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Background: Myocardial infarction (MI) is one of the leading causes of death

worldwide. Finding reliable diagnostic biomarkers and gaining a deeper

understanding of their role in the immune microenvironment is of great

significance for improving clinical prognosis.

Method: This study integrated multiple datasets from GEO (GSE141512,

GSE95368, GSE269269) and TCGA data, and used various bioinformatics

methods such as weighted gene co-expression network analysis (WGCNA),

immune cell infiltration analysis, and single-cell RNA sequencing analysis to

screen key genes related to the occurrence and development of myocardial

infarction. We initially validated the results using a proteomic dataset (GSE95368)

and clinical samples analyzed by qPCR. Critically, the dysregulation and

diagnostic value of Haptoglobin (HP) were further confirmed in multiple

independent external cohorts (GSE66360, and others.), solidifying its reliability

as a biomarker.

Result: The study found that Haptoglobin (HP) is a key gene significantly

upregulated in myocardial infarction, and it exhibits high diagnostic value

(AUC=0.833) in the proteomic dataset (GSE95368). Single-cell sequencing

analysis showed that HP is significantly highly expressed in classical monocyte

of MI patients, and this finding was validated by qPCR experiments in clinically

collected classical monocytes samples (p<0.05). Functional enrichment analysis

implicated HP in immune responses and ferroptosis.
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Conclusion: The HP gene is a potential diagnostic biomarker for myocardial

infarction, and its specific high expression in classical monocytes implies a

potential role in the pathological process of myocardial infarction by regulating

the immune microenvironment. This study provides a new research direction for

the diagnosis and immune-targeted therapy of myocardial infarction, and has

important clinical translational value.
KEYWORDS
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1 Introduction

Myocardial infarction (MI) represents a critical global health

burden with complex pathophysiology involving ischemia-driven

cardiomyocyte death, inflammatory activation, and tissue

remodeling (1). Despite established diagnostic markers like

cardiac troponins (2), which are elevated after myocardial injury

and serve as the gold standard for post-event diagnosis, a pressing

need exists to identify novel molecular drivers that can aid in early

risk stratification or pre-MI detection.

The advent of high-throughput genomics has enabled systems

biology approaches to dissect the complexity of MI (3). Weighted

gene co-expression network analysis (WGCNA) has emerged as a

powerful tool to move beyond single-gene discoveries and identify

functionally coherent gene modules associated with disease traits (4).

Concurrently, two rapidly evolving biological concepts—ferroptosis

(an iron-dependent form of regulated cell death) (5) and exosomes

(6)-mediated intercellular communication—have been implicated in

MI progression, yet their interplay and key regulators are poorly

defined. Most previous studies have investigated these aspects in

isolation, and a knowledge gap persists in the integrative analysis that

converges co-expression networks with these specific phenotypic

hallmarks of MI.

Furthermore, while bulk transcriptomic analyses provide

valuable insights, they mask cellular heterogeneity. The

application of single-cell RNA sequencing (scRNA-seq) in MI is

now revealing the intricate contributions of specific immune cell

subsets to the post-infarct inflammatory response (7). However, the

expression and function of key regulators within this cellular

ecosystem, as well as their trajectories over pseudo-time (a

computational inference of temporal progression), remain

largely unexplored.

Therefore, this study aims to identify and validate key immune-

related genes in MI through an integrated multi-omics approach,

with a focus on HP as a potential diagnostic biomarker and its role

in the immune microenvironment and ferroptosis regulation.

Figure 1 shows the entire research process of the article.
02
2 Materials and methods

2.1 Data source

We used the GEO database (8) and three datasets were selected:

GSE141512, GSE95368, and GSE269269. The details of these

datasets are as follows:

GSE141512 (9): Platform number GPL17586 (HTA-2_0)

Affymetrix Human Transcriptome Array 2.0 [transcript (gene)

version]; includes 6 myocardial infarction (MI) patients and 6

healthy controls.

GSE95368 (10): Platform number GPL23119, SOMAScan

human proteomic assay (SOMAScan assay 1.3k); contains 48

serum samples, including 12 myocardial infarction (MI) patients

and 6 healthy controls selected for analysis.

GSE269269 (11): Platform number: GPL24676 Illumina

NovaSeq 6000 (Homo sapiens), including 10 AMI patients (5

with plaque rupture and 5 without plaque rupture).

