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Identification of Plasmodium
falciparum VAR2CSA peptides
differentially recognized by
IgG of multigravidae
through epitope excision
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Background: Placental malaria is associated with adverse outcomes for both

mothers and their newborn children. During pregnancy, Plasmodium

falciparum–infected erythrocytes (IEs) that surface-express VAR2CSA can bind

chondroitin sulfate (CSA) in intervillous spaces and sequester in the placenta.

Women acquire antibodies to VAR2CSA during their first pregnancy, but

functional antibodies that block IE adhesion and are associated with improved

outcomes develop over 2-3 pregnancies. Currently, VAR2CSA is the leading

pregnancy malaria vaccine candidate.

Methods: To identify and quantify epitopes differentially recognized by IgG of

multigravidae that acquired anti-adhesion antibodies compared to primigravidae

that did not, we applied epitope excision and multiplex isobaric labeling to

quantify epitope recognition by naturally acquired antibodies.

Results: While primigravidae and multigravidae IgG reacted similarly to most

epitopes, multigravidae IgG differentially recognized (Log2 fold change > 1, p <

0.05) ten epitopes conserved across multiple VAR2CSA alleles.

Conclusion: Knowledge of VAR2CSA epitopes preferentially recognized by

immune multigravidae will be valuable for designing a VAR2CSA subunit vaccine.
KEYWORDS

epitope mapping, epitope excision, VAR2CSA vaccine, pregnancy malaria vaccine,
Plasmodium falciparum, malaria
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1704346/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1704346/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1704346/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1704346/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1704346/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1704346&domain=pdf&date_stamp=2025-11-10
mailto:michal.fried@nih.gov
https://doi.org/10.3389/fimmu.2025.1704346
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1704346
https://www.frontiersin.org/journals/immunology


Misal et al. 10.3389/fimmu.2025.1704346
Introduction

Malaria during pregnancy is a major public health problem,

associated with poor pregnancy outcomes such as stillbirth, preterm

birth, small for gestational age and low birthweight (1–3).

Plasmodium falciparum (Pf) infection of pregnant women is

characterized by sequestration of infected erythrocytes (IEs) in

the placenta, uniquely binding to placental receptor chondroitin

sulfate A (CSA) expressed on the syncytiotrophoblast surface and in

intervillous spaces (4). IE adhesion to CSA is mediated by

VAR2CSA, a parasite surface protein and member of the

Plasmodium falciparum erythrocyte membrane protein 1

(PfEMP1) variant antigen family (5). In high malaria

transmission zones, susceptibility to pregnancy malaria is highest

during the first pregnancy (6). Over successive pregnancies, women

acquire antibodies to CSA-binding parasites, including anti-

adhesion antibodies that reduce IE binding to CSA and associate

with reduced risks of maternal infection, small for gestational age

births and increased birth weight (7–11).

Naturally acquired anti-adhesion antibodies reduce placental

parasite adhesion to CSA regardless of geographical origin of the

parasite isolate, suggesting epitopes targeted by anti-adhesion

antibodies are conserved (7). In multiple studies, antibody levels to

recombinant VAR2CSA increased over successive pregnancies and

were significantly higher in multigravidae compared to primigravidae

(10, 12–16). Consequently, VAR2CSA is the leading candidate for a

vaccine to prevent pregnancy malaria (17). However, it is unknown

whether functional antibodies acquired by multigravidae target the

same epitopes as those in primigravidae, or target functional epitopes

not recognized by primigravidae IgG.

