX4, RRM2, and TREX1 exhibited

particularly strong associations (P < 0.001).
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3.2 Mutation, copy-number variation, and
expression analysis of IFRGs in prostate
cancer

The mutational profile of the 18 IFRGs was analyzed in a cohort

of 495 samples from the TCGA-PRAD database. Among these

samples, 10 (2.02%) exhibited mutations in the IFRGs, with a

predominance of missense mutations, alongside occasional

occurrences of nonsense and splice-site mutations. Notably, TP63

and DUOX2 exhibited the highest mutation frequencies

(Figure 2A). Additionally, genes such as TP63, CAV1, NT5E,

TREX1, and GPX2 demonstrated significant copy number

variation (CNV) deletions, while all 18 IFRGs displayed CNV

across various chromosomes (Figure 2B). The analysis revealed

varying degrees of DNA copy number variation among these

IFRGs, which were distributed throughout the genome without

evident clustering (Figure 2C). A protein-protein interaction (PPI)

network, constructed using the STRING database, indicated

potential cooperative functions among these genes, suggesting

their involvement in various biological processes, including

signaling pathways, oxidative stress response, lipid metabolism,

and apoptosis (Figure 2D). Furthermore, heatmap analysis

revealed that TREX1 and RRM2 expression levels were

significantly higher in tumor tissues compared to normal tissues,

whereas GPX2, DUOX1, and DUOX2 were expressed at lower

levels in tumor tissues (Figure 2E). These findings may imply a

potential relationship between IFRGs and the pathogenesis of

prostate cancer.
3.3 Unsupervised clustering and survival
analysis

Using expression data from 18 IFRGs, consensus clustering was

conducted on a cohort of 549 samples obtained from the TCGA-

PRAD database. This analysis successfully categorized the 549

patients into two distinct subgroups, designated as C1 and C2

(Figures 3A–D). Subsequent heatmap analysis revealed that the

expression levels of IFRGs were significantly elevated in the C2

subtype (Figure 3E). Additionally, Kaplan-Meier survival analysis

(Figure 3F) indicated that patients classified in subtype C2

experienced significantly poorer survival outcomes compared to

those in subtype C1, with a statistically significant difference (P<0.01).
3.4 Immune microenvironment analysis

CIBERSORT was employed to assess the infiltration levels of 22

distinct immune cell types. The results were illustrated through bar

plots (Figure 4A) and correlation heatmaps (Figure 4B), which

depicted the distribution of immune cells and their interrelations.

Furthermore, validation using the EPIC and MCP-counter methods

demonstrated that the overall immune landscape and major trends

remained consistent (Supplementary Figure 1). Notable differences
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1708437
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wen et al. 10.3389/fimmu.2025.1708437
in immune cell populations were observed, particularly in CD8+ T

cells, M2 macrophages, and regulatory T cells (Figure 4C).

Additionally, gene expression profiles for HLA (Figure 4D) and

immune checkpoint genes (Figure 4E) revealed significant
Frontiers in Immunology 07
variations between subtypes. The ESTIMATE analysis further

demonstrated that the high-IFRG group had elevated immune

and stromal scores, accompanied by reduced tumor purity

(Figures 4F–I).
FIGURE 1

Screening of IFRGs and prognostic analysis. (A) The volcano plot shows the significance distribution of differentially expressed genes. (B) The box
plot illustrates the differences in gene expression between tumor and normal tissues (“***” indicates p < 0.001). (C) Kaplan-Meier survival curve
analysis of patient Progression-free survival stratified by IFRG expression.
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3.5 Differential expression and enrichment
analyses of IFRG subtypes

