
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Adit Ben-Baruch,
Tel Aviv University, Israel

REVIEWED BY

Saptak Banerjee,
Chittaranjan National Cancer Institute (CNCI),
India
Weian Zhu,
Sun Yat-sen University, China

*CORRESPONDENCE

Orazio Fortunato

orazio.fortunato@istitutotumori.mi.it

†These authors have contributed equally to
this work

‡These authors jointly supervised this work

RECEIVED 12 September 2025
REVISED 08 November 2025

ACCEPTED 11 November 2025
PUBLISHED 26 November 2025

CITATION

Locatelli C, Ferrario N, Fortunato O,
Ghidotti P and Crescitelli R (2025) Platelets
and platelet-derived extracellular vesicles:
their role in lung cancer dissemination and
premetastatic niche formation.
Front. Immunol. 16:1703974.
doi: 10.3389/fimmu.2025.1703974

COPYRIGHT

© 2025 Locatelli, Ferrario, Fortunato, Ghidotti
and Crescitelli. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 26 November 2025

DOI 10.3389/fimmu.2025.1703974
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premetastatic niche formation
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Milan, Italy, 2Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical
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Metastasis, the primary cause of cancer-related mortality, is sustained by

complex interactions between tumor cells and host-derived factors.

Extracellular vesicles, membrane-bound particles that mediate intercellular

communication, have emerged as critical regulators of this process. Among

them, platelet-derived extracellular vesicles represent the most abundant EV

population in circulation and extend the multifaceted influence of platelets in

cancer progression. Platelets actively contribute to metastasis by shielding

circulating tumor cells from immune surveillance, promoting vascular

remodelling, facilitating extravasation, and releasing soluble factors that shape

the premetastatic niche. Platelet-derived extracellular vesicles further potentiate

these processes by delivering a heterogeneous cargo of proteins, nucleic acids,

and lipids to endothelial, stromal, and immune cells, thereby promoting

angiogenesis, extracellular matrix remodelling, immune suppression, and

organ-specific metastatic colonization. This review summarizes current

evidence on the cooperative roles of platelets and platelet-derived

extracellular vesicles in metastatic dissemination, with particular emphasis on

their contribution to lung premetastatic niche formation and their emerging

translational potential in oncology.
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1 Introduction

Metastasis is the process by which cancer cells spread from their original location to

other parts of the body, forming new tumors (1), and it represents one of the major

contributors to cancer-related deaths (2). Furthermore, morbidity and mortality of

metastasis are associated with the rise of paraneoplastic syndromes and complications

due to treatments (2). Metastasis is a highly complex process involving numerous biological
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components. Identifying its key contributors is essential for the

development of metastasis-targeted therapies and for improving the

management of advanced disease (3).

Blood represents a complex fluid comprising different cellular

(red blood cells, white blood cells, and platelets) and soluble

components, many of which are actively involved in the

metastatic process (4, 5). Platelets are the most abundant cell

population in blood, and their primary activities are related to the

coagulation cascade and hemostasis maintenance (6). Among other

factors, such as cytokines and growth factors, extracellular vesicles

(EVs) are highly present in the blood circulation. EVs are

membrane-limited particles released by almost all cells in our

body (7). Blood EVs originate primarily from blood cells and

endothelial cells, although vesicles released from distant organs

can also be detected in circulation (8). Platelets and platelet-derived

extracellular vesicles (PEVs) are two major contributors to tumor

progression and metastasis establishment, as they are involved in

nearly all steps of the metastatic cascade (9). The complex

bidirectional interaction between cancer cells and platelets has

important clinical implications in metastasis management. This

interaction can lead to platelet activation with consequent rise of

thrombotic complications that represent a major cause of cancer-

related deaths (10, 11). Moreover, cancer cells exploit platelets to

enhance their chances of establishing metastases in distant organs

and to develop resistance to cytotoxic chemotherapeutic drugs (12–

14). This review summarizes the key mechanisms by which platelets

contribute to metastatic establishment and how PEVs influence the

formation of the premetastatic niche (PMN), with particular

emphasis on PMN formation in the lungs.
2 Metastatic cascade in solid tumors

The first event in the metastatic cascade is the escape of

metastatic cells from the primary tumor, followed by their

invasion of nearby lymphatic vessels or the bloodstream. In this

phase, metastatic cells acquire a more plastic phenotype by

undergoing the epithelial-to-mesenchymal transition (EMT) and

acquiring different genomic alterations (15, 16). As a consequence

of these events, metastatic cells detach from surrounding cells and

extracellular matrix (ECM) and migrate towards the circulation.

Intravasation is a critical bottleneck in the metastatic process.

Evidence from mouse models demonstrates that, although large

numbers of tumor cells are shed from solid tumors, fewer than 0.1%

successfully formmetastases at distant sites (17, 18). This low rate of

success could be explained by the fact that once in the bloodstream,

tumor cells have to face different threats, including as anoikis due to

cellular detachment, shear stress, and the presence of immune cells,

making the circulation a hostile environment for their survival. In

the circulation, circulating tumor cells (CTCs) have been detected as

both single cells and as clusters of cells, and their presence in the

circulation is generally associated with a worse prognosis for

patients (19, 20). Furthermore, CTCs could be circulating in

association with other cells, such as neutrophils (20) and platelets,

which increases their survival probability and, at the same time,
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natural killer (NK) cells and other cytotoxic immune cells (21).

As a consequence, CTCs can extravasate into distant organs and

initiate metastatic colonization (22). Generally, each primary tumor

shows a specific organ tropism for the metastatic seeding. This

behavior forms the basis of Paget’s classic ‘seed and soil’ theory of

metastasis (23). It is known that the metastatic behavior of tumor

cells is affected by cell intrinsic properties but also by a plethora of

different environmental cues, such as chemokines, cytokines, and

EVs released by both primary tumor cells and the cell components

of the host microenvironment. All these factors contribute to the

formation of the so called PMN, which favors colonization and

organ-specific metastatic dissemination (24).

Once in secondary organs, disseminated tumor cells (DTCs)

face new challenges that undermine the establishment of metastasis.

At this level, DTCs can be eliminated by patrolling immune cells

(25) or nutrients’ deprivation, hypoxia (26, 27), and elevated

oxidative stress (28, 29). To overcome these difficulties, DTCs can

enter into dormancy, which allows their persistence in secondary

organs for months or even decades, thus avoiding elimination by

immune cells and chemotherapeutics (30–32). Several factors then

mediate the following re-awakening of cancer cells. Integrin

signaling and interactions with the ECM have been implicated in

the exit from dormancy, enabling metastatic outgrowth. Integrin-b1
signaling is a well-known regulator of this process: its inhibition

induces cell cycle arrest. It sustains dormancy in various cancer

models (33), whereas its upregulation facilitates re-entry into the

cell cycle (34). Cancer cell proliferation at metastatic sites is likewise

induced by the interaction between collagen and noncanonical

discoidin domain receptor 1 (DDR1) (35). Furthermore, in a

model of dormant breast cancer and lung adenocarcinoma, the

depletion of the WNT ligand DKK1 promotes the re-entrance into

the cell cycle, highlighting an important role of WNT pathway

activation for the metastatic progression (36).
2.1 Pre-metastatic niche

The mechanisms that establish a favorable and protective

microenvironment in secondary organs, facilitating tumor cell

colonization and growth before the arrival of CTCs, are referred to

as PMN formation (24, 37). The concept of PMN as currently known

was first introduced by Lyden and colleagues, who outperformed and

ameliorated both Paget’s “seed and soil” theory and Ewing’s

assumption (38, 39). Indeed, growing evidence highlighted that

organotropic metastases and the development of the PMN are a

combination of multiple factors and an intricate interplay among

tumor-secreted molecules and microenvironment alterations (40).

The PMN is characterized by some main features, including vascular

permeability and angiogenesis, lymphangiogenesis, inflammation,

immunosuppression, stromal and ECM remodeling, and metabolic

reprogramming (41). Each step is finely regulated by an intricate

interplay of cells and soluble factors that ensures the establishment of

a suitable soil for the attachment and growth of primary tumor cells

(42). Angiogenesis and disruption of the endothelial wall are early
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events in PMN formation, and as the ultimate goal, they enable tumor

cell extravasation, thereby facilitating metastasis (43). Mechanistically,

vascular leakage is driven by molecules that disrupt the vascular

basement membrane and alter tight junctions, such as zonula

occludens-1 (ZO-1), occludin and claudin-5, in endothelial cells (44).

A plethora of factors released by tumor cells or tumor

microenvironment (TME) cell populations are involved in the

process of new vessel formation. Kaplan et al. demonstrated that

VEGFR1+ bone marrow-derived cells (BMDCs) are essential for

creating a suitable environment for secondary tumor attachment in

response to primary tumor signals, by promoting angiogenesis in PMN

(45). Other cell populations contribute to the neo-angiogenesis process,

such as cancer-associated fibroblasts (CAFs) (46, 47). Indeed, they have

been shown to release the lncRNA SNHG5, which upregulates CCL2

and CCL5, thereby activating the p38 MAPK signaling pathway in

endothelial cells within the PMN. This activation promotes

angiogenesis, enhances vascular permeability, and supports the

establishment of the premetastatic microenvironment (48).

Moreover, macrophages, in addition to their capacity to secrete

VEGF, also release CXCL1 and CXCL8, which further promote

angiogenesis (49). Hypoxia and its key transcriptional mediators,

hypoxia-inducible factors 1a (HIF-1a) and hypoxia-inducible factors

2a (HIF-2a), are critical regulators of blood vessel formation. These

factors promote the recruitment of endothelial progenitor cells from

the bonemarrow and their differentiation into endothelial cells through

the regulation of VEGF expression. In addition, HIF-1a and HIF-2a
facilitate angiogenic remodeling by inducing the expression of matrix

metalloproteinases (MMPs) and lysyl oxidase family enzymes (LOX,

LOXL2, and LOXL4), which contribute to the sprouting of pre-existing

vessels and the remodeling of collagen fibers within the extracellular

matrix (50, 51).

The ECM has been widely recognized as a key factor in the

formation of distant pre-metastatic and metastatic niches, with its

alteration and remodeling playing a crucial role in shaping the

tumor microenvironment and determining the fate of tumor cells

(52). The ECM is composed by a complex structure that includes

various proteins, namely collagens, elastins, fibronectins,

glycoproteins, laminins and ECM-associated proteins (53). By

considering the alteration of ECM in relation to its abundance,

tumour cells are shown to orchestrate the recruitment of stromal

cells that produce various pro-fibrotic growth factors and

inflammatory factors such as TGF-a, TGF-b, fibroblast growth

factor (FGF)-2, platelet-derived growth factor (PDGF), and

epidermal growth factor (EGF) (54). In a pro-tumorigenic

context, structural modifications of the ECM play a key role.

Recent studies have shown that fibrillar collagen accumulation

directly promotes tumor development and progression (51), while

fibronectin deposition creates a supportive niche for the adhesion of

BMDCs, which are critical for PMN formation (55). Moreover,

ECMmodification can be mediated by the mechanical force applied

by the integrins that modulate the basement membrane

conformation, thus facilitating cancer cell invasion (56). Critical

enzymes involved in ECM remodeling are MMPs. Namely, MMP9

is over-expressed by endothelial cells and MAC1+/VEGFR1+

myeloid cells in PMN, and its expression has not only been
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associated with tumor cell invasion but also with the recruitment

of BMDC to the niche. Moreover, MMP9, together with MMP2

mediates tumor cells’ invasion through degradation of collagen IV

(57, 58).

Besides the ECM context, inflammation and immunosuppression

are two critical points, strictly correlated to each other in the PMN

formation (41). It has been demonstrated that tumor cells release

inflammatory cytokines (IL-6, IL-1, TNF-a), chemokines (CCL2,

CCL5, CCL15, CCL26), and growth factors (TGFb), which

ultimately recruit BMDCs such as myeloid-derived suppressor cells

(MDSCs) and create a favorable niche for tumor development (59, 60).

For example, S100 proteins have been linked to inflammation and the

recruitment of hematopoietic progenitor cells and immune suppressor

cells, such as regulatory T cells (Tregs), and tumor-associated

macrophages, which help tumors evade immune detection (61).

Similarly, macrophages resident in premetastatic sites were shown to

contribute to the establishment of an immunosuppressive

microenvironment with inflammatory characteristics (62).

Furthermore, deregulated TLR4 signaling in tumor cells can lead to

an inflammatory response, which potentiates tumor cells’ resistance

towards cell death, proliferation, invasion, and metastasis (63). All the

processes involved in the PMN cascade are summarized in Table 1.
2.2 Lung metastasis formation

The lung represents a preferential organ for metastasis

formation for many types of tumors due to its high

vascularization, ECM composition and organization (65). In

primary lung cancer, intrapulmonary metastases, either

contralateral or ipsilateral, are observed in approximately 15–30%

of cases (66). Moreover, in breast cancer, the lung is a frequent site

of metastasis, with an incidence of about 40% in triple-negative and

20% in non-triple-negative subtypes (67). Lung metastases are also

frequent in several other malignancies, occurring in approximately

46% of prostate cancers, 40–50% of renal cell carcinomas, 17–40%

of sarcomas, and about 6% of hepatocellular carcinomas (66).

Hematogenous dissemination to the lungs represents the most

common metastatic route for many cancer types, given the

continuous inflow of blood from the heart (66). Through the

bloodstream, CTCs, tumor-derived extracellular vesicles (TEVs),

and other soluble factors can reach the lungs, where they modulate

the local microenvironment and promote PMN formation and

subsequent metastatic colonization (68). Reactivation of

disseminated tumor cells is promoted by remodeling of the ECM,

transitioning from a disorganized to a highly aligned configuration

rich in type III collagen fibers. This structural change triggers cancer

cell proliferation through activation of the DDR1–STAT1 signaling

axis (69). In addition to their role in ECM remodeling, lung-

res ident fibroblasts are essent ia l for establ ishing an

immunosuppressive microenvironment that facilitates metastatic

growth (70). In particular, by producing prostaglandin E2, lung

fibroblasts impair dendritic cell (DC) function and promote the

expansion of suppressive monocytes (70). The spatial distribution

of immune cells also contributes to the development of lung
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metastases (66). In breast cancer metastasizing to the lungs,

metastatic regions have been shown to be enriched in

macrophages, macrophage-regulatory cells, and monocytes

producing type I interferons (IFNs) (71). In contrast, anti-tumor

immune populations, such as T cells and NK cells, are primarily

detected in lung regions devoid of metastases. This spatial

organization supports metastatic outgrowth, with tumor-

promoting immune cells concentrated within the metastatic core

and anti-tumor immune cells excluded to the periphery. The

recruitment and functional hijacking of immune cells further

contribute to neo-angiogenesis within the metastatic niche (71).

Tenascin C, produced by cancer cells, stimulates lung-associated

macrophages via TLR4 to produce nitric oxide and TNF, thereby

inducing an inflammatory response in endothelial cells and

supporting the formation of a metastatic vascular niche (72). In

an inflammatory context, endothelial cells are also responsible for

the proliferation of cancer cells through the production of TGF-b1
and periostin (73). Furthermore, in breast and prostate cancer lung

metastasis models, inflammation has been shown to trigger

neutrophils to release extracellular traps, leading to laminin

degradation and the generation of signals that awaken dormant

cancer cells (74).
3 Extracellular vesicles and cancer

EVs are defined as membrane-limited particles released by all

kinds of cells and cannot replicate on their own (75). Initially
Frontiers in Immunology 04
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increasing attention for their fundamental role in intercellular

communication, both in physiological and pathological conditions

(76). “Extracellular vesicles” is an umbrella term that encompasses

different particle subtypes that differ based on their biogenesis, size,

and composition. In this review, we will use the term EVs

consistently, irrespective of the terminology adopted by the

cited authors.

The biological functions of EVs largely stem from their capacity

to influence recipient cells by delivering bioactive molecules such as

proteins, lipids, and nucleic acids either as cargo or displayed on

their surface (77). EVs are released in different biofluids, allowing

them to reach distant organs. Interactions with target cells

occurring through specific receptors or adhesion molecules

directly modulate the cell’s behaviour and function (78, 79).

However, the effector functions of EVs are often exerted after

internalization into cells (80). Once internalized, the EV cargo is

released and can modulate multiple signaling pathways within the

target cell (77).

In recent years, growing evidence has highlighted the role of

EVs in nearly all stages of tumor development and progression (81).

TEVs modulate the behaviour of stromal and immune cells within

the microenvironment, reprogramming them to support cancer

growth. They also play a pivotal role in PMN formation,

underscoring their capacity to influence distant organs (82). EVs

could contribute to the local and systemic cancer progression by

enhancing the proliferation and survival of tumor cells as they can

carry a wide range of bioactive molecules, including proteins, DNA,
TABLE 1 Key stages, mechanisms, and molecular players involved in PMN formation.

PMN stage Mechanisms Molecules involved Ref

Vascular leakness Alteration of vascular basement membrane and tight
junctions

ZO-1, claudin-5 (44)

Angiogenesis Promotion by BMDCs VEGFR1 (45)

Stimulation of P38MAPK signaling pathway in endothelial
cells by CAFs

CCL2, CCL5 (48)

Promotion by macrophages VEGF, CXCL1, CXCL8 (49)

Hypoxia-induced recruitment of EC progenitor cells from
bone marrow

HIF-1a, HIF-2a, (64)

Promotion of vessel sprouting by hypoxia MMPs, LOX, LOXL2, LOXL4 (51)

Stromal and ECM remodeling Production of pro-fibrotic and inflammatory factors by
stromal cells

TGF-a, TGF-b, FGF-2, PDGF, EGF (52)

Accumulation of ECM Fibrillar collagen, fibronectin (53)

Alteration of basement membrane conformation Integrins (54)

ECM alteration MMP9, MMP2 (57)

Inflammation/immunosuppression Recruitment of BMDC MMP9, MMP2 (58)

Recruitment of MDSC
IL-6, IL-1, TNF-a, CCL2, CCL5,
CCL15, CCL26, TGFb

(59, 60)

Induction of an inflammatory microenvironment and
recruitment of anti-tumor cells

S100 proteins (61)

TLR4 pathway dysregulation (63)
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RNA, lipids, and metabolites (83). EV cargo includes oncogenic

proteins (e.g., EGFR, c-Myc) and regulatory RNAs that enhance

cancer cells’ proliferation, cell invasiveness, and metastatic potential

by inducing EMT, promoting ECM degradation, and conditioning

distant tissues through the establishment of PMN (84, 85).

Moreover, EVs play a prominent role in angiogenesis, facilitating

tumour vascularisation through the delivery of pro-angiogenic

factors as VEGF, FGF, and angiogenesis-related miRNAs (86).

EVs also facilitate immune evasion by impairing the function of

cytotoxic immune cells and reprogramming immune responses to

promote tumor tolerance (83) (71, 87).

Beyond their autocrine effects, TEVs are especially effective at

corrupting cells within the tumor microenvironment (TME) to

promote cancer progression. For example, lung cancer–derived EVs

boost angiogenesis and vascular permeability by delivering miR-23a

to endothelial cells, which causes HIF-1a accumulation and the

breakdown of the tight junction protein ZO-1 (88). Fibroblasts are

another common target of TEVs, often reprogrammed into CAFs.

In both prostate and bladder cancer, TEV-associated TGF-b1
induces stromal fibroblasts to acquire a myofibroblast-like

phenotype by activating the SMAD signaling pathway, thereby

promoting tumor growth and angiogenesis in vivo (89, 90).

Another crucial aspect of TEVs is their immunomodulatory

properties (91). TEVs can promote immune evasion by shutting

down NK cell and cytotoxic T cell functions, as well as activating

pro-tumoral immune cells, such as MDSCs (92), TAMs (93, 94),

and Tregs (95).

TEVs also exhibit tumor-associated antigens (TAAs) and

damage-associated molecular patterns (DAMPs) on their surface.

They have immunogenic properties exerted on antigen-presenting

cells (DCs) and can trigger an anti-tumor immune response (91).

Collectively, TEVs have multifaceted roles in cancer biology,

orchestrating interaction between tumor and distant organs,

reshaping the TME, and modulating the immune system.
4 Platelets

In the 19th century, Giulio Bizzozero identified a third

morphological cell population within the blood, separate from

white and red blood cells: platelets (96). He described platelets as

anucleate, disc-shaped structures, round or oval, about three times

smaller than erythrocytes. Today, we know that platelets are

approximately 2-4 mm in size and result from the fragmentation

of megakaryocytes (MKs) (97). MKs, large multinucleated cells

found in the bone marrow, spleen, and lungs, shed platelets into the

bloodstream, where they have a lifespan of approximately 5–7 days

(98, 99). Platelets inherit granules, mitochondria, coding and non-

coding RNAs from MKs, as well as translational machinery for

post-transcriptional gene regulation (100). They are primarily

involved in haemostasis and coagulation processes, thanks to the

release of several factors (101, 102). Platelets contain several critical

structures, including a-granules, dense granules, and lysosomal

granules, all of which are essential for optimal function. These
Frontiers in Immunology 05
proteins are released upon activation and are derived from the

continuous endocytosis process of MKs and platelets (103).
4.1 Platelets’ physiological functions

Platelets play vital roles in maintaining vascular integrity and

tissue homeostasis. Their classical function is the clot formation

(101). Platelet-dependent coagulation can be activated through two

mechanisms, which imply the activation of two distinct pathways:

the extrinsic and the intrinsic pathways. The extrinsic pathway

begins with endothelial injury, which triggers the release of tissue

factor (factor III) into the blood, leading to its processing and

activation of the typical cascade (104, 105). The intrinsic pathway

begins, instead, when factor XII, also known as the Hageman factor,

is activated by exposure to collagen, kallikrein, and high-molecular-

weight kininogen (HMWK) (106). In this case, the cascade proceeds

through the activation of factors XI and IX before merging into the

common coagulation pathway shared by both routes (106, 107).

The final steps of the coagulation cascade aim to produce thrombin

and fibrin, creating a solid structure that prevents further

bleeding (107).

Platelets preserve the vascular integrity by releasing

sphingosine-1-phosphate (S1P), a bioactive lipid that protects the

endothelial barrier and prevents leakages (108). They are also

recognised for their involvement in other processes, including

inflammation, where they recruit leukocytes to the damage site,

angiogenesis, and tissue regeneration (109, 110). All these

mechanisms are regulated by the release of growth factors,

cy tok ines , and EVs by pla te l e t s tha t modula te the

revascularisation and healing of connective tissue damage (111).
4.2 Platelets in cancer

The primary role of platelets is to maintain blood homeostasis,

but they can also participate in pathological processes. Several

studies show an association between platelets and the onset and

progression of cancer (Figure 1). For example, platelets are

responsible for the tumour’s immune evasion, tumour cell

adhesion and arrest on the endothelial wall, as well as their

extravasation and survival (112). Different mechanisms,

dependent on the environment, are used by platelets to support

tumour growth (95).

In the bloodstream, platelets help CTCs released by melanoma,

breast, and lung cancer to survive in the circulation by preventing

immune cell binding and killing (113). Specifically, fibrinogen and

tissue factor, along with NKG2D downregulation, help platelets

form a shield over CTCs to prevent tumor cell recognition by NK

cells (114). Additionally, the presence of selectins and integrins on

the surface of platelets is crucial for the arrest and adhesion of CTCs

on the endothelium (115).

Within the TME, platelets release proangiogenic factors,

including interleukins, VEGF, CXCL12, and TGFb, which
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promote neovascularisation, EMT, and metastatic seeding (116,

117). One example is platelets’ ability to induce the biosynthesis and

esterification of 12S-hydroxyeicosatetraenoic acid (12S-HETE) in

colon cancer cells, which, in turn, modulates the expression of EMT

marker genes and promotes metastasis (118). Although these

findings are important for the development of new therapeutic

strategies, free 12S-HETE levels were not significantly different

between colorectal polyps, cancer mucosa, and normal colorectal

mucosa in humans. Furthermore, as the cited study was conducted

exclusively in cell lines, it would be valuable to validate these results

in animal models and human samples (118). Other mechanisms,

such as coagulation-associated pathways and fibrinogen

production, are upregulated in lung adenocarcinoma compared to

squamous cell carcinoma, suggesting that platelets play a significant

role in advanced and metastatic stages (119).
4.3 Platelets’ activities during tumor
growth

Beyond releasing bioactive molecules, platelets also actively

uptake factors from the bloodstream, thereby changing their

cargo composition and undergoing a process of “education” (95).

These factors may originate from the bone marrow, stromal cells, or

cancer cells, influencing platelet functions and promoting a pro-
Frontiers in Immunology 06
tumorigenic phenotype (120). Platelets that undergo this process,

known as tumor-educated platelets (TEPs), acquire a unique RNA

cargo capable of distinguishing between cancer patients and those

with non-malignant or inflammatory conditions (121). The RNA in

TEPs undergoes extensive splicing, resulting in an enrichment of

mRNAs related to vesicle transport and cytoskeletal functions, as

well as miRNAs that regulate gene expression and RNA silencing in

recipient cells. These findings are based on a detailed analysis of

platelet RNA from healthy donors and patients with localized or

metastatic cancer (121). The authors showed that sequencing could

accurately identify the diagnosis and location of the primary tumor,

offering hope for the future of platelet-based liquid biopsies (121).

Although these results are promising, the study emphasizes that

inflammatory diseases and other factors, such as cardiovascular

events and non-cancerous conditions, may also influence the

platelet mRNA profile. A key point in the study is the selection of

the healthy control group, which consists of younger individuals

than those in the cancer group. Since the RNA content of platelets

varies with age and gender (122), some of the observed differences

may be attributed mainly to the age gap between the two groups.

Additionally, in vitro studies in which platelets were co-cultured

with cancer cells or exposed to conditioned media from cancer cell

cultures demonstrated enhanced platelet activation and alterations

in platelets RNA signatures (123). These interactions also promoted

cancer cell survival, migration, and invasion by activating the
FIGURE 1

Physio-pathological roles of platelets. A schematic illustration of the dual role of platelets. The pathological roles of platelets in cancer are indicated
as “cancer-related functions”.
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TGFb/Smad/PAI-1 and PI3K/AKT signalling pathways (124, 125).

These findings are based on indirect interactions between platelets

and CTCs, suggesting that the factors responsible for platelet

education are present in the conditioned medium. In circulation,

platelets could promote PMN formation and metastasis by directly

interacting with CTCs (126). Recent evidence further reveals that

platelets can physically cover CTCs in the bloodstream, shielding

them from the immune system (127, 128).

In vivo, platelets can extravasate from the bloodstream and

infiltrate the tumor stroma, where they are identified as tumor-

infiltrating platelets (TIPs) through histochemical detection of

CD42b expression. TIPs accumulation is elevated within tumor

tissue and correlates with cancer progression and stage across

different tumor types (129). The presence of TIPs could thus be

used to integrate the RNM staging system as well as predict the

prognosis and post-surgical survival in several cancer types,

including pancreatic ductal adenocarcinoma and colorectal cancer

(130, 131).

Elucidating the role of TEPs and their oncogenic cargo has

significant implications for cancer diagnosis and therapy. TEPs

represent promising biomarkers of cancer progression and potential

targets for strategies aimed at blocking their pro-tumorigenic

activities (132). Notably, key mRNA markers such as MAX,

MTURN, UQCRH, and HLA-B are significantly upregulated in

TEPs and have been associated with chemotherapy responses,

underscoring their value as non-invasive biomarkers for cancer

detection (133). Additionally, TEPs and TIPs can modulate the

TME and its vascular supply by releasing factors and EVs enriched

in regulatory miRNAs (132, 134).

4.3.1 PEV cargo in tumor progression
EVs carry a complex cargo that mirrors the state of their cells of

origin (75). Among them, PEVs are the most abundant population

in the bloodstream, generated through the continuous release of

vesicles that occur during normal platelet physiology (135). PEVs

inherit both cytosolic and membrane components from platelets

and are characterized by specific membrane markers, including

CD41, CD42a, CD42b, and CD62P (136, 137). Their concentration

is closely linked to the platelet activation state, which can be altered

under pathological conditions (137). In cancer, platelets and PEVs

act as potent immunomodulators, exerting both suppressive and

stimulatory effects. They shield CTCs, transfer PD-L1 and TGF-b,
and release prostaglandin E2, collectively inhibiting CD4+ and

CD8+ T cell activity and promoting an immunosuppressive TME

(138, 139). Moreover, PEVs acquire diverse tumor-derived

biomolecules, including proteins (such as cytokines and

enzymes), nucleic acids (coding and non-coding RNAs), second

messengers, and even mitochondrial components (140, 141). This

heterogeneous cargo underpins the diverse biological activities of

PEVs across different target cell types. Importantly, EVs can cross

the bloodstream and tissue barriers, enabling PEVs to deliver their

cargo to distant cells and organs (142). Through this mechanism,

PEVs mediate communication between the tumor and the

microenvironment, thereby fostering growth, metastasis, and

overall cancer progression.
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4.3.2 MicroRNAs
PEVs play a crucial role in mediating intercellular

communication by transferring microRNAs between cells.

MiRNAs are small nucleic acids, ranging from 19 to 25

nucleotides in length, that play an essential role in regulating

RNA expression. Their presence in EVs significantly affects

various types of cancers and the pathophysiology of the immune

system (142). These vesicles can be internalized by recipient cells,

reshaping their molecular profiles and functions (143). Specific

miRNAs carried within PEVs promote cancer aggressiveness by

driving invasion, migration, and angiogenesis (143). For example, it

has been shown that miR-939 found in PEVs is delivered to ovarian

cancer cells and is linked to increased aggressiveness (144).

However, in the cited study, healthy donor platelets stimulated

with thrombin were used as controls. This condition does not

accurately mirror the physiological state of cancer patients and thus

limits clinical relevance. Moreover, PEVs transporting miR-223 are

internalized by endothelial cells, where they downregulate the

tumor suppressors FBXW7 and EFNA1 (145). This study suggests

that PEVs can be internalized by diverse cell types beyond tumor

cells. Specific miRNAs released by PEVs, including miR-126, let-7a,

and miR-320b, are implicated in the regulation of angiogenesis.

Notably, miR-126 promotes angiogenesis and modulates CXCL12

and VCAM-1 expression in endothelial cells, thereby facilitating

transendothelial migration and contributing to vascular

inflammation (146, 147). However, as the vesicles analysed were

generated through in vitro platelet lysis, it remains unclear whether

they accurately reflect EVs naturally secreted by circulating

platelets, limiting insight into their proper pathophysiological

role. Given the central role of miR-126 in multiple angiogenic

pathways, further studies are necessary to elucidate these

mechanisms and establish their biological significance. PEV-

mediated delivery of let-7a to endothelial cells provides an

angiogenic stimulus that supports the growth of solid tumors

(148). However, in this study, EVs were derived from healthy

donor platelets activated with thrombin, a condition that does not

fully reflect the pathological state of cancer patients.

In contrast, a different study successfully isolated plasma-

derived EVs from lung cancer patients. It demonstrated the

transfer of miR-320 to human umbilical vein endothelial cells

(HUVECs), resulting in altered endothelial phenotype (149).

More recently, studies have specifically examined miR-320b

within PEVs, revealing its role in downregulating ICAM-1

expression in HUVECs (150, 151).

These studies underscore the interplay between TEPs, PEVs,

and endothelial cells, which is central to the platelet-mediated

regulation of tumor angiogenesis and the TME. Overall, the

dynamic activity of EV-associated miRNAs shapes the tumor

milieu while also modulating gene expression across diverse

cell types.

4.3.3 Additional PEV cargo molecules
It is known that cancer condition alters the composition of

proteins in TEP-derived EVs (95). Comparative studies have

revealed considerable differences in protein expression between
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EVs isolated from platelets of colorectal cancer patients and healthy

donors. Specifically, the authors identified 119 proteins

downregulated and 89 proteins upregulated in EVs from cancer

patients compared with those from healthy individuals (152). In the

mentioned study, EVs were isolated from the platelets of cancer

patients, thereby reflecting the pathological state of the disease.

However, in this study, platelets were artificially activated with

thrombin to boost EV production, a condition that may alter their

composition. Functional assays demonstrated that TEP-derived

EVs upregulated key EMT markers in cancer cells, including

TWIST and VIM (152). In addition, both colorectal and prostate

cancer cells were shown to internalize PEVs, leading to increased

expression of MMPs such as MMP-2 and MMP-9, thereby

enhancing their ability to remodel the distant microenvironment

(153, 154). PEVs also transfer platelet-derived integrins, including

CD41, to the surface of tumor cells, which strengthens the adhesion

of lung, prostate, and colorectal cancer cells to the endothelium and

facilitