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Introduction: Adhesion to host cells is the first and essential step in
Mycobacterium tuberculosis (M. tuberculosis) infection. Among adhesion
molecules, the PGRS domain of PE_PGRS33 plays a critical role in invasion but
is dominated by B cell epitopes and lacks sufficient T cell epitopes, restricting its
capacity to induce a balanced immune response.

Methods: To overcome this limitation, we employed an integrative reverse
vaccinology pipeline combining computational prediction and experimental
validation. Helper and cytotoxic T lymphocyte epitopes were incorporated
from multiple M. tuberculosis adhesins as well as other virulence-associated
proteins, and adjuvant sequences were systematically evaluated in silico.
Results: Among three multi-epitope constructs, the Toll-like receptor 2 (TLR2)-
agonist and pan HLA DR-binding epitope (PADRE)-adjuvanted vaccine (TLR2-
vaccine) emerged as the most promising candidate. In murine models, TLR2-
vaccine induced strong antigen-specific antibody and IFN-y responses,
significantly reduced bacterial loads following H37Ra challenge, and effectively
prevented extrapulmonary dissemination.

Discussion: These findings highlight the potential of adhesin-inclusive muilti-
epitope vaccines to elicit both humoral and cellular immunity and demonstrate
how computational vaccinology can accelerate the development of targeted
interventions against tuberculosis.

Mycobacterium tuberculosis, adhesins, epitope-based vaccine, TLR2-agonist vaccine,
Infection prevention, extrapulmonary dissemination

1 Introduction

TB remains a substantial global health burden, with M. tuberculosis as its causative agent,
ranking closely behind the COVID-19 pandemic in 2022 (1). Despite extensive efforts in public
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health, TB continues to affect over 10 million individuals annually (1),
highlighting its persistent presence and global impact. It is imperative
to address the challenges faced in effective tuberculosis treatment while
emphasizing the pivotal role of prevention in alleviating the disease’s
global burden (2). The Bacillus Calmette-Guérin (BCG) vaccine is
currently the only authorized prophylactic measure for TB. However,
its protective efficacy is limited in the adult population. Therefore,
further research and development of additional preventive measures
are necessary to improve TB control strategies.

Subunit vaccines have emerged as a promising strategy due to
their potent T cell and B cell stimulatory capacity (3-8). Yet, these
vaccines may not provide broad protection against infection because
they typically target a limited number of antigens and might cause
allergic reactions without contributing to the desired immune
response (9, 10). To overcome these challenges, reverse
vaccinology has emerged as an effective approach. Reverse
vaccinology, introduced in 2000, is an in silico approach that starts
with the pathogen’s genomic sequence and ends with a list of
predicted peptide candidates that require experimental verification
before vaccine development (11). The first epitope-based vaccine
against infectious disorders was developed in 1985 by Jacob et al.
(12), and numerous others against bacteria, viruses, parasites and
even cancer are currently being developed, including those for
Staphylococcus aureus, dengue virus, human papilloma virus
(HPV), visceral leishmaniasis, onchocerciasis, and breast cancer
(13-18). A well-crafted multi-epitope vaccine holds promise as a
tool for combating a range of diseases (19, 20). Continued research
and clinical trials are necessary to evaluate the safety, efficacy, and
potential of reverse vaccinology and peptide-based vaccines in TB
and other disease prevention and/or therapy.

Currently, there are 16 tuberculosis vaccine candidates
undergoing clinical trials worldwide (21). Most of these trials
focus on therapeutic vaccines, TB prevention, and TB recurrence
prevention, with few targeting M. tuberculosis infection specifically.
However, the first line of defense against TB is actually the
prevention of M. tuberculosis infection itself. Adhesion molecules,
which facilitate the initial interaction of mycobacteria with host
cells, are crucial in this context. These molecules, present on the
surface of most bacteria, aid in attachment and interaction with the
host during infection (22, 23).

We selected multiple adhesion molecules to develop a multi-
epitope vaccine aimed at preventing M. tuberculosis from entering
target cells. One such molecule, antigen 85B (Ag85B), is a major
secretory protein of M. tuberculosis that binds to fibronectin on host
cells (24). Ag85B is vital for M. tuberculosis pathogenicity, as it
inhibits the formation of phagolysosomes necessary for infection
clearance, allowing the bacteria to evade the host immune response
(25). Clinical trial data show that while Ag85B weakly enhances
humoral immunity, it significantly boosts the CD4"™ T cell response
(26, 27). Hsp65 is another key adhesion molecule that binds to CD43
(28, 29). It plays a crucial role in host cell survival mechanisms and
strongly modulates immune responses based on cellular immunity
(29-31). M. tuberculosis pili (MTP) are small adhesion molecules that
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interact with laminin in the host cell’s extracellular matrix,
contributing to tissue colonization and potentially acting as
virulence factors in M. tuberculosis pathophysiology (32).

In addition to adhesion molecules, we included several
important M. tuberculosis virulence factors to broaden immune
coverage. The early secreted antigenic target-6 (ESAT-6) enhances
mycobacterial pathogenicity, promotes host cell cytolysis, reduces
the ability of mononuclear phagocytes to eradicate pathogens, and
facilitates M. tuberculosis interaction with host (33, 34). Moreover,
ESAT-6 is recognized as a potent T cell antigen, although it does not
elicit a strong humoral immune response (4, 26, 27, 35, 36).
Members of the PE/PPE protein family, such as PPE25 and PE19,
play crucial roles in immunodominance and antigenic variation,
contributing to mycobacterial virulence, persistence, and
pathogenesis (37-40). Similarly, TB10.4 is a well-known secretory
antigenic protein essential to mycobacterial pathophysiology,
triggering a potent CD8" T cell response (41, 42).

Emerging evidence suggests that, alongside T cell mediated
cellular immunity, antibodies and B cells may offer protection
against M. tuberculosis infection (9, 43-50). Antibodies targeting
M. tuberculosis surface antigens can potentially mitigate the
infection’s adverse effects by accelerating pathogen clearance and
preventing pathogen entry into host cells. PE_PGRS33, a
mycobacterial surface exposed antigen, interacts with host
macrophage TLR2 to generate inflammatory signals and facilitate
macrophage entry (51-54). The PGRS domain of PE_PGRS33 aids
in the interaction with host TLR2, while the PE domain is necessary
for protein translocation through the mycobacterial cell wall (55).
Native recombinant PE_PGRS33-immunized mice were able to
limit M. tuberculosis growth in vivo (51). Subjects vaccinated with
BCG and those with latent tuberculosis infection (LTBI) produced
antibodies against PE_PGRS33, primarily targeting epitopes in the
PGRS domain (56). By neutralizing the interaction with TLR2,
antibodies against PE_PGRS33 may disrupt a mycobacterial
pathogenic pathway. Additionally, PE_PGRS33-specific antibodies
may opsonize M. tuberculosis, facilitating more effective
phagocytosis and destruction by activated macrophages (55).
These findings highlight the potential of the PGRS domain of
PE_PGRS33 as a target for a humoral immune response that
neutralizes TB.

Here, we adopted an epitope-based strategy focusing on
adhesion-associated antigens that mediate the initial interaction
of M. tuberculosis with host cells. Six helper T lymphocyte (HTL)
epitopes were identified from ESAT-6, Ag85B, PPE25, PE19,
HSP65, and MTP, together with two cytotoxic T lymphocyte
(CTL) epitopes from TB10.4. These epitopes were combined with
the PGRS domain of PE_PGRS33, which elicits strong humoral
responses but lacks sufficient T cell epitopes. By assembling these
elements into a rationally designed multi-epitope construct, we
aimed to achieve a balanced stimulation of both cellular and
humoral immunity (Figure 1).