To dissect potential differences in naturally acquired VAR2CSA

antibodies of primigravidae and multigravidae, we applied epitope

mapping technology. Several methods are used to map epitopes,

including peptide-library (PEPSCAN), X-ray crystallography,

Hydrogen-Deuterium Exchange coupled with Mass Spectrometry

(HDX-MS), Cryogenic Electron Microscopy (Cryo-EM), and

epitope excision (Reviewed in (18, 19). HDX-MS is a popular

method used to map epitopes based on comparing the rate of

hydrogen exchange with deuterium in an antibody-antigen complex

versus free antigen. The amino acid regions of the antigen are

protected from deuterium exchange upon binding, and are

considered as potential epitopes (20, 21). However, HDX-MS

requires specialized instruments and expertise, and is often unable

to differentiate between allosteric sites and true epitope binding sites

(22). PEPSCAN is an old technique that recently gained renewed

interest for epi tope mapping, with mult ip le reports

demonstratingits effectiveness of this approach to identify B and

T-cell epitopes. However, it is confined to a focus on linear epitopes

(23, 24). X-ray crystallography is also a powerful technique for high-

resolution mapping of linear and conformational epitopes (25), but

is limited by complex sample preparation and challenges with

crystallization (26). In this study, we applied epitope excision and

quantitative mass spectrometry with isobaric tandem mass tags

(TMT) labeling to profile differential specificities of plasma

antibody from multigravidae and primigravidae. Epitope excision
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followed by mass spectrometry is often used with limited proteolytic

digestion of the antigen-antibody complex (19). The antibody-

bound region of the antigen remains protected during proteolysis,

making it a potential epitope that can be identified by mass

spectrometry (19, 27). This approach has been used to identify

discontinuous epitopes recognized by monoclonal antibodies (28,

29). Labeling with TMT enhances quantification precision of

multiple samples analyzed together. TMT quantitative proteomics

is designed to quantify the relative abundance of a peptide across

multiple samples simultaneously. Multiplexing samples enables

quantifying same peptides across samples, reducing missing data

associated with label-free methods (30). In addition, multiplexing

reduces variations between LC-MS/MS runs and provides a higher

protein detection rate (31).

To generalize the finding, we compared epitopes recognized by

primigravidae and multigravidae IgG across four VAR2CSA allelic

forms. We identified between 199–226 epitopes across the different

VAR2CSA alleles, including two epitopes identified in 4 alleles and

eight epitopes identified in 3 alleles that were recognized exclusively

or at significantly higher levels by multigravidae IgG.
Methods

Ethical approval

Plasma samples from multigravid women (MG) (n=8), and

primigravid women (PG) (n=8) were collected from pregnant

women enrolled into a longitudinal cohort study of mother-infant

pairs carried out in Ouelessebougou, Mali (3). Samples used here

were collected at delivery. The study protocol was approved by the

institutional review board of the National Institutes of Health

(ClinicalTrials.gov NCT01168271), and the Ethics Committee of

the Faculty of Medicine, Pharmacy and Dentistry at the University

of Bamako, Mali. All individual participants provided written

informed consent after community permission was obtained.
Polyclonal antibody isolation and
recombinant VAR2CSA expression

IgG was purified from 50 µl plasma samples using Melon Gel

IgG purification spin columns (Thermo Fisher, P/N-45206). 100 µg

IgG were immobilized on 70µl Protein G Mag Sepharose Xtra

(Cytiva, P/N-28967070) and incubated for 1 hour at room

temperature to allow IgG binding.

Recombinant VAR2CSA alleles were prepared as previously

described (16). Briefly, full-length VAR2CSA ectodomains (NTS to

DBL6) were synthesized with human optimized codons. Expi293

cells were transfected with plasmid containing VAR2CSA. Culture

supernatant were collected 7 days after transfection and the protein

was purified on HisTrap Excel NTA column (Cytiva) and then on a

size-exclusion S6 16/60 column (Cytiva). Recombinant proteins

were deglycosylated using Protein Deglycosylation Mix II (New

England Biolabs) according to the manufacturer’s protocol.
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Epitope excision

20 ug of recombinant VAR2CSA alleles (16) were added to

immobilized IgG and incubated for 1 hour, followed by washing

unbound VAR2CSA. For proteolytic digestion, 3-hour incubation

with trypsin (1:20 ratio, protein-enzyme) was followed by addition

of chymotrypsin (1:10 ratio, protein-enzyme) and continued

digestion for an additional 3 hr. Unbound peptides were washed

off the beads and bound peptides were eluted twice with 0.1% TFA.