To independently validate the expression and diagnostic value

of the identified key gene, four additional datasets were retrieved

from the GEO database:

GSE66360 (12): This dataset, based on the GPL570 [HG-

U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array

platform, comprises a total of 99 peripheral blood samples,

including 49 patients with myocardial infarction and 50 healthy

controls. It serves as the primary large-cohort validation set.

GSE48060 (13): This dataset also utilizes the GPL570 platform

and contains 52 peripheral blood samples from patients with

coronary artery disease and normal controls.

GSE60993 (14): This dataset, based on theGPL6884 Illumina

HumanWG-6 v3.0 expression beadchip, includes RNA-seq data

from 24 samples (17 MI patients and 7 healthy donors).

GSE220865 (15): This dataset, based on the GPL20301 Illumina

HiSeq 4000 platform, includes RNA-seq data from 15 samples (8

AMI patients and 7 healthy donors).

A detailed breakdown of the samples used from each dataset is

provided in Supplementary Table 1.
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2.2 Screening for differentially expressed
genes

We extracted data from the GEO database using the GEO2R

tool (16) and analyzed and visualized the downloaded dataset

GSE141512 using R language (version 4.2.1) and Limma and

ggplot2 packages (version 3.3.6). The criteria set for screening

differentially expressed genes (DEGs) are p-value<0.05 and |

logFC | ≥ 0 (17). Similarly, we analyzed the differential expression

of Haptoglobin (HP) in four independent validation datasets

(GSE66360, GSE48060, GSE60993, and GSE220865) using the

same GEO2R tool. Evaluate the consistency of HP dysregulation

across all cohorts using the same significance criteria.
2.3 WGCNA analysis

We performed weighted gene co-expression network analysis

(WGCNA) on all genes in the GSE141512 dataset using the
Frontiers in Immunology 03
WGCNA R package (version 4.2.1). To focus on genes with

biologically meaningful variations, we filtered out genes with

low expression variability (standard deviation ≤ 0.5) prior to

WGCNA, which is a common practice to reduce noise

and enhance the reliability of network construction. Data

visualization is achieved through the ggplot2 package (18) in R

language (version 3.3.6).
2.4 GO/KEGG analysis and PPI network
construction of turquoise module

In order to explore the functional significance of genes in the

turquoise module, we performed Gene Ontology (GO) annotation

and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analysis on 43 genes (19). GO annotation and KEGG pathway

analysis were performed using the DAVID tool (version 6.7) (20) to

identify gene functions and associated signal transduction

pathways. In addition, a protein-protein interaction (PPI)
FIGURE 1

Article analysis flow chart.
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network was established through the STRING database to

investigate the interactions between these genes (21).
2.5 Identification and validation of key
phenotypic genes

Through the Genecards database (22), we collected a total of

1078 genes related to ferroptosis (see Supplementary Table 2) and

4619 genes related to Exosomes (see Supplementary Table 3).

Subsequently, these phenotype-related genes were intersected with

the turquoise module genes, and a Venn diagram was generated to

identify the key gene HP. In the dataset GSE141512, we validated

the receiver operating characteristic (ROC) curve of HP using the R

package pROC (version 1.18.0) (23). In addition, we extracted data

from GSE95368 using the GEO2R tool and visualized the volcano

map (16). Subsequently, we evaluated the diagnostic value of HP in

the GSE95368 dataset through ROC analysis.
2.6 Analysis of immune cell infiltration

This study used the Cibersort algorithm (24) to perform immune

cell infiltration analysis on the GSE141512 dataset. By conducting

correlation analysis, significant associations between target genes and

various types of immune cells can be determined (Figure 1). All data

analysis and visualization were completed using R software (version

4.2.1). We obtained data on 22 types of immune cells based on the

CIBERSORTx website and analyzed them using codon sequence

information (25). The core algorithm using R language script is used

to detect gene expression profiles in the feature matrix, with P-

value<0.05 as the criterion for significant correlation.
2.7 Analysis of single-cell RNA sequencing
data

This study involved a sample of 10 myocardial infarction

patients from the GSE269269 dataset (11). We used droplet-based

single-cell RNA sequencing technology to analyze the collected

samples, and the cell suspension was processed using microfluidic

chips to improve the efficiency of cell capture and RNA extraction

(26). The data processing uses the Seurat package (version 5.1.0)

(27), which includes filtering, normalization, and scaling of cells and

genes. Next, UMAP analysis (27) was performed to divide the cells

into 17 clusters and further classify them into 10 cell types, such as

eosinophils and classical monocytes.
2.8 HPA database verification

The Human Protein Atlas (HPA) public database (28) provides

a large amount of proteomic and transcriptomic data from

pa t ho l o g i c a l a n d no rma l human t i s s u e s t h r o ugh
Frontiers in Immunology 04
immunohistochemistry (IHC) and RNA sequencing analysis. In

this study, we evaluated the expression levels and distribution of the

HP gene in immune cells in myocardial infarction (MI) specimens,

and the design of these results was based on the HPA database,

Monaco database, and Schmiedel database (29).
2.9 Single cell pseudo time series and cell
communication analysis

In the R (version 4.2.1) environment, we import single-cell data,

perform single-cell pseudo temporal analysis using the Monocle

(version 2.23.0) package, and perform cell communication analysis

using the CellChat (version 1.6.1) package (30). The Monocle

package uses the DDRTree method for pseudo temporal

inference, calculating pseudo time values to obtain the trajectory

and state of cells during development (31). The analysis results are

presented through various visualization methods, including cell

trajectory distribution maps, temporal changes in gene

expression, and heat maps. In the built-in functions of the

CellChat package, we identify overexpressed genes and

intercellular communication relationships, construct intercellular

communication networks, and calculate communication strength

(32). Finally, use the visualization functions provided by the

CellChat package to draw circular, heatmap, and bubble plots of

the communication network to demonstrate the communication

relationships between different cell types.
2.10 ceRNA analysis

This study conducted competitive endogenous RNA (ceRNA)

analysis on HP. We retrieved the miRNAs corresponding to HP

from three databases (Target Scan (33), miRDB (34), and miRwalk

(35)) and calculated the intersection using Venn plots to obtain five

common miRNAs. Subsequently, long non-coding RNAs

(LncRNAs) corresponding to these miRNAs were searched in the

ENCORI database (36). Among the five candidate miRNAs, only

hsa-miR-1247-5p was predicted to have lncRNA interactions in the

ENCORI database. Therefore, we constructed a ceRNA network

using Cytoscape (37) with hsa-miR-1247-5p as the core.
2.11 qPCR

This study used fluorescence quantitative PCR (qPCR) to

validate HP expression levels in peripheral blood mononuclear

cells from myocardial infarction (MI) patients. Researchers

recruited 5 MI patients who were admitted to Huzhou First

People’s Hospital from January 1, 2024 to February 28, 2024, and

5 healthy individuals who underwent routine health examinations

during the same period as the control group. The inclusion criteria

were: (1) age ≤ 90 years; (2) no history of radiotherapy or

chemotherapy; (3) no fever or infection within 3 months before
frontiersin.or
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blood collection; (4) no history of blood transfusion.

We used density gradient centrifugation to separate human

peripheral blood mononuclear cells. Peripheral venous blood was

collected from the myocardial infarction patient group and the

healthy control group, stored in heparin anticoagulant tubes, and

mixed with an equal volume of 1 × PBS. The separation solution

(P8680, Solarbio) was added in advance to a 15 mL centrifuge tube,

and the sample was slowly layered on top tomaintain clear separation

(38). After centrifugation at 800 × g for 20–30 minutes, clear layers

were formed in the tube, with a white cloud like ring in the middle

representing PBMCs. Suck the middle layer, add more than 5 times

the volume of PBS for resuspension, and wash twice by centrifugation

at 250 × g to remove impurities. Finally, resuspend the cells in PBS

and count to ensure cell viability>95%. The obtained PBMCs can be

used for subsequent RNA extraction or stored at -80°C.

QPCR tests were performed following the MIQE guidelines

(39). Three genes were selected to validate the RNA-seq results.

QPCR primers were designed using Primer3 software (http://

bioinfo.ut.ee/primer3-0.4.0/) and synthesized by Sangon

Biotechnology Co., Ltd. (Shanghai, China) (40). For cDNA

synthesis, 1mg of total RNA was reverse-transcribed using the

PrimeScript RT reagent kit (TakaraBio™Inc., SAN Jose, CA)

according to the manufacturer’s protocol. Quantitative RT-PCR

was performed on the CFX96 Real-Time PCR system (Bio-RAD

Laboratories, Hercules, CA, USA) using TB Green Premixed Ex Taq II

(Takara Bio Inc). The consumables used included eight PCR tubes

from Axygen® brand products (Corning Corporation, Corning, New

York, USA) (39). Each quantification used a 25 mL reaction mixture

containing 12.5 mL TB Green Premix Ex Taq II, 1 mL (10 mM) of

each primer, 8.5 mL RNase-free water, and 2 mL of 1:5 diluted cDNA.

PCR amplification conditions consisted of initial denaturation at 95°C

for 30 s, followed by 40 cycles of denaturation at 95°C for 5 s and

annealing at 60°C for 30 s. After cooling to 65°C for 5s, the melting

curve at the end of each PCR was obtained by gradually increasing

the temperature to 95°C (with an incremental rate of 0.5°C/s).

All samples underwent identical amplification analysis, eliminating

the need for successive calibration. The data obtained were analyzed

using Bio-Rad CFX Manager software (version 3.0), which generates

raw quantitative cycle (Cq) values for each reaction using the 2-DDCT
method (40). The order of using primer pairs is as follows:

HP: Forward primer 5 ‘- cccgaaaaagacaccga-3’, reverse primer 5

‘- gatcccgcgcataccagg-3’.

The research protocol has been approved by the Medical

Research and Clinical Trial Ethics Committee of Huzhou First

People’s Hospital (Approval No.: 2023KYLL013). All patients

participating in this study provided informed consent.
2.12 Analysis of independent validation
cohorts

The expression matrices for each validation dataset (GSE66360,

GSE48060, GSE60993, GSE220865) were downloaded from the

GEO database (8). The expression values of HP genes were

extracted from each dataset. Evaluate the difference in HP
Frontiers in Immunology 05
expression between MI patients and healthy control group, with a

significance threshold set at p<0.05. The results were visualized

using the ggplot2 R package (version 3.3.6) (18). We evaluated the

diagnostic performance of HP in each dataset by constructing

receiver operating characteristic (ROC) curves and calculating the

area under the curve (AUC) and its 95% confidence interval using

the pROC R package (version 1.18.0) (23). In addition, this study

used the Cibersort algorithm (24) to perform immune cell

infiltration analysis on the GSE48060 and GSE66360 datasets.

Through correlation analysis, significant associations between

target genes and various types of immune cells can be

determined. All data analysis and visualization were completed

using R software (version 4.2.1) (Figure 1).
2.13 Statistical methods

All data analysis in this study was conducted using R language

(version 4.2.1), and all statistical methods were analyzed using the

corresponding R package. The P-value<0.05 was used as the

standard for statistical significance, marked as * (p<0.05), * *

(p<0.01), and * * * (p<0.001).
3 Result

3.1 WGCNA screening key module genes

Using R language to analyze the dataset GSE141512, 27273

valid genes were obtained, including 5741 differentially expressed

genes (DEGs). Specifically, there are 2500 upregulated genes and

3241 downregulated genes (Figure 2A). Afterwards, weighted gene

co-expression network analysis (WGCNA) was performed on all

valid genes (4). According to the power value of 24 used in this

analysis (Figures 2B, C), WGCNA divides the genes into three

modules: gray, turquoise, and blue (Figures 2D, E). The gray

module includes gene sets that we could not classify into other

modules and that lack reference significance. Based on the

correlation between modules and traits, we selected the turquoise

module for further analysis (Figures 2F, G).
3.2 GO/KEGG analysis and PPI network
construction

To further analyze the gene functions in the turquoise module,

we conducted Gene Ontology (GO) and KEGG pathway analyses

on 43 genes and obtained the following results: Biological Process

(BP): activation of myeloid leukocytes, complement receptor-

mediated signaling pathways, and immune response regulatory

signaling pathways; Cellular Component (CC): tertiary granules,

secretory granule membrane, specific granules; Molecular Function

(MF): Complement receptor activity, pattern recognition receptor

activity, immune receptor activity; KEGG pathway: Staphylococcus

aureus infection, pantothenic acid and coenzyme A (CoA)
frontiersin.org
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biosynthesis, neutrophil extracellular trap formation (Figures 3A,