The selection of epitopes was guided by both computational
prediction and evidence from previous experimental studies. For
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ESAT-6 and Ag85B, we incorporated epitopes that have been
consistently associated with robust CD4" T cell responses (57,
58). PPE25 and PE19 epitopes were chosen based on a
combination of in silico analysis and published experimental
validation, ensuring reliable immunogenicity (59). Highly reactive
epitopes from HSP65 and MTP were identified computationally,
while two epitopes from TB10.4 were selected to cover both
experimentally verified and predicted candidates (41).
Appropriate linkers and adjuvant sequences were introduced to
optimize antigen presentation and enhance vaccine potency.

To move beyond purely computational predictions, we further
validated our design through wet-lab experiments. Among the three
candidate constructs, the TLR2-agonist and PADRE-adjuvanted
vaccine (TLR2-vaccine) was selected for in vivo testing. In mouse
models, this vaccine not only reduced bacterial burden in the lung
and other organs but also effectively prevented extrapulmonary
dissemination. These results support the concept that targeting
adhesins at the earliest stage of infection, combined with rational
epitope design and optimized adjuvant selection, can provide
protective immunity against M. tuberculosis.

Selection of proteins

» PE-PGRS33 »

M. tuberculosis
Replacement of
PE with multi-

epitope peptide

Retrieval of
protein from
Uniprot Database

,(\ »

10.3389/fimmu.2025.1707471

2 Materials and methods
2.1 Sequence retrieval

Amino acid sequences of eight Mycobacterium tuberculosis
(strain H37Rv) proteins—ESAT-6 (P9WNK7), Ag85B
(POWQP1), PPE25 (P9WI13), PE19 (Q79FK4), HSP65
(POWPE7), MTP (P9WI87), TB10.4 (POWNK3), and PE_PGRS33
(P9WIF5)—were retrieved from the UniProt database. The
antigenicity of each protein was evaluated using the VaxiJen v2.0
and Immunomedicine Group servers (60, 61), while allergenicity
and toxicity were assessed using AllerTOP v2.0 and ToxinPred,
respectively. Only non-allergenic, non-toxic, and highly antigenic
proteins were selected for further analysis (62-64).

2.2 Prediction of helper T lymphocyte
epitope and IFN—y inducing epitope

HTL epitopes were predicted using the IEDB MHC class II
server with the human HLA-DR reference allele set. Fifteen-mer
epitopes with the lowest percentile ranks were considered high-
affinity candidates. The selected HTL epitopes were then screened
for IFN-v induction potential using the IFNepitope server based on
Support Vector Machine algorithms (65-71).

Epitope prioritization

Antigenic propensity

HTL epitope
prediction Allergenicity prediction

» CTL ePit()pe » Toxin » Selected epitopes
prediction

Experimentally IFN-y epitope prediction

vl Bftisges World population coverage

Phase IT Multi-epitope peptide construct

Epitopes linked together Multi-peptide linked to Adjuvant
through linker adjuvant through linker * HBD3+ PADRE

- GPGPG « EAAAK « TLR2-agonist+ PADRE

- AAY * 50 s ribosomal L7/L12+ PADRE

- GGGS

Phase I11 Vaccine evaluation Structure-based analysis Sequence-based analysis

Multi-epitope peptide design and processing Molecular docking Molecular dynamics simulation

* Physiochemical properties evaluation » * TLR2 » * Binding free energy » Immune simulation » Insilico optimization

» Immunological properties evaluation * Hydrogen bonds calculations (MM-PBSA) and cloning

* Prediction of secondary structure
* Tertiary structure modeling, refinement and validation

HBD3: GIINTLQKYYCRVRGGRCAVLSCLPKEEQIGKCSTRGRKCCRRKK
TLR2-agonist: IGKEFKRIVQRIKDFLRNLVPRTERKDVT

50 s ribosomal L7/L12: MAKLSTDELLDAFKEMTLLELSDFVKKFEETFEVTAAAPVA
VAAAGAAPAGAAVEAAEEQSEFDVILEAAGDKKIGVIKVVREIVSGLGLKEAKDLVDGAPKPLLEKVAKEAADEAKAKLEAAGATVTVK

PADRE: AKFVAAWTLKAAA
EAAAKMTEQQWNFAGIEAAASAIQGGPGPGFQDAYNAAGGHNAVFGPGPGATGYASVIAELTGAPGPGPGPTTGVVPAAADEVSAGPGPGTFGLQLELTEGMRFDGPGPGVPDY
YWCPGQPFDPAAAYAMEDLVRAYAAYQIMYNYPAMGGGGSGGGGSGGGGSALLGRPLIGNGANGAPGTGANGGDGGILIGNGGAGGSGAAGMPGGNGGAAGLFGNGGAGGA
GGNVASGTAGFGGAGGAGGLLYGAGGAGGAGGRAGGGVGGIGGAGGAGGNGGLLFGAGGAGGVGGLAADAGDGGAGGDGGLFFGVGGAGGAGGTGTNVTGGAGGAGGNG
GLLFGAGGVGGVGGDGVAFLGTAPGGPGGAGGAGGLFGVGGAGGAGGIGLVGNGGAGGSGGSALLWGDGGAGGAGGVGSTTGGAGGAGGNAGLLYVGAGGAGGAGALGGG
ATGVGGAGGNGGTAGLLFGAGGAGGFGFGGAGGAGGLGGKAGLIGDGGDGGAGGNGTGAKGGDGGAGGGAILVGNGGNGGNAGSGTPNGSAGTGGAGGLLGKNGMNGLP

FIGURE 1
A schematic representation of the workflow used in developing a multi-epitope vaccine against M. tuberculosis.
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2.3 Prediction of potential cytotoxic T
lymphocyte epitope

CTL epitopes were predicted using the NetCTL 1.2 server,
which integrates MHC class I binding, proteasomal cleavage, and
TAP transport efficiency (72, 73). Epitopes with high combined
scores and strong predicted binding affinities were selected for
further analysis.

2.4 Prediction of population coverage

To estimate global immune coverage, the selected epitopes were
analyzed using the IEDB Population Coverage tool under default
parameters (74). This analysis evaluated the theoretical proportion
of the human population that could potentially respond to the
designed multi-epitope vaccine.

2.5 Construction of final vaccine

After identifying the optimal epitopes, three multi-epitope
vaccine constructs were designed using distinct adjuvant
combinations: (i) B-defensin 3 (HBD3) with PADRE, (ii) TLR2
agonist with PADRE, and (iii) 50 s ribosomal protein L7/L12 with
PADRE. HBD3, an antimicrobial peptide involved in innate
immunity, activates and polarizes dendritic cells, thereby bridging
innate and adaptive immune responses (75-78). The TLR2 agonist
enhances proinflammatory cytokine release and promotes antigen
presentation through macrophages and DCs (79-83). L7/L12, a
ribosomal protein with proven immunogenicity in subunit vaccines,
was also evaluated as an alternative adjuvant (84-88). PADRE, a
universal helper epitope with broad HLA-DR binding capacity, was
incorporated to enhance CD4" T cell activation and overall vaccine
immunogenicity (83, 89-91).

