? frontiers ‘ Frontiers in Immunology

@ Check for updates

OPEN ACCESS

EDITED BY
Guan-Jun Yang,
Ningbo University, China

REVIEWED BY
Iman Razeghian-Jahromi,

Shiraz University of Medical Sciences, Iran
Huimei Wang,

Fudan University, China

*CORRESPONDENCE

Yong Li
a821182777@qgg.com

Guodong Li
17224609@qqg.com

Binyu Wang
wby1149481450@163.com

These authors have contributed equally to
this work

RECEIVED 18 September 2025
ACCEPTED 14 October 2025
PUBLISHED 28 October 2025

CITATION

Xu H, Pan H, Mo C, Guo X, Ji L, Shi D,

Wang B, Li G and Li Y (2025) Upregulated
haptoglobin in classical monocytes serves as
a diagnostic and immunological biomarker in
myocardial infarction: a cross-sectional
multi-omics study.

Front. Immunol. 16:1707912.

doi: 10.3389/fimmu.2025.1707912

COPYRIGHT
© 2025 Xu, Pan, Mo, Guo, Ji, Shi, Wang, Li and
Li. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums
is permitted, provided the original author(s)
and the copyright owner(s) are credited and
that the original publication in this journal is
cited, in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Immunology

TvPE Original Research
PUBLISHED 28 October 2025
po110.3389/fimmu.2025.1707912

Upregulated haptoglobin in
classical monocytes serves as

a diagnostic and immunological
biomarker in myocardial
infarction: a cross-sectional
multi-omics study

Hongchen Xu™, Huibin Pan', Chanjuan Mo?, Xueqi Guo?,
Longfei Ji*, Danfei Shi* Binyu Wang*, Guodong Li*
and Yong Li*

‘Emergency Intensive Care Unit, First Affiliated Hospital of Huzhou University, First People’'s Hospital
of Huzhou City, Huzhou, Zhejiang, China, ?Department of Cardiovascular Center, First Affiliated
Hospital of Huzhou University, First People's Hospital of Huzhou City, Huzhou, Zhejiang, China,
sDepartment of Clinical Laboratory, First Affiliated Hospital of Huzhou University, First People’s
Hospital of Huzhou City, Huzhou, Zhejiang, China, “Department of Pathology, First Affiliated Hospital
of Huzhou University, First People's Hospital of Huzhou City, Huzhou, Zhejiang, China

Background: Myocardial infarction (Ml) is one of the leading causes of death
worldwide. Finding reliable diagnostic biomarkers and gaining a deeper
understanding of their role in the immune microenvironment is of great
significance for improving clinical prognosis.

Method: This study integrated multiple datasets from GEO (GSE141512,
GSE95368, GSE269269) and TCGA data, and used various bioinformatics
methods such as weighted gene co-expression network analysis (WGCNA),
immune cell infiltration analysis, and single-cell RNA sequencing analysis to
screen key genes related to the occurrence and development of myocardial
infarction. We initially validated the results using a proteomic dataset (GSE95368)
and clinical samples analyzed by gPCR. Critically, the dysregulation and
diagnostic value of Haptoglobin (HP) were further confirmed in multiple
independent external cohorts (GSE66360, and others.), solidifying its reliability
as a biomarker.

Result: The study found that Haptoglobin (HP) is a key gene significantly
upregulated in myocardial infarction, and it exhibits high diagnostic value
(AUC=0.833) in the proteomic dataset (GSE95368). Single-cell sequencing
analysis showed that HP is significantly highly expressed in classical monocyte
of MI patients, and this finding was validated by qPCR experiments in clinically
collected classical monocytes samples (p<0.05). Functional enrichment analysis
implicated HP in immune responses and ferroptosis.
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Conclusion: The HP gene is a potential diagnostic biomarker for myocardial
infarction, and its specific high expression in classical monocytes implies a
potential role in the pathological process of myocardial infarction by regulating
the immune microenvironment. This study provides a new research direction for
the diagnosis and immune-targeted therapy of myocardial infarction, and has
important clinical translational value.

myocardial infarction, WGCNA, immune microenvironment, single-cell RNA
sequencing, ferroptosis, exosomes

1 Introduction

Myocardial infarction (MI) represents a critical global health
burden with complex pathophysiology involving ischemia-driven
cardiomyocyte death, inflammatory activation, and tissue
remodeling (1). Despite established diagnostic markers like
cardiac troponins (2), which are elevated after myocardial injury
and serve as the gold standard for post-event diagnosis, a pressing
need exists to identify novel molecular drivers that can aid in early
risk stratification or pre-MI detection.