The “limma” package was employed to identify differentially

expressed genes (DEGs) between the two subtypes, resulting in the

identification of 1,032 DEGs (Figure 5B). Following this, the study

focused on selecting significantly differential genes and created
Frontiers in Immunology 08
corresponding heatmaps (Figure 5A). Subsequently, Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) analyses were conducted to investigate the molecular

mechanisms associated with differentially expressed transcripts

related to ICD and ferroptosis (Figures 5C–G). The findings from

the GO enrichment analysis revealed that immune-related

processes, including humoral immune response, complement
URE 2FIG

Landscape of IFRGs: mutation spectrum, copy-number variations, and expression profiles. (A) The waterfall plot presents the mutation types and
frequencies of genes across samples. (B) The bar chart represents copy number variations (CNVs), with red dots indicating copy-number gains and
green dots indicating losses. (C) The Circos plot shows the chromosomal distribution of the studied genes. (D) The protein-protein interaction (PPI)
network illustrates interactions among the genes, with line color indicating interaction type and line thickness indicating interaction strength. (E) The
heatmap displays gene expression levels in tumor vs. normal tissues, with color intensity representing expression level (*** indicates p < 0.001).
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activation, B cell receptor signaling pathway, and phagocytosis,

were the predominant enriched biological processes (BP). In terms

of cellular components (CC), the primary enriched items included

immune complexes, chromosomes, kinetochores, and platelet

microparticles. Regarding molecular functions (MF), the major

enrichments encompassed antigen binding, immunoglobulin

receptor binding, and activities related to microtubules

(Figures 5C–E). The KEGG pathway analysis highlighted tumor-

related processes such as cell cycle regulation, cytoskeletal

movement, immune signal transduction, and metabolic regulation

as the key enriched factors (Figures 5F, G).

To further investigate the molecular mechanisms associated

with the signature derived from IFRGs, we conducted Gene Set

Enrichment Analysis (GSEA), as illustrated in Figures 6A–D. The

functional enrichment analysis (Figures 6A, B) revealed that the C2

group had significant enrichment in pathways related to immune

response, antigen recognition, and T-cell receptor signaling.

Conversely, C1 group exhibited elevated expression of genes

associated with the muscular system. In the KEGG pathway

enrichment analysis (Figures 6C, D), C2 group was found to be

enriched in immune-related pathways, as well as those involved in

the cell cycle and cell adhesion molecules. In contrast, C1 group
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showed enrichment in pathways related to myocardial contraction

and oxidative phosphorylation.
3.6 Construction of the IFRG-based
prognostic model

A LASSO Cox regression analysis was conducted to develop a

prognostic signature utilizing the previously mentioned 18 IFRGs.

This analysis identified three specific IFRGs: TREX1, NOX4, and

RRM2 (Figure 7A). Cross-validation techniques were employed to

ascertain the optimal penalty coefficient (l.min) for the LASSO

regression, with the corresponding LASSO path diagram and cross-

validation curve illustrated in Figures 7B, C. The risk score was

computed using the following formula:

Risk score = (2 : 9692� TREX1) + (0 : 4886� NOX4) + (0 : 1914� RRM2)

Subsequently, patients were categorized into high-risk and low-

risk groups based on the median risk scores. Kaplan-Meier survival

analysis revealed that the high-risk cohort exhibited a significantly

poorer prognosis in both the TCGA (Figure 7D) and GEO

(Figure 7E) datasets.
FIGURE 3

Unsupervised clustering-based subtyping using IFRGs. (A) Consensus clustering matrix for k=2; darker blue squares indicate higher similarity
between samples. (B) Cumulative distribution function (CDF) curves, with different colors representing different k values. (C) Tracking plot showing
how sample classifications change with varying k (D) Delta area plot used to assess changes in clustering stability across different k values. (E)
Heatmap displaying the expression patterns of immunogenic cell death- and ferroptosis-related genes across the two subtypes. (F) Kaplan-Meier
survival curves for C1 and C2 subgroups.
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3.7 Validation of the prognostic model and
nomogram construction

Risk stratification analysis revealed that patients in the high-risk

group exhibited a markedly higher incidence of biochemical
Frontiers in Immunology 10
recurrence compared with those in the low-risk group

(Figures 8A, B). The gene expression heatmap indicated a

significant upregulation of TREX1, NOX4, and RRM2 in the

high-risk group relative to the low-risk group (Figure 8C).