To construct a stable and immunologically active chimeric
vaccine, suitable linkers were applied between functional
domains. The EAAAK linker was placed between adjuvants and
epitopes to maintain structural rigidity and prevent steric
interference (92, 93). GPGPG was used to connect HTL epitopes,
facilitating MHC-II presentation and reducing junctional
immunogenicity (87, 94). AAY linkers were applied between CTL
epitopes to promote proteasomal processing and efficient
recognition by cytotoxic T cells (87, 95). Finally, the GGGS linker
connected the PGRS domain to the multi-epitope segment,
providing flexibility for correct B-cell epitope folding and
structural integrity (96).

2.6 Prediction of physicochemical
properties and solubility of multi-epitope
vaccine

The physicochemical characteristics of the vaccine construct,
including the number of amino acids, molecular weight, theoretical
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isoelectric point (pI), instability index, aliphatic index, and grand
average of hydropathicity (GRAVY), were analyzed using the
ExPASy ProtParam tool (97). Protein solubility upon expression
in E. coli was predicted using the SOLpro server, which employs a
support vector machine-based approach to classify proteins as
soluble or insoluble with associated probabilities.

2.7 Secondary structure prediction

The secondary structure of the designed vaccine constructs was
predicted using PSIPRED and Prabi (GOR IV). PSIPRED predicts
o-helices, B-strands, and coils based on PSI-BLAST outputs
analyzed by neural networks, providing reliable accuracy for
proteins lacking homologous structures (98). The GOR IV
algorithm, implemented in the Prabi server, applies information
theory and residue pair frequencies within a 17-residue window
to determine secondary structure elements (99, 100). The
combined use of these methods provided a consistent estimation
of the proportion of helices, sheets, and coils, allowing evaluation of
the structural stability and folding tendency of the multi-
epitope vaccine.

2.8 Tertiary structure prediction,
refinement and validation

The tertiary structure of the multi-epitope vaccine was
predicted using the AlphaFold Server, which applies the
AlphaFold 3 model for high-accuracy biomolecular structure
prediction. The resulting model was refined using GalaxyRefine,
which performs side-chain repacking and molecular dynamics-
based relaxation to improve structural quality (101, 102).

Model validation was conducted through SAVES v6.1 (VERIFY
3D and PROCHECK modules) and ProSA-web (103-107). VERIFY
3D assessed sequence-structure compatibility, PROCHECK
evaluated stereochemical geometry, and ProSA-web provided
Z-score-based quality estimation. Together, these analyses
confirmed the structural reliability of the vaccine model.

2.9 Molecular docking

Molecular docking is widely used to predict binding
interactions between protein structures. The crystal structure of
the human TLR2 complex (PDB ID: 6NIG) was obtained from the
Protein Data Bank (https://www.rcsb.org) (108). The PDB file was
visualized using PyMOL software (Version 4.6.0, SourceForge
Headquarters, San Diego, USA), and non-TLR2 molecules were
removed. The vaccine was docked with TLR2 using the ClusPro 2.0
server (109-112), HawkDock server (113-115), and GRAMM
server (116). The binding affinities (AG) of the docked complexes
were uniformly calculated using the PRODIGY server (117, 118),
with the structure exhibiting the lowest score considered the
optimal docking structure. Finally, the interactions within the
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docking complex were analyzed using the LigPlot+ software
(Version 2.2, European Bioinformatics Institute, Cambridge,
United Kingdom), which is based on JAVA.

2.10 Molecular dynamic simulation

Molecular dynamics (MD) simulations were employed to
simulate the stability and dynamic parameters of the docked
complex, thereby evaluating the stability of the vaccine construct.
The best candidate docking complex underwent molecular
dynamics simulations using GROMACS software (119). The
detailed process involved generating the gro file of the complex
system using the Amber14sb force field in GROMACS. Before the
simulation, the docking complex was solvated in a cubic box of
water molecules (SPC) and neutralized with appropriate ions. To
alleviate initial spatial collisions, energy minimization of the
complex was performed using the steepest descent method.
Additionally, the entire system was equilibrated in NVT and NPT
ensembles, with the system temperature raised to 300 K and the
pressure maintained at 1 bar. A 100 ns molecular dynamics
simulation was subsequently conducted. Post-simulation,
molecular dynamics calculations were performed for parameters
such as RMSD (root mean square deviation), RMSF (root mean
square fluctuation), Rg (radius of gyration), and SASA (solvent-
accessible surface area). Furthermore, to understand the overall
motion of the complex, principal component analysis (PCA) was
conducted using the GROMACS analysis tools, with projections
related to the first two principal components (PC1 and PC2) being
calculated. The overall flexibility of the docking complex was also
defined and calculated using the online iMODS server (120).
Molecular dynamics simulations were also performed using
Discovery Studio. The molecular system was prepared by
applying CHARMM force fields and solvated in a water box with
neutralizing ions. After energy minimization to resolve steric
clashes, the system was equilibrated under NVT and NPT
ensembles. A production MD run was then conducted under
controlled temperature and pressure conditions. Following the
simulation, trajectory analysis was carried out to assess the
structural stability and dynamic behavior of the system.

2.11 Host immune system simulation

The immune response profile of the designed vaccine was
simulated using the C-ImmSim server (121-128). This in silico
model reproduces the interactions between lymphoid (HTL, CTL, B
cells, and plasma cells) and myeloid (macrophages and dendritic
cells) lineages, enabling prediction of humoral and cellular immune
responses. Simulation parameters were set at time intervals of 1, 84,
and 168; simulation volume of 50; and 1000 steps with a random
seed of 12345. The selected HLA alleles included A0101, A0201,
B0702, B0801, DRB1_0101, and DRB1_1501. Vaccine injections
were modeled without lipopolysaccharide (LPS), and the adjuvant
level was fixed at 100.
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2.12 Recombinant plasmid construction

The vaccine sequence was reverse-translated and optimized for
expression in E. coli using the JCat server to achieve suitable GC
content and a high codon adaptation index (CAI) (129, 130). BamHI
and EcoRI restriction sites were added to the N- and C-termini,
respectively, to facilitate cloning into the pET28a(+) vector. The
recombinant construct was then modeled using SnapGene software.

2.13 Mycobacterium strains and mice

Mycobacterium bovis BCG and M. tuberculosis H37Ra strains
were obtained from Zhifei Longcom Biopharmaceutical Co., Ltd.
(Anhui, China) and maintained on Middlebrook 7H10 agar
medium (Solarbio, Cat. No. LA7230). Specific pathogen-free
(SPF) female C57BL/6 mice, aged 6 weeks, were purchased from
the National Institutes for Food and Drug Control (Beijing, China).
Mice were housed under pathogen-free conditions in the Animal
Biosafety Level-2 (ABSL-2) facility at the Experimental Animal
Center, Zhifei Lvzhu Biopharmaceutical Co., Ltd. (Beijing, China).
All mice were fed a sterile commercial mouse diet and provided ad
libitum access to water.

2.14 Mice immunization and bacterial
challenge

TLR2-vaccine (10 pg/mouse) was dissolved in 100 ul PBS,
emulsified with 100 pl incomplete Freund’s adjuvant (IFA), and
administered subcutaneously three times at 2-week intervals. For
BCG immunization, mice received 1 x 10° CFU M. bovis BCG in
100 pl PBS via subcutaneous injection on the back.