B). Next, we combined the logFC values of these genes to create

separate circular and chord plots for observing the relationships

between genes (Figures 3C, D). In addition, we searched for these 43

module genes in the STRING database and successfully established

a protein-protein interaction (PPI) network containing 37 genes

(Figure 3E). These findings reveal the important role of turquoise

module genes in multiple functional pathways.
Frontiers in Immunology 06
3.3 Identification and validation of genes
related to exosomes and ferroptosis
phenotype

This study conducted an intersection analysis between the

turquoise module gene and genes related to ferroptosis and

exosomes. Ultimately, a key gene was identified: HP (Haptoglobin

gene, Figure 4A). This gene is located on human chromosome 1 and
FIGURE 2

WGCNA analysis of dataset GSE141512. (A) GSE141512 volcano map; (B, C) Selection of WGCNA network construction parameters; (D, E) WGCNA
module identification and analysis; (F, G) WGCNA module trait association analysis.
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mainly encodes Haptoglobin protein, which is a plasma protein

mainly synthesized in the liver. Its main function is to bind free

hemoglobin to prevent it from freely existing in the blood and

causing oxidative damage (41).

To validate the potential value of the HP gene in myocardial

infarction (MI), we conducted validation analysis on two datasets,

GSE141512 and GSE95368. The results showed that in the GSE141512

dataset, receiver operating characteristic (ROC) analysis of HP gene

expression yielded an AUC of 0.75 (Figure 4B). In the GSE95368

dataset, HP was significantly upregulated in regions highlighted by

volcano plots (p<0.05, log2FC≥0), with an AUC of 0.833 in ROC

analysis (Figures 4C, D). These results indicate that the HP gene has
Frontiers in Immunology 07
high expression and good diagnostic value in MI, and may be a key

gene promoting the occurrence and development of MI.
3.4 Immune infiltration analysis and
validation

We applied the Cibersort algorithm to analyze the GSE141512

dataset and found significant correlations between HP and various

immune cells, including M0 macrophages, activated mast cells, RMSE,

and classical monocytes (Figure 5A). Subsequently, this study

rigorously screened single-cell RNA sequencing (scRNA seq) data
FIGURE 3

GOKEGG enrichment analysis and PPI construction of turquoise module. (A, B) Bar chart and bubble plot of GOKEGG enrichment analysis of
turquoise module genes. (C, D) Circle plot and chord plot of GOKEGG enrichment analysis of turquoise module genes combined with logFC values.
(E) PPI network diagram of turquoise module genes in STRING database.
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from 10 patients with acute myocardial infarction (AMI) from the

GSE269269 dataset. Through UMAP analysis (27), all cells were

divided into 17 clusters (Figure 5B), which were further classified

into 10 different cell types, including eosinophils, CD4+NKT like cells,

classical monocytes, and effector CD4+T cells (Figure 5C). Among

these cell types, HP is mainly highly expressed in classical monocytes

(Figure 5D), which is consistent with the positive correlation between

HP and classical monocytes in immune infiltration analysis. In

addition, we found a graph of high expression of HP genes in

immune cells, especially in classical monocytes, in the HPA database.

This result not only involves the HPA dataset, but also includes the

Monaco dataset and Schmiedel dataset (Figures 5E–G) (29). To verify

the credibility of this discovery, we collected blood samples from MI

patients who received treatment in our hospital and compared them

with healthy individuals who underwent routine health checks during

the same period as the control group.We extracted classical monocytes

from whole blood and performed qPCR validation. The results showed

that HP was significantly higher in classical monocytes of MI patients
Frontiers in Immunology 08
than in the control group (p<0.05) (Figure 5H). Therefore, these results

fully demonstrate that HP significantly affects the immune

microenvironment of MI through high expression in

classical monocytes.
3.5 Time series analysis and cell
communication analysis

Through pseudo temporal analysis, we successfully obtained

three differentiation stages (Figures 6A, B). The analysis shows that

CD4+ T cells significantly increase during the early stages, reflecting

their critical role in early immune responses. Classical monocytes

peak in the middle and late stages, which may relate to remodeling

of the myocardial infarction (MI) microenvironment, indicating

their potential role in the subacute phase of MI (Figures 6C, D).

