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Background: A world without antibiotics is hard to conceive. They have
revolutionized the treatment landscape for bacterial infections, reducing
mortality rates and enabling complex medical procedures. However, their
widespread use has fueled the rise of antimicrobial resistance, a growing global
health threat that demands new antibacterial therapies and strategies to preserve
the efficacy of existing treatments. Among promising candidates, antimicrobial
compounds (AMCs) offer broad-spectrum antimicrobial activity with a lower risk
of resistance development. Recent studies suggest that unfractionated heparin, a
commonly used anticoagulant, reduces the antibacterial and endotoxin-
neutralizing activity of blood-derived AMCs, likely through ionic interactions.
Methods: Given the prevalence of negatively charged anticoagulants in clinical
settings, we aimed to explore the effects of unfractionated heparin, low
molecular weight heparin, and fondaparinux on the antibacterial activity of
AMCs and antibiotics (colistin, daptomycin, gentamicin, imipenem, ofloxacin,
and vancomycin).

Results: Our results revealed that both unfractionated and low molecular weight
heparin markedly impaired the antibacterial activity of AMCs and positively
charged antibiotics, whereas fondaparinux showed no such effect. For
instance, exposure to 2.5 IU/mL of unfractionated and low molecular weight
heparin led to a significant increase in the minimal inhibitory and minimal
bactericidal concentrations of colistin and gentamicin.

Conclusions: These findings support our hypothesis that specific heparin-based
anticoagulants interfere with the activity of blood-derived AMCs and positively
charged antibiotics, reducing their efficacy in vitro. Our research aims to provide
a foundation for future studies focused on optimizing anticoagulant use in
clinical settings, ultimately improving patient outcomes in the ongoing fight
against multidrug-resistant bacteria.
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1 Introduction

Antibiotics are critical in the fight against pathogenic bacteria
(1). The foundation of antibacterial therapy was laid in 1909 with
the synthesis of Salvarsan by Paul Ehrlich and Sahachiro Hata, the
first drug specifically designed to target bacterial infections (2, 3).
This breakthrough was followed by Alexander Fleming’s discovery
of penicillin in 1928, widely regarded as the first true antibiotic (4,
5). By significantly lowering mortality rates and enabling safer
medical procedures, antibiotics remain indispensable in
healthcare, consistently ranking among the most frequently
prescribed medications globally (6).

The effectiveness of antibiotics, however, is increasingly
compromised by antimicrobial resistance (AMR), which the
World Health Organization (WHO) has declared as one of the
most pressing global health challenges of the 21° century.
Multidrug-resistant (MDR) bacteria, capable of evading multiple
antibiotics, emerged through genetic mutations and horizontal gene
transfer, but the misuse and overuse of antibiotics in healthcare and
factory farming have exacerbated this phenomenon (7-10). The
impact is alarming: in 2019, AMR was directly responsible for 1.27
million deaths, with an additional 4.95 million deaths associated
with resistant infections (11). Among the most concerning MDR
bacteria are the ESKAPE pathogens—Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter
baumannii, Pseudomonas aeruginosa, and Enterobacter spp.—
which are highly pathogenic, resistant to multiple drugs, and
listed by the WHO as priority pathogens in urgent need of new
treatment options (12, 13). Untreated or inadequately treated
infections can escalate to systemic, life-threatening conditions
such as sepsis, a dysregulated host response to infection (14, 15).
Globally, sepsis remains a significant health burden, responsible for
14.1 million deaths in 2019 (16).

The impact of AMR extends far beyond the health of individual
patients, creating far-reaching challenges for healthcare systems and
economies. Resistant infections lead to prolonged hospital stays,
increased healthcare costs, and the need for costly second- and
third-line treatments (17, 18). To combat AMR and avert a post-
antibiotic era, a multifaceted approach is essential, including the
discovery of novel antibiotics and improved stewardship to preserve
the efficacy of existing therapies (19-21). While new antibiotics are
urgently needed, only few new compounds have been developed in
recent decades, such as teixobactin (2015) and clovibactin (2023),
both discovered using iChip technology (22, 23). Meanwhile,
alternative strategies like antimicrobial compounds (AMCs) have

Abbreviations: AMC, antimicrobial compound; AMR, antimicrobial resistance;
ATCC, American Type Culture Collection; CFU, colony-forming units; COL,
colistin; DAP, daptomycin; DSM, German Collection of Microorganisms and
Cell Cultures; FPX, fondaparinux; GEN, gentamicin; IMI, imipenem; IU,
International Units; LB, Luria-Bertani broth; LMWH, low molecular weight
heparin; MBC, minimal bactericidal concentration; MHB, Mueller Hinton broth;
MIC, minimal inhibitory concentration; MDR, multidrug-resistant; NA, nutrient
agar; OFL, ofloxacin; UFH, unfractionated heparin; VAN, vancomycin; WHO,
World Health Organization.
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gained considerable attention. These naturally occurring, cationic
molecules are integral components of the innate immune system,
exhibiting potent broad-spectrum antimicrobial and
immunomodulatory properties (24, 25). Unlike conventional
antibiotics, AMCs act through nonspecific mechanisms, making
them less prone to resistance development and positioning them as
promising tools against MDR pathogens (26-28).