For the preventive infection model, mice were challenged with
2 x 10° CFU M. tuberculosis H37Ra in 100 pl PBS via tail vein. Two
weeks later, lungs, livers, and spleens were harvested for bacterial
load determination, and selected tissues were processed for
hematoxylin and eosin (H&E) staining. Tissue homogenates were
serially diluted 10-fold in PBS, and 100 pl of each dilution was
plated on Middlebrook 7H10 agar (Solarbio, China). Plates were
incubated at 37°C for 4 weeks before enumeration of colony-
forming units (CFU). For the post-exposure protection model,
mice were infected with aerosolized H37Ra using a Glas-Col
inhalation exposure system (Terre Haute, IN, USA), adjusted to
deliver an initial dose of ~200 CFU per mouse. Two weeks after
infection, mice were immunized with TLR2-vaccine as described
above, and bacterial loads and histopathology of the lungs and livers
were assessed 2 weeks after the final immunization.

2.15 Serum antibody ELISA

Microtiter plates were coated with 100 pl of either TLR2-vaccine
(2 pg/mL) or heat-inactivated H37Ra (1x10° CFU/mL) in carbonate
buffer (0.015 M Na,C05/0.035 M NaHCO3, pH 9.6) and incubated
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overnight at 4°C. Plates were blocked with PBS containing 0.1%
Tween-20 and 3% BSA at 37°C for 2 h, then washed with PBS/0.1%
Tween-20. Mouse sera collected from the tail vein were diluted at an
initial 1:100 and subjected to two-fold serial dilutions. One hundred
microliters of each dilution were added to the wells and incubated at
37°C for 1 h. After washing, wells were incubated with HRP-
conjugated anti-mouse IgG (1:5000; Sigma) in PBS/0.1% Tween-
20/0.75% BSA for 1 h at room temperature. Plates were developed
with TMB substrate for 5 min, stopped with 0.2 M H,SO,, and
absorbance was read at 450 nm on a microplate reader. Endpoint
titers were defined as the highest serum dilution giving an OD > 2x
the negative control.

2.17 IFN-vy ELISA (splenocyte stimulation
and serum)

Single-cell suspensions of splenocytes were prepared and
adjusted to 2 x 10° cells per well for cytokine assays. Splenocytes
were cultured in 96-well plates in complete RPMI medium and
stimulated with antigen (20 pg/ml) for 72 h at 37°C with 5% CO,.
Supernatants were harvested and stored at —80°C until analysis.

TFN-y levels in both splenocyte culture supernatants and serum
samples were measured using the ELISA MAX ™ Standard Set
Mouse IFN-y (BioLegend, Cat. No. 430801), following the
manufacturer’s instructions. All ELISA measurements were
performed in duplicate.

2.18 Statistical analysis

All statistical analyses were performed using GraphPad Prism
version 10.4.0 for Windows (GraphPad Software, La Jolla, CA, USA;
www.graphpad.com). P values less than 0.05 were considered
statistically significant. Statistical significance was indicated as
follows: *p < 0.05, **p < 0.01, **p < 0.001, ***p < 0.0001.

3 Results

3.1 Protein sequences, structures and
immunological properties

In this study, we selected eight immunogenic proteins from M.
tuberculosis (H37Rv strain): ESAT-6, Ag85B, PPE25, PE19, HSP65,
MTP, TB10.4, and PE_PGRS33. These protein sequences were
retrieved from the UniProt database, and their tertiary structures
were obtained from the AlphaFold Protein Structure Database. For
antigens with experimentally solved structures, such as ESAT-6-
CFP10 complex (PDB ID: IWAS) and the Ag85B (PDB ID: 1FON),
the corresponding PDB entries were also referenced. Because some
available PDB structures are incomplete or represent complexes
rather than full-length monomers, AlphaFold models were
additionally used to visualize the complete conformations for
epitope mapping (Supplementary Figure S1). These adhesins are
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associated with inhibiting the entry of M. tuberculosis into target
cells. We performed immunogenicity predictions, epitope
antigenicity evaluations, and physicochemical analyses to aid in
vaccine development (Supplementary Table SI, Supplementary
Figure S2). Using the AllerTOP v. 2.0 server, all proteins were
confirmed to be non-allergenic (Supplementary Table S1). Toxicity
assessments via the ToxinPred server showed that these proteins are
non-toxic (Supplementary Table S1). Additionally, a non-homology
search against the host proteome confirmed that all selected
proteins are non-homologous.

3.2 Epitopes prediction

We utilized the IEDB server to predict epitopes for HTL. The
HTL epitopes were chosen based on their top-ranking status,
indicating their high affinity. ESAT-6, Ag85B, PPE25, PE19,
HSP65, and MTP have been shown to trigger CD4" T cell
responses. We specifically selected epitopes from ESAT-6 and
Ag85B that had previously demonstrated robust CD4" T cell
responses, while for the other four proteins, we predicted the
HTL epitopes (Supplementary Table S2, Supplementary Figure S3).

Subsequently, we utilized the IFNepitope server to pinpoint
HTL epitopes capable of inducing cell-mediated immunity. The
antigenic regions that bind to MHC class IT molecules and activate
CD4" T cells can stimulate IFN-y production and initiate
downstream signaling pathways. Each identified epitope was
confirmed to enhance IFN-y production (Supplementary Table S2).

For the CTL epitopes from TB10.4, we employed the NetCTL
1.2 server, which assessed several parameters critical for epitope
efficacy. These included MHC-I binding affinity, rescaled MHC
binding affinity, C-terminal cleavage affinity, transport efficiency,
and a combined score, all summarized in Supplementary Table S3.
MHC-I binding affinity is typically quantified as the half maximal
inhibitory concentration (IC50) value. A lower IC50 value indicates
a stronger binding affinity. The rescaled MHC binding affinity
normalizes these values for uniform comparison. A high rescaled
value indicates strong potential for T cell antigen presentation. The
C-terminal cleavage affinity evaluates the likelihood of peptides
being appropriately processed for MHC loading, where a balance is
crucial to prevent over-degradation into suboptimal fragments.
Transport efficiency measures the peptide’s ability to reach the
endoplasmic reticulum for MHC loading. The combined score
integrates these factors, providing a holistic assessment of each
peptide’s potential as an epitope.

In designing a multi-epitope vaccine, we selected peptides with
the best rating and those whose functionality has been
experimentally validated. This approach ensures both the efficacy
and reliability of the vaccine, targeting multiple critical epitopes.

3.3 Population coverage analysis

MHC molecules exhibit high polymorphism and are distributed
extensively across different populations worldwide. This diversity
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underscores the potential of developing a broad-spectrum vaccine
that effectively transcends ethnic boundaries. Utilizing a multi-
epitope peptide-based vaccine approach is particularly
advantageous under these circumstances.

To evaluate the potential population coverage, we used the
IEDB analysis tool, which predicted the global coverage for both
MHC class I and class IT molecules based on the eight epitopes
selected, as detailed in Supplementary Figure S4 and Supplementary
Table S4. The analysis revealed that the combined MHC class I and
class IT epitopes could potentially cover 98.55% and 99.99% of the
global population, respectively. This extensive coverage suggests
that these epitopes are promising candidates for the development of
multi-epitope vaccines.

3.4 Construction of multi—epitope subunit
vaccine

The final vaccine construct was assembled by integrating HTL
and CTL epitopes along with the PGRS domain. Given the typically
low immunogenicity of peptide vaccines, the inclusion of adjuvants
is crucial to enhance their efficacy. In this research, we developed
three distinct vaccine formulations, each featuring a different
adjuvant combination: an HBD3 and PADRE vaccine (referred to
as the HBD3-vaccine), a TLR2 agonist paired with PADRE (TLR2-
vaccine), and a 50 s ribosomal protein L7/L12 with PADRE (50 s-
vaccine). The structure of the vaccine included six HTL epitopes
positioned adjacent to the adjuvant, followed by two CTL epitopes.
Positioned at the end of the construct was the PGRS domain. These
four domains were connected using specific linkers—EAAAK,
GPGPG, AAY, and GGGS—as depicted in Supplementary
Figure S5.

The helical EAAAK linker was strategically employed to connect
the adjuvant to the epitopes, minimizing interactions with other
protein regions while ensuring effective separation. The GPGPG
linkers were chosen to enhance the immune response mediated by
HTLs, and the AAY motif served as a linker to improve the
separation of CTL epitopes, facilitating their efficient presentation.
For connecting B cell epitope-enriched PGRS domain, the GGGS
linker was used. This linker is known for its flexibility, which allows B
cell epitopes to fold independently and function effectively while
ensuring the overall structural stability of the vaccine construct.

3.5 Prediction of physiochemical
properties, solubility, allergenicity and
immunological properties of vaccine
candidate

In this study, the final vaccine constructs were assessed for their
physicochemical, solubility, allergenicity and immunological
properties using ProtParam, SOLPro, AllerTOP v. 2.0 and
VaxiJen 2.0 server (Supplementary Table S5).

The molecular weights of the three constructs were determined
to be 53.6 kDa, 52.0 kDa, and 61.9 kDa, respectively. Typically, a
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molecular weight above 40 to 50 kDa facilitates lymphatic system
uptake. All three vaccine candidates had molecular weights
exceeding 50 kDa, indicating their suitability for effective
lymphatic absorption (131). The stability of these constructs was
gauged using the instability index; values below 40 suggest stability.
The indices recorded were 23.28, 21.37, and 21.34, confirming the
stable nature of our vaccines. Additionally, the aliphatic index,
which reflects the volume occupied by aliphatic side chains and can
influence protein thermostability, showed values of 60.77, 62.05,
and 68.29, indicative of thermostability across varying temperatures
(132). Hydropathy, assessed by the GRAVY, yielded values of 0.12,
0.137, and 0.183. These suggest a predominantly hydrophobic
character of the vaccine proteins.

The solubility of the constructs, evaluated against a scaled
solubility threshold (PopAvrSol) of 0.45, was also promising, with
values of 0.969421, 0.992917, and 0.798146, demonstrating superior
solubility compared to the average soluble protein from E. coli.

The allergenic potential of the vaccines was assessed using the
AllerTOP 2.0 server, which confirmed their non-allergenic nature.
Additionally, the antigenicity of these subunit vaccines was
evaluated using the VaxiJen v2.0 server, with results of 1.6944,
1.6729, and 1.5185 against a threshold of 0.4, categorizing them as
probable antigens. These assessments collectively underscore the
high potential of the subunit vaccines in terms of stability, solubility,
and antigenic capabilities.

3.6 Secondary and tertiary structures
analysis

The secondary structures of the final vaccine constructs were
analyzed using the Prabi server, with detailed results presented in
Supplementary Table S6. The initial tertiary structures were
generated by the AlphaFold Server, which provided an in-depth
prediction of the 3D conformation of the vaccine constructs. These
models were then refined using the GalaxyRefine web server to
enhance their structural accuracy and reliability, as depicted in
Figures 2A, E, I and Supplementary Figure S6 offers a detailed
evaluation score table for these refined models, which were crucial
for selecting the most suitable refined models, as discussed in the
subsequent analysis.

The quality of refinement was rigorously assessed using several
metrics. The Global Distance Test - High Accuracy (GDT-HA) and
RMSD quantified how closely the refined models mirrored the
original structures, with values near 1 for GDT-HA and low RMSD
values indicating a high degree of structural fidelity. The MolProbity
score was utilized to evaluate the overall geometric quality of the
models, where lower scores signify fewer geometrical errors and better
structural integrity. Additionally, the clash score and poor rotamer
score were examined to assess the number of steric clashes and the
prevalence of unfavorable side-chain conformations, respectively, with
lower scores denoting better outcomes. The Ramachandran plot
favored percentage provides insight into the proportion of residues
that adopt energetically favorable backbone conformations, with
higher percentages reflecting better structural quality.

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1707471
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

10.3389/fimmu.2025.1707471

Yang et al.
VERIFY3D
A B 80.84% of the residues have
averaged 3D-1D score >= 0.1
HTL epitope Pass
GPGPG Linker Epiepe
! At least 80% of the amino acids have scored >= 0.1 in the 3D/1D profile.
= Raw Score
PGHS . s
N oLl
RS .
% AAY Linker °%
\/X\\\,t PADRE 0
X s
Q’t/\\l -y ' '
X .
Coterminal X HBD3 15
20
- 25,
DLOTITONANI{TN T OO QOOTS O FA{TOEO 60068
C
3
]
2
@
%]
135
: . 3.0
-180-135-90 -45 0 45 90 135180 1 621
Phi (degrees) Sequence position
E F VERIFY3D
83.31% of the residues have
averaged 3D-1D score >= 0.1
Pass
At least 80% of the amino acids have scored >= 0.1 in the 3D/1D profile.
B Raw Score
=3 Averaged Score
HTL cpitope
GPGPG Linker
-15
2.0,
TS S A S AT S G OO AL S O ALTOR QOO T O 8
G H
180 30 —
135 %20
90 E .
g 45 El
8 2
2o 200
= e
745 3
-4 AR
2-10
90 :
20
-135
- ] 3.0 a hul
-180-135-90 45 0 45 90 135180 1 605
Phi (degrees) Sequence position
T J VERIFY3D
80.03% of the residues have
® averaged 3D-1D score >= 0.1
GPGPG Linker Pass
HTL epitope At least 80% of the amino acids have scored >= 0.1 in the 3D/1D profile.
= raw score
1 3 Averaged Score
{ s
*" PADRE AAY Linker
S50 s ribosomal L7/L12 05
§ . . TN
C-terminal Q s
20, .
A I AT O O AL R T AT R OV 0N 06 &
A SRz R R e R e
K
30
720
5
5
3 3 1.0
Z
2 2 00
& =1
g Z.0
21
g
220
e 3.0
-180-135-90 -45 0 45 90 135180 I 706
Phi (degrees) Sequence position
FIGURE 2

Structure characterization of multi-epitope vaccine. (A-D) HBD3-vaccine, (E-H) TLR2-vaccine, (I-L) 50 s-vaccine. (A, E, 1) Tertiary structure, (B, F, J)
The result of verification through the VERIFY3D tool, (C, G, K) The Ramachandran plot of the improved vaccine structure, (D, H, L) The energy

profile of the vaccine candidate.

Frontiers in Immunology

08

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1707471
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Yang et al.

For further validation of the tertiary structure, we employed the
SAVERS v6.1 and ProSA-web servers, corroborating our model’s
structural integrity. Verification through the VERIFY3D tool, as
shown in Figures 2B, F, ], confirmed that over 80% of residues in
each model achieved scores above the threshold, indicative of well-
folded and structurally compatible proteins. The Ramachandran
plots (Figures 2C, G, K) confirmed that the majority of residues in
all models were positioned within the most favored regions, which
are energetically preferred.

The energy profiles of the vaccine candidates, evaluated using
knowledge-based methods and illustrated in Figures 2D, H, L,
generally showed negative values, suggesting stable intra-
molecular interactions. Nonetheless, the observed fluctuations in
the 50 s-vaccine model indicate areas where further optimization
could enhance the vaccine’s stability and efficacy.

Overall, our analyses underscore the structural stability and
potential efficacy of these vaccine candidates, with identified
opportunities for refinement to further improve their effectiveness
and stability.