In addition, through the visualization tool of CellChat software

(30), we have constructed various charts to display the
FIGURE 4

Identification and validation of genes related to exosomes and ferroptosis phenotype. (A) Intersection of the 43geturquoise module gene of MI with
genes related to exosomes and ferroptosis phenotype; (B) ROC analysis of HP gene in GSE141512 dataset; (C) Volcanic map of GSE95368 dataset;
(D) ROC analysis of the HP gene in the GSE95368 dataset.
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communication relationships between different cell types. These

visual charts reveal complex cellular interaction patterns, helping

researchers better understand cellular communication mechanisms.

The circular diagram illustrates the cellular communication

network, with the thickness of the lines representing the strength
Frontiers in Immunology 09
of the connections (Figure 6E); The heatmap presents an overall

overview of communication intensity, with color depth reflecting

the degree of difference (Figure 6F); The bubble chart vividly

illustrates the diversity of communication, with the size and color

of bubbles representing interaction frequency and importance,
FIGURE 5

Immune infiltration analysis and validation. (A) Immune infiltration analysis of HP in GSE141512 dataset; (B) UMAP clustering of GSE269269 dataset;
(C) Cell annotation of GSE269269 dataset; (D) The position of HP in the UMAP clustering map; (E) Immune cells with high expression of HP in HPA
dataset; (F) Immune cells with high expression of HP in the Monaco dataset; (G) Immune cells with high expression of HP in Schmiedel dataset;
(H) QPCR verification showed that HP was highly expressed in classical monocytes of MI compared to the control group.
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respectively (Figure 6G). In summary, these charts depict

communication relationships between cells and promote a deeper

understanding of their interactions. They provide valuable data for

research and drive innovation in the field of cell communication.
3.6 CeRNA analysis

In this study, we conducted a comprehensive analysis of the

microRNA (miRNA) regulatory network associated with HP.

Figure 7A clearly shows five overlapping miRNAs identified from
Frontiers in Immunology 10
three databases (Target Scan (33), miRDB (34), and miRwalk (35)),

namely hsa-miR-512-5p, hsa-miR-1247-5p, hsa-miR-6715b-3p,

hsa-miR-6836-5p, and hsa-miR-6132 (Figure 7A). We

subsequently searched for the long non-coding RNAs (LncRNAs)

corresponding to these miRNAs in the ENCORI database (36), and

only obtained LncRNAs related to hsa-miR-1247-5p. We then

constructed a protein-protein interaction (PPI) network using

Cytoscape (37) (Figure 7B). This analysis provides important

evidence for understanding the multi-level mechanisms of HP

regulation and its impact on cellular processes. It highlights the

complex interactions between miRNAs and HP. These findings lay
FIGURE 6

Pseudo-temporal trajectory and intercellular communication analysis. (A, B) Trajectory of cell states; (C, D) Distribution of classical monocytes over
pseudo-time; (E-G)CellChat analysis reveals strong communication between classical monocytes and CD4+ T cells.
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the foundation for further exploration of miRNA functions in

regulating gene expression under various physiological and

pathological conditions.
3.7 Verification of HP in an independent
dataset

To meet the requirements of independent validation and further

enhance the credibility of our findings, we retrieved four independent

datasets from the GEO database to validate the upregulation of HP in

myocardial infarction (MI) and its diagnostic potential (detailed sample

information can be found in Supplementary Table 1). Firstly, we

analyzed the differentially expressed genes in the four datasets based

on the criteria of p-value<0.05 and | logFC | ≥ 0, and plotted volcano

plots to mark the location of HP (Figures 8A–D). Subsequently, violin

plots were used to demonstrate the expression of HP in four datasets,

which was consistent with our previous results. The expression of HP

in peripheral blood of myocardial infarction patients was significantly

upregulated (p<0.05, Figures 8E–H). It is worth noting that receiver

operating characteristic (ROC) curve analysis showed that in these

four independent validation sets, HP consistently demonstrated good

diagnostic performance (AUC values of 0.696, 0.756, 0.866, and 0.920,

respectively, Figures 8I–L). In addition, through immune infiltration

analysis of GSE48060 and GSE66360, it was found that there was a high

positive correlation between HP and classical monocytes in these two

datasets (p<0.05, Figures 8M, N), which is consistent with the previous

findings of HP being associated with classical monocytes in single-cell

analysis, further demonstrating the reliability of this result. In

summary, the comprehensive evidence from these four independent

cohorts, spanning the levels of transcriptomics and proteomics,

provides strong multi-faceted validation for HP as a biomarker that

exhibits sustained dysregulation and diagnostic value through

classical monocytes.
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Myocardial infarction (MI) remains the leading cause of death