Univariate analysis established a significant correlation between
FIGURE 4

Immune microenvironment characterization based on IFRG subtypes. (A) Immune cell composition: A stacked bar plot of the relative fractions of 22
immune cell types in each sample, as estimated by the CIBERSORT algorithm. (B) Immune cell correlation heatmap: Spearman correlation
coefficients among the infiltration levels of the 22 immune cell types; color intensity denotes the strength of correlation. (C) Violin plots comparing
immune cell infiltration between the C2 group (red) and C1 group (blue). *, **, and *** indicate p < 0.05, 0.01, and 0.001, respectively. (D) Boxplot of
Differential Expression of HLA Genes. (E) Boxplot of Differential Expression of Immune Checkpoints. (F-I) ESTIMATE score comparisons (violin plots):
Comparison of the ESTIMATE composite score, StromalScore, ImmuneScore, and tumor purity between the two groups. The high-expression group
shows significantly higher ESTIMATE and stromal scores, a modest increase in ImmuneScore, and a marked reduction in tumor purity.
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the risk score, Gleason score, and T stage with PFS in prostate

cancer patients (all P < 0.001) (Figure 8D). Furthermore,

multivariate Cox regression analysis validated that both the risk

score and T stage independently influenced patient prognosis (P =

0.046 and P < 0.001, respectively) (Figure 8E). Subsequently, an

individualized prognostic model was formulated in the form of a
Frontiers in Immunology 11
nomogram (Figures 8F, G), which demonstrated strong predictive

accuracy for estimating PFS at 1, 3, and 5 years. The calibration

plots indicated good concordance between the predicted and

observed outcomes at 1 and 3 years, while a noticeable deviation

was observed at 5 years, possibly due to the limited follow-up

duration and the influence of competing risks.
FIGURE 5

Differential gene expression profiling and enrichment analyses. (A) Heatmap of differentially expressed genes (DEGs) comparing the C2 and C1
groups. (B) Volcano plot visualizing the DEGs (threshold: |log2FC| > 1, P < 0.05). (C) Circos plot illustrating the genomic locations of the DEGs. (D, E)
Gene Ontology (GO) enrichment analysis results for Biological Process (BP), Cellular Component (CC), and Molecular Function (MF) in the C2 group
(D) and C1 group (E). Redder color indicates a smaller q-value (higher enrichment significance). (F, G) KEGG pathway analysis: (F) shows the
distribution of genes in significantly enriched pathways; (G) shows a bubble chart of enriched pathways, where dot size represents gene count and
color indicates the q-value.
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3.8 Correlation of risk score with immune
infiltration and drug sensitivity

To further clarify the immunological implications associated

with the prognostic model, we performed an analysis of immune

cell correlations. The findings indicated a negative correlation

between the risk score and the presence of CD8+ T cells

(Figure 9A). Conversely, M2-type macrophages and resting

dendritic cells exhibited a positive correlation with the risk score

(Figures 9B, C). These results imply that individuals with elevated

risk scores may experience some immune suppression or

dysfunction, evidenced by fewer CD8+ T cells. Furthermore, the

drug sensitivity analysis (Figures 9D–G) revealed that the high-risk

group demonstrated significantly reduced half-maximal inhibitory

concentrations (IC50) for ABT-263, ABT-888, AICAR, and ATRA.
3.9 Risk score and somatic mutation/tumor
mutation burden

To gain additional insights into the reliability of the prognostic

model, we conducted an analysis of the somatic mutation

landscape. The mutation plots indicate that the four most

frequently mutated genes in the high-risk cohort (Figure 10A)
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were SPOP, TTN, TP53, and KMT2D, which were also the

predominant mutated genes in the low-risk cohort (Figure 10B).

This observation suggests that there is no significant disparity in

somatic mutation patterns between the high- and low-risk groups.