3.7 Molecular docking analysis

Interactions between epitopes and immune cell receptors are
critical for eliciting a sustained immune response from peptide
vaccines. To evaluate the vaccine-receptor interactions, we
performed molecular docking of the predicted optimal vaccine
constructs with human TLR2. Multiple online tools, including
ClusPro 2.0, HawkDock, and GRAMM, were utilized to increase
the accuracy of docking predictions, each generating 10 docking
results. To minimize discrepancies between different servers, the top
three docking complexes from each server were evaluated for
binding affinity (AG, kcal/mol) using the PRODIGY tool
(Supplementary Table S7).

The PRODIGY scoring results revealed that the docking
complexes HBD3-vaccine-TLR2, TLR2-vaccine-TLR2, and 50 s-
vaccine-TLR2 (GRAMM HBD3 model_3, GRAMM TLR2
model 2, and GRAMM 50 s model 1) exhibited the highest
binding affinities, with AG values of —37.9 kcal/mol, —38.1 kcal/
mol, and -49.5 kcal/mol, respectively. Visualization of these
complexes was performed using PyMOL (Figures 3A, C, E), and
2D ligand-protein interaction diagrams were generated using
LigPlot+ (Figures 3B, D, F). The HBD3-vaccine-TLR2 complex
formed 7 hydrogen bonds, the TLR2-vaccine-TLR2 complex
formed 14 hydrogen bonds, and the 50 s-vaccine-TLR2 complex
formed 12 hydrogen bonds.

These results suggest that all three vaccine constructs can form
stable interactions with TLR2, with the 50 s-vaccine-TLR2 complex
demonstrating the highest binding affinity. Additionally, the TLR2-
vaccine-TLR2 complex showed the highest number of hydrogen
bonds, indicating potential stability. Given that hydrogen bonds are
crucial for binding stability, the higher number of hydrogen bonds
in the TLR2-vaccine-TLR2 complex may contribute to a strong and

enduring immune response.
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3.8 Molecular dynamics simulation study

Molecular dynamics (MD) simulations were employed to
investigate the stability and conformational changes of vaccine
constructs in complex with TLR2. Using GROMACS, 100 ns MD
simulations were performed on the docked complexes, and their
stability was assessed through RMSD, RMSF, and Rg metrics
throughout the simulation period.

RMSD provides insights into protein stability by measuring the
variability of the protein structure. As shown in Figure 4A, HBD3-
vaccine-TLR2 exhibited the lowest RMSD values throughout the
simulation, indicating the highest structural stability. In contrast,
TLR2-vaccine-TLR2 and 50 s-vaccine-TLR2 showed higher RMSD
values in the later stages of the simulation, suggesting greater
structural fluctuations and lower stability. RMSF was used to
evaluate the flexibility and stability of residues within the
complexes. Figure 4B demonstrates that HBD3-vaccine-TLR2 had
the smallest residue fluctuations, further supporting its overall
structural stability. Conversely, TLR2-vaccine-TLR2 and 50 s-
vaccine-TLR2 exhibited larger residue fluctuations, particularly in
specific regions, indicating higher flexibility in those areas.

Rg analysis was conducted to assess the compactness of the
receptor-ligand complexes during the simulation. As depicted in
Figure 4C, HBD3-vaccine-TLR2 had the lowest Rg values,
indicating the most compact structure. 50 s-vaccine-TLR2 had the
highest Rg values, suggesting a more loose structure, while TLR2-
vaccine-TLR2 had Rg values in between the two. SASA was used to
measure the surface area of the molecules exposed to the solvent. As
shown in Figure 4D, both the HBD3-vaccine-TLR2 and the TLR2-
vaccine-TLR2 exhibited similarly low SASA values, indicating a
small surface area exposed to the solvent, which may correlate with
improved stability. 50 s-vaccine-TLR2 had the highest SASA values,
indicating the largest surface area exposed to the solvent and
potentially lower stability. TLR2-vaccine-TLR2 had SASA values
between the two.

Additionally, eigenvector analysis was performed to understand
the overall motion and conformational changes of the docked
complexes. The relationship between the first 20 eigenvalues and
their respective indices was plotted in descending order (Figure 4E).
The plot shows a rapid decrease in the magnitude of the first few
eigenvalues, with HBD3-vaccine-TLR2 having the lowest
eigenvector values, indicating the smallest structural changes.
TLR2-vaccine-TLR2 and 50 s-vaccine-TLR2 had higher
eigenvector values, indicating larger structural changes. The PCA
scatter plot (PC1-PC2) was constructed by projecting the model
trajectories onto two principal components, displaying the motion
states of the complexes in a two-dimensional form (Figure 4F). The
plot shows that HBD3-vaccine-TLR2 had the most concentrated
motion pattern, indicating the smallest structural changes. TLR2-
vaccine-TLR2 and 50 s-vaccine-TLR2 had more dispersed motion
patterns, indicating larger structural changes.

In summary, the analysis indicates that HBD3-vaccine-TLR2
outperforms TLR2-vaccine-TLR2 and 50 s-vaccine-TLR2 in all
aspects, demonstrating the highest structural stability and the
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FIGURE 3

Visualization of molecular docking between vaccine candidate and TLR2. (A, B) HBD3-vaccine, (C, D) TLR2-vaccine, (E, F) 50 s-vaccine.

(A, C, E) Results of molecular docking analysis for vaccine candidate with TLR2 predicted by GRAMM Server are shown. The left panel depicts a
cartoon diagram of the molecular docking results, while the right panel displays a 3D zoomed-in diagram of the interactions between bonds at
the molecular docking site. (B, D, F) 2D ligand-protein interaction diagram of the vaccine-TLR2 complex created using the LigPlot+ software.
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Representation of MD simulation analysis plot of proposed vaccine construct and TLR2 complex. (A) Root Mean Square Deviation (RMSD) of
backbone atoms, (B) Root Mean Square Fluctuations (RMSF), (C) Radius of Gyration (Rg), (D) Solvent Accessible Surface Area (SASA) analysis,

(E) Eigenvalues for the complex as a function of the first 20 eigenvectors, (F) 100 ns simulation trajectories projected onto the first two principal
components (PCs), with the x-axis and y-axis representing PC1 and PC2, respectively.

most consistent dynamic behavior. TLR2-vaccine-TLR2 follows,
while 50 s-vaccine-TLR2 exhibits the least stability and the most
variable dynamic behavior.

MM-PBSA analysis was also employed to confirm the stability
of the selected complexes throughout the molecular dynamics
simulation. Supplementary Table S8 presents the MM-PBSA
values for the three complexes. Analyzing the energy components
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comprehensively, HBD3-vaccine exhibited the best performance in
terms of Van der Waals energy, electrostatic energy, and gas-phase
energy. Despite having a positive solvation energy, its total energy
was negative, indicating the highest overall binding stability.
Specifically, HBD3-vaccine had a Van der Waals energy of
-236.53 kJ/mol, electrostatic energy of -1087.90 kJ/mol, and gas-
phase energy of -1324.43 kJ/mol, with a solvation energy of 1266.63
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kJ/mol, resulting in a total energy of -57.80 kJ/mol. TLR2-vaccine
showed better performance in solvation energy compared to HBD3-
vaccine but was inferior in other energy components, leading to a
positive total energy and thus lower binding stability. TLR2-vaccine
had a Van der Waals energy of -116.40 kJ/mol, electrostatic energy
of 332.26 kJ/mol, gas-phase energy of 215.87 kJ/mol, and solvation
energy of -198.08 kJ/mol, resulting in a total energy of 17.78 kJ/mol.
50 s-vaccine performed poorly across all energy components,
particularly with positive values for both Van der Waals and
electrostatic energies, resulting in the highest positive total energy
and the least binding stability. 50 s-vaccine had a Van der Waals
energy of 268.00 kJ/mol, electrostatic energy of 942.83 kJ/mol, gas-
phase energy of 1210.83 kJ/mol, and solvation energy of -777.42 kJ/
mol, resulting in a total energy of 433.40 kJ/mol. In summary,
HBD3-vaccine demonstrated the highest binding stability, followed
by TLR2-vaccine, while 50 s-vaccine exhibited the lowest
binding stability.