Recent studies have revealed that blood-derived AMCs can be
neutralized by unfractionated heparin (UFH), a negatively charged
polysaccharide with anticoagulant and anti-inflammatory
properties (29-31). This interaction, potentially resulting from
ionic interaction between the anionic UFH and the cationic
molecules, has been shown to reduce the antibacterial and
endotoxin-neutralizing efficacy of AMCs. Given the use of
polyanionic anticoagulants in clinical settings, concerns arise
regarding the potential of UFH and related anticoagulants to
interfere with AMCs and positively charged antibiotics. Therefore,
in the present study, we investigated the impact of various heparin-
based anticoagulants on the activity of blood-derived AMCs and
antibiotics (colistin, daptomycin, gentamicin, imipenem, ofloxacin,
and vancomycin) against pathogenic bacteria in vitro.

2 Materials and methods

2.1 Serum samples, antibiotics, and
anticoagulants

Human whole blood was collected from healthy volunteer
donors into vacutainer tubes (Vacuette CAT Serum Clot
Activator tubes, Greiner Bio-One, Kremsmiinster, Austria). After
clotting, samples were centrifuged at 3500 x g for 10 min. The
resulting serum was aliquoted and stored at -20°C until further use.
Blood donations were approved by the Ethics Committee of the
University for Continuing Education Krems (EK GZ 13/2015-
2018). Experiments were conducted in accordance with the
guidelines of the Declaration of Helsinki of the World Medical
Association. The participants provided their written informed
consent to participate in this study. Clinically relevant antibiotics
were selected based on their possession of at least one positively
charged side group, which could potentially interact with the
negatively charged anticoagulants (Table 1).

Colistin sulfate (COL), ofloxacin (OFL), and vancomycin
hydrochloride (VAN) were acquired from Sigma Aldrich (St.
Louis, MO), while daptomycin (DAP), gentamicin sulfate (GEN),
and imipenem monohydrate (IMI) were obtained from Santa Cruz
Biotechnology (Dallas, TX). The anticoagulants used in this study
were unfractionated heparin (UFH, Gilvasan Pharma GmbH,
Vienna, Austria), low molecular weight heparin (LMWH,
Lovenox, Sanofi, Paris, France), and fondaparinux, a synthetic
factor Xa inhibitor (FPX, Arixtra, Viatris, Canonsburg, PA). For
this study, the heparin-based anticoagulants were dosed according
to their anticoagulant effect, expressed in International Units (IU).
Detailed conversion calculations are provided in Supplementary
Materials S1.
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TABLE 1 Pharmacochemical properties of clinically relevant antibiotics.

10.3389/fimmu.2025.1708169

Positive side groups

Net charge (pH = 7.4)

Antibiotic Abbrev. Class Negative side groups
colistin COL polymyxin 0
ofloxacin OFL fluoroquinolone 1
vancomycin VAN glycopeptide 1
daptomycin DAP lipopeptide 4
gentamicin GEN aminoglycoside 0
imipenem IMI carbapenem 1

2.2 Bacterial strains and culture conditions

Luria-Bertani Broth (LB), Mueller-Hinton Broth (MHB) and
Nutrient Agar (NA) were purchased from Carl Roth (Karlsruhe,
Germany). Four clinically relevant pathogens were used: A.
baumannii ATCC 19606, E. faecium DSM 20477, E. coli ATCC
25299, and S. aureus DSM 20232. These strains were preserved in
glycerol stocks at -80°C for long-term storage and reactivated by
culture on NA plates. Before each experiment, overnight cultures
were grown in MHB at 37°C.

2.3 Anticoagulant-induced neutralization
of blood-derived AMCs

Serum samples from six donors were pre-incubated with 5, 25,
and 50 IU/mL UFH, LMWH, and FPX for 4 h at 37°C. A bacterial
suspension of E. coli was prepared in LB to an optical density of
0.20 + 0.02 at 600 nm, corresponding to 3x10® colony-forming units
(CFU)/mL based on McFarland standards. This suspension was
then diluted to a final concentration of 3x10* CFU/mL. Following
pre-incubation, the serum samples were mixed in a 1:1 ratio with
the bacterial suspension and incubated for 18 h at 37°C. Bacterial
growth was assessed indirectly by measuring the absorbance at
600 nm.