Regarding tumor mutation burden (TMB) (Figure 10C), the high-

risk group demonstrated a markedly elevated TMB. Kaplan-Meier

survival analyses (Figures 10D, E) illustrated that both the risk score

and TMB levels were significantly correlated with patient prognosis,

with lower TMB and risk scores associated with improved survival

outcomes. TMB levels were positively correlated with microsatellite

instability (MSI) and PD-L1 expression (Figures 10F, G), suggesting

that increased mutational load may contribute to enhanced

immunogenicity and immune checkpoint activation in

prostate cancer.
3.10 TREX1-associated tumor
microenvironment alterations

Within the IFRG model, TREX1 showed the highest coefficient,

underscoring its potential importance in prostate cancer

progression. Additional analyses focusing on its immunological

role revealed that TREX1 expression was negatively correlated

with the infiltration of activated NK cells and regulatory T cells,
FIGURE 6

Differential gene GSEA analyses. (A, B) Gene Set Enrichment Analysis (GSEA): (A) Gene sets significantly enriched in C1 group; (B) Gene sets
significantly enriched in C2 group. (C, D) KEGG-GSEA: (C) KEGG pathways enriched in C1 group; (D) KEGG pathways enriched in C2 group.
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while showing a modest positive correlation with plasma cells

(Figures 11A, B). Moreover, TREX1 expression was positively

associated with several immune checkpoint genes, including

CD160, TNFRSF25, TNFSF9, and ADORA2A, suggesting

potential co-expression patterns relevant to immune

regulation (Figure 11C).

Gene set enrichment analysis (GSEA) further indicated that

tumors with lower TREX1 expression were enriched in immune

activation pathways, such as positive regulation of immune

response and lymphocyte migration, whereas tumors with higher

TREX1 expression were enriched in pathways related to cell cycle

progression, extracellular matrix organization, and collagen

metabolism (Figures 11D, E). Complementary enrichment

analyses supported these findings, with GO analysis (Figure 11F)

highlighting extracellular matrix-related processes, including

structural organization and collagen binding, and KEGG analysis

(Figure 11G) showing enrichment in pathways related to

extracellular matrix remodeling, cell adhesion, and cell cycle
Frontiers in Immunology 13
regulation. Collectively, these results suggest that TREX1

expression is closely linked to changes in immune activity,

proliferative capacity, and extracellular matrix dynamics within

the tumor microenvironment.
3.11 TREX1 expression in prostate cancer
tissues

Subsequently, we examined the expression of the TREX1

protein in clinical specimens. Immunohistochemical (IHC)

analysis was conducted on a tissue microarray comprising 60

prostate cancer samples and 57 corresponding adjacent non-

tumor tissues (Figures 12A–D). The IHC results revealed that

TREX1 protein was localized in the cytoplasm of tumor cells, as

indicated by brown-yellow staining, which was considered positive,

whereas blue staining denoted negative expression. Based on

staining intensity and distribution, prostate tissue samples were
FIGURE 7

Construction of the IFRG-based prognostic model and survival analysis. (A) Univariate Cox regression analysis results. (B) LASSO regression cross-
validation error curve: the y-axis represents the partial likelihood deviance. (C) LASSO regression coefficient trajectory: different colored curves
represent different genes, and as log(l) increases, the gene coefficients shrink toward zero—ultimately identifying the key genes for the model. (D)
Kaplan-Meier survival analysis for the TCGA cohort. (E) Kaplan-Meier survival analysis for the GEO validation cohort.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1708437
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wen et al. 10.3389/fimmu.2025.1708437
stratified into two groups: low expression (scores 0-3) and high

expression (scores 4-9). Among the prostate cancer specimens, 45

cases (75%) exhibited high TREX1 expression, while 15 cases (25%)

showed low expression. Conversely, in the adjacent normal tissues,
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24 cases (42%) demonstrated high TREX1 expression, and 33 cases