The protein flexibility of the docking complexes was determined
using the iMODs server, and the results were interpreted through

10.3389/fimmu.2025.1707471

deformability plots, B-factor plots, eigenvalues, variance plots,
covariance maps, and elastic network models. The peaks in the
deformability plots represent regions of the complex with higher
flexibility, indicating areas that may need to adapt to TLR2 for
effective docking (Figures 5A, 6A, 7A). Specifically, HBD3-vaccine-
TLR2 and TLR2-vaccine-TLR2 showed prominent deformability in
certain regions, suggesting localized adaptability during their
interaction with TLR2. The B-factor plots were employed to assess
the atomic mobility within the complex, as indicated by the
relationship between the NMA (Normal Mode Analysis) and PDB
(Protein Data Bank) sectors (Figures 5B, 6B, 7B). Among the three,
TLR2-vaccine-TLR2 exhibited more extensive regions with higher B-
factors, implying greater atomic flexibility and dynamic behavior
during docking. The eigenvalues for the three complexes were
5.347270e-6, 4.183459¢-6, and 4.758755e-6, respectively (Figures 5C,
6C, 7C). These values indicate the relative rigidity of each structure,
with TLR2-vaccine-TLR2 showing the lowest eigenvalue, implying a
more flexible overall conformation. In the variance plots, cumulative
variance was represented in green, and individual variance in purple
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(Figures 5D, 6D, 7D). The eigenvalue and variance data revealed that
each vaccine’s major dynamic modes contributed significantly to the
overall motion, with TLR2-vaccine-TLR2 demonstrating higher
cumulative eigenvalues and variance percentages in the initial
modes. This suggests that the primary motions in TLR2-vaccine-
TLR2 are more focused and potentially more stable.

The covariance maps depict the correlated (red), uncorrelated
(white), and anti-correlated (blue) motions between residues
(Figures 5E, 6E, 7E). The TLR2-vaccine-TLR2 complex showed a
higher degree of positive correlation, indicating more coordinated
dynamic behavior within the complex. Additionally, the elastic
network models illustrated the density of elastic connections
between atom pairs, where dark grey regions indicate more rigid
areas of the structure (Figures 5F, 6F, 7F). The elastic network of
TLR2-vaccine-TLR2 displayed more densely packed contact points,
suggesting stronger binding stability compared to HBD3-vaccine-
TLR2 and 50 s-vaccine-TLR2.

Additionally, Discovery Studio was used to visualize the docked
complexes. Although the results were primarily visual and involved
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the generation of videos for the three docked complexes, the solvent
was removed to enhance clarity (Supplementary Videos 1-3). This
visualization provided a clearer understanding of the docking
interactions and structural conformations of the complexes, albeit
without the detailed quantitative analysis provided by
other methods.

In summary, the molecular simulations performed using the
iMODs server indicate that TLR2-vaccine-TLR2 exhibits superior
performance across several metrics, including B-factors,
eigenvalues, variance explanation, and contact maps. This
suggests that TLR2-vaccine-TLR2 may form a more stable and
coordinated docking complex with TLR2. While HBD3-vaccine-
TLR2 and 50 s-vaccine-TLR2 display beneficial characteristics in
certain areas, TLR2-vaccine-TLR2 demonstrates better overall
stability and coordination, indicating its potential for more
effective interaction with TLR2.

Combining the results from GROMACS analysis, MM-PBSA,
and iMODs, HBD3-vaccine-TLR2 and TLR2-vaccine-TLR2 each
show strengths in different aspects. However, overall, HBD3-
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vaccine-TLR2 demonstrates superior binding and structural
stability. GROMACS analysis, including RMSD, RMSF, Rg, and
SASA, indicates that HBD3-vaccine-TLR2 maintains a more stable
structure during molecular dynamics simulations. MM-PBSA
results further confirm the stability of HBD3-vaccine-TLR2,
showing favorable van der Waals, electrostatic, and gas-phase
energies, despite a positive solvation energy, resulting in a
negative total energy indicating the most stable binding. Although
iMODs results suggest that TLR2-vaccine-TLR2 performs well in
terms of B-factors, eigenvalues, variance explanation, and contact
maps, indicating potentially stable docking with TLR2, this finding
is not entirely consistent with the GROMACS and MM-PBSA
results. Notably, all three methods consistently indicate that 50 s-
vaccine-TLR2 performs poorly in terms of energy components and
structural stability, making it the least stable complex. Therefore,
despite some support for TLR2-vaccine-TLR2 from iMODs results,
the combined analysis from GROMACS and MM-PBSA suggests
that HBD3-vaccine-TLR2 is the most optimal choice among the
three vaccines due to its superior binding and structural stability.
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3.9 Immune simulation

The C-ImmSim server was used to generate a preliminary in-
silico prediction of innate and adaptive immune responses,
providing theoretical guidance for vaccine evaluation (Figure 8).
The HBD3-vaccine, TLR2-vaccine, and 50 s-vaccine showed stable
innate immune responses with similar levels of macrophages,
natural killer (NK) cells, and dendritic cells (DCs) across all
vaccines. This indicated a controlled activation, preventing
excessive inflammation. In adaptive immunity, B cell dynamics
demonstrated a swift shift from IgM to more mature IgG
antibodies, essential for a lasting immune defense. The activation
patterns of both CD4" and CD8" T cells suggested effective helper
and cytotoxic functions, critical for a strong immune response
against pathogens.

Adaptive responses were further evidenced by robust cytokine
production, including key mediators like IFN-v, IL-2, and TNF-q,
which were crucial for amplifying cellular immune responses. These
cytokines facilitated the interaction between innate and adaptive
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In silico immune simulation results of the vaccine construct using C-ImmSim are presented as follows: (A) HBD3-vaccine, (B) TLR2-vaccine, (C) 50

s-vaccine.

immune components, reinforcing the body’s ability to mount a
sustained defense.

Despite using the same antigenic epitopes, differences in adjuvant
formulations between the HBD3-vaccine, TLR2-vaccine, and 50 s-
vaccine influenced their efficacy. The HBD3 and TLR2 vaccines
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showed slightly enhanced immune responses, marked by higher
cytokine levels and more vigorous B and T cell activations compared
to the 50 s-vaccine. This suggests that the adjuvants in the HBD3 and
TLR2 vaccines might boost the immune response more effectively, thus
potentially offering better and more durable protection.
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3.10 Codon optimization and cloning

The reverse translation and codon optimization of the final
vaccine construct resulted in a CAI value of 1 for our optimized
nucleotide sequence, indicating a high level of protein expression in
E. coli. Tt is ideal to achieve a CAl value of 1, although values ranging
from 0.8 to 1.0 are also considered acceptable. CAI values below 0.8
suggest poor expression of the target gene. Additionally, the GC
content percentage plays a critical role in expression efficiency, with
the optimal range being between 30% and 70% (14). Our three
vaccine constructs exhibited GC content percentages of 66%, 67%,
and 66%, respectively, indicating good expression efficiency in E.
coli as they fall within the optimal range.