2.4 Screening the impact of heparin-based
anticoagulants on antibiotic activity

The minimal inhibitory concentration (MIC) was determined
using the broth microdilution method, following the Clinical and
Laboratory Standards Institute (CLSI) guidelines for antimicrobial
susceptibility testing (38). COL, DAP, GEN, IMI, OFL, and VAN
were prepared at an initial concentration of 5.12 mg/mL in sterile
distilled water and serially diluted (64 — 0.06 pg/mL) in a 96-well
plate containing cation-adjusted MHB (CAMHB), supplemented
with 50 ug/mL calcium for DAP. Pre-incubated serum with 50 TU/
mL UFH, LMWH, and FPX was mixed at a 1:1 ratio with each
antibiotic dilution for 4 h at 37°C, resulting in a final anticoagulant
concentration of 25 IU/mL. Following incubation, samples were
spiked with a final bacterial suspension adjusted to 1.5x10° CFU/
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5 +5 (32)
1 0 (33)
2 +1 (34)
1 -3 (35)
5 +5 (36)
1 0 (37)

mL, prepared from a 1.5x10° CFU/mL stock in MHB (0.5
McFarland standard). Controls were conducted using native
serum and saline solution. A. baumannii and E. coli were tested
against COL, GEN, IMIJ, and OFL, while E. faecium and S. aureus
were tested against DAP, GEN, IMI, and VAN. After 18 + 2 h of
incubation at 37°C, MIC values were determined as the lowest
concentration of antibiotic that inhibited visible bacterial growth,
measured by absorbance at 600 nm.

2.5 Evaluation of antibiotic efficacy at
lower anticoagulant concentrations

Considering previous results, antibiotics affected by the
presence of 25 IU/mL heparin-based anticoagulants were further
tested at lower anticoagulant concentrations. Using the same broth
microdilution method outlined earlier, each serial dilution of COL
and GEN was mixed at a 1:1 ratio with serum from six donors
previously pre-incubated with 5 and 25 IU/mL UFH, LMWH, and
FPX for 4 h at 37°C, ending with a final anticoagulant concentration
of 2.5 and 12.5 IU/mL. Controls were conducted using native serum
and saline solution. The samples were spiked with 1.5x10° CFU/ml
(final concentration) of A. baumannii, E. coli, E. faecium and S.
aureus in the case of GEN and with A. baumannii and E. coli in the
case of COL. After 18 + 2 h incubation at 37°C, the MIC and the
minimal bactericidal concentration (MBC) were determined, and
DNA was quantified using qPCR. For MBC assessment, a volume of
10 uL was removed from wells without visible growth at 600 nm and
incubated overnight on NA plates at 37°C. MBC was defined as a
>99.9% reduction of the initial colony counts, whereby the
threshold value for our experiment was 10 CFUs. The qPCR
protocol and sequence of the in-house designed primers used for
the bacterial DNA quantification are given in Cont et al., 2024 (31).

2.6 Statistical analysis

Experiments were conducted in duplicates. Statistical analyses
were performed using R version 4.4.2 (R Foundation for Statistical
Computing, Vienna, Austria). Ct values were log-transformed prior
to analysis to meet model assumptions. Normality of residuals was
verified using the Shapiro-Wilk test. When residuals were normally
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distributed, differences among conditions were assessed using a
repeated-measures mixed-effects model (random intercept for
donor) followed by Dunnett’s post-hoc test to compare each
treatment with native serum. In cases where residuals deviated
from normality, non-parametric Friedman tests followed by paired
Wilcoxon post-hoc tests with Holm adjustment were applied.
Significance levels were defined as follows: ns p > 0.05, * p < 0.05,
*p <0.0L, % p <0.001, **** p < 0.0001. Data visualization was
conducted in GraphPad Prism 9.3.1 (GraphPad Software, Boston,
MA). For calculation purposes, MIC and MBC values below 0.06
pg/mL were considered as 0.06 pg/mL to simplify data processing.

3 Results

3.1 Anticoagulant-induced neutralization of
blood-derived AMCs

When assessing the effects of UFH, LMWH, and FPX on the
antibacterial activity of blood-derived AMCs, we observed that both
UFH and LMWH significantly enhanced the growth of E. coli, as
indicated by higher absorbance values compared to native serum
(Figure 1). This effect was dose-dependent: LMWH induced an
increase in absorbance starting at 25 IU/mL, while UFH showed a
similar response from 50 IU/mL. In contrast, absorbance values in
FPX-spiked serum were similar to those in native serum, suggesting
no significant impact on bacterial growth at any concentration tested.

3.2 Screening the impact of heparin-based
anticoagulants on antibiotic activity

To evaluate the influence of heparin-based anticoagulants on
antibiotic efficacy against A. baumannii, E. coli, E. faecium, and S.
aureus, variations in the MIC values of COL, DAP, GEN, IMI, OFL,
and VAN were assessed in the presence of 25 IU/mL of UFH,
LMWH, FPX. The results revealed that these anticoagulants notably
interfered with the activity of COL and GEN in the gram-negative
bacteria tested, while IMI and OFL remain unaffected (Table 2). In
A. baumannii, UFH- and LMWH-spiked serum resulted in a 4.2-
fold and 33.3- fold MIC increase for COL and GEN, respectively,
whereas FPX-spiked serum had no measurable impact on their
MIC. Similarly, in E. coli, UFH and LMWH caused a MIC increase
of COL and GEN by no less than 4-fold. FPX exhibited a moderate
effect, raising the MIC of COL and GEN by 2-fold and 4.2-
fold, respectively.

Among the gram-positive bacteria, GEN was the only antibiotic
affected, while DAP, IMI, and VAN retained their efficacy in the
presence of the anticoagulants (Table 3). Specifically, serum incubation
with 25 TU/mL UFH, LMWH, and FPX resulted in a 4-fold increase in
the MIC of GEN against both E. faecium and S. aureus.
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FIGURE 1

Impact of heparin-based anticoagulants on the antibacterial activity
of blood-derived AMCs. Serum samples were pre-incubated with 5,
25, and 50 IU/mL UFH (A), LMWH (B), and FPX (C) for 4 h at 37°C
Following pre-incubation, samples were mixed in a 1:1 ratio with an
E. coli suspension (3x10* CFU/mL) and incubated for 18 h at 37°C.
Bacterial growth was quantified indirectly by measuring absorbance
at 600 nm (n = 6)
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TABLE 2 Impact of 25 IU/mL UFH, LMWH, and FPX on the efficacy of COL, GEN, IMI, and OFL against A. baumannii and E. coli.

COL GEN IMI OFL
MIC MIC fold MIC MIC fold MIC MIC fold MIC MIC fold
(vg/mL)  change @ (ug/mL) change  (ug/mL) change (ug/mL) change
Un-spiked saline 4 1 0.5 0.5
@ UFH-saline 8 2.0 4 4.0 05 1.0 05 1.0
- & LMWH-saline 8 2.0 4 4.0 05 1.0 0.5 1.0
<
§ FPX-saline 4 1.0 2 2.0 05 1.0 05 1.0
§ Native serum <0.06 <0.06 <0.06 <0.06
h £ UFH-serum 025 42 2 333 <0.06 1.0 <0.06 1.0
é LMWH-serum 025 42 2 333 <0.06 1.0 <0.06 1.0
FPX-serum <0.06 1.0 <0.06 1.0 <0.06 1.0 <0.06 1.0
Un-spiked saline 4 0.25 2 >0.06
) UFH-saline 8 2.0 1 4.0 2 1.0 >0.06 1.0
8 LMWH-saline 16 4.0 1 4.0 2 1.0 >0.06 1.0
'§ FPX-saline 4 1.0 05 2.0 2 1.0 >0.06 1.0
i Native serum 0.25 >0.06 2 50.06
3 UFH-serum 1 4.0 025 42 2 1.0 >0.06 1.0
é LMWH-serum 2 8.0 025 4.2 2 1.0 >0.06 1.0
FPX-serum 0.5 2.0 025 4.2 2 1.0 >0.06 1.0

Serum samples were pre-incubated for 4 h at 37°C with 50 IU/mL UFH, LMWH, and FPX and then mixed at a 1:1 ratio with serially diluted antibiotics (COL, GEN, IMI, and OFL) from 64 to 0.06
pg/mL. Saline solution served as control. Samples were then spiked with a 1.5x10° CFU/mL bacterial suspension (final concentration) and incubated for 18 + 2 h at 37°C (n = 3). Bold values

indicate an increase in MIC or MBC compared to native serum (control).

3.3 Evaluation of antibiotic efficacy at
lower anticoagulant concentrations

To further examine the interaction between heparin-based
anticoagulants and antibiotics, those antibiotics susceptible to 25
IU/mL UFH, LMWH, and/or FPX were tested at 2.5 and 12.5 IU/
mL anticoagulant concentrations. For COL, 12.5 IU/mL UFH and
LMWH resulted in a 4.2-fold and 3.1-fold increase in MIC/MBC
against A. baumannii and E. coli, respectively, compared to native
serum (Table 4). In contrast, 12.5 TU/mL FPX caused only a slight
rise in MIC/MBC against E. coli (~1.5-fold) with no notable effect
on A. baumannii. 2.5 IU/mL UFH and LMWH induced a 2.6-fold
increase in MIC/MBC against A. baumannii, with a less
pronounced effect observed for E. coli. At 2.5 IU/mL, FPX did not
modify the MIC or MBC in any of the gram-negative
bacteria tested.

In case of GEN, 2.5 and 12.5 IU/mL UFH resulted in an 11.3-
fold and 20.8-fold increase, respectively, in the MIC/MBC for A.
baumannii, with similar effects observed in LMWH-spiked serum
(Table 5). In contrast, no impact on GEN activity against A.
baumannii was noted in the presence of FPX at any
concentration tested. For E. faecium and S. aureus, a similar effect
on GEN activity was observed, where 2.5 IU/mL UFH and LMWH
caused a ~2-fold rise in the MIC/MBC values. Conversely, FPX at
2.5 IU/mL did not interfere with GEN efficacy in these species. In E.
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coli, all drugs tested had a mild impact on GEN activity, with MIC/
MBC values exhibiting a roughly 2-fold change in the presence of
UFH and LMWH, and a modest 1.2-fold alteration with FPX. MIC
values from the controls performed in saline solution can be found
in Supplementary Materials S2.