The advent of high-throughput genomics has enabled systems
biology approaches to dissect the complexity of MI (3). Weighted
gene co-expression network analysis (WGCNA) has emerged as a
powerful tool to move beyond single-gene discoveries and identify
functionally coherent gene modules associated with disease traits (4).
Concurrently, two rapidly evolving biological concepts—ferroptosis
(an iron-dependent form of regulated cell death) (5) and exosomes
(6)-mediated intercellular communication—have been implicated in
MI progression, yet their interplay and key regulators are poorly
defined. Most previous studies have investigated these aspects in
isolation, and a knowledge gap persists in the integrative analysis that
converges co-expression networks with these specific phenotypic
hallmarks of ML

Furthermore, while bulk transcriptomic analyses provide
valuable insights, they mask cellular heterogeneity. The
application of single-cell RNA sequencing (scRNA-seq) in MI is
now revealing the intricate contributions of specific immune cell
subsets to the post-infarct inflammatory response (7). However, the
expression and function of key regulators within this cellular
ecosystem, as well as their trajectories over pseudo-time (a
computational inference of temporal progression), remain
largely unexplored.

Therefore, this study aims to identify and validate key immune-
related genes in MI through an integrated multi-omics approach,
with a focus on HP as a potential diagnostic biomarker and its role
in the immune microenvironment and ferroptosis regulation.
Figure 1 shows the entire research process of the article.
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2 Materials and methods
2.1 Data source

We used the GEO database (8) and three datasets were selected:
GSE141512, GSE95368, and GSE269269. The details of these
datasets are as follows:

GSE141512 (9): Platform number GPL17586 (HTA-2_0)
Affymetrix Human Transcriptome Array 2.0 [transcript (gene)
version]; includes 6 myocardial infarction (MI) patients and 6
healthy controls.

GSE95368 (10): Platform number GPL23119, SOMAScan
human proteomic assay (SOMAScan assay 1.3k); contains 48
serum samples, including 12 myocardial infarction (MI) patients
and 6 healthy controls selected for analysis.

GSE269269 (11): Platform number: GPL24676 Illumina
NovaSeq 6000 (Homo sapiens), including 10 AMI patients (5
with plaque rupture and 5 without plaque rupture).

To independently validate the expression and diagnostic value
of the identified key gene, four additional datasets were retrieved
from the GEO database:

GSE66360 (12): This dataset, based on the GPL570 [HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array
platform, comprises a total of 99 peripheral blood samples,
including 49 patients with myocardial infarction and 50 healthy
controls. It serves as the primary large-cohort validation set.

GSE48060 (13): This dataset also utilizes the GPL570 platform
and contains 52 peripheral blood samples from patients with
coronary artery disease and normal controls.

GSE60993 (14): This dataset, based on theGPL6884 Illumina
HumanWG-6 v3.0 expression beadchip, includes RNA-seq data
from 24 samples (17 MI patients and 7 healthy donors).

GSE220865 (15): This dataset, based on the GPL20301 Illumina
HiSeq 4000 platform, includes RNA-seq data from 15 samples (8
AMI patients and 7 healthy donors).

A detailed breakdown of the samples used from each dataset is
provided in Supplementary Table 1.
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Article analysis flow chart.

2.2 Screening for differentially expressed
genes

We extracted data from the GEO database using the GEO2R
tool (16) and analyzed and visualized the downloaded dataset
GSE141512 using R language (version 4.2.1) and Limma and
ggplot2 packages (version 3.3.6). The criteria set for screening
differentially expressed genes (DEGs) are p-value<0.05 and |
logFC | = 0 (17). Similarly, we analyzed the differential expression
of Haptoglobin (HP) in four independent validation datasets
(GSE66360, GSE48060, GSE60993, and GSE220865) using the
same GEO2R tool. Evaluate the consistency of HP dysregulation
across all cohorts using the same significance criteria.