(58%) were classified as low expression (Table 1). Statistical analysis

confirmed that the difference in TREX1 expression between tumor

and adjacent tissues was significant (P = 0.0003) (Table 2).
FIGURE 8

Validation of the risk score model and prognostic evaluation. (A) Risk score distribution: Patients are ranked by risk score and divided into a high-risk
group (red) and a low-risk group (green). The x-axis represents the sorted patients (low to high risk) and the y-axis is the risk score. (B) Survival status
plot for prostate cancer PFS: Patients are ordered by their risk score on the x-axis, and progression-free survival time (in years) is on the y-axis. Red
dots represent patients who experienced progression, while green dots represent those who remain progression-free. (C) Heatmap of gene
expression: Shows expression of immunogenic cell death/ferroptosis-related genes (TREX1, NOX4, RRM2) in the high- and low-risk groups (red =
high, green = low) (In panels A-C, patients on the x-axis are ordered by increasing risk score). (D) Univariate Cox regression analysis (forest plot): The
impact of different clinical factors (Gleason score, tumor stage T, lymph node status N, and risk score) on prognosis. The x-axis is the hazard ratio
(HR); green squares denote HR < 1 (protective factors) and blue squares denote HR > 1 (risk factors). (E) Multivariate Cox regression analysis: The risk
score remains an independent prognostic factor (HR = 1.71, P = 0.046). (F) Construction of a prognostic nomogram for estimating the 1-, 3-, and 5-
year progression-free survival probabilities in patients with prostate cancer. (G) Calibration plots assessing the agreement between nomogram-
predicted and observed 1-, 3-, and 5-year progression-free survival outcomes.
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3.12 Effect of TREX1 knockdown on
proliferation, migration, and invasion of
prostate cancer cells

To investigate the functional role of TREX1 in prostate cancer,

small interfering RNA (siRNA)-mediated knockdown experiments

were conducted utilizing PC-3 cells. Western blot analysis confirmed

a marked reduction in TREX1 protein expression following
Frontiers in Immunology 15
transfection with TREX1-specific siRNA compared with negative

control (Si-NC) (Figure 13A). Transwell assays demonstrated that

TREX1 knockdown significantly suppressed both cell migration and

invasion, with markedly fewer migrating and invading cells observed in

the si-TREX1 group relative to Si-NC (P < 0.01) (Figures 13B, C). EdU

incorporation assays further revealed a substantial decrease in

proliferating cells in the si-TREX1 group compared to controls (P <

0.01) (Figures 13D, E). These findings indicate that TREX1 promotes
FIGURE 9

Correlation of the risk score with immune‐cell infiltration and drug sensitivity. (A-C) Correlation between the risk score and immune cell infiltration
levels (scatter plots for different immune cell types). (D-G) Drug sensitivity: A box plot comparing the half-maximal inhibitory concentration (IC50) in
the high-risk vs. low-risk groups.
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prostate cancer progression by facilitating tumor cell proliferation,

migration, and invasion.
4 Discussion

Prostate cancer is recognized as one of the most prevalent

malignant neoplasms within the urinary system, exhibiting the
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highest incidence among male urogenital cancers, thereby posing

a significant threat to public health (1). ICD and ferroptosis are two

recently recognized forms of regulated cell death, and accumulating

evidence indicates that both processes play crucial roles in the

progression of various malignancies, including prostate cancer (23,

24). Furthermore, emerging evidence suggests that ferroptosis may

alter the tumor immune microenvironment through the release of

cytokines and DAMPs, which in turn can enhance immunogenic
FIGURE 10

Association of risk score with somatic mutations and tumor mutation burden. (A, B) Somatic mutation profiles: (A) Gene mutation profile of high-risk
group; (B) Gene mutation profile of the low-risk group. (C) Tumor mutation burden (TMB) comparison between groups. (D) Impact of TMB on
Progression-free survival. (E) Combined effect of TMB status and risk score on Progression-free survival. (F) Comparison of MSI scores between the
high-TMB and low-TMB groups. (G) Comparison of PD-L1 expression between the high-TMB and low-TMB groups.
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cell death. In cases of high-risk prostate cancer, sustained