worldwide, and a thorough analysis of its molecular mechanisms is

crucial for improving clinical prognosis. In this study, we

systematically revealed for the first time the key role of

Haptoglobin (HP) in the immune microenvironment of MI. We

integrated weighted gene co-expression network analysis

(WGCNA) with ferroptosis and exosome phenotype gene

screening strategies. Using this approach, we successfully

identified the HP gene from the GSE141512 dataset. The results

indicate that HP is upregulated in MI and high expression in

classical monocytes, with potential value as a diagnostic

biomarker for MI. In addition, functional enrichment analysis

showed that this gene module is mainly involved in immune

related processes, indicating that HP may contribute to the

pathogenesis and progression of myocardial infarction by

regulating immune responses.

Importantly, HP plays a unique role at the intersection of

immune regulation and ferroptosis. Mechanistically, it prevents an

increase in iron load by binding to free hemoglobin, thereby limiting

iron catalyzed oxidative stress, which is the central driving factor for

ferroptosis (42). In the context of myocardial infarction (MI),

excessive iron deposition and lipid peroxidation cause death of

myocardial cells, and upregulation of HP in classical monocytes

may represent a compensatory response to alleviate the damage

associated with ferroptosis (43). In addition, HP has been reported

to regulate macrophage polarization and cytokine release, indicating

that its overexpression in classical monocytes may directly affect the

balance between pro-inflammatory and reparative immune responses

after MI (44). These dual functions highlight the role of HP as a

regulator of ferroptosis and immune regulation, providing a

reasonable mechanistic basis for its diagnostic and therapeutic

potential. Our study confirms the previous observation that HP is
FIGURE 7

CeRNA analysis of HP. (A) HP’s miRNA intersection in three databases; (B) CeRNA analysis of HP.
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elevated in the plasma of patients with myocardial infarction (45).

However, in addition to its known role as a plasma protein, our

single-cell RNA sequencing (scRNA seq) analysis provides new

insights, identifying classical monocytes as the main source of

elevated HP in the MI immune microenvironment.
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We validated our findings using two independent datasets

(GSE141512 and GSE95368). These analyses confirmed that HP

is significantly overexpressed in myocardial infarction (MI) samples

and shows excellent diagnostic efficacy in proteomic data

(AUC=0.833). Notably, our immune infiltration analysis using the
FIGURE 8

Validation with four independent datasets. (A-D) Volcanic maps of four independent datasets: GSE48060, GSE66360, GSE60993, and GSE220865;
(E-H) Violin plot of differential expression of HP gene in these four independent datasets. (I-L) Diagnostic ROC plots of HP gene in these four
independent datasets; (M) The correlation between HP gene and various immune cells in the GSE48060 dataset; (N) The correlation between HP
gene and various immune cells in the GSE66360 dataset.
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CIBERSORT algorithm revealed a significant correlation between

HP expression and immune cell subpopulations, particularly

classical monocytes. This finding was further corroborated by

single-cell RNA sequencing analysis of the GSE269269 dataset,

which showed that HP is predominantly expressed in classical

monocytes. Furthermore, we validated the significant

upregulation of HP in classical monocytes from MI patients using

qPCR experiments on clinical samples. This step completed the

research process, bridging bioinformatics discovery and

experimental verification. Importantly, the core finding of HP

upregulation in MI was robustly validated across multiple

independent external cohorts (GSE66360, GSE48060, GSE60993,

GSE220865). This multi-cohort validation strategy directly

addresses the necessity of independent replication in biomarker

discovery. HP showed consistent diagnostic performance, with

significant AUC values across all datasets. This consistency

greatly enhances the credibility of our initial findings. It also

reduces concerns about overfitting or cohort-specific biases

common in studies using a single dataset. Additionally, immune

infiltration and immunological correlation analyses in GSE66360

and GSE48060 further demonstrated a significant positive

correlation between HP and classical monocytes, highly consistent

with previous conclusions. This converging evidence elevates HP

f rom a pre l iminary finding to a re l i ab ly va l ida ted

candidate biomarker.