2.3 WGCNA analysis

We performed weighted gene co-expression network analysis
(WGCNA) on all genes in the GSE141512 dataset using the
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WGCNA R package (version 4.2.1). To focus on genes with
biologically meaningful variations, we filtered out genes with
low expression variability (standard deviation < 0.5) prior to
WGCNA, which is a common practice to reduce noise
and enhance the reliability of network construction. Data
visualization is achieved through the ggplot2 package (18) in R
language (version 3.3.6).

2.4 GO/KEGG analysis and PPl network
construction of turquoise module

In order to explore the functional significance of genes in the
turquoise module, we performed Gene Ontology (GO) annotation
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis on 43 genes (19). GO annotation and KEGG pathway
analysis were performed using the DAVID tool (version 6.7) (20) to
identify gene functions and associated signal transduction
pathways. In addition, a protein-protein interaction (PPI)
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network was established through the STRING database to
investigate the interactions between these genes (21).

2.5 Identification and validation of key
phenotypic genes

Through the Genecards database (22), we collected a total of
1078 genes related to ferroptosis (see Supplementary Table 2) and
4619 genes related to Exosomes (see Supplementary Table 3).
Subsequently, these phenotype-related genes were intersected with
the turquoise module genes, and a Venn diagram was generated to
identify the key gene HP. In the dataset GSE141512, we validated
the receiver operating characteristic (ROC) curve of HP using the R
package pROC (version 1.18.0) (23). In addition, we extracted data
from GSE95368 using the GEO2R tool and visualized the volcano
map (16). Subsequently, we evaluated the diagnostic value of HP in
the GSE95368 dataset through ROC analysis.

2.6 Analysis of immune cell infiltration

This study used the Cibersort algorithm (24) to perform immune
cell infiltration analysis on the GSE141512 dataset. By conducting
correlation analysis, significant associations between target genes and
various types of immune cells can be determined (Figure 1). All data
analysis and visualization were completed using R software (version
4.2.1). We obtained data on 22 types of immune cells based on the
CIBERSORTx website and analyzed them using codon sequence
information (25). The core algorithm using R language script is used
to detect gene expression profiles in the feature matrix, with P-
value<0.05 as the criterion for significant correlation.

2.7 Analysis of single-cell RNA sequencing
data

This study involved a sample of 10 myocardial infarction
patients from the GSE269269 dataset (11). We used droplet-based
single-cell RNA sequencing technology to analyze the collected
samples, and the cell suspension was processed using microfluidic
chips to improve the efficiency of cell capture and RNA extraction
(26). The data processing uses the Seurat package (version 5.1.0)
(27), which includes filtering, normalization, and scaling of cells and
genes. Next, UMAP analysis (27) was performed to divide the cells
into 17 clusters and further classify them into 10 cell types, such as
eosinophils and classical monocytes.

2.8 HPA database verification

The Human Protein Atlas (HPA) public database (28) provides
a large amount of proteomic and transcriptomic data from
pathological and normal human tissues through
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immunohistochemistry (IHC) and RNA sequencing analysis. In
this study, we evaluated the expression levels and distribution of the
HP gene in immune cells in myocardial infarction (MI) specimens,
and the design of these results was based on the HPA database,
Monaco database, and Schmiedel database (29).

2.9 Single cell pseudo time series and cell
communication analysis

In the R (version 4.2.1) environment, we import single-cell data,
perform single-cell pseudo temporal analysis using the Monocle
(version 2.23.0) package, and perform cell communication analysis
using the CellChat (version 1.6.1) package (30). The Monocle
package uses the DDRTree method for pseudo temporal
inference, calculating pseudo time values to obtain the trajectory
and state of cells during development (31). The analysis results are
presented through various visualization methods, including cell
trajectory distribution maps, temporal changes in gene
expression, and heat maps. In the built-in functions of the
CellChat package, we identify overexpressed genes and
intercellular communication relationships, construct intercellular
communication networks, and calculate communication strength
(32). Finally, use the visualization functions provided by the
CellChat package to draw circular, heatmap, and bubble plots of
the communication network to demonstrate the communication
relationships between different cell types.

2.10 ceRNA analysis

This study conducted competitive endogenous RNA (ceRNA)
analysis on HP. We retrieved the miRNAs corresponding to HP
from three databases (Target Scan (33), miRDB (34), and miRwalk
(35)) and calculated the intersection using Venn plots to obtain five
common miRNAs. Subsequently, long non-coding RNAs
(LncRNAs) corresponding to these miRNAs were searched in the
ENCORI database (36). Among the five candidate miRNAs, only
hsa-miR-1247-5p was predicted to have IncRNA interactions in the
ENCORI database. Therefore, we constructed a ceRNA network
using Cytoscape (37) with hsa-miR-1247-5p as the core.