Comparing the bacterial load at the effective MIC
concentrations of COL and GEN in native serum to serum pre-
incubated with 5 and 25 TU/mL UFH, LMWH, and FPX, yielded
consistent results (Figure 2). 2.5 IU/mL UFH and LMWH resulted
in a significant increased the bacterial load of A. baumannii, E. coli,
E. faecium, and S. aureus for both antibiotics. For instance, when
comparing the Ct values between native serum and 2.5 IU/mL UFH
and LMWH in combination with COL against A. baumannii, we
observed a decrease of 6.2 and 4.0 cycles, respectively, correlating
with higher bacterial concentration, whereas 2.5 IU/mL FPX
showed same values as the native serum.

4 Discussion

The introduction of the term “antibiotic” by Selman Waksman
in 1942 marked the beginning of the golden age of antibiotics,
leading to the development of over 20 classes that revolutionized the
treatment of bacterial infections (1, 39-43). Despite these
advancements, the discovery of new antibiotics has slowed
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TABLE 3 Impact of 25 IU/mL UFH, LMWH, and FPX on the efficacy of DAP, GEN, IMI, and VAN against E. faecium and S. aureus.

DAP GEN IMI VAN
MIC MIC fold MIC MIC fold MIC MIC fold MIC MIC fold
(vg/mL)  change @ (ug/mL) change  (ug/mL) change (ug/mL) change

Un-spiked saline 2 2 16 1

g UFH-saline 2 1.0 4 2.0 16 1.0 1 1.0

& LMWH-saline 2 1.0 4 2.0 16 1.0 1 1.0

§ FPX-saline 2 1.0 2 1.0 16 1.0 1 1.0

8

: Native serum 2 2 16 1

g UFH-serum 2 1.0 8 4.0 16 1.0 1 1.0

g LMWH-serum 2 1.0 8 4.0 16 1.0 1 1.0

FPX-serum 2 1.0 8 4.0 16 1.0 1 1.0
Un-spiked saline 1 0.5 0.5 1

g UFH-saline 1 1.0 1 2.0 0.5 1.0 1 1.0

ﬁ LMWH-saline 1 1.0 1 2.0 0.5 1.0 1 1.0

§ FPX-saline 1 1.0 0.5 1.0 0.5 1.0 1 1.0

]

:; Native serum 1 0.25 0.5 1

g UFH-serum 1 1.0 1 4.0 0.5 1.0 1 1.0

g LMWH-serum 1 1.0 1 4.0 0.5 1.0 1 1.0

FPX-serum 1 1.0 1 4.0 0.5 1.0 1 1.0

Serum samples were pre-incubated for 4 h at 37°C with 50 IU/mL UFH, LMWH, and FPX and then mixed at a 1:1 ratio with serially diluted antibiotics (DAP, GEN, IMI, and VAN) from 64 to
0.06 pug/mL. Saline solution served as control. Samples were then spiked with a 1.5x10° CFU/mL bacterial suspension (final concentration) and incubated for 18 + 2 h at 37°C (n = 3). Bold values

indicate an increase in MIC or MBC compared to native serum (control).

dramatically in recent years, while AMR continues to rise,
emphasizing the urgent need for novel antibacterial therapies and
strategies to preserve the efficacy of existing treatments (44). In our
previous work, we demonstrated that UFH interferes with the
antibacterial and endotoxin-neutralizing activity of blood-derived
AMC:s, likely due to ionic interactions (31). In this study, we further
validated our hypothesis that various heparin-based anticoagulants

can neutralize not only AMCs, but also positively charged
antibiotics, reducing their efficacy.

Our findings revealed that both UFH and LMWH significantly
impaired the antibacterial activity of AMCs, as evidenced by
increased absorbance values of E. coli compared to native serum,
with a reduction in their activity starting at 25 TU/mL for LMWH
and 50 IU/mL for UFH, indicating a dose-dependent effect. In

TABLE 4 Changes in the MIC and MBC values of COL against A. baumannii and E. coli in the presence of 2.5 and 12.5 IU/mL UFH, LMWH, and FPX.