ferroptotic and inflammatory stress may facilitate the recruitment

of immunosuppressive myeloid cells, such as M2-type

macrophages, thereby promoting immune evasion (25, 26). This

study undertakes a systematic examination of the transcriptional

changes and interactions between gene sets associated with ICD and

ferroptosis in prostate cancer, with the objective of elucidating their

combined influence on tumor progression and immune regulation.
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Our bioinformatics analysis identified 18 IFRGs through the

intersection of ICD and ferroptosis gene networks. It is noteworthy

that prior research has examined gene signatures associated with

either immunogenic cell death or ferroptosis in the context of

prostate cancer independently. For instance, Kang et al.

established an ICD-related gene signature in prostate cancer that

effectively stratified patients based on their prognosis (14), while

Wang et al. developed a ferroptosis-associated risk model that
FIGURE 11

Immune infiltration and functional enrichment analyses related to TREX1 in prostate cancer. (A) Correlation between TREX1 expression and 22
immune cell types. (B) Immune cell abundance comparison between high and low TREX1 expression groups. (C) Correlation of TREX1 with key
immune checkpoint genes. (D, E) GSEA showing immune-related pathway enrichment in TREX1 high vs. low groups. (F) GO enrichment bubble plot
of TREX1. (G) KEGG pathway enrichment bar plot of TREX1.
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demonstrated a corre lat ion with the tumor immune

microenvironment (13). In contrast, our study uniquely integrates

both ICD and ferroptosis into a cohesive model, thereby reflecting

the potential interactions between these two cell death pathways.

We have combined ICD and ferroptosis to create a prognostic

model for prostate cancer, utilizing differentially expressed IFRGs.

This model demonstrated significant prognostic value,

underscoring the clinical relevance of these biomarkers in the

context of prostate cancer.

The clustering analysis based on the IFRG identified two

distinct subtypes of prostate cancer, designated as C1 and C2,

which exhibit significant disparities in survival outcomes. This

finding suggests that the interaction between the pathways of ICD

and ferroptosis may influence the aggressiveness of the disease.

Subtype C2 is associated with a poorer prognosis and is

characterized by an enrichment of immune-related pathways.

This seemingly paradoxical characterization of C2 as an

“immune-active” yet high-risk tumor subtype may be elucidated

by the quality and context of the immune response. Our analyses of
Frontiers in Immunology 18
immune cell populations indicate that C2 tumors are infiltrated by

elevated levels of M2 macrophages and other immunosuppressive

components, which likely foster a tumor-promoting inflammatory

milieu. Similar patterns have been observed in other malignancies

(27–29) where an influx of tumor-associated macrophages and

regulatory T cells correlates with accelerated tumor progression,

even in the presence of a substantial number of T cells. In contrast,

subtype C1 is characterized by a lower overall immune cell presence

(immune-cold) but a relatively higher proportion of cytotoxic

lymphocytes, which may contribute to more effective

tumor control.

In order to address the variability among patients, we have

created and validated an innovative prognostic model for prostate

cancer that is grounded in genes associated with immunogenic cell

death and ferroptosis. The risk score derived from this model

demonstrated a strong correlation with patient outcomes, levels of

immune checkpoint expression, and the extent of immune cell

infiltration, underscoring its potential utility in characterizing the

tumor immune landscape.

Moreover, drug sensitivity analysis derived from the current

model indicates that patients classified within the high-risk group

may exhibit increased susceptibility to specific therapeutic agents.

Specifically, the BCL-2/BCL-XL inhibitor ABT-263 (Navitoclax)

showed lower IC50 values, consistent with reports that inhibition

of BCL-2 family proteins enhances apoptosis and chemosensitivity

(30). The PARP inhibitor ABT-888 (Veliparib) showed a trend

toward increased activity, with case reports and early-phase studies

suggesting that tumors harboring homologous recombination

repair deficiencies, particularly BRCA2 alterations, may be more

susceptible; however, evidence in prostate cancer remains limited
TABLE 1 Differential expression of TREX1 in prostate cancer and
adjacent normal tissues.