2.11 qPCR

This study used fluorescence quantitative PCR (qPCR) to
validate HP expression levels in peripheral blood mononuclear
cells from myocardial infarction (MI) patients. Researchers
recruited 5 MI patients who were admitted to Huzhou First
People’s Hospital from January 1, 2024 to February 28, 2024, and
5 healthy individuals who underwent routine health examinations
during the same period as the control group. The inclusion criteria
were: (1) age < 90 years; (2) no history of radiotherapy or
chemotherapy; (3) no fever or infection within 3 months before
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blood collection; (4) no history of blood transfusion.

We used density gradient centrifugation to separate human
peripheral blood mononuclear cells. Peripheral venous blood was
collected from the myocardial infarction patient group and the
healthy control group, stored in heparin anticoagulant tubes, and
mixed with an equal volume of 1 x PBS. The separation solution
(P8680, Solarbio) was added in advance to a 15 mL centrifuge tube,
and the sample was slowly layered on top to maintain clear separation
(38). After centrifugation at 800 x g for 20-30 minutes, clear layers
were formed in the tube, with a white cloud like ring in the middle
representing PBMCs. Suck the middle layer, add more than 5 times
the volume of PBS for resuspension, and wash twice by centrifugation
at 250 x g to remove impurities. Finally, resuspend the cells in PBS
and count to ensure cell viability>95%. The obtained PBMCs can be
used for subsequent RNA extraction or stored at -80°C.

QPCR tests were performed following the MIQE guidelines
(39). Three genes were selected to validate the RNA-seq results.
QPCR primers were designed using Primer3 software (http://
bioinfo.ut.ee/primer3-0.4.0/) and synthesized by Sangon
Biotechnology Co., Ltd. (Shanghai, China) (40). For cDNA
synthesis, 1uug of total RNA was reverse-transcribed using the
PrimeScript RT reagent kit (TakaraBioTMInc., SAN Jose, CA)
according to the manufacturer’s protocol. Quantitative RT-PCR
was performed on the CFX96 Real-Time PCR system (Bio-RAD
Laboratories, Hercules, CA, USA) using TB Green Premixed Ex Taq II
(Takara Bio Inc). The consumables used included eight PCR tubes
from Axygen® brand products (Corning Corporation, Corning, New
York, USA) (39). Each quantification used a 25 UL reaction mixture
containing 12.5 uL. TB Green Premix Ex Taq II, 1 uL (10 uM) of
each primer, 8.5 UL RNase-free water, and 2 pL of 1:5 diluted cDNA.
PCR amplification conditions consisted of initial denaturation at 95°C
for 30 s, followed by 40 cycles of denaturation at 95°C for 5 s and
annealing at 60°C for 30 s. After cooling to 65°C for 5s, the melting
curve at the end of each PCR was obtained by gradually increasing
the temperature to 95°C (with an incremental rate of 0.5°C/s).
All samples underwent identical amplification analysis, eliminating
the need for successive calibration. The data obtained were analyzed
using Bio-Rad CFX Manager software (version 3.0), which generates
raw quantitative cycle (Cq) values for each reaction using the 2-AACT
method (40). The order of using primer pairs is as follows:

HP: Forward primer 5 ‘- cccgaaaaagacaccga-3’, reverse primer 5
‘- gatcccgegeataccagg-3’.

The research protocol has been approved by the Medical
Research and Clinical Trial Ethics Committee of Huzhou First
People’s Hospital (Approval No.: 2023KYLL013). All patients
participating in this study provided informed consent.

2.12 Analysis of independent validation
cohorts

The expression matrices for each validation dataset (GSE66360,
GSE48060, GSE60993, GSE220865) were downloaded from the
GEO database (8). The expression values of HP genes were
extracted from each dataset. Evaluate the difference in HP
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expression between MI patients and healthy control group, with a
significance threshold set at p<0.05. The results were visualized
using the ggplot2 R package (version 3.3.6) (18). We evaluated the
diagnostic performance of HP in each dataset by constructing
receiver operating characteristic (ROC) curves and calculating the
area under the curve (AUC) and its 95% confidence interval using
the pROC R package (version 1.18.0) (23). In addition, this study
used the Cibersort algorithm (24) to perform immune cell
infiltration analysis on the GSE48060 and GSE66360 datasets.
Through correlation analysis, significant associations between
target genes and various types of immune cells can be
determined. All data analysis and visualization were completed
using R software (version 4.2.1) (Figure 1).

