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A multi-epitope vaccine
incorporating adhesin-derived
antigens protects against
Mycobacterium tuberculosis
infection and dissemination
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Guimin Su1,2* and Lin Du1,2*

1Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China,
2Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
Introduction: Adhesion to host cells is the first and essential step in

Mycobacterium tuberculosis (M. tuberculosis) infection. Among adhesion

molecules, the PGRS domain of PE_PGRS33 plays a critical role in invasion but

is dominated by B cell epitopes and lacks sufficient T cell epitopes, restricting its

capacity to induce a balanced immune response.

Methods: To overcome this limitation, we employed an integrative reverse

vaccinology pipeline combining computational prediction and experimental

validation. Helper and cytotoxic T lymphocyte epitopes were incorporated

from multiple M. tuberculosis adhesins as well as other virulence-associated

proteins, and adjuvant sequences were systematically evaluated in silico.

Results: Among three multi-epitope constructs, the Toll-like receptor 2 (TLR2)-

agonist and pan HLA DR-binding epitope (PADRE)-adjuvanted vaccine (TLR2-

vaccine) emerged as the most promising candidate. In murine models, TLR2-

vaccine induced strong antigen-specific antibody and IFN-g responses,

significantly reduced bacterial loads following H37Ra challenge, and effectively

prevented extrapulmonary dissemination.

Discussion: These findings highlight the potential of adhesin-inclusive multi-

epitope vaccines to elicit both humoral and cellular immunity and demonstrate

how computational vaccinology can accelerate the development of targeted

interventions against tuberculosis.
KEYWORDS

Mycobacterium tuberculosis, adhesins, epitope-based vaccine, TLR2-agonist vaccine,
Infection prevention, extrapulmonary dissemination
1 Introduction

TB remains a substantial global health burden, with M. tuberculosis as its causative agent,

ranking closely behind the COVID-19 pandemic in 2022 (1). Despite extensive efforts in public
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health, TB continues to affect over 10 million individuals annually (1),

highlighting its persistent presence and global impact. It is imperative

to address the challenges faced in effective tuberculosis treatment while

emphasizing the pivotal role of prevention in alleviating the disease’s

global burden (2). The Bacillus Calmette–Gueŕin (BCG) vaccine is

currently the only authorized prophylactic measure for TB. However,

its protective efficacy is limited in the adult population. Therefore,

further research and development of additional preventive measures

are necessary to improve TB control strategies.

Subunit vaccines have emerged as a promising strategy due to

their potent T cell and B cell stimulatory capacity (3–8). Yet, these

vaccines may not provide broad protection against infection because

they typically target a limited number of antigens and might cause

allergic reactions without contributing to the desired immune

response (9, 10). To overcome these challenges, reverse

vaccinology has emerged as an effective approach. Reverse

vaccinology, introduced in 2000, is an in silico approach that starts

with the pathogen’s genomic sequence and ends with a list of

predicted peptide candidates that require experimental verification

before vaccine development (11). The first epitope-based vaccine

against infectious disorders was developed in 1985 by Jacob et al.

(12), and numerous others against bacteria, viruses, parasites and

even cancer are currently being developed, including those for

Staphylococcus aureus, dengue virus, human papilloma virus

(HPV), visceral leishmaniasis, onchocerciasis, and breast cancer

(13–18). A well-crafted multi-epitope vaccine holds promise as a

tool for combating a range of diseases (19, 20). Continued research

and clinical trials are necessary to evaluate the safety, efficacy, and

potential of reverse vaccinology and peptide-based vaccines in TB

and other disease prevention and/or therapy.

Currently, there are 16 tuberculosis vaccine candidates

undergoing clinical trials worldwide (21). Most of these trials

focus on therapeutic vaccines, TB prevention, and TB recurrence

prevention, with few targeting M. tuberculosis infection specifically.

However, the first line of defense against TB is actually the

prevention of M. tuberculosis infection itself. Adhesion molecules,

which facilitate the initial interaction of mycobacteria with host

cells, are crucial in this context. These molecules, present on the

surface of most bacteria, aid in attachment and interaction with the

host during infection (22, 23).

We selected multiple adhesion molecules to develop a multi-

epitope vaccine aimed at preventing M. tuberculosis from entering

target cells. One such molecule, antigen 85B (Ag85B), is a major

secretory protein of M. tuberculosis that binds to fibronectin on host

cells (24). Ag85B is vital for M. tuberculosis pathogenicity, as it

inhibits the formation of phagolysosomes necessary for infection

clearance, allowing the bacteria to evade the host immune response

(25). Clinical trial data show that while Ag85B weakly enhances

humoral immunity, it significantly boosts the CD4+ T cell response

(26, 27). Hsp65 is another key adhesion molecule that binds to CD43

(28, 29). It plays a crucial role in host cell survival mechanisms and

strongly modulates immune responses based on cellular immunity

(29–31).M. tuberculosis pili (MTP) are small adhesionmolecules that
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interact with laminin in the host cell’s extracellular matrix,

contributing to tissue colonization and potentially acting as

virulence factors in M. tuberculosis pathophysiology (32).

In addition to adhesion molecules, we included several

important M. tuberculosis virulence factors to broaden immune

coverage. The early secreted antigenic target-6 (ESAT-6) enhances

mycobacterial pathogenicity, promotes host cell cytolysis, reduces

the ability of mononuclear phagocytes to eradicate pathogens, and

facilitates M. tuberculosis interaction with host (33, 34). Moreover,

ESAT-6 is recognized as a potent T cell antigen, although it does not

elicit a strong humoral immune response (4, 26, 27, 35, 36).

Members of the PE/PPE protein family, such as PPE25 and PE19,

play crucial roles in immunodominance and antigenic variation,

contributing to mycobacterial virulence, persistence, and

pathogenesis (37–40). Similarly, TB10.4 is a well-known secretory

antigenic protein essential to mycobacterial pathophysiology,

triggering a potent CD8+ T cell response (41, 42).

Emerging evidence suggests that, alongside T cell mediated

cellular immunity, antibodies and B cells may offer protection

against M. tuberculosis infection (9, 43–50). Antibodies targeting

M. tuberculosis surface antigens can potentially mitigate the

infection’s adverse effects by accelerating pathogen clearance and

preventing pathogen entry into host cells. PE_PGRS33, a

mycobacterial surface exposed antigen, interacts with host

macrophage TLR2 to generate inflammatory signals and facilitate

macrophage entry (51–54). The PGRS domain of PE_PGRS33 aids

in the interaction with host TLR2, while the PE domain is necessary

for protein translocation through the mycobacterial cell wall (55).

Native recombinant PE_PGRS33-immunized mice were able to

limit M. tuberculosis growth in vivo (51). Subjects vaccinated with

BCG and those with latent tuberculosis infection (LTBI) produced

antibodies against PE_PGRS33, primarily targeting epitopes in the

PGRS domain (56). By neutralizing the interaction with TLR2,

antibodies against PE_PGRS33 may disrupt a mycobacterial

pathogenic pathway. Additionally, PE_PGRS33-specific antibodies

may opsonize M. tuberculosis, facilitating more effective

phagocytosis and destruction by activated macrophages (55).

These findings highlight the potential of the PGRS domain of

PE_PGRS33 as a target for a humoral immune response that

neutralizes TB.