The peptides were cleaned with C18 ZipTips (Millipore Sigma),

dried and stored at -80°C until further use.
TMTpro 16plex labeling and high pH
reverse phase chromatography

100 µg of each peptide sample from multigravidae and

primigravidae were used for labeling with TMTpro 16 plex

reagent according to the manufacturer’s protocol (Thermo Fisher

Scientific). Labeled peptides were fractionated by a high pH reverse

phase chromatography column (Waters, 1mm x 50mm XBridge

BEH C18 column) connected to the Shimadzu HPLC. The peptide

samples were loaded on a column with 10 mM Triethylammonium

bicarbonate buffer (TEAB) as a mobile phase A, and solvent B was

90% Acetonitrile with 10mM TEAB over a 120-minute

linear gradient.
Liquid chromatography mass spectrometry
analysis

500 ng of fractionated peptide samples were injected into a trap

cartridge (0.3 mm x 5mm packed with 5 µm C18 resin, Thermo

Scientific) with Buffer A, 0.1% formic acid, and Optima™ LC-MS

grade water (Fisher Scientific), then separated by an Aurora

Ultimate TS 25×75 C18 UHPLC column (IonOpticks, Australia)

on Ultimate™ 3000 RSLC nano (Thermo Fisher Scientific) coupled

to the Orbitrap Fusion™ Lumos™ Tribrid™ mass spectrometer

using a gradient of 5% to 30% of solvent B (0.1% formic acid,

acetonitrile) for 75 minutes, 30 to 45% for 10 min and then to 85%

solvent B for additional 20 minutes. The mass spectrometer was set

to scan m/z from 400 to 1800. The full MS scans were acquired

using an Orbitrap at a 120,000 resolution in profile mode, followed

by data-dependent MS/MS scans in the Orbitrap at 50,000

resolution with a cycle time of 3 seconds. Monoisotopic precursor

selection was enabled, and charge-state filtering was enabled from

2-7. The dynamic exclusion was set to 30 seconds with an automatic

gain control target of 1e6 for MS1 and 1e5 for MS2 scans.
Data analysis

Raw data were analyzed using PEAKS online v.11

(Bioinformatics Solutions, Inc. Canada) with a custom-made

proteome database of VAR2CSA and immunoglobulins.
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Precursor and fragment mass tolerance were set at 5 PPM and

0.02 Da, respectively. Cleavage enzymes of trypsin and

chymotryps in were se lec ted . F ixed modificat ions of

TMTpro16plex (N-term and K, + 304.20), carbamidomethyl (C,

+ 57.02), and variable modifications of oxidation (M, + 15.99) and

deamidation (NQ, + 0.98) were selected. Three missed cleavage sites

were allowed. The false discovery rates (FDR) for PSM and proteins

were set at 1% by applying the target-decoy strategy. Proteins were

quantified using the PEAKS Qmodule by grouping the samples into

multigravid and primigravid. Normalization was set to “Auto

normalization”. PEAKS auto-normalization algorithm calculates a

scaling factor for each channel (label) from the total intensities of all

labels to ensure that each channel has equivalent total intensity. The

PEAKS Q output was exported and processed in Perseus. Significant

differences in peptide epitope abundance between groups were

defined as a log2 fold change of >=1 or <=-1.0 and p<0.05 by

Mann Whitney-U test. Only peptides with quantifiable intensities

in at least 5 of the 8 samples from one of the gravid groups were

included in the analysis.
Results

VAR2CSA epitopes recognized at a higher
level by multigravidae compared to
primigravidae IgG

VAR2CSA is a 350 kDa transmembrane protein. The

extracellular region includes six Duffy-Binding-Like (DBL)

domains and four interdomain (ID) regions (Figure 1A). Four

allelic forms of full-length VAR2CSA (NF54, HB3, 7G8 and

FCR3) (16) were used in this analysis. We employed epitope

excision coupled with TMTpro labeling and mass spectrometry to

identify and quantify VAR2CSA epitopes differentially recognized

by IgG from multigravidae compared to primigravidae (Figure 1B).