2.5 lU/mL anticoagulant

12.5 IU/mL anticoagulant

MIC MIC fold MBC MBC fold MIC MIC fold MBC MBC fold
(ug/mL) change (ng/mL) change (ug/mL) change (ng/mL) change
- Native serum | <0.06 + 0.00 <0.06 + 0.00 <0.06 + 0.00 <0.06 = 0.00
<
§ UFH-serum 0.16 + 0.09 2.6 0.16 = 0.09 2.6 0.25 + 0.00 4.2 0.25 + 0.00 42
§ LMWH-serum 0.16 + 0.09 2.6 0.16 + 0.09 2.6 0.25 + 0.00 4.2 0.25 + 0.00 4.2
A FPX-serum <0.06 + 0.00 1.0 <0.06 + 0.00 1.0 <0.06 + 0.00 1.0 <0.06 + 0.00 1.0
Native serum 0.19 + 0.06 038 +0.13 0.19 + 0.06 038 +0.13
'§ UFH-serum 029 +0.15 15 042 +0.12 L1 0.58 +0.19 3.1 117 + 037 3.1
ui LMWH-serum 027 +0.11 1.4 054 +0.22 1.4 0.58 +0.19 3.1 117 £ 037 3.1
FPX-serum 0.19 + 0.06 1.0 038 = 0.13 1.0 029 +0.15 1.5 0.58 = 0.19 1.6

Each serial dilution of COL (64 to 0.06 pg/mL) was mixed at a 1:1 ratio with serum previously pre-incubated with 5 and 25 IU/mL UFH, LMWH, and FPX for 4 h at 37°C. Samples were spiked
with 1.5x10° CFU/mL (final concentration) of A. baumannii and E. coli. After 18 + 2 h incubation at 37°C, results were compared trough MIC and MBC (mean + SD; n = 6). Bold values indicate
an increase in MIC or MBC compared to native serum (control).
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TABLE 5 Changes in the MIC and MBC values of GEN against A. baumannii, E. coli, E. faecium, and S. aureus in the presence of 2.5 and 12.5 IU/mL

UFH, LMWH, and FPX.

2.5 IU/mL anticoagulant

12.5 IU/mL anticoagulant

MIC MIC fold MBC MBC fold MIC MIC fold MBC MBC fold
(ug/mL) change (ug/mL) change (ug/mL) change (ug/mL) change
- Native serum | <0.06 + 0.00 <0.06 + 0.00 <0.06 + 0.00 <0.06 + 0.00
c
§ UFH-serum 0.68 + 0.36 113 0.68 + 0.36 113 1.25 + 0.56 20.8 125 + 0.56 20.8
§ LMWH-serum 0.77 + 0.67 12.8 0.77 + 0.67 12.8 1.25 + 0.56 20.8 125 + 0.56 20.8
A FPX-serum <0.06 % 0.00 1.0 <0.06 + 0.00 1.0 <0.06 + 0.00 1.0 <0.06 + 0.00 1.0
Native serum 021 + 0.06 042 +0.12 0.21 +0.06 042 +0.12
‘§ UFH-serum 038 +0.13 1.8 075+ 0.25 1.8 0.46 + 0.09 2.2 092 +0.19 22
i LMWH-serum 0.46 + 0.09 22 092 +0.19 2.2 0.46 + 0.09 22 092 +0.19 2.2
FPX-serum 0.25 + 0.00 1.2 0.50 + 0.00 1.2 038 +0.13 1.8 0.75 + 0.25 1.8
Native serum 2,00 + 0.00 2.00 + 0.00 2,00 + 0.00 2.00 + 0.00
% UFH-serum 333+ 0.94 1.7 3334094 1.7 533+ 1.89 2.7 533 +1.89 2.7
(7
“E LMWH-serum 333+ 0.94 1.7 3334094 1.7 533+ 1.89 2.7 533 +1.89 2.7
FPX-serum 2.00 + 0.00 1.0 2.00 + 0.00 1.0 267 +0.94 13 267 +0.94 13
Native serum 033 +0.12 0.67 +0.24 033 +0.12 0.67 +0.24
§ UFH-serum 0.67 + 0.24 2.0 133 +0.47 2.0 1.00 =+ 0.00 3.0 2,00 + 0.00 3.0
>
2 LMWH-serum 0.67 + 0.24 2.0 1.33 + 047 2.0 1.00 = 0.00 3.0 2.00 + 0.00 3.0
FPX-serum 033 +0.12 1.0 0.67 + 0.24 1.0 0.50 + 0.00 15 1.00 + 0.00 1.5

Each serial dilution of GEN (64 to 0.06 pg/mL) was mixed at a 1:1 ratio with serum previously pre-incubated with 5 and 25 IU/mL UFH, LMWH, and FPX for 4 h at 37°C. Samples were spiked
with 1.5x10° CFU/mL (final concentration) of A. baumannii, E. coli, E. faecium, and S. aureus. After 18 + 2 h incubation at 37°C, results were compared trough MIC and MBC (mean + SD; n = 6).

Bold values indicate an increase in MIC or MBC compared to native serum (control).

contrast, FPX-spiked serum had no effect on AMC efficacy under
our experimental conditions. These observations align with our
prior findings, which demonstrated that UFH and LMWH
interfered with the endotoxin-neutralizing function of blood-
derived endotoxin-neutralizing compounds (ENCs, a subclass of
AMCs), resulting in increased endotoxin activity, while FPX had no
such effect (30). Regarding the dose-dependent effect, we previously
showed that a 4-hour pre-incubation with high UFH (50-250 IU/
mL) was sufficient to impair AMC activity, whereas lower
concentrations, such as 5 IU/mL, required extended exposure
times to achieve similar effects (31).