Tissue
type

Low expression
(0-3)

High expression
(4-9)

Total

Tumor 15 45 60

Adjacent
Normal

33 24 57

Total 48 69 117
FIGURE 12

Immunohistochemistry and cellular function analysis. (A-D) Representative images of staining results (A) Adjacent normal tissue, negative; (B) Cancer
tissue, weak positive (+); (C) Cancer tissue, moderate positive (++); (D) Cancer tissue, strong(+++).
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(31). Similarly, the AMPK activator AICAR exhibited greater

potency, aligning with preclinical evidence that AICAR

suppresses proliferation, induces apoptosis, and impairs

metastasis via the AMPK/mTOR pathway (32). In addition, all-

trans retinoic acid (ATRA) showed enhanced efficacy in high-risk

cases, which may be linked to its ability to induce differentiation,

apoptosis, and immune modulation (33). Collectively, these

findings underscore that tumors classified as high-risk by the

IFRG signature may possess distinct therapeutic susceptibilities.
Frontiers in Immunology 19
Further preclinical and clinical studies are warranted to validate

these strategies.

Furthermore, our results demonstrate that the DNA

exonuclease TREX1, a key element of our gene signature, is

upregulated in prostate cancer tissues and exhibits pro-

tumorigenic properties in vitro. TREX1, a 3’ to 5’ DNA

exonuclease encoded by a gene located on human chromosome

3p21.31 (34, 35), is ubiquitously expressed and plays a vital role in

degrading cytosolic DNA, thereby preventing inappropriate
FIGURE 13

TREX1 knockdown suppresses proliferation, migration, and invasion of PC-3 cells. (A) Western blot analysis confirming efficient knockdown of TREX1
expression in PC-3 cells transfected with TREX1-specific siRNA (Si-TREX1) compared with negative control (Si-NC), with GAPDH as the loading
control. (B) Representative images of Transwell migration and invasion assays showing reduced numbers of migrating and invading cells after TREX1
silencing. (C) Quantification of migrating and invading cells demonstrating a significant reduction in the si-TREX1 group compared to Si-NC. **P <
0.01.(D) EdU incorporation assay showing decreased numbers of proliferating cells in TREX1-knockdown cells. Hoechst (blue) stains nuclei, EdU
(green) labels proliferating cells, and merged images are shown. (E) Quantification of proliferating cells indicating a significant reduction in the si-
TREX1 group compared with controls. **P < 0.01.
TABLE 2 Differential expression statistics of TREX1 in prostate cancer and adjacent normal tissues.

Tissue type Total (n)
TREX1 expression

c² Value P value
High Low

Tumor 60 45 15
13.08 0.0003

Adjacent Normal 57 24 33
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activation of the innate immune system (36). Impairment of TREX1

function leads to the accumulation of cytoplasmic double-stranded

DNA, which subsequently triggers hyperactivation of the cGAS-

STING interferon signaling pathway, contributing significantly to

the pathogenesis of autoimmune disorders (37). Recent evidence

(38–40) indicates that TREX1 plays a significant role in cancer

progression and immune evasion. For instance, increased TREX1

expression enables pancreatic ductal adenocarcinoma cells to evade

immune detection by inhibiting the cGAS-STING pathway (38).

Similarly, elevated TREX1 levels have been observed in drug-

resistant small-cell lung cancer, potentially facilitating the survival

of therapy-resistant tumor cells (39). In alignment with these

findings, our data reveal that TREX1 is overexpressed in prostate

cancer tissues and exerts pro-tumorigenic effects in vitro.

Additionally, higher TREX1 expression correlates with an

immune microenvironment characterized by diminished effector

cell activity and enrichment of immunoregulatory pathways in our

analyses. These observations suggest that TREX1 may represent a

promising target for immunotherapeutic intervention in prostate

cancer. We hypothesize that TREX1 functions as an “innate

immune checkpoint” in prostate cancer by attenuating cGAS-

STING signaling, thereby facilitating immune evasion and disease

progression; nonetheless, this proposition warrants further

experimental validation.

The prognostic signature we have constructed includes TREX1,

NOX4, and RRM2, with the latter two also being closely associated

with cancer progression. NOX4, a member of the NADPH oxidase

enzyme family, constitutes a principal source of reactive

oxygen species (ROS) that modulate tumor cell proliferation,

migration, and invasion. Elevated expression of NOX4 has been

demonstrated to promote fibroblast activation and facilitate

stromal-epithelial interactions, thereby contributing to the

progression of prostate tumors (41). Moreover, increased NOX4

levels are generally correlated with advanced stages of disease (42,

43). Mechanistically, NOX4 activates ROS-dependent PI3K/AKT

signaling and promotes M2 macrophage recruitment, shaping an

immunosuppressive microenvironment. Under certain stress

conditions, NOX4-derived ROS may also increase ferroptosis

sensitivity, linking oxidative stress to regulated cell death (44).

Lastly, RRM2, the catalytic subunit of ribonucleotide reductase, is

critical for DNA synthesis and repair. Aberrant overexpression of

RRM2 is frequently observed in various aggressive malignancies,

including prostate cancer, where it facilitates cellular proliferation,

epithelial-mesenchymal transition (EMT), and is associated with

poor clinical outcomes (45–47). Recent studies have further

elucidated that RRM2 contributes to resistance against docetaxel

chemotherapy by stabilizing ANXA1 and activating the PI3K/AKT

signaling pathway, thereby enhancing tumor cell survival under

chemotherapeutic stress (48). Collectively, these findings indicate

that TREX1, NOX4, and RRM2 may be significant contributors to

the progression of prostate cancer; however, their precise roles and

potential therapeutic implications warrant further investigation.

This study is subject to several limitations. Firstly, the

retrospective nature of the data sourced from TCGA and GEO,

coupled with the relatively small size of the validation cohort, may
Frontiers in Immunology 20
introduce potential biases. Secondly, our analyses were primarily

centered on biochemical recurrence; consequently, the capacity of

the IFRG signature’s ability to predict metastatic progression or

cancer-specific survival was not directly evaluated due to the

scarcity of long-term follow-up data. Thirdly, while we provided

functional evidence supporting the role of TREX1 in prostate cancer

cells, we did not elucidate the molecular mechanisms through

which TREX1 knockdown affects proliferation and invasion. We

acknowledge this limitation and suggest that future studies examine

whether loss of TREX1 activates the cGAS-STING pathway and

boosts interferon signaling in PCa cells, as this could explain the

immune-related impact of TREX1. If such activation occurs, the

combination of TREX1 inhibition with immune checkpoint

blockade may represent a promising strategy for prostate cancer

immunotherapy. Furthermore, the roles of NOX4 and RRM2 were

not experimentally examined in this study. Although some

investigations have addressed their involvement in prostate

cancer, the underlying mechanisms remain to be elucidated.
5 Conclusion

In summary, we have constructed a novel prognostic model that

integrates genes associated with ICD and ferroptosis, which

effectively stratifies prostate cancer patients according to their risk

of disease progression, as validated in an independent external

cohort. Notably, our analysis identified TREX1 as a critical

determinant of poor clinical outcome; TREX1 is significantly

overexpressed in prostate tumor tissues, and its knockdown

markedly inhibits prostate cancer cell proliferation, migration,

and invasion in vitro. These results underscore the potential of

TREX1 as a promising target for immunotherapeutic intervention

and suggest that modulation of ICD and ferroptosis pathways

may improve the precision of immunotherapy strategies in

prostate cancer.
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