The analysis included plasma samples from 8 primigravidae and 8

multigravidae collected at delivery. Plasma samples included in the

analysis were previously evaluated for anti-adhesion activity with

heterologous fresh parasite isolates. The selected samples

represented anti-adhesion activity levels observed in

primigravidae and multigravidae that participated in the study

(11). Anti-adhesion activity was measured with a mean (SD) of

4.8 (1.6) heterologous isolates. Median (IQR) percent inhibition was

significantly higher in multigravidae [81.16 (78.49-86.70)] than

primigravidae [3.46 (-6.16-31.06); p=0.0008].

A total of 225, 175, 199 and 206 peptides were quantified in

NF54, HB3, 7G8 and FCR3 VAR2CSA alleles, respectively

(Supplementary Table S1, Supplementary Data File 1). Two

epitopes were recognized almost exclusively by multigravidae IgG

across the 4 VAR2CSA variants: one mapped to DBL2 and the other

to DBL4 (Table 1). Intensities of 8 epitopes were significantly higher

with multigravidae IgG across 3 allelic forms, and these mapped to

VAR2CSA domains DBL1, ID1, DBL2, ID2b, DBL3, and DBL4

(Table 1). Five of the eight epitopes were identified in the fourth

allele as well, however neither fold change nor p value met the
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criteria for differentially recognized epitopes (log2 fold change

<=-1.0 or >=1.0, p<0.05) (Table 1). In addition, intensities of 14

epitopes were significantly higher with multigravidae IgG in two

VAR2CSA allelic forms (Supplementary Table S2). We also

identified allele-specific epitopes differentially recognized by

multigravidae IgG (Supplementary Table S3).

Intensities of 2, 7, 3 and 14 epitopes in NF54, HB3, 7G8 and

FCR3 alleles, respectively, were significantly higher with

primigravidae IgG. However, log2 fold change did not meet the

cutoff criteria except for one peptide epitope in HB3 allelic form

(amino acids 2600-2605, Supplementary Table S4).

The conservation of amino acid residues across 765 VAR2CSA

variant forms was evaluated for the peptide epitopes identified by

our method. The median (IQR) of amino acid conservation in those

identified in one, two, three or four alleles were respectively 89.29

(61.52-100), 91.61 (63.16-100), 99.41 (76.35-100) and 100 (86.71-

100). Amino acid conservation levels differed significantly between

those identified in 3–4 versus 1–2 alleles (adjusted p<0.01), as well

as in 4 versus 3 alleles (adjusted p<0.01). Sequence conservation of

the ten peptide epitopes preferentially recognized by multigravidae

IgG in 3–4 alleles ranged between 71.66-99.87% (Supplementary

Table S5).
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Comparison of epitopes differentially
recognized in full-length VAR2CSA and
VAR2CSA domains

We then evaluated whether differentially recognized epitopes

across 3–4 allelic forms are also differentially recognized by

multigravidae IgG when presented as part of single or double

domains. For this experiment, we developed two recombinant

proteins, ID1-DBL2-ID2a fragment and DBL4 domain (amino

acids L376-D1016 and I1529-L1920, respectively) based on the

NF54 allele sequence. Recombinant ID1-DBL2-ID2a contains the

entire sequence of one of the first two vaccines tested in human

vaccine trials, named PAMVAC (32). The same plasma samples

were used in this analysis as in the analysis of full-length VAR2CSA,

and we followed the same procedure described above. Fifty-seven

and 32 peptide epitopes in ID1-DBL2-ID2a and DBL4 recombinant

domains, respectively, were quantified, of which 39/57 and 26/32

were shared with peptides identified in the analysis of full-length

VAR2CSA (Supplementary Data File 1). Three peptides from ID1-

DBL2-ID2a fragment and 12 from DBL4 domain were identified in

the analysis of full-length VAR2CSA but not the domains analysis

(Supplementary Data File 1). The 4 epitopes in ID1-DBL2 domains,
FIGURE 1

Overview of VAR2CSA protein and epitope mapping by mass spectrometry. (A) VAR2CSA NF54 full length protein with domain boundaries. Other
VAR2CSA alleles (FCR3, HB3, and 7G8) have similar domain organization. (B) Summary of experimental workflow: Each VAR2CSA allele, or individual
domains was incubated with plasma samples followed by digestion of unbound antigen regions and elution of bound peptides. Eluted peptides are
labeled with TMT (Tamdam Mass Tag) and quantified by mass spectrometry analysis. Red font indicates multigravid samples; blue font indicates
primigravid samples. .
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TABLE 1 Differentially recognized epitopes across 3-4 alleles.

Full-length VAR2CSA Domain analysis

Allele Epitope Start-
end

Log2 FC P-
value

Domain PG (n) MG (n) Log2 FC P-
value

PG (n) MG (n)

NF54 DLELNLQK 670-677 8.301 0.01 DBL2 0 5 7.43 0.01 0 5

HB3 DLELNLQK 672-679 10.20 0.01 0 5

FCR3 NLQNNFGK 676-683 16.42 0.002 1 8

7G8 DLELNLQK 676-683 5.34 0.01 0 5

NF54 ELFPIIIK 1617-1624 12.07 0.01 DBL4 0 5 6.03 0.01 0 5

HB3 ELFPIIIK 1649-1656 12.36 0.01 0 5

FCR3 ELFPIIIK 1635-1642 12.7 0.01 0 5

7G8 ELFPIIIK 1645-1652 6.83 0.01 0 5

NF54 GVQHIGIAK 1779-1787 8.78 0.02 DBL4 3 8

FCR3 GVEHIGIAK 1784-1792 11.49 0.04 3 8

HB3 GVEHIGIAK 1806-1814 8.99 0.008 3 8

7G8 1IGIAKPQ 1804-1810 0.3 0.016 8 8

NF54 SNDLLIKR 231-238 16.46 0.001 DBL1 0 7

FCR3 SNDLLIKR 232-239 15.98 0.001 0 7

7G8 SNDLLIKR 235-242 5.01 0.001 0 8

HB3 1SNDLLIK 232-238 0.18 0.06 8 8

NF54 SEWENQK 337-343 11.72 0.004 DBL1 3 8

HB3 SEWENQK 338-344 12.29 0.001 3 8

7G8 SEWENQK 341-347 6.21 0.008 3 8

FCR3 1ENQENK 341-346 -0.15 0.87 8 8

NF54 SSLENYIK 381-388 14.64 0.001 ID1 0 7 10.30 0.001 0 7

FCR3 SSLENYIK 382-389 14.89 0.001 0 7

7G8 SSLENYIK 387-394 5.62 0.001 0 7

HB3 1SSANSY 382-387 -0.03 0.564 8 8

NF54 LGVRENDK 467-474 14.13 0.001 ID1 1 8 6.21 0.0005 1 8

FCR3 LGVRENDK 468-475 13.15 0.009 1 8

7G8 LGVRENDK 473-480 5.53 0.002 1 8

HB3 1LGINNNDK 468-475 0.33 0.318 7 8

NF54 FLQEWVEHF 760-768 12.67 0.002 DBL2 1 8 7.71 0.003 1 8

HB3 FLQEWVEHF 762-770 15.24 0.001 1 8

FCR3 FLQEWVENF 762-770 4.24 0.027 5 8

NF54 ENESTNNK 1195-1202 15.94 0.002 ID2b 1 8

7G8 ENESTDTK 1201-1208 1.60 0.009 3 8

HB3 EIQNTDTK 1207-1214 14.52 0.001 0 7

NF54 NMILGTSVNIY 1351-1361 10.75 0.003 DBL3 3 8

FCR3 NMILGTSVNIY 1356-1366 13.03 0.003 3 8

HB3 NMILGTSVNIY 1372-1382 11.26 0.001 3 8

7G8 NMILGTSVNTY 1366-1376 2.84 0.1 3 8
F
rontiers in Immunology 05
 fron
1Peptide did not meet cutoff criteria of fold change (log2 fold <=-1.0 or >=1) or p value <0.05.
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and 1 of the 2 epitopes in DBL4, identified across 3–4 allelic forms