This study presents an important innovation: the precise

analysis of HP ’s cel lular local ization in the immune

microenvironment of MI. This was achieved using single-cell

sequencing technology. Our pseudo time trajectory analysis

indicates that classical monocytes with high expression of HP

mainly appear in the middle and late stages of immune response,

which coincides with the tissue remodeling process after MI. This

suggests that HP may be related to maintaining inflammation and

coordinating repair processes, especially in the subacute stage of

myocardial infarction. In addition, intercellular communication

analysis showed that classical monocytes with high expression of

HP actively interact with CD4+T cells and dendritic cells through

cytokine and chemokine signaling pathways, which may amplify

the activation of adaptive immunity. These findings suggest that HP

may not only label a pathogenic subpopulation of classical

monocytes, but also influence the development trajectory of post

infarction inflammation by promoting interactions between

classical monocytes, T cells, and dendritic cells. We speculate that

the co-expression of HP in gene modules related to immune

activation and ferroptosis suggests a possible link between HP

and these processes; thus, the upregulation of HP in classical

monocytes may represent a compensatory mechanism to

counteract oxidative stress and iron overload, hallmarks of

ferroptosis (46). In addition, HP is conserved in mammalian

evolution and is associated with immune regulation in various

species, indicating its broader role in comparative immunology (47,

48). Future cross species studies may elucidate its conserved

functions in inflammatory response and tissue repair.
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Although this study provides evidence supporting the role of

HP in myocardial infarction, some limitations still need to

be acknowledged:
1. Limited sample size: The main limitation of this study is the

relatively small sample size in our clinical validation cohort

(n=5 per group), which may limit the statistical power and

generalizability of our research results.

2. Lack of functional experimental evidence: The functional

insights we obtained mainly rely on bioinformatics

inference. Although we have provided in vitro validation

of HP expression, it is still necessary to clarify its causal

relationship through functional enhancement or inhibition

experiments to elucidate the specific mechanism of HP in

the immune microenvironment.

3. Incomplete characterization of regulatory network:

Although we constructed a preliminary ceRNA network

for HP, the interactions between HP, miRNA, and lncRNA

remain predictive and require experimental validation.

4. Limitations of single-cell resolution: Although we used

single-cell RNA sequencing data to infer the cellular

localization of HP, this lacks direct experimental

evidence. Therefore, more precise experimental methods

are needed to verify the expression and function of HP in

different cell types.
In response to these limitations, future research will involve

larger multicenter prospective cohorts to validate the diagnostic and

prognostic value of HP in classical monocytes. Secondly, future

research will include in vivo and in vitro functional experiments,

such as knocking out or overexpressing HP in cell lines and animal

models, to elucidate its role in monocyte activation and iron

deposition regulation. Thirdly, future work will include using

techniques such as luciferase reporter assay and RNA

immunoprecipitation to validate the binding relationship between

HP and identified miRNAs. Finally, spatial transcriptomics and

multiplex immunofluorescence staining will be used to visualize

and confirm the expression and distribution of HP in myocardial

tissue slices at single-cell resolution. By addressing these limitations,

future research will enhance the depth and clinical relevance of our

findings, ultimately contributing to the development of HP basic

diagnosis and treatment strategies for myocardial infarction.

In conclusion, this study establishes Haptoglobin (HP) as a

clinically promising diagnostic biomarker and therapeutic target for

myocardial infarction through integrated multi-omics analysis and

experimental validation. HP demonstrates consistently high

diagnostic accuracy across both transcriptomic and proteomic

platforms, and its specific overexpression in classical monocytes

was confirmed in clinical samples. These findings highlight the

potential of HP as a practical blood-based biomarker for early MI

detection and patient stratification. Further development of HP-

targeted detect ion assays and invest igat ion into i t s

immunomodulatory functions could open new avenues for
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clinical translation. Ultimately, these advances may contribute to

improved diagnosis and immune-targeted therapy for

myocardial infarction.
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