To explore the impact of heparin-based anticoagulants on
antibiotic efficacy, we assessed the change in the MIC of COL,
DAP, GEN, IMIJ, OFL, and VAN in the presence of 25 IU/mL UFH,
LMWH, and FPX against A. baumannii, E. coli, E. faecium, and S.
aureus. Our data provide evidence that these heparin-based
anticoagulants notably diminished the activity of COL and GEN,
while DAP, IMI, OFL, and VAN remained unaffected. Specifically,
pre-incubation with 25 IU/mL of UFH, LMWH, and FPX resulted
in MIC increases of over 4-fold for COL and GEN across all
pathogens, compared to native serum, except in FPX-serum
tested with COL against E. coli, which showed only a 2-fold rise.
As anticipated, these anionic anticoagulants only affected positively
charged antibiotics (COL and GEN), with no impact observed on
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antibiotics with either a weakly positive (VAN), neutral (IMI, OFL),
or negative (DAP) net charge (see Table 1). These findings suggest
that the negatively charged polysaccharide backbone of UFH and
LMWH likely interacts electrostatically with cationic antibiotics
such as COL and GEN, reducing their free active fraction and
consequently limiting their bactericidal efficacy.

Higher anticoagulant concentrations were initially used to
screen for potential interference with antibiotic activity, and for
those conditions where an effect was observed, lower concentrations
were subsequently tested to confirm the physiological relevance of
the findings. When testing lower anticoagulant concentrations, 2.5
IU/mL UFH or LMWH were sufficient to impair the activity of COL
and GEN across all bacterial strains tested. Specifically, 2.5 TU/mL
of UFH and LMWH led to an approximately 2-fold increase in the
MIC and MBC for COL and GEN, whereas 2.5 IU/mL of FPX did
not alter the efficacy of any of these antibiotics. Our results reinforce
the hypothesis that ionic interactions are likely the primary
mechanism behind the neutralizing effects observed. The
differences between the heparin-based anticoagulants stem from
the varying dosages needed to achieve an equivalent anticoagulant
effect. Notably, a much lower dose of FPX is required to have an
anticoagulant effect comparable to that of UFH or LMWH.
According to the conversion analyses conducted (see
Supplementary Material S1), a dose of 1.41 pg/mL of FPX is

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1708169
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Cont et al.

10.3389/fimmu.2025.1708169

A. baumannii (COL)

ns

30+ * kKK
* %k Xk
%% Xk %k
25 = 3% 3%k %k Xk
A A
s (o®
TS24 @
> ----------
5] : """
A
15 ® = 4] A
ab
gl
aem b Atk
10 L] L] L] T L] L]
native 2.5 125 25 12,5 2.5 12.5
S UFH LMWH FPX
(u/mL) (u/mL) (Iu/mL)
E. coli (COL)
ns
ns
% %k %k Xk
40 =
% % % %k
%%k %k
35+
ns
g 30 = el
3 *\" ] !
[ 25 - -l A, A
z p £y
20+ A
s T A
A S
A AA
10 T T T T T T T
native 25 12.5 2.5 12.5 2.5 12.5
serum UFH LMWH FPX
(lU/mL) (lU/mL) (IU/mL)
E. faecium (GEN)
ns
ns
% % % X%
25—
*
% % Xk Xk
*
20+
s A
3 &)
S %° = . ]
8 W : 2 A A
165 = | | Y A
A A
10 | T L] ) L) L} U
native 25 12.5 2.5 12.5 2.5 12.5
serum UFH LMWH FPX
(IU/mL) (IU/mL) (IU/mL)

FIGURE 2

A. baumannii (GEN)

ns

ns

X Xk ¥k
30+
*%
* %k %k
* %k %k
25=
A
s 282
3 -- 4-a
© 20
> [} A
<] * - O A
15= u
’A
" _A_ % 22
P AAA
L4 T T L] L] 1 1 L]
native 2.5 12.5 25 12.5 2.5 12,5
serum UFH LMWH FPX
(u/mL) (u/mL) (UimL)
E. coli (GEN)
% % Xk %k
ns
%k %k
40 =
% %k Xk
X%k k%
35=
% Xk %k %k
» 304
5] e
© 25= @ e
e 4
5
(&)
20 =
154
A s g
10 T T T T T T
native 25 12.5 25 125 2.5 12,5
serum UFH LMWH FPX
(IU/mL) (IUfmL) (IU/mL)
S. aureus (GEN)
*
ns
30 %k %k %k
T %
* %k k
ns
25+ ®
@ *e -
k] ® £ A
© 20~
> B, A
b H .= A Az
A
15— A
A A
ah sag
A A A o
10 T L) L] T L) L} T
native 2.5 12.5 25 12,5 2.5 12,5
serum UFH LMWH FPX
(IU/mL) (1U/mL) (U/mL)

Bacterial load (Ct values) in native and anticoagulant-treated serum (5 or 25 IU/mL UFH, LMWH, FPX) mixed 1:1 with the MIC concentrations of COL
and GEN (final anticoagulant concentration of 2.5 and 12.5 IU/mL). The bacterial load was quantified using gPCR as detailed in the Materials and

Methods section (n = 6).

sufficient to attain the anticoagulant effect of 1 TU/mL in human
whole blood, whereas 6.34 ug/mL UFH and 9.66 pg/mL LMWH

are required.