in the analysis of full-length VAR2CSA (described above), were also

identified in the analysis of ID1-DBL1-ID2a (Table 2) as

differentially reactive to multigravidae; the second DBL4 peptide

(amino acids G1779-K1787 in NF54 allele) was not identified in the

domain analysis, suggesting DBL4 alone did not recapitulate the

epitope structure (Table 2).
Structural analysis of epitopes

Epitopes differentially recognized by multigravidae IgG in the full-

length VAR2CSA were displayed on 3D structures of VAR2CSA NF54

and FCR3 using PyMOL software (Schrödinger, Inc.). VAR2CSA-

FCR3 and VAR2CSA-NF54 3D Cryo-EM structures were downloaded

from Protein Data Bank (VAR2CSA FCR3 NTS-DBL4 and DBL5-

DBL6, PDB IDs- 7B54, 7NNH; VAR2CSA-NF54 NTS-DBL4 and

DBL5-DBL6, PDB IDs- 7JGH, 7JGG). The core structure of

VAR2CSA encompassing NTS-DBL4 domains, and the flexible arm

encompassing domains DBL5-DBL6, were determined separately for

both allelic forms (33, 34). The core structure contains the major and

minor CSA binding channel (34). The major CSA-binding channel
Frontiers in Immunology 06
includes 2 discontinued binding sites (34). To present a comprehensive

view of the full-length VAR2CSA structure, the two parts of the

structures were combined in PyMOL (Figure 2A).

The ten epitopes differentially recognized by multigravidae IgG

across 3–4 alleles are located in the core structure. Of those, seven

epitopes were localized to structures of one or both variants; three

epitopes mapped to unresolved regions and hence were not

localized (Figure 2A).

Based on this analysis, seven epitopes localize to the surface of

VAR2CSA. One epitope in DBL4 (VAR2CSA-NF54 amino acids 1779-

1787) exclusively recognized by multigravidae IgG localized in the

second site of the major binding channel. Additional peptide epitopes

that localized within the major or minor CSA-binding channel were

identified and quantified, but were either differentially recognized by

multigravidae IgG in only 1–2 alleles or intensities were similar

between multigravidae and primigravidae IgG (Figure 2B).
Discussion

VAR2CSA is the leading target for a pregnancy malaria vaccine

but its development has been hindered by antigen size and sequence
TABLE 2 Differentially recognized epitopes identified in ID1-ID2a and DBL4 domains.

Domain Epitope Start-end Log2 FC P value Domain PG (n) MG (n)

ID1-ID2a (NF54)

1SSLENYIK 381-388 10.30 0.001 ID1 0 7

1LGVRENDK 467-474 6.21 0.0005 ID1 1 8

1NNKNWIW 554-560 3.76 0.01 DBL2 0 5

2EGGLQKEY 567-574 6.79 0.02 DBL2 3 8

1EYANTIGLPPR 573-583 5.29 0.02 DBL2 3 8

1DLELNLQK 670-677 7.43 0.01 DBL2 0 5

2SSLDELRESW 700-709 3.78 0.03 DBL2 3 8

3YIWLAMK 716-722 7.90 0.0005 DBL2 1 8

1FLQEWVEHF 760-768 7.71 0.003 DBL2 1 8

1TTYTTTEK 912-919 7.28 0.0006 DBL2 1 8

DBL4 (NF54)

1NDNIEYK 1538-1544 2.62 0.03 DBL4 5 8

3YKTYYP 1543-1548 1.10 0.0008 DBL4 8 8

3KTYYPY 1544-1549 1.09 0.0008 DBL4 8 8

2GVYVPPRR 1603-1610 1.19 0.046 DBL4 8 7

1ELFPIIIK 1617-1624 6.03 0.01 DBL4 0 5

1QYHAHNDTTY 1654-1663 4.38 0.001 DBL4 1 8

2SDPKTIR 1740-1746 1.20 0.003 DBL4 8 8

2VWDAMQSGVR 1749-1758 1.07 0.002 DBL4 8 8

1WLEEWTNEF 1793-1801 2.21 0.001 DBL4 0 7

2ESEDGKDY 1868-1875 5.28 0.002 DBL4 1 8
fron
1Similar result to that observed with full-length VAR2CSA, NF54 allele.
2Peptide identified in full-length VAR2CSA, but differences between primigravidae and multigravidae were not significant.
3Peptide was not identified in the analysis of full-length VAR2CSA.
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variation. The first two VAR2CSA-based vaccine candidates tested

in humans, PRIMVAC (domains DBL1-ID1-DBL2) and PAMVAC

(domains ID1-DBL2-ID2a), were immunogenic but elicited only

allele-specific functional antibodies (32, 35). Unlike single-domain

VAR2CSA recombinant proteins, full-length recombinant

VAR2CSA depletes strain-transcending functional antibodies

from multigravidae IgG, suggesting that individual domains may

not recapitulate conformational epitopes (36, 37), or that a

combination of antibodies targeting epitopes mapped to

additional domains are required. In this study, we used naturally

acquired polyclonal antibodies from pregnant women to compare

epitope recognition between multigravidae and primigravidae IgG.

We report that intensities of most epitopes were similar when IgG

samples from primigravidae or multigravidae were used

(Supplementary Table S1), consistent with the observation in this

population, that during the first pregnancy, women acquire

antibodies to VAR2CSA domains (15). We identified two

conserved epitopes (from DBL2 and DBL4 domains) that bind

exclusively or at significantly higher levels to multigravidae IgG

across four VAR2CSA alleles, and eight such epitopes across three

alleles (Table 1). Alignment of 765 VAR2CSA sequences showed a

high degree of sequence conservation of these 10 peptide epitopes

(Supplementary Table S5).
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Previous analysis of IgG reactivity with VAR2CSA peptides

described that peptides in DBL3 and DBL5 domains corresponding

to amino acids 1350–1370 and 2045–2061 in 3D7 respectively are

highly conserved, exposed on the surface of VAR2CSA and

therefore accessible to antibodies. These peptides were

preferentially recognized by plasma from females compared to

males (38). In the current study, the peptide from DBL3

preferentially recognized by multigravidae IgG in 3 allelic forms is

within the described region (Table 1). We also identified a peptide

in DBL5 domain within the described region that was differentially

recognized by multigravidae in 2 VAR2CSA alleles while there were

no differences between primigravidae and multigravidae in the

other 2 alleles (Supplementary Table S2 and Supplementary Data

File 1). Previously, a peptide array of DBL4 domain identified a

peptide preferentially recognized by sera from women that acquired

anti-adhesion antibodies compared to women without anti-

adhesion activity (39). This peptide was also identified in our

study; however, the peptide was differentially recognized by IgG

of multigravidae that acquired functional anti-adhesion antibodies

compared to primigravidae that did not acquire functional

antibodies in NF54 allele, while intensities were similar between

primigravidae and multigravidae in the other 3 alleles

(Supplementary Table S3).
FIGURE 2

Localizing epitopes on VAR2CSA structure and in CSA binding channel. (A) The spatial distribution of the epitopes on 3D structures of VAR2CSA
FCR3 and NF54 alleles was visualized using PyMOL software. NF54 and FCR3 structures are shown with major and minor CSA binding channels in
green. Epitopes differentially recognized by multigravidae IgG across 4 alleles (in red) and across 3 alleles (in blue) are indicated. Epitope LGVRENKD
in ID1 mapped to an unresolved region in both alleles, while epitope ENESTNNK localized in NF54 but not FCR3, and epitope SSLENYIK did not
localize in the NF54 3D structure due to unresolved residues. (B) Peptides observed in major and minor CSA-binding channels of VAR2CSA.
Differentially recognized peptides by multigravidae are highlighted green and peptides recognized similarly by primigravidae and multigravidae are
highlighted gray. Binding channel boundaries defined according to Ma et al. analysis (34).
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Cryo-EM studies have suggested the protein core is made of

four DBL domains and 3 interdomain (ID) regions (NTS-ID3) that

form a compact structure with the DBL4 domain at the center and

multiple inter-domain interactions (33, 34). CSA-binding sites are

within two channels in the protein core, defined as a major binding

channel containing two discontinuous binding sites and a minor

binding channel (34). The two epitopes (in DBL2 and DBL4)

differentially recognized across the 4 alleles are outside the CSA

binding channel. Of the eight epitopes differentially recognized

across 3 alleles, one epitope in DBL4 domain localized to the second

binding site of the major binding channel between amino acids

1779–1787 of the NF54 allele (Table 1, peptide GVQHIGIAK) and

contains one CSA-binding residue. This peptide was not identified

in single-domain DBL4 analyses, suggesting that epitope

conformation may have been lost. Alternatively, this epitope

could be part of a discontinuous epitope involving sequences in

other domains or inter-domain regions. Additional peptides

mapped to the major and minor CSA-binding channels, however

these epitopes were either differentially recognized by multigravidae

IgG in only 1–2 alleles or were similarly recognized by IgG of

primigravidae and multigravidae (Figure 2B). These results suggest

that by the end of the first pregnancy, women have acquired

antibodies to multiple epitopes located in CSA-binding channels,

and that epitopes outside CSA-binding channels may be important

targets for strain-transcending functional antibodies.

Earlier adhesion studies using recombinant VAR2CSA

fragments concluded that ID1-DBL2-ID2a contains the minimal

CSA-binding region (17). While the first two VAR2CSA vaccines

encompassed the minimal CSA binding domain, these candidates

induced homologous functional activity (ie, only inhibited adhesion

of IEs expressing the VAR2CSA variant in the vaccine) (32, 35).

Here, four epitopes that mapped to ID1 and DBL2 regions were

differentially recognized by multigravidae IgG in both the minimal

CSA-binding region and full-length VAR2CSA, suggesting their

conformations were similar (Table 1). We speculate that the

combination of antibodies targeting multiple epitopes including

those outside the minimal CSA-binding region (like DBL3 and

DBL4 domains) are important for total serum functional activity, in

which case a vaccine based on full-length VAR2CSA, or at least on

the core protein (NTS-DBL4), may be required to induce antibodies

with broad anti-adhesion activity to heterologous parasites.

Previous mass spectrometry analysis of inter- and intra-domain

interactions described disulfide bonds and crosslinking of proximal

lysine residues that play a role in stabilizing the compact VAR2CSA

structure (40). Among the ten peptide epitopes differentially recognized

across 3–4 alleles, three lysine-containing epitopes are involved in inter-

domain interactions and two in intra-domain interactions, including

an ID1 peptide (L467-K474) that interacts with several lysine residues

in DBL4. This suggests acquisition of antibodies targeting inter-domain

interactions may be important for developing protective immunity to

placental parasites. Future studies may compare anti-adhesion activity

by antibodies induced with mutated lysine residues involved in inter-

and intra-domain interactions versus native protein.

In this study, we mapped and quantified VAR2CSA epitopes that

are recognized exclusively or at significantly higher levels by
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multigravidae IgG compared to primigravidae IgG. Of the ten

differentially recognized epitopes, only one localized to the CSA-

binding channel; additional epitopes in the CSA-binding channels

were differentially recognized by multigravidae IgG in 1–2 alleles or

similarly by primigravidae and multigravidae IgG. These results

highlight epitopes outside the CSA-binding region that preferentially

react to multigravidae antibodies and thus may contribute to protective

immunity. Further studies are needed to evaluate the contribution of

these peptide epitopes to acquisition of functional anti-adhesion

antibodies. For example, multigravidae IgG purified on VAR2CSA

containing mutations at the epitope sites could be compared to IgG

purified on native VAR2CSA for anti-adhesion activity.
Limitations of the study

A limitation of our study is that we cannot determine whether any

of the peptide epitopes are part of discontinuous epitopes. Unlike earlier

studies that mapped discontinuous epitopes by epitope excision method

with monoclonal antibodies, here we used human polyclonal IgG that

reacts with numerous epitopes. Hence, after eluting IgG-bound

fragments from immobilized IgG, it was not possible to determine

whether any of the peptides are part of a discontinuous epitope.
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