

OPEN ACCESS

EDITED AND REVIEWED BY
Betty Diamond,
Feinstein Institute for Medical Research,
United States

*CORRESPONDENCE Lei Wan

yxwanlei@163.com

RECEIVED 13 September 2025 ACCEPTED 14 November 2025 PUBLISHED 26 November 2025

CITATION

Liang S, Wan L, Wang S, Zhang M, Wang Y, Min W and Zhang Y (2025) Correction: Crossing the metabolic homeostasis divide: panoramic decoding of therapeutic targets for metabolic-inflammatory crosstalk in rheumatoid arthritis. *Front. Immunol.* 16:1704527. doi: 10.3389/fimmu.2025.1704527

COPYRIGHT

© 2025 Liang, Wan, Wang, Zhang, Wang, Min and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Correction: Crossing the metabolic homeostasis divide: panoramic decoding of therapeutic targets for metabolic-inflammatory crosstalk in rheumatoid arthritis

Siyu Liang^{1,2}, Lei Wan^{2*}, Siyu Wang², Mengyu Zhang², Ying Wang², Wenwen Min² and Yu Zhang²

¹The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui, Hefei, China, ²Anhui University of Chinese Medicine First Clinical Medical College, Anhui, Hefei, China

KEYWORDS

rheumatoid arthritis, glucose metabolism, lipid metabolism, inflammations, immunity, target of intervention

A Correction on

Crossing the metabolic homeostasis divide: panoramic decoding of therapeutic targets for metabolic-inflammatory crosstalk in rheumatoid arthritis

By Liang S, Wan L, Wang S, Zhang M, Wang Y, Min W and Zhang Y (2025). *Front. Immunol.* 16:1633752. doi: 10.3389/fimmu.2025.1633752

There was a mistake in Figure 3 as published. During post-publication review, Figures 2 and 3 were identified as requiring improvement for clarity and coherence. To provide a more concise and integrated visualization, both figures have been removed and replaced with a single updated and fully original figure. This modification does not affect the scientific conclusions of the article. The corrected Figure 2 and its caption appears below.

The original version of this article has been updated.

Liang et al. 10.3389/fimmu.2025.1704527

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

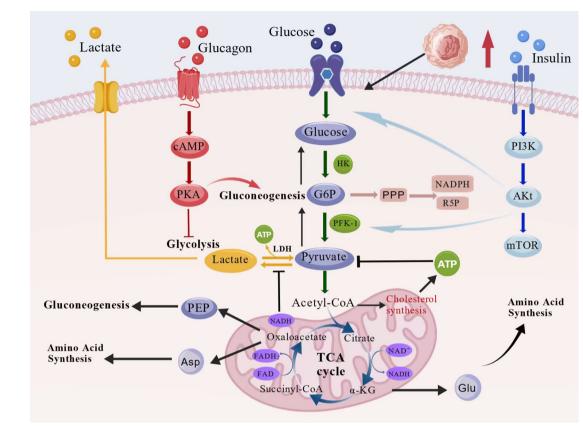


FIGURE 2

Core pathways of glucose metabolism and their dynamic synergistic networks. Glucose metabolism integrates glycolysis, the tricarboxylic acid (TCA) cycle, and amino acid and lipid synthesis. Insulin activates the PI3K-Akt-mTOR pathway to enhance glucose uptake and glycolysis, whereas glucagon promotes gluconeogenesis through the cAMP-PKA cascade. The TCA cycle acts as a metabolic hub linking carbohydrate, amino acid, and lipid metabolism through acetyl-CoA and key intermediates.