To facilitate the cloning process of the vaccine construct into E.
coli pET-28a(+) vectors, we introduced BamHI and EcoRI
restriction sites at the N-terminal and C-terminal ends of the
optimized codon sequence, respectively. Subsequently, the
optimized codons with restriction sites were inserted into the
vector through restriction cloning. This process resulted in the
generation of three cloned constructs with sequence lengths of 7232,
7184, and 7487 base pairs (Supplementary Figure S7).

Based on a comprehensive computational assessment—including
molecular docking, dynamics simulations, and immune simulations—
the TLR2-vaccine construct was prioritized for experimental
validation. While all three candidates exhibited favorable in silico
properties, the TLR2-vaccine demonstrated the most balanced profile,
combining stable binding with TLR2, favorable energetic features, and
conformational flexibility. Importantly, its immune simulation results
suggested robust activation of both innate and adaptive responses,
supporting its potential to elicit protective immunity. The optimized
gene sequence of the TLR2-vaccine was synthesized, cloned into the
pET-28a(+) vector, expressed in E. coli, and purified as a recombinant
protein. This provided sufficient material for subsequent in vitro and
in vivo immunogenicity evaluation.

3.11 Immunogenicity and protective
efficacy of the TLR2-vaccine

Mice were immunized according to the schedule shown in
Figure 9A. A subset of mice was sacrificed at week 5 for splenocyte
assays, while the remaining mice were challenged with M.
tuberculosis H37Ra at week 10. Body weight monitoring revealed
no significant differences among control, BCG, and TLR2-vaccine
groups, indicating good tolerability (Figure 9B). The TLR2-vaccine
induced robust antigen-specific IgG responses, with antibody levels
rising progressively after each boost and reaching significantly
higher endpoint titers than the BCG group (Figure 9C). The
modest antibody increase observed in the BCG group may reflect
cross-reactivity with epitopes conserved across mycobacteria, as the
TLR2-vaccine epitopes are derived from M. tuberculosis proteins.
Similar results were obtained when H37Ra lysate was used as the
coating antigen (Figure 9D). Splenocyte restimulation assays further
showed that both the TLR2-vaccine and BCG groups secreted
elevated levels of IFN-y upon exposure to vaccine antigen or
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H37Ra lysate compared with the control group, confirming
effective induction of Th1-type cellular responses (Figure 9E).

Protective efficacy was next evaluated following intravenous
challenge with H37Ra. At two weeks post-infection, serum IFN-y
levels were higher in the TLR2-vaccine and BCG groups than in the
control group, although variability was greater in the TLR2-vaccine
group (Figure 9F). Bacterial load analysis demonstrated that both
vaccines reduced colony counts in the lungs and liver, while no clear
difference was observed in the spleen (Figure 9G). Histopathological
examination supported these findings: control mice displayed
extensive lung inflammation, alveolar collapse, and hemorrhage,
whereas lungs from the TLR2-vaccine group largely maintained
alveolar structure with only mild, scattered inflammatory cell
infiltration. The BCG group showed intermediate pathology, with
small granuloma-like aggregates and focal hemorrhage (Figure 9H).
Liver inflammation was also alleviated in the TLR2-vaccine and
BCG groups, while spleen morphology remained comparable across
groups. Together, these results demonstrate that the TLR2-vaccine
elicits both humoral and cellular immunity and confers protection
against M. tuberculosis H37Ra comparable to BCG.

3.12 TLR2-vaccine limited extrapulmonary
dissemination following pulmonary M.
tuberculosis infection

To assess whether the TLR2-vaccine could restrict bacterial
dissemination after pulmonary infection, mice were first challenged
with aerosolized M. tuberculosis H37Ra and subsequently
immunized three times at 2-week intervals (Figure 10A).
Antibody analysis showed that both TLR2-vaccine-specific IgG
and H37Ra-specific IgG increased over the course of
immunization (Figures 10B, C). Although control mice exhibited
modest antibody induction following infection, vaccination elicited
markedly higher titers, as confirmed two weeks after the final boost.

Bacterial burden analysis revealed no significant differences in the
lung between groups; however, liver bacterial loads were significantly
reduced in the TLR2-vaccine group compared with controls
(Figure 10D). We focused on lung and liver as representative organs,
given that the lung is the primary site of infection and the liver is a
frequent extrapulmonary target during dissemination, whereas the
spleen primarily functions as a secondary lymphoid organ and was not
the focus of dissemination analysis. Histopathological examination
further supported these findings: control mice showed focal
inflammatory infiltrates in the liver and extensive pulmonary
inflammation, whereas vaccinated mice exhibited preserved liver
architecture and less severe lung inflammation (Figure 10E). These
findings indicate that post-infection immunization with the TLR2-
vaccine can enhance antigen-specific immune responses and restrict
extrapulmonary bacterial dissemination.

4 Discussion

This study combined reverse vaccinology and experimental
immunology to develop a multi-epitope subunit vaccine targeting
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M. tuberculosis adhesins. By integrating in silico analyses with in
vivo validation, we demonstrated that the TLR2-vaccine induced
strong humoral and cellular immune responses and effectively
limited bacterial burden and dissemination in mice.

The correlation between bioinformatics predictions and
experimental outcomes supports the reliability of computational
vaccine design. The epitopes predicted to be highly antigenic and
IFN-y-inducing in silico indeed elicited robust Th1-type responses
and high IgG titers in vivo. Similarly, molecular docking and
immune simulations predicted stable binding between the vaccine
construct and TLR2, suggesting a potential role of TLR2
engagement in the observed immune activation. These findings
validate the predictive accuracy of our computational approach and
highlight the feasibility of integrating in silico screening with
experimental verification to accelerate TB vaccine development.

One limitation of this study is that we did not examine the
sequence homology of the selected antigens with non-tuberculous
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mycobacteria (NTM). Previous reports suggest that several of
these antigens, including ESAT-6 and Ag85B, have homologs in
certain NTM species, though the degree of conservation and
expression varies among strains (133-136). This potential
overlap could influence immune recognition in populations
frequently exposed to NTM, warranting further comparative
analysis in future studies.

The protective mechanisms of the TLR2-vaccine likely involve
the synergistic activation of both innate and adaptive immunity.
The engagement of TLR2 by the vaccine construct may promote
antigen presentation and IFN-y-mediated Th1 responses, which are
crucial for controlling intracellular M. tuberculosis. Additionally,
the presence of B-cell epitopes from the PGRS component could
facilitate antibody-mediated neutralization and opsonization,
contributing to bacterial clearance. However, these mechanisms
were not directly examined in this study and will require detailed
immunophenotyping and cytokine analyses in future experiments.
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Another aspect not addressed here is the evaluation of a prime-
boost strategy with BCG. Given that BCG remains the foundation of
TB vaccination programs, assessing the TLR2-vaccine as a booster
following BCG priming could better reflect its translational potential.
Future studies will explore this approach, along with testing against
virulent clinical strains and assessing long-term immune memory.

In summary, our study demonstrates that the integration of
computational prediction and experimental validation provides a
powerful framework for TB vaccine discovery. The TLR2-vaccine
showed consistent performance across in silico and in vivo analyses,
eliciting broad and balanced immune protection. Further
investigations into its immunological mechanisms, interaction
with BCG priming, and potential cross-reactivity with NTM will
help refine its development toward clinical application.
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