FXP has been demonstrated to be superior to UFH and LMWH
in terms of achieving a comparable anticoagulant effect while
minimizing the impact on the antibacterial activity of blood-
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derived AMCs and cationic antibiotics (COL, GEN). In contrast
to our findings, Szekeres et al. (45) reported that heparin enhances
the bactericidal activity of COL. However, their use of E. coli K12, a
non-pathogenic laboratory strain, along with experiments
performed in LB instead of blood-derived samples, may account

for this discrepancy.
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Although we tested the anticoagulants against COL and GEN
under identical experimental conditions, the results varied slightly
depending on the bacterial strain. As reported in our previous work,
bacterial strains exhibit different susceptibilities to blood-derived
AMC:s and therefore require different serum levels of UFH to affect
their growth (31). Interestingly, in A. baumannii and E. coli, the
MIC values for all antibiotics tested were two to four times lower in
serum compared to controls performed in saline solution. This
suggests a synergistic effect of the blood-derived AMCs and the
antibiotics in the Gram-negative bacteria tested. Inter-donor
differences represent another factor contributing to the variability
in our results, likely arising from variations in AMC levels and
susceptibility to heparin-based anticoagulants among individuals.
Our previous findings showed a higher endotoxin-neutralizing
activity for female serum compared to male serum (46).
Moreover, females often have better outcomes in sepsis, including
lower in-hospital mortality rates and an improved response to
traumatic injury (47). Further research into whether differences in
the synthesis and baseline concentrations of blood-derived AMCs,
as well as the susceptibility to anionic anticoagulants, are influenced
by factors such as age, gender, and overall health status could thus
provide valuable insights into why some individuals are more prone
to developing sepsis than others. Additionally, considering our
previous observation that UFH and LMWH interfere with the
endotoxin-neutralizing activity of blood-derived AMCs, and given
that COL and GEN are cationic antibiotics with inherent
endotoxin-neutralizing capacity, it is plausible that these
anticoagulants could similarly impair the endotoxin-neutralizing
effect of these antibiotics through electrostatic competition.

While anticoagulants are commonly used as adjunctive
therapies to prevent disseminated intravascular coagulation (DIC)
in septic patients, it remains inconclusive whether UFH and
LMWH are the most effective options. Several clinical studies and
meta-analyses have suggested that UFH and LMWH may be
associated with decreased mortality (48-51); however, their
overall impact remains uncertain (52-55). A recent meta-analysis
from 2024, involving 426 septic patients treated with UFH or
LMWH, found no significant difference in 28-day and in-hospital
mortality between the heparin and control groups, indicating the
need for further investigation into the efficacy and safety of this
anticoagulants in sepsis (56). Additionally, understanding the
interaction between blood-derived AMCs and heparin-based
anticoagulants is not only crucial in the context of sepsis but also
has broader implications, for example for patients undergoing
extracorporeal blood purification, where UFH and LMWH
remain the most frequently used anticoagulants (57, 58).

Given that UFH and LMWH strongly bind to AMCs and
positively charged antibiotics, it is reasonable to propose that
heparan sulfate, a key glycosaminoglycan of the endothelial
glycocalyx, may interact with them in a similar manner. The
endothelial glycocalyx is a dynamic, negatively charged layer on
the luminal surface of vascular endothelial cells, crucial for a variety
of physiological and pathological processes (59, 60). Dysfunction
and degradation of the glycocalyx, hallmark features of sepsis,
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compromise vascular integrity, disrupt cell signaling, and amplify
inflammation, all of which contribute to disease progression (61,
62). We hypothesize that the glycocalyx may regulate AMC
concentrations to prevent cytotoxic effects and may also serve as
a reservoir for their release when needed. The AMC-glycocalyx
interaction may represent an unrecognized innate immune strategy,
forming a protective barrier on the vascular surface to block
pathogen entry and mitigate systemic inflammation during
localized infections. These insights could also guide the design of
medical surfaces with dual functions: promoting blood
compatibility while enabling self-coating with AMCs to reduce
infection risks and biofilm formation on blood-contacting devices.

To conclude, the complex interplay between heparin-based
anticoagulants, antibiotics, glycocalyx, and blood-derived AMCs
involves dynamics that warrant deeper investigation. Such
interactions may impair bacterial clearance, lead to treatment
failure, prolong infections, and contribute to the development of
AMR. This research lays the foundation for future studies aimed
at optimizing anticoagulant use in clinical settings, minimizing
interference with antibiotics and AMCs, and ultimately
improving patient outcomes while addressing the spread of
MDR bacteria.
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