2.13 Statistical methods

All data analysis in this study was conducted using R language
(version 4.2.1), and all statistical methods were analyzed using the
corresponding R package. The P-value<0.05 was used as the
standard for statistical significance, marked as * (p<0.05), * *
(p<0.01), and * * * (p<0.001).

3 Result
3.1 WGCNA screening key module genes

Using R language to analyze the dataset GSE141512, 27273
valid genes were obtained, including 5741 differentially expressed
genes (DEGs). Specifically, there are 2500 upregulated genes and
3241 downregulated genes (Figure 2A). Afterwards, weighted gene
co-expression network analysis (WGCNA) was performed on all
valid genes (4). According to the power value of 24 used in this
analysis (Figures 2B, C), WGCNA divides the genes into three
modules: gray, turquoise, and blue (Figures 2D, E). The gray
module includes gene sets that we could not classify into other
modules and that lack reference significance. Based on the
correlation between modules and traits, we selected the turquoise
module for further analysis (Figures 2F, G).

3.2 GO/KEGG analysis and PPI network
construction

To further analyze the gene functions in the turquoise module,
we conducted Gene Ontology (GO) and KEGG pathway analyses
on 43 genes and obtained the following results: Biological Process
(BP): activation of myeloid leukocytes, complement receptor-
mediated signaling pathways, and immune response regulatory
signaling pathways; Cellular Component (CC): tertiary granules,
secretory granule membrane, specific granules; Molecular Function
(MF): Complement receptor activity, pattern recognition receptor
activity, immune receptor activity; KEGG pathway: Staphylococcus
aureus infection, pantothenic acid and coenzyme A (CoA)
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biosynthesis, neutrophil extracellular trap formation (Figures 3A, 3.3 |dentification and validation of genes

B). Next, we combined the logFC values of these genes to create  related to exosomes and ferroptosis
separate circular and chord plots for observing the relationships phenotype

between genes (Figures 3C, D). In addition, we searched for these 43

module genes in the STRING database and successfully established This study conducted an intersection analysis between the
a protein-protein interaction (PPI) network containing 37 genes  turquoise module gene and genes related to ferroptosis and
(Figure 3E). These findings reveal the important role of turquoise  exosomes. Ultimately, a key gene was identified: HP (Haptoglobin
module genes in multiple functional pathways. gene, Figure 4A). This gene is located on human chromosome 1 and
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(E) PPI network diagram of turquoise module genes in STRING database.

mainly encodes Haptoglobin protein, which is a plasma protein
mainly synthesized in the liver. Its main function is to bind free
hemoglobin to prevent it from freely existing in the blood and
causing oxidative damage (41).

To validate the potential value of the HP gene in myocardial
infarction (MI), we conducted validation analysis on two datasets,
GSE141512 and GSE95368. The results showed that in the GSE141512
dataset, receiver operating characteristic (ROC) analysis of HP gene
expression yielded an AUC of 0.75 (Figure 4B). In the GSE95368
dataset, HP was significantly upregulated in regions highlighted by
volcano plots (p<0.05, log2FC>0), with an AUC of 0.833 in ROC
analysis (Figures 4C, D). These results indicate that the HP gene has

Frontiers in Immunology

high expression and good diagnostic value in MI, and may be a key
gene promoting the occurrence and development of ML

3.4 Immune infiltration analysis and
validation

We applied the Cibersort algorithm to analyze the GSE141512
dataset and found significant correlations between HP and various
immune cells, including MO macrophages, activated mast cells, RMSE,
and classical monocytes (Figure 5A). Subsequently, this study
rigorously screened single-cell RNA sequencing (scRNA seq) data
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(D) ROC analysis of the HP gene in the GSE95368 dataset.

from 10 patients with acute myocardial infarction (AMI) from the
GSE269269 dataset. Through UMAP analysis (27), all cells were
divided into 17 clusters (Figure 5B), which were further classified
into 10 different cell types, including eosinophils, CD4+NKT like cells,
classical monocytes, and effector CD4+T cells (Figure 5C). Among
these cell types, HP is mainly highly expressed in classical monocytes
(Figure 5D), which is consistent with the positive correlation between
HP and classical monocytes in immune infiltration analysis. In
addition, we found a graph of high expression of HP genes in
immune cells, especially in classical monocytes, in the HPA database.
This result not only involves the HPA dataset, but also includes the
Monaco dataset and Schmiedel dataset (Figures 5E-G) (29). To verify
the credibility of this discovery, we collected blood samples from MI
patients who received treatment in our hospital and compared them
with healthy individuals who underwent routine health checks during
the same period as the control group. We extracted classical monocytes
from whole blood and performed qPCR validation. The results showed
that HP was significantly higher in classical monocytes of MI patients
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than in the control group (p<0.05) (Figure 5H). Therefore, these results
fully demonstrate that HP significantly affects the immune
microenvironment of MI through high expression in
classical monocytes.

3.5 Time series analysis and cell
communication analysis

Through pseudo temporal analysis, we successfully obtained
three differentiation stages (Figures 6A, B). The analysis shows that
CD4+ T cells significantly increase during the early stages, reflecting
their critical role in early immune responses. Classical monocytes
peak in the middle and late stages, which may relate to remodeling
of the myocardial infarction (MI) microenvironment, indicating
their potential role in the subacute phase of MI (Figures 6C, D).

In addition, through the visualization tool of CellChat software
(30), we have constructed various charts to display the
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communication relationships between different cell types. These
visual charts reveal complex cellular interaction patterns, helping

researchers better understand cellular communication mechanisms.

The circular diagram illustrates the cellular communication
network, with the thickness of the lines representing the strength
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of the connections (Figure 6E); The heatmap presents an overall
overview of communication intensity, with color depth reflecting
the degree of difference (Figure 6F); The bubble chart vividly
illustrates the diversity of communication, with the size and color
of bubbles representing interaction frequency and importance,
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Pseudo-temporal trajectory and intercellular communication analysis. (A, B) Trajectory of cell states; (C, D) Distribution of classical monocytes over
pseudo-time; (E-G)CellChat analysis reveals strong communication between classical monocytes and CD4+ T cells.

respectively (Figure 6G). In summary, these charts depict
communication relationships between cells and promote a deeper
understanding of their interactions. They provide valuable data for
research and drive innovation in the field of cell communication.

3.6 CeRNA analysis

In this study, we conducted a comprehensive analysis of the
microRNA (miRNA) regulatory network associated with HP.
Figure 7A clearly shows five overlapping miRNAs identified from
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three databases (Target Scan (33), miRDB (34), and miRwalk (35)),
namely hsa-miR-512-5p, hsa-miR-1247-5p, hsa-miR-6715b-3p,
hsa-miR-6836-5p, and hsa-miR-6132 (Figure 7A). We
subsequently searched for the long non-coding RNAs (LncRNAs)
corresponding to these miRNAs in the ENCORI database (36), and
only obtained LncRNAs related to hsa-miR-1247-5p. We then
constructed a protein-protein interaction (PPI) network using
Cytoscape (37) (Figure 7B). This analysis provides important
evidence for understanding the multi-level mechanisms of HP
regulation and its impact on cellular processes. It highlights the
complex interactions between miRNAs and HP. These findings lay
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the foundation for further exploration of miRNA functions in
regulating gene expression under various physiological and
pathological conditions.

3.7 Verification of HP in an independent
dataset

To meet the requirements of independent validation and further
enhance the credibility of our findings, we retrieved four independent
datasets from the GEO database to validate the upregulation of HP in
myocardial infarction (MI) and its diagnostic potential (detailed sample
information can be found in Supplementary Table 1). Firstly, we
analyzed the differentially expressed genes in the four datasets based
on the criteria of p-value<0.05 and | logFC | > 0, and plotted volcano
plots to mark the location of HP (Figures 8A-D). Subsequently, violin
plots were used to demonstrate the expression of HP in four datasets,
which was consistent with our previous results. The expression of HP
in peripheral blood of myocardial infarction patients was significantly
upregulated (p<0.05, Figures 8E-H). It is worth noting that receiver
operating characteristic (ROC) curve analysis showed that in these
four independent validation sets, HP consistently demonstrated good
diagnostic performance (AUC values of 0.696, 0.756, 0.866, and 0.920,
respectively, Figures 8I-L). In addition, through immune infiltration
analysis of GSE48060 and GSE66360, it was found that there was a high
positive correlation between HP and classical monocytes in these two
datasets (p<0.05, Figures 8M, N), which is consistent with the previous
findings of HP being associated with classical monocytes in single-cell
analysis, further demonstrating the reliability of this result. In
summary, the comprehensive evidence from these four independent
cohorts, spanning the levels of transcriptomics and proteomics,
provides strong multi-faceted validation for HP as a biomarker that
exhibits sustained dysregulation and diagnostic value through
classical monocytes.
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4 Discussion

Myocardial infarction (MI) remains the leading cause of death
worldwide, and a thorough analysis of its molecular mechanisms is
crucial for improving clinical prognosis. In this study, we
systematically revealed for the first time the key role of
Haptoglobin (HP) in the immune microenvironment of MI. We
integrated weighted gene co-expression network analysis
(WGCNA) with ferroptosis and exosome phenotype gene
screening strategies. Using this approach, we successfully
identified the HP gene from the GSE141512 dataset. The results
indicate that HP is upregulated in MI and high expression in
classical monocytes, with potential value as a diagnostic
biomarker for MI. In addition, functional enrichment analysis
showed that this gene module is mainly involved in immune
related processes, indicating that HP may contribute to the
pathogenesis and progression of myocardial infarction by
regulating immune responses.

Importantly, HP plays a unique role at the intersection of
immune regulation and ferroptosis. Mechanistically, it prevents an
increase in iron load by binding to free hemoglobin, thereby limiting
iron catalyzed oxidative stress, which is the central driving factor for
ferroptosis (42). In the context of myocardial infarction (MI),
excessive iron deposition and lipid peroxidation cause death of
myocardial cells, and upregulation of HP in classical monocytes
may represent a compensatory response to alleviate the damage
associated with ferroptosis (43). In addition, HP has been reported
to regulate macrophage polarization and cytokine release, indicating
that its overexpression in classical monocytes may directly affect the
balance between pro-inflammatory and reparative immune responses
after MI (44). These dual functions highlight the role of HP as a
regulator of ferroptosis and immune regulation, providing a
reasonable mechanistic basis for its diagnostic and therapeutic
potential. Our study confirms the previous observation that HP is
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Validation with four independent datasets. (A-D) Volcanic maps of four independent datasets: GSE48060, GSE66360, GSE60993, and GSE220865;
(E-H) Violin plot of differential expression of HP gene in these four independent datasets. (I-L) Diagnostic ROC plots of HP gene in these four
independent datasets; (M) The correlation between HP gene and various immune cells in the GSE48060 dataset; (N) The correlation between HP

gene and various immune cells in the GSE66360 dataset.

elevated in the plasma of patients with myocardial infarction (45).
However, in addition to its known role as a plasma protein, our
single-cell RNA sequencing (scRNA seq) analysis provides new
insights, identifying classical monocytes as the main source of
elevated HP in the MI immune microenvironment.

Frontiers in Immunology 12

We validated our findings using two independent datasets
(GSE141512 and GSE95368). These analyses confirmed that HP
is significantly overexpressed in myocardial infarction (MI) samples
and shows excellent diagnostic efficacy in proteomic data
(AUC=0.833). Notably, our immune infiltration analysis using the
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CIBERSORT algorithm revealed a significant correlation between
HP expression and immune cell subpopulations, particularly
classical monocytes. This finding was further corroborated by
single-cell RNA sequencing analysis of the GSE269269 dataset,
which showed that HP is predominantly expressed in classical
monocytes. Furthermore, we validated the significant
upregulation of HP in classical monocytes from MI patients using
qPCR experiments on clinical samples. This step completed the
research process, bridging bioinformatics discovery and
experimental verification. Importantly, the core finding of HP
upregulation in MI was robustly validated across multiple
independent external cohorts (GSE66360, GSE48060, GSE60993,
GSE220865). This multi-cohort validation strategy directly
addresses the necessity of independent replication in biomarker
discovery. HP showed consistent diagnostic performance, with
significant AUC values across all datasets. This consistency
greatly enhances the credibility of our initial findings. It also
reduces concerns about overfitting or cohort-specific biases
common in studies using a single dataset. Additionally, immune
infiltration and immunological correlation analyses in GSE66360
and GSE48060 further demonstrated a significant positive
correlation between HP and classical monocytes, highly consistent
with previous conclusions. This converging evidence elevates HP
from a preliminary finding to a reliably validated
candidate biomarker.

This study presents an important innovation: the precise
analysis of HP’s cellular localization in the immune
microenvironment of MI. This was achieved using single-cell
sequencing technology. Our pseudo time trajectory analysis
indicates that classical monocytes with high expression of HP
mainly appear in the middle and late stages of immune response,
which coincides with the tissue remodeling process after MI. This
suggests that HP may be related to maintaining inflammation and
coordinating repair processes, especially in the subacute stage of
myocardial infarction. In addition, intercellular communication
analysis showed that classical monocytes with high expression of
HP actively interact with CD4+T cells and dendritic cells through
cytokine and chemokine signaling pathways, which may amplify
the activation of adaptive immunity. These findings suggest that HP
may not only label a pathogenic subpopulation of classical
monocytes, but also influence the development trajectory of post
infarction inflammation by promoting interactions between
classical monocytes, T cells, and dendritic cells. We speculate that
the co-expression of HP in gene modules related to immune
activation and ferroptosis suggests a possible link between HP
and these processes; thus, the upregulation of HP in classical
monocytes may represent a compensatory mechanism to
counteract oxidative stress and iron overload, hallmarks of
ferroptosis (46). In addition, HP is conserved in mammalian
evolution and is associated with immune regulation in various
species, indicating its broader role in comparative immunology (47,
48). Future cross species studies may elucidate its conserved
functions in inflammatory response and tissue repair.
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Although this study provides evidence supporting the role of
HP in myocardial infarction, some limitations still need to
be acknowledged:

1. Limited sample size: The main limitation of this study is the
relatively small sample size in our clinical validation cohort
(n=5 per group), which may limit the statistical power and
generalizability of our research results.

2. Lack of functional experimental evidence: The functional
insights we obtained mainly rely on bioinformatics
inference. Although we have provided in vitro validation
of HP expression, it is still necessary to clarify its causal
relationship through functional enhancement or inhibition
experiments to elucidate the specific mechanism of HP in
the immune microenvironment.

3. Incomplete characterization of regulatory network:
Although we constructed a preliminary ceRNA network
for HP, the interactions between HP, miRNA, and IncRNA
remain predictive and require experimental validation.

4. Limitations of single-cell resolution: Although we used
single-cell RNA sequencing data to infer the cellular
localization of HP, this lacks direct experimental
evidence. Therefore, more precise experimental methods
are needed to verify the expression and function of HP in
different cell types.

In response to these limitations, future research will involve
larger multicenter prospective cohorts to validate the diagnostic and
prognostic value of HP in classical monocytes. Secondly, future
research will include in vivo and in vitro functional experiments,
such as knocking out or overexpressing HP in cell lines and animal
models, to elucidate its role in monocyte activation and iron
deposition regulation. Thirdly, future work will include using
techniques such as luciferase reporter assay and RNA
immunoprecipitation to validate the binding relationship between
HP and identified miRNAs. Finally, spatial transcriptomics and
multiplex immunofluorescence staining will be used to visualize
and confirm the expression and distribution of HP in myocardial
tissue slices at single-cell resolution. By addressing these limitations,
future research will enhance the depth and clinical relevance of our
findings, ultimately contributing to the development of HP basic
diagnosis and treatment strategies for myocardial infarction.

In conclusion, this study establishes Haptoglobin (HP) as a
clinically promising diagnostic biomarker and therapeutic target for
myocardial infarction through integrated multi-omics analysis and
experimental validation. HP demonstrates consistently high
diagnostic accuracy across both transcriptomic and proteomic
platforms, and its specific overexpression in classical monocytes
was confirmed in clinical samples. These findings highlight the
potential of HP as a practical blood-based biomarker for early MI
detection and patient stratification. Further development of HP-
targeted detection assays and investigation into its
immunomodulatory functions could open new avenues for
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clinical translation. Ultimately, these advances may contribute to
improved diagnosis and immune-targeted therapy for
myocardial infarction.
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