Here, we adopted an epitope-based strategy focusing on

adhesion-associated antigens that mediate the initial interaction

of M. tuberculosis with host cells. Six helper T lymphocyte (HTL)

epitopes were identified from ESAT-6, Ag85B, PPE25, PE19,

HSP65, and MTP, together with two cytotoxic T lymphocyte

(CTL) epitopes from TB10.4. These epitopes were combined with

the PGRS domain of PE_PGRS33, which elicits strong humoral

responses but lacks sufficient T cell epitopes. By assembling these

elements into a rationally designed multi-epitope construct, we

aimed to achieve a balanced stimulation of both cellular and

humoral immunity (Figure 1).

The selection of epitopes was guided by both computational

prediction and evidence from previous experimental studies. For
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ESAT-6 and Ag85B, we incorporated epitopes that have been

consistently associated with robust CD4+ T cell responses (57,

58). PPE25 and PE19 epitopes were chosen based on a

combination of in silico analysis and published experimental

validation, ensuring reliable immunogenicity (59). Highly reactive

epitopes from HSP65 and MTP were identified computationally,

while two epitopes from TB10.4 were selected to cover both

experimentally verified and predicted candidates (41).

Appropriate linkers and adjuvant sequences were introduced to

optimize antigen presentation and enhance vaccine potency.

To move beyond purely computational predictions, we further

validated our design through wet-lab experiments. Among the three

candidate constructs, the TLR2-agonist and PADRE-adjuvanted

vaccine (TLR2-vaccine) was selected for in vivo testing. In mouse

models, this vaccine not only reduced bacterial burden in the lung

and other organs but also effectively prevented extrapulmonary

dissemination. These results support the concept that targeting

adhesins at the earliest stage of infection, combined with rational

epitope design and optimized adjuvant selection, can provide

protective immunity against M. tuberculosis.
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2 Materials and methods

2.1 Sequence retrieval

Amino acid sequences of eight Mycobacterium tuberculosis

(strain H37Rv) proteins—ESAT-6 (P9WNK7), Ag85B

(P9WQP1), PPE25 (P9WI13), PE19 (Q79FK4), HSP65

(P9WPE7), MTP (P9WI87), TB10.4 (P9WNK3), and PE_PGRS33

(P9WIF5)—were retrieved from the UniProt database. The

antigenicity of each protein was evaluated using the VaxiJen v2.0

and Immunomedicine Group servers (60, 61), while allergenicity

and toxicity were assessed using AllerTOP v2.0 and ToxinPred,

respectively. Only non-allergenic, non-toxic, and highly antigenic

proteins were selected for further analysis (62–64).
2.2 Prediction of helper T lymphocyte
epitope and IFN−g inducing epitope

HTL epitopes were predicted using the IEDB MHC class II

server with the human HLA-DR reference allele set. Fifteen-mer

epitopes with the lowest percentile ranks were considered high-

affinity candidates. The selected HTL epitopes were then screened

for IFN-g induction potential using the IFNepitope server based on

Support Vector Machine algorithms (65–71).
FIGURE 1

A schematic representation of the workflow used in developing a multi-epitope vaccine against M. tuberculosis.
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2.3 Prediction of potential cytotoxic T
lymphocyte epitope

CTL epitopes were predicted using the NetCTL 1.2 server,

which integrates MHC class I binding, proteasomal cleavage, and

TAP transport efficiency (72, 73). Epitopes with high combined

scores and strong predicted binding affinities were selected for

further analysis.
2.4 Prediction of population coverage

To estimate global immune coverage, the selected epitopes were

analyzed using the IEDB Population Coverage tool under default

parameters (74). This analysis evaluated the theoretical proportion

of the human population that could potentially respond to the

designed multi-epitope vaccine.
2.5 Construction of final vaccine

After identifying the optimal epitopes, three multi-epitope

vaccine constructs were designed using distinct adjuvant

combinations: (i) b-defensin 3 (HBD3) with PADRE, (ii) TLR2

agonist with PADRE, and (iii) 50 s ribosomal protein L7/L12 with

PADRE. HBD3, an antimicrobial peptide involved in innate

immunity, activates and polarizes dendritic cells, thereby bridging

innate and adaptive immune responses (75–78). The TLR2 agonist

enhances proinflammatory cytokine release and promotes antigen

presentation through macrophages and DCs (79–83). L7/L12, a

ribosomal protein with proven immunogenicity in subunit vaccines,

was also evaluated as an alternative adjuvant (84–88). PADRE, a

universal helper epitope with broad HLA-DR binding capacity, was

incorporated to enhance CD4+ T cell activation and overall vaccine

immunogenicity (83, 89–91).

To construct a stable and immunologically active chimeric

vaccine, suitable linkers were applied between functional

domains. The EAAAK linker was placed between adjuvants and

epitopes to maintain structural rigidity and prevent steric

interference (92, 93). GPGPG was used to connect HTL epitopes,

facilitating MHC-II presentation and reducing junctional

immunogenicity (87, 94). AAY linkers were applied between CTL

epitopes to promote proteasomal processing and efficient

recognition by cytotoxic T cells (87, 95). Finally, the GGGS linker

connected the PGRS domain to the multi-epitope segment,

providing flexibility for correct B-cell epitope folding and

structural integrity (96).
2.6 Prediction of physicochemical
properties and solubility of multi-epitope
vaccine

The physicochemical characteristics of the vaccine construct,

including the number of amino acids, molecular weight, theoretical
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isoelectric point (pI), instability index, aliphatic index, and grand

average of hydropathicity (GRAVY), were analyzed using the

ExPASy ProtParam tool (97). Protein solubility upon expression

in E. coli was predicted using the SOLpro server, which employs a

support vector machine–based approach to classify proteins as

soluble or insoluble with associated probabilities.
2.7 Secondary structure prediction

The secondary structure of the designed vaccine constructs was

predicted using PSIPRED and Prabi (GOR IV). PSIPRED predicts

a-helices, b-strands, and coils based on PSI-BLAST outputs

analyzed by neural networks, providing reliable accuracy for

proteins lacking homologous structures (98). The GOR IV

algorithm, implemented in the Prabi server, applies information

theory and residue pair frequencies within a 17-residue window

to determine secondary structure elements (99, 100). The

combined use of these methods provided a consistent estimation

of the proportion of helices, sheets, and coils, allowing evaluation of

the structural stability and folding tendency of the multi-

epitope vaccine.
2.8 Tertiary structure prediction,
refinement and validation

The tertiary structure of the multi-epitope vaccine was

predicted using the AlphaFold Server, which applies the

AlphaFold 3 model for high-accuracy biomolecular structure

prediction. The resulting model was refined using GalaxyRefine,

which performs side-chain repacking and molecular dynamics–

based relaxation to improve structural quality (101, 102).

Model validation was conducted through SAVES v6.1 (VERIFY

3D and PROCHECKmodules) and ProSA-web (103–107). VERIFY

3D assessed sequence–structure compatibility, PROCHECK

evaluated stereochemical geometry, and ProSA-web provided

Z-score–based quality estimation. Together, these analyses

confirmed the structural reliability of the vaccine model.
2.9 Molecular docking

Molecular docking is widely used to predict binding

interactions between protein structures. The crystal structure of

the human TLR2 complex (PDB ID: 6NIG) was obtained from the

Protein Data Bank (https://www.rcsb.org) (108). The PDB file was

visualized using PyMOL software (Version 4.6.0, SourceForge

Headquarters, San Diego, USA), and non-TLR2 molecules were

removed. The vaccine was docked with TLR2 using the ClusPro 2.0

server (109–112), HawkDock server (113–115), and GRAMM

server (116). The binding affinities (DG) of the docked complexes

were uniformly calculated using the PRODIGY server (117, 118),

with the structure exhibiting the lowest score considered the

optimal docking structure. Finally, the interactions within the
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docking complex were analyzed using the LigPlot+ software

(Version 2.2, European Bioinformatics Institute, Cambridge,

United Kingdom), which is based on JAVA.
2.10 Molecular dynamic simulation

Molecular dynamics (MD) simulations were employed to

simulate the stability and dynamic parameters of the docked

complex, thereby evaluating the stability of the vaccine construct.

The best candidate docking complex underwent molecular

dynamics simulations using GROMACS software (119). The

detailed process involved generating the gro file of the complex

system using the Amber14sb force field in GROMACS. Before the

simulation, the docking complex was solvated in a cubic box of

water molecules (SPC) and neutralized with appropriate ions. To

alleviate initial spatial collisions, energy minimization of the

complex was performed using the steepest descent method.

Additionally, the entire system was equilibrated in NVT and NPT

ensembles, with the system temperature raised to 300 K and the

pressure maintained at 1 bar. A 100 ns molecular dynamics

simulation was subsequently conducted. Post-simulation,

molecular dynamics calculations were performed for parameters

such as RMSD (root mean square deviation), RMSF (root mean

square fluctuation), Rg (radius of gyration), and SASA (solvent-

accessible surface area). Furthermore, to understand the overall

motion of the complex, principal component analysis (PCA) was

conducted using the GROMACS analysis tools, with projections

related to the first two principal components (PC1 and PC2) being

calculated. The overall flexibility of the docking complex was also

defined and calculated using the online iMODS server (120).

Molecular dynamics simulations were also performed using

Discovery Studio. The molecular system was prepared by

applying CHARMM force fields and solvated in a water box with

neutralizing ions. After energy minimization to resolve steric

clashes, the system was equilibrated under NVT and NPT

ensembles. A production MD run was then conducted under

controlled temperature and pressure conditions. Following the

simulation, trajectory analysis was carried out to assess the

structural stability and dynamic behavior of the system.
2.11 Host immune system simulation

The immune response profile of the designed vaccine was

simulated using the C-ImmSim server (121–128). This in silico

model reproduces the interactions between lymphoid (HTL, CTL, B

cells, and plasma cells) and myeloid (macrophages and dendritic

cells) lineages, enabling prediction of humoral and cellular immune

responses. Simulation parameters were set at time intervals of 1, 84,

and 168; simulation volume of 50; and 1000 steps with a random

seed of 12345. The selected HLA alleles included A0101, A0201,

B0702, B0801, DRB1_0101, and DRB1_1501. Vaccine injections

were modeled without lipopolysaccharide (LPS), and the adjuvant

level was fixed at 100.
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2.12 Recombinant plasmid construction

The vaccine sequence was reverse-translated and optimized for

expression in E. coli using the JCat server to achieve suitable GC

content and a high codon adaptation index (CAI) (129, 130). BamHI

and EcoRI restriction sites were added to the N- and C-termini,

respectively, to facilitate cloning into the pET28a(+) vector. The

recombinant construct was then modeled using SnapGene software.
2.13 Mycobacterium strains and mice

Mycobacterium bovis BCG and M. tuberculosis H37Ra strains

were obtained from Zhifei Longcom Biopharmaceutical Co., Ltd.

(Anhui, China) and maintained on Middlebrook 7H10 agar

medium (Solarbio, Cat. No. LA7230). Specific pathogen-free

(SPF) female C57BL/6 mice, aged 6 weeks, were purchased from

the National Institutes for Food and Drug Control (Beijing, China).

Mice were housed under pathogen-free conditions in the Animal

Biosafety Level-2 (ABSL-2) facility at the Experimental Animal

Center, Zhifei Lvzhu Biopharmaceutical Co., Ltd. (Beijing, China).

All mice were fed a sterile commercial mouse diet and provided ad

libitum access to water.
2.14 Mice immunization and bacterial
challenge

TLR2-vaccine (10 mg/mouse) was dissolved in 100 ml PBS,

emulsified with 100 ml incomplete Freund’s adjuvant (IFA), and

administered subcutaneously three times at 2-week intervals. For

BCG immunization, mice received 1 × 106 CFU M. bovis BCG in

100 ml PBS via subcutaneous injection on the back.

For the preventive infection model, mice were challenged with

2 × 106 CFUM. tuberculosis H37Ra in 100 ml PBS via tail vein. Two
weeks later, lungs, livers, and spleens were harvested for bacterial

load determination, and selected tissues were processed for

hematoxylin and eosin (H&E) staining. Tissue homogenates were

serially diluted 10-fold in PBS, and 100 ml of each dilution was

plated on Middlebrook 7H10 agar (Solarbio, China). Plates were

incubated at 37°C for 4 weeks before enumeration of colony-

forming units (CFU). For the post-exposure protection model,

mice were infected with aerosolized H37Ra using a Glas-Col

inhalation exposure system (Terre Haute, IN, USA), adjusted to

deliver an initial dose of ~200 CFU per mouse. Two weeks after

infection, mice were immunized with TLR2-vaccine as described

above, and bacterial loads and histopathology of the lungs and livers

were assessed 2 weeks after the final immunization.
2.15 Serum antibody ELISA

Microtiter plates were coated with 100 µl of either TLR2-vaccine

(2 µg/mL) or heat-inactivated H37Ra (1×105 CFU/mL) in carbonate

buffer (0.015 M Na2CO3/0.035 M NaHCO3, pH 9.6) and incubated
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overnight at 4°C. Plates were blocked with PBS containing 0.1%

Tween-20 and 3% BSA at 37°C for 2 h, then washed with PBS/0.1%

Tween-20. Mouse sera collected from the tail vein were diluted at an

initial 1:100 and subjected to two-fold serial dilutions. One hundred

microliters of each dilution were added to the wells and incubated at

37°C for 1 h. After washing, wells were incubated with HRP-

conjugated anti-mouse IgG (1:5000; Sigma) in PBS/0.1% Tween-

20/0.75% BSA for 1 h at room temperature. Plates were developed

with TMB substrate for 5 min, stopped with 0.2 M H2SO4, and

absorbance was read at 450 nm on a microplate reader. Endpoint

titers were defined as the highest serum dilution giving an OD ≥ 2×

the negative control.
2.17 IFN-g ELISA (splenocyte stimulation
and serum)

Single-cell suspensions of splenocytes were prepared and

adjusted to 2 × 105 cells per well for cytokine assays. Splenocytes

were cultured in 96-well plates in complete RPMI medium and

stimulated with antigen (20 µg/ml) for 72 h at 37°C with 5% CO2.

Supernatants were harvested and stored at −80°C until analysis.

IFN-g levels in both splenocyte culture supernatants and serum

samples were measured using the ELISA MAX™ Standard Set

Mouse IFN-g (BioLegend, Cat. No. 430801), following the

manufacturer’s instructions. All ELISA measurements were

performed in duplicate.
2.18 Statistical analysis

All statistical analyses were performed using GraphPad Prism

version 10.4.0 for Windows (GraphPad Software, La Jolla, CA, USA;

www.graphpad.com). P values less than 0.05 were considered

statistically significant. Statistical significance was indicated as

follows: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
3 Results

3.1 Protein sequences, structures and
immunological properties

In this study, we selected eight immunogenic proteins from M.

tuberculosis (H37Rv strain): ESAT-6, Ag85B, PPE25, PE19, HSP65,

MTP, TB10.4, and PE_PGRS33. These protein sequences were

retrieved from the UniProt database, and their tertiary structures

were obtained from the AlphaFold Protein Structure Database. For

antigens with experimentally solved structures, such as ESAT-6–

CFP10 complex (PDB ID: 1WA8) and the Ag85B (PDB ID: 1F0N),

the corresponding PDB entries were also referenced. Because some

available PDB structures are incomplete or represent complexes

rather than full-length monomers, AlphaFold models were

additionally used to visualize the complete conformations for

epitope mapping (Supplementary Figure S1). These adhesins are
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associated with inhibiting the entry of M. tuberculosis into target

cells. We performed immunogenicity predictions, epitope

antigenicity evaluations, and physicochemical analyses to aid in

vaccine development (Supplementary Table S1, Supplementary

Figure S2). Using the AllerTOP v. 2.0 server, all proteins were

confirmed to be non-allergenic (Supplementary Table S1). Toxicity

assessments via the ToxinPred server showed that these proteins are

non-toxic (Supplementary Table S1). Additionally, a non-homology

search against the host proteome confirmed that all selected

proteins are non-homologous.
3.2 Epitopes prediction

We utilized the IEDB server to predict epitopes for HTL. The

HTL epitopes were chosen based on their top-ranking status,

indicating their high affinity. ESAT-6, Ag85B, PPE25, PE19,

HSP65, and MTP have been shown to trigger CD4+ T cell

responses. We specifically selected epitopes from ESAT-6 and

Ag85B that had previously demonstrated robust CD4+ T cell

responses, while for the other four proteins, we predicted the

HTL epitopes (Supplementary Table S2, Supplementary Figure S3).

Subsequently, we utilized the IFNepitope server to pinpoint

HTL epitopes capable of inducing cell-mediated immunity. The

antigenic regions that bind to MHC class II molecules and activate

CD4+ T cells can stimulate IFN-g production and initiate

downstream signaling pathways. Each identified epitope was

confirmed to enhance IFN-g production (Supplementary Table S2).

For the CTL epitopes from TB10.4, we employed the NetCTL

1.2 server, which assessed several parameters critical for epitope

efficacy. These included MHC-I binding affinity, rescaled MHC

binding affinity, C-terminal cleavage affinity, transport efficiency,

and a combined score, all summarized in Supplementary Table S3.

MHC-I binding affinity is typically quantified as the half maximal

inhibitory concentration (IC50) value. A lower IC50 value indicates

a stronger binding affinity. The rescaled MHC binding affinity

normalizes these values for uniform comparison. A high rescaled

value indicates strong potential for T cell antigen presentation. The

C-terminal cleavage affinity evaluates the likelihood of peptides

being appropriately processed for MHC loading, where a balance is

crucial to prevent over-degradation into suboptimal fragments.

Transport efficiency measures the peptide’s ability to reach the

endoplasmic reticulum for MHC loading. The combined score

integrates these factors, providing a holistic assessment of each

peptide’s potential as an epitope.

In designing a multi-epitope vaccine, we selected peptides with

the best rating and those whose functionality has been

experimentally validated. This approach ensures both the efficacy

and reliability of the vaccine, targeting multiple critical epitopes.
3.3 Population coverage analysis

MHCmolecules exhibit high polymorphism and are distributed

extensively across different populations worldwide. This diversity
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underscores the potential of developing a broad-spectrum vaccine

that effectively transcends ethnic boundaries. Utilizing a multi-

epitope peptide-based vaccine approach is particularly

advantageous under these circumstances.

To evaluate the potential population coverage, we used the

IEDB analysis tool, which predicted the global coverage for both

MHC class I and class II molecules based on the eight epitopes

selected, as detailed in Supplementary Figure S4 and Supplementary

Table S4. The analysis revealed that the combined MHC class I and

class II epitopes could potentially cover 98.55% and 99.99% of the

global population, respectively. This extensive coverage suggests

that these epitopes are promising candidates for the development of

multi-epitope vaccines.
3.4 Construction of multi−epitope subunit
vaccine

The final vaccine construct was assembled by integrating HTL

and CTL epitopes along with the PGRS domain. Given the typically

low immunogenicity of peptide vaccines, the inclusion of adjuvants

is crucial to enhance their efficacy. In this research, we developed

three distinct vaccine formulations, each featuring a different

adjuvant combination: an HBD3 and PADRE vaccine (referred to

as the HBD3-vaccine), a TLR2 agonist paired with PADRE (TLR2-

vaccine), and a 50 s ribosomal protein L7/L12 with PADRE (50 s-

vaccine). The structure of the vaccine included six HTL epitopes

positioned adjacent to the adjuvant, followed by two CTL epitopes.

Positioned at the end of the construct was the PGRS domain. These

four domains were connected using specific linkers—EAAAK,

GPGPG, AAY, and GGGS—as depicted in Supplementary

Figure S5.

The helical EAAAK linker was strategically employed to connect

the adjuvant to the epitopes, minimizing interactions with other

protein regions while ensuring effective separation. The GPGPG

linkers were chosen to enhance the immune response mediated by

HTLs, and the AAY motif served as a linker to improve the

separation of CTL epitopes, facilitating their efficient presentation.

For connecting B cell epitope-enriched PGRS domain, the GGGS

linker was used. This linker is known for its flexibility, which allows B

cell epitopes to fold independently and function effectively while

ensuring the overall structural stability of the vaccine construct.
3.5 Prediction of physiochemical
properties, solubility, allergenicity and
immunological properties of vaccine
candidate

In this study, the final vaccine constructs were assessed for their

physicochemical, solubility, allergenicity and immunological

properties using ProtParam, SOLPro, AllerTOP v. 2.0 and

VaxiJen 2.0 server (Supplementary Table S5).

The molecular weights of the three constructs were determined

to be 53.6 kDa, 52.0 kDa, and 61.9 kDa, respectively. Typically, a
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molecular weight above 40 to 50 kDa facilitates lymphatic system

uptake. All three vaccine candidates had molecular weights

exceeding 50 kDa, indicating their suitability for effective

lymphatic absorption (131). The stability of these constructs was

gauged using the instability index; values below 40 suggest stability.

The indices recorded were 23.28, 21.37, and 21.34, confirming the

stable nature of our vaccines. Additionally, the aliphatic index,

which reflects the volume occupied by aliphatic side chains and can

influence protein thermostability, showed values of 60.77, 62.05,

and 68.29, indicative of thermostability across varying temperatures

(132). Hydropathy, assessed by the GRAVY, yielded values of 0.12,

0.137, and 0.183. These suggest a predominantly hydrophobic

character of the vaccine proteins.

The solubility of the constructs, evaluated against a scaled

solubility threshold (PopAvrSol) of 0.45, was also promising, with

values of 0.969421, 0.992917, and 0.798146, demonstrating superior

solubility compared to the average soluble protein from E. coli.

The allergenic potential of the vaccines was assessed using the

AllerTOP 2.0 server, which confirmed their non-allergenic nature.

Additionally, the antigenicity of these subunit vaccines was

evaluated using the VaxiJen v2.0 server, with results of 1.6944,

1.6729, and 1.5185 against a threshold of 0.4, categorizing them as

probable antigens. These assessments collectively underscore the

high potential of the subunit vaccines in terms of stability, solubility,

and antigenic capabilities.
3.6 Secondary and tertiary structures
analysis

The secondary structures of the final vaccine constructs were

analyzed using the Prabi server, with detailed results presented in

Supplementary Table S6. The initial tertiary structures were

generated by the AlphaFold Server, which provided an in-depth

prediction of the 3D conformation of the vaccine constructs. These

models were then refined using the GalaxyRefine web server to

enhance their structural accuracy and reliability, as depicted in

Figures 2A, E, I and Supplementary Figure S6 offers a detailed

evaluation score table for these refined models, which were crucial

for selecting the most suitable refined models, as discussed in the

subsequent analysis.

The quality of refinement was rigorously assessed using several

metrics. The Global Distance Test - High Accuracy (GDT-HA) and

RMSD quantified how closely the refined models mirrored the

original structures, with values near 1 for GDT-HA and low RMSD

values indicating a high degree of structural fidelity. The MolProbity

score was utilized to evaluate the overall geometric quality of the

models, where lower scores signify fewer geometrical errors and better

structural integrity. Additionally, the clash score and poor rotamer

score were examined to assess the number of steric clashes and the

prevalence of unfavorable side-chain conformations, respectively, with

lower scores denoting better outcomes. The Ramachandran plot

favored percentage provides insight into the proportion of residues

that adopt energetically favorable backbone conformations, with

higher percentages reflecting better structural quality.
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FIGURE 2

Structure characterization of multi-epitope vaccine. (A-D) HBD3-vaccine, (E-H) TLR2-vaccine, (I-L) 50 s-vaccine. (A, E, I) Tertiary structure, (B, F, J)
The result of verification through the VERIFY3D tool, (C, G, K) The Ramachandran plot of the improved vaccine structure, (D, H, L) The energy
profile of the vaccine candidate.
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For further validation of the tertiary structure, we employed the

SAVERS v6.1 and ProSA-web servers, corroborating our model’s

structural integrity. Verification through the VERIFY3D tool, as

shown in Figures 2B, F, J, confirmed that over 80% of residues in

each model achieved scores above the threshold, indicative of well-

folded and structurally compatible proteins. The Ramachandran

plots (Figures 2C, G, K) confirmed that the majority of residues in

all models were positioned within the most favored regions, which

are energetically preferred.

The energy profiles of the vaccine candidates, evaluated using

knowledge-based methods and illustrated in Figures 2D, H, L,

generally showed negative values, suggesting stable intra-

molecular interactions. Nonetheless, the observed fluctuations in

the 50 s-vaccine model indicate areas where further optimization

could enhance the vaccine’s stability and efficacy.

Overall, our analyses underscore the structural stability and

potential efficacy of these vaccine candidates, with identified

opportunities for refinement to further improve their effectiveness

and stability.
3.7 Molecular docking analysis

Interactions between epitopes and immune cell receptors are

critical for eliciting a sustained immune response from peptide

vaccines. To evaluate the vaccine-receptor interactions, we

performed molecular docking of the predicted optimal vaccine

constructs with human TLR2. Multiple online tools, including

ClusPro 2.0, HawkDock, and GRAMM, were utilized to increase

the accuracy of docking predictions, each generating 10 docking

results. To minimize discrepancies between different servers, the top

three docking complexes from each server were evaluated for

binding affinity (DG, kcal/mol) using the PRODIGY tool

(Supplementary Table S7).

The PRODIGY scoring results revealed that the docking

complexes HBD3-vaccine-TLR2, TLR2-vaccine-TLR2, and 50 s-

vaccine-TLR2 (GRAMM HBD3 model_3, GRAMM TLR2

model_2, and GRAMM 50 s model_1) exhibited the highest

binding affinities, with DG values of −37.9 kcal/mol, −38.1 kcal/

mol, and −49.5 kcal/mol, respectively. Visualization of these

complexes was performed using PyMOL (Figures 3A, C, E), and

2D ligand-protein interaction diagrams were generated using

LigPlot+ (Figures 3B, D, F). The HBD3-vaccine-TLR2 complex

formed 7 hydrogen bonds, the TLR2-vaccine-TLR2 complex

formed 14 hydrogen bonds, and the 50 s-vaccine-TLR2 complex

formed 12 hydrogen bonds.

These results suggest that all three vaccine constructs can form

stable interactions with TLR2, with the 50 s-vaccine-TLR2 complex

demonstrating the highest binding affinity. Additionally, the TLR2-

vaccine-TLR2 complex showed the highest number of hydrogen

bonds, indicating potential stability. Given that hydrogen bonds are

crucial for binding stability, the higher number of hydrogen bonds

in the TLR2-vaccine-TLR2 complex may contribute to a strong and

enduring immune response.
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3.8 Molecular dynamics simulation study

Molecular dynamics (MD) simulations were employed to

investigate the stability and conformational changes of vaccine

constructs in complex with TLR2. Using GROMACS, 100 ns MD

simulations were performed on the docked complexes, and their

stability was assessed through RMSD, RMSF, and Rg metrics

throughout the simulation period.

RMSD provides insights into protein stability by measuring the

variability of the protein structure. As shown in Figure 4A, HBD3-

vaccine-TLR2 exhibited the lowest RMSD values throughout the

simulation, indicating the highest structural stability. In contrast,

TLR2-vaccine-TLR2 and 50 s-vaccine-TLR2 showed higher RMSD

values in the later stages of the simulation, suggesting greater

structural fluctuations and lower stability. RMSF was used to

evaluate the flexibility and stability of residues within the

complexes. Figure 4B demonstrates that HBD3-vaccine-TLR2 had

the smallest residue fluctuations, further supporting its overall

structural stability. Conversely, TLR2-vaccine-TLR2 and 50 s-

vaccine-TLR2 exhibited larger residue fluctuations, particularly in

specific regions, indicating higher flexibility in those areas.

Rg analysis was conducted to assess the compactness of the

receptor-ligand complexes during the simulation. As depicted in

Figure 4C, HBD3-vaccine-TLR2 had the lowest Rg values,

indicating the most compact structure. 50 s-vaccine-TLR2 had the

highest Rg values, suggesting a more loose structure, while TLR2-

vaccine-TLR2 had Rg values in between the two. SASA was used to

measure the surface area of the molecules exposed to the solvent. As

shown in Figure 4D, both the HBD3-vaccine-TLR2 and the TLR2-

vaccine-TLR2 exhibited similarly low SASA values, indicating a

small surface area exposed to the solvent, which may correlate with

improved stability. 50 s-vaccine-TLR2 had the highest SASA values,

indicating the largest surface area exposed to the solvent and

potentially lower stability. TLR2-vaccine-TLR2 had SASA values

between the two.

Additionally, eigenvector analysis was performed to understand

the overall motion and conformational changes of the docked

complexes. The relationship between the first 20 eigenvalues and

their respective indices was plotted in descending order (Figure 4E).

The plot shows a rapid decrease in the magnitude of the first few

eigenvalues, with HBD3-vaccine-TLR2 having the lowest

eigenvector values, indicating the smallest structural changes.

TLR2-vaccine-TLR2 and 50 s-vaccine-TLR2 had higher

eigenvector values, indicating larger structural changes. The PCA

scatter plot (PC1-PC2) was constructed by projecting the model

trajectories onto two principal components, displaying the motion

states of the complexes in a two-dimensional form (Figure 4F). The

plot shows that HBD3-vaccine-TLR2 had the most concentrated

motion pattern, indicating the smallest structural changes. TLR2-

vaccine-TLR2 and 50 s-vaccine-TLR2 had more dispersed motion

patterns, indicating larger structural changes.

In summary, the analysis indicates that HBD3-vaccine-TLR2

outperforms TLR2-vaccine-TLR2 and 50 s-vaccine-TLR2 in all

aspects, demonstrating the highest structural stability and the
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FIGURE 3

Visualization of molecular docking between vaccine candidate and TLR2. (A, B) HBD3-vaccine, (C, D) TLR2-vaccine, (E, F) 50 s-vaccine.
(A, C, E) Results of molecular docking analysis for vaccine candidate with TLR2 predicted by GRAMM Server are shown. The left panel depicts a
cartoon diagram of the molecular docking results, while the right panel displays a 3D zoomed-in diagram of the interactions between bonds at
the molecular docking site. (B, D, F) 2D ligand-protein interaction diagram of the vaccine-TLR2 complex created using the LigPlot+ software.
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most consistent dynamic behavior. TLR2-vaccine-TLR2 follows,

while 50 s-vaccine-TLR2 exhibits the least stability and the most

variable dynamic behavior.

MM-PBSA analysis was also employed to confirm the stability

of the selected complexes throughout the molecular dynamics

simulation. Supplementary Table S8 presents the MM-PBSA

values for the three complexes. Analyzing the energy components
Frontiers in Immunology 11
comprehensively, HBD3-vaccine exhibited the best performance in

terms of Van der Waals energy, electrostatic energy, and gas-phase

energy. Despite having a positive solvation energy, its total energy

was negative, indicating the highest overall binding stability.

Specifically, HBD3-vaccine had a Van der Waals energy of

-236.53 kJ/mol, electrostatic energy of -1087.90 kJ/mol, and gas-

phase energy of -1324.43 kJ/mol, with a solvation energy of 1266.63
FIGURE 4

Representation of MD simulation analysis plot of proposed vaccine construct and TLR2 complex. (A) Root Mean Square Deviation (RMSD) of
backbone atoms, (B) Root Mean Square Fluctuations (RMSF), (C) Radius of Gyration (Rg), (D) Solvent Accessible Surface Area (SASA) analysis,
(E) Eigenvalues for the complex as a function of the first 20 eigenvectors, (F) 100 ns simulation trajectories projected onto the first two principal
components (PCs), with the x-axis and y-axis representing PC1 and PC2, respectively.
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kJ/mol, resulting in a total energy of -57.80 kJ/mol. TLR2-vaccine

showed better performance in solvation energy compared to HBD3-

vaccine but was inferior in other energy components, leading to a

positive total energy and thus lower binding stability. TLR2-vaccine

had a Van der Waals energy of -116.40 kJ/mol, electrostatic energy

of 332.26 kJ/mol, gas-phase energy of 215.87 kJ/mol, and solvation

energy of -198.08 kJ/mol, resulting in a total energy of 17.78 kJ/mol.

50 s-vaccine performed poorly across all energy components,

particularly with positive values for both Van der Waals and

electrostatic energies, resulting in the highest positive total energy

and the least binding stability. 50 s-vaccine had a Van der Waals

energy of 268.00 kJ/mol, electrostatic energy of 942.83 kJ/mol, gas-

phase energy of 1210.83 kJ/mol, and solvation energy of -777.42 kJ/

mol, resulting in a total energy of 433.40 kJ/mol. In summary,

HBD3-vaccine demonstrated the highest binding stability, followed

by TLR2-vaccine, while 50 s-vaccine exhibited the lowest

binding stability.

The protein flexibility of the docking complexes was determined

using the iMODs server, and the results were interpreted through
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deformability plots, B-factor plots, eigenvalues, variance plots,

covariance maps, and elastic network models. The peaks in the

deformability plots represent regions of the complex with higher

flexibility, indicating areas that may need to adapt to TLR2 for

effective docking (Figures 5A, 6A, 7A). Specifically, HBD3-vaccine-

TLR2 and TLR2-vaccine-TLR2 showed prominent deformability in

certain regions, suggesting localized adaptability during their

interaction with TLR2. The B-factor plots were employed to assess

the atomic mobility within the complex, as indicated by the

relationship between the NMA (Normal Mode Analysis) and PDB

(Protein Data Bank) sectors (Figures 5B, 6B, 7B). Among the three,

TLR2-vaccine-TLR2 exhibited more extensive regions with higher B-

factors, implying greater atomic flexibility and dynamic behavior

during docking. The eigenvalues for the three complexes were

5.347270e-6, 4.183459e-6, and 4.758755e-6, respectively (Figures 5C,

6C, 7C). These values indicate the relative rigidity of each structure,

with TLR2-vaccine-TLR2 showing the lowest eigenvalue, implying a

more flexible overall conformation. In the variance plots, cumulative

variance was represented in green, and individual variance in purple
FIGURE 5

The results of molecular dynamics simulation of HBD3-vaccine and TLR-2 docked complex. (A) deformability, (B) B factor, (C) eigenvalues,
(D) variance (purple color indicates individual variances and green color indicates cumulative variances), (E) co-variance map (correlated (red),
uncorrelated (white) or anti-correlated (blue) motions) and (F) elastic network (darker gray regions indicate stiffer regions).
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(Figures 5D, 6D, 7D). The eigenvalue and variance data revealed that

each vaccine’s major dynamic modes contributed significantly to the

overall motion, with TLR2-vaccine-TLR2 demonstrating higher

cumulative eigenvalues and variance percentages in the initial

modes. This suggests that the primary motions in TLR2-vaccine-

TLR2 are more focused and potentially more stable.

The covariance maps depict the correlated (red), uncorrelated

(white), and anti-correlated (blue) motions between residues

(Figures 5E, 6E, 7E). The TLR2-vaccine-TLR2 complex showed a

higher degree of positive correlation, indicating more coordinated

dynamic behavior within the complex. Additionally, the elastic

network models illustrated the density of elastic connections

between atom pairs, where dark grey regions indicate more rigid

areas of the structure (Figures 5F, 6F, 7F). The elastic network of

TLR2-vaccine-TLR2 displayed more densely packed contact points,

suggesting stronger binding stability compared to HBD3-vaccine-

TLR2 and 50 s-vaccine-TLR2.

Additionally, Discovery Studio was used to visualize the docked

complexes. Although the results were primarily visual and involved
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the generation of videos for the three docked complexes, the solvent

was removed to enhance clarity (Supplementary Videos 1-3). This

visualization provided a clearer understanding of the docking

interactions and structural conformations of the complexes, albeit

without the detailed quantitative analysis provided by

other methods.

In summary, the molecular simulations performed using the

iMODs server indicate that TLR2-vaccine-TLR2 exhibits superior

performance across several metrics, including B-factors,

eigenvalues, variance explanation, and contact maps. This

suggests that TLR2-vaccine-TLR2 may form a more stable and

coordinated docking complex with TLR2. While HBD3-vaccine-

TLR2 and 50 s-vaccine-TLR2 display beneficial characteristics in

certain areas, TLR2-vaccine-TLR2 demonstrates better overall

stability and coordination, indicating its potential for more

effective interaction with TLR2.

Combining the results from GROMACS analysis, MM-PBSA,

and iMODs, HBD3-vaccine-TLR2 and TLR2-vaccine-TLR2 each

show strengths in different aspects. However, overall, HBD3-
FIGURE 6

The results of molecular dynamics simulation of TLR2-vaccine and TLR2 docked complex. (A) deformability, (B) B factor, (C) eigenvalues, (D) variance
(purple color indicates individual variances and green color indicates cumulative variances), (E) co-variance map (correlated (red), uncorrelated
(white) or anti-correlated (blue) motions) and (F) elastic network (darker gray regions indicate stiffer regions).
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vaccine-TLR2 demonstrates superior binding and structural

stability. GROMACS analysis, including RMSD, RMSF, Rg, and

SASA, indicates that HBD3-vaccine-TLR2 maintains a more stable

structure during molecular dynamics simulations. MM-PBSA

results further confirm the stability of HBD3-vaccine-TLR2,

showing favorable van der Waals, electrostatic, and gas-phase

energies, despite a positive solvation energy, resulting in a

negative total energy indicating the most stable binding. Although

iMODs results suggest that TLR2-vaccine-TLR2 performs well in

terms of B-factors, eigenvalues, variance explanation, and contact

maps, indicating potentially stable docking with TLR2, this finding

is not entirely consistent with the GROMACS and MM-PBSA

results. Notably, all three methods consistently indicate that 50 s-

vaccine-TLR2 performs poorly in terms of energy components and

structural stability, making it the least stable complex. Therefore,

despite some support for TLR2-vaccine-TLR2 from iMODs results,

the combined analysis from GROMACS and MM-PBSA suggests

that HBD3-vaccine-TLR2 is the most optimal choice among the

three vaccines due to its superior binding and structural stability.
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3.9 Immune simulation

The C-ImmSim server was used to generate a preliminary in-

silico prediction of innate and adaptive immune responses,

providing theoretical guidance for vaccine evaluation (Figure 8).

The HBD3-vaccine, TLR2-vaccine, and 50 s-vaccine showed stable

innate immune responses with similar levels of macrophages,

natural killer (NK) cells, and dendritic cells (DCs) across all

vaccines. This indicated a controlled activation, preventing

excessive inflammation. In adaptive immunity, B cell dynamics

demonstrated a swift shift from IgM to more mature IgG

antibodies, essential for a lasting immune defense. The activation

patterns of both CD4+ and CD8+ T cells suggested effective helper

and cytotoxic functions, critical for a strong immune response

against pathogens.

Adaptive responses were further evidenced by robust cytokine

production, including key mediators like IFN-g, IL-2, and TNF-a,
which were crucial for amplifying cellular immune responses. These

cytokines facilitated the interaction between innate and adaptive
FIGURE 7

The results of molecular dynamics simulation of 50 s-vaccine and TLR2 docked complex. (A) deformability, (B) B factor, (C) eigenvalues, (D) variance
(purple color indicates individual variances and green color indicates cumulative variances), (E) co-variance map (correlated (red), uncorrelated
(white) or anti-correlated (blue) motions) and (F) elastic network (darker gray regions indicate stiffer regions).
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immune components, reinforcing the body’s ability to mount a

sustained defense.

Despite using the same antigenic epitopes, differences in adjuvant

formulations between the HBD3-vaccine, TLR2-vaccine, and 50 s-

vaccine influenced their efficacy. The HBD3 and TLR2 vaccines
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showed slightly enhanced immune responses, marked by higher

cytokine levels and more vigorous B and T cell activations compared

to the 50 s-vaccine. This suggests that the adjuvants in the HBD3 and

TLR2 vaccines might boost the immune responsemore effectively, thus

potentially offering better and more durable protection.
FIGURE 8

In silico immune simulation results of the vaccine construct using C-ImmSim are presented as follows: (A) HBD3-vaccine, (B) TLR2-vaccine, (C) 50
s-vaccine.
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3.10 Codon optimization and cloning

The reverse translation and codon optimization of the final

vaccine construct resulted in a CAI value of 1 for our optimized

nucleotide sequence, indicating a high level of protein expression in

E. coli. It is ideal to achieve a CAI value of 1, although values ranging

from 0.8 to 1.0 are also considered acceptable. CAI values below 0.8

suggest poor expression of the target gene. Additionally, the GC

content percentage plays a critical role in expression efficiency, with

the optimal range being between 30% and 70% (14). Our three

vaccine constructs exhibited GC content percentages of 66%, 67%,

and 66%, respectively, indicating good expression efficiency in E.

coli as they fall within the optimal range.

To facilitate the cloning process of the vaccine construct into E.

coli pET-28a(+) vectors, we introduced BamHI and EcoRI

restriction sites at the N-terminal and C-terminal ends of the

optimized codon sequence, respectively. Subsequently, the

optimized codons with restriction sites were inserted into the

vector through restriction cloning. This process resulted in the

generation of three cloned constructs with sequence lengths of 7232,

7184, and 7487 base pairs (Supplementary Figure S7).

Based on a comprehensive computational assessment—including

molecular docking, dynamics simulations, and immune simulations—

the TLR2-vaccine construct was prioritized for experimental

validation. While all three candidates exhibited favorable in silico

properties, the TLR2-vaccine demonstrated the most balanced profile,

combining stable binding with TLR2, favorable energetic features, and

conformational flexibility. Importantly, its immune simulation results

suggested robust activation of both innate and adaptive responses,

supporting its potential to elicit protective immunity. The optimized

gene sequence of the TLR2-vaccine was synthesized, cloned into the

pET-28a(+) vector, expressed in E. coli, and purified as a recombinant

protein. This provided sufficient material for subsequent in vitro and

in vivo immunogenicity evaluation.
3.11 Immunogenicity and protective
efficacy of the TLR2-vaccine

Mice were immunized according to the schedule shown in

Figure 9A. A subset of mice was sacrificed at week 5 for splenocyte

assays, while the remaining mice were challenged with M.

tuberculosis H37Ra at week 10. Body weight monitoring revealed

no significant differences among control, BCG, and TLR2-vaccine

groups, indicating good tolerability (Figure 9B). The TLR2-vaccine

induced robust antigen-specific IgG responses, with antibody levels

rising progressively after each boost and reaching significantly

higher endpoint titers than the BCG group (Figure 9C). The

modest antibody increase observed in the BCG group may reflect

cross-reactivity with epitopes conserved across mycobacteria, as the

TLR2-vaccine epitopes are derived from M. tuberculosis proteins.

Similar results were obtained when H37Ra lysate was used as the

coating antigen (Figure 9D). Splenocyte restimulation assays further

showed that both the TLR2-vaccine and BCG groups secreted

elevated levels of IFN-g upon exposure to vaccine antigen or
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H37Ra lysate compared with the control group, confirming

effective induction of Th1-type cellular responses (Figure 9E).

Protective efficacy was next evaluated following intravenous

challenge with H37Ra. At two weeks post-infection, serum IFN-g
levels were higher in the TLR2-vaccine and BCG groups than in the

control group, although variability was greater in the TLR2-vaccine

group (Figure 9F). Bacterial load analysis demonstrated that both

vaccines reduced colony counts in the lungs and liver, while no clear

difference was observed in the spleen (Figure 9G). Histopathological

examination supported these findings: control mice displayed

extensive lung inflammation, alveolar collapse, and hemorrhage,

whereas lungs from the TLR2-vaccine group largely maintained

alveolar structure with only mild, scattered inflammatory cell

infiltration. The BCG group showed intermediate pathology, with

small granuloma-like aggregates and focal hemorrhage (Figure 9H).

Liver inflammation was also alleviated in the TLR2-vaccine and

BCG groups, while spleen morphology remained comparable across

groups. Together, these results demonstrate that the TLR2-vaccine

elicits both humoral and cellular immunity and confers protection

against M. tuberculosis H37Ra comparable to BCG.
3.12 TLR2-vaccine limited extrapulmonary
dissemination following pulmonary M.
tuberculosis infection

To assess whether the TLR2-vaccine could restrict bacterial

dissemination after pulmonary infection, mice were first challenged

with aerosolized M. tuberculosis H37Ra and subsequently

immunized three times at 2-week intervals (Figure 10A).

Antibody analysis showed that both TLR2-vaccine–specific IgG

and H37Ra-specific IgG increased over the course of

immunization (Figures 10B, C). Although control mice exhibited

modest antibody induction following infection, vaccination elicited

markedly higher titers, as confirmed two weeks after the final boost.

Bacterial burden analysis revealed no significant differences in the

lung between groups; however, liver bacterial loads were significantly

reduced in the TLR2-vaccine group compared with controls

(Figure 10D). We focused on lung and liver as representative organs,

given that the lung is the primary site of infection and the liver is a

frequent extrapulmonary target during dissemination, whereas the

spleen primarily functions as a secondary lymphoid organ and was not

the focus of dissemination analysis. Histopathological examination

further supported these findings: control mice showed focal

inflammatory infiltrates in the liver and extensive pulmonary

inflammation, whereas vaccinated mice exhibited preserved liver

architecture and less severe lung inflammation (Figure 10E). These

findings indicate that post-infection immunization with the TLR2-

vaccine can enhance antigen-specific immune responses and restrict

extrapulmonary bacterial dissemination.
4 Discussion

This study combined reverse vaccinology and experimental

immunology to develop a multi-epitope subunit vaccine targeting
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FIGURE 9

Immunogenicity and protective efficacy of TLR2-vaccine in C57BL/6 mice. (A) Experimental design. C57BL/6 mice (n = 12–14 per group) were
immunized three times with PBS, BCG, or TLR2-vaccine. At week 5, six mice per group were sacrificed for splenocyte assays, and the remaining 6–8
mice per group were challenged with M. tuberculosis H37Ra via tail vein injection. (B) Body weight changes during immunization. (C, D) Serum
antigen-specific IgG levels. (C) TLR2-vaccine–specific IgG; (D) H37Ra-specific IgG. Left, longitudinal antibody kinetics; right, endpoint titers two
weeks after the final boost (statistical analysis was performed on the endpoint titers at the final time point). (E) Splenocyte IFN-g production at week
5. (F) Serum IFN-g levels two weeks post-challenge. (G) Bacterial loads in lungs, livers, and spleens after challenge. (H) Representative H&E staining
of lungs, livers, and spleens. Control mice displayed severe inflammation, whereas TLR2-vaccine–immunized mice preserved tissue structure with
only mild infiltration. Data are representative of three independent experiments, each with six mice per group. Statistical analyses were performed
using one-way ANOVA followed by Tukey’s multiple comparisons test. *P<0.05; **P < 0.01; ***P < 0.001; **P < 0.0001.
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M. tuberculosis adhesins. By integrating in silico analyses with in

vivo validation, we demonstrated that the TLR2-vaccine induced

strong humoral and cellular immune responses and effectively

limited bacterial burden and dissemination in mice.

The correlation between bioinformatics predictions and

experimental outcomes supports the reliability of computational

vaccine design. The epitopes predicted to be highly antigenic and

IFN-g–inducing in silico indeed elicited robust Th1-type responses

and high IgG titers in vivo. Similarly, molecular docking and

immune simulations predicted stable binding between the vaccine

construct and TLR2, suggesting a potential role of TLR2

engagement in the observed immune activation. These findings

validate the predictive accuracy of our computational approach and

highlight the feasibility of integrating in silico screening with

experimental verification to accelerate TB vaccine development.

One limitation of this study is that we did not examine the

sequence homology of the selected antigens with non-tuberculous
Frontiers in Immunology 18
mycobacteria (NTM). Previous reports suggest that several of

these antigens, including ESAT-6 and Ag85B, have homologs in

certain NTM species, though the degree of conservation and

expression varies among strains (133–136). This potential

overlap could influence immune recognition in populations

frequently exposed to NTM, warranting further comparative

analysis in future studies.

The protective mechanisms of the TLR2-vaccine likely involve

the synergistic activation of both innate and adaptive immunity.

The engagement of TLR2 by the vaccine construct may promote

antigen presentation and IFN-g–mediated Th1 responses, which are

crucial for controlling intracellular M. tuberculosis. Additionally,

the presence of B-cell epitopes from the PGRS component could

facilitate antibody-mediated neutralization and opsonization,

contributing to bacterial clearance. However, these mechanisms

were not directly examined in this study and will require detailed

immunophenotyping and cytokine analyses in future experiments.
FIGURE 10

Post-infection immunization with TLR2-vaccine. (A) Experimental design. C57BL/6 mice (n = 6 per group) were challenged with aerosolized H37Ra.
Two weeks later, mice were immunized three times at 2-week intervals with TLR2-vaccine, while the control group received no vaccine. All mice
were sacrificed two weeks after the final immunization. (B, C) Antibody responses against TLR2-vaccine (B) and H37Ra (C). Left: dynamic IgG titers
during immunization; Right: endpoint titers two weeks after the final boost (statistical analysis was performed on the endpoint titers at the final time
point). (D) Bacterial loads in lung and liver. (E) Representative H&E staining of lung and liver tissues. Data are representative of three independent
experiments (n = 6 per group each) and analyzed using unpaired t-tests. *P<0.05; **P < 0.01; ***P < 0.001; **P < 0.0001; ns, not significant.
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Another aspect not addressed here is the evaluation of a prime–

boost strategy with BCG. Given that BCG remains the foundation of

TB vaccination programs, assessing the TLR2-vaccine as a booster

following BCG priming could better reflect its translational potential.

Future studies will explore this approach, along with testing against

virulent clinical strains and assessing long-term immune memory.

In summary, our study demonstrates that the integration of

computational prediction and experimental validation provides a

powerful framework for TB vaccine discovery. The TLR2-vaccine

showed consistent performance across in silico and in vivo analyses,

eliciting broad and balanced immune protection. Further

investigations into its immunological mechanisms, interaction

with BCG priming, and potential cross-reactivity with NTM will

help refine its development toward clinical application.
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119. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. GROMACS:
High performance molecular simulations through multi-level parallelism from laptops
to supercomputers. SoftwareX. (2015) 1–2:19–25. doi: 10.1016/j.softx.2015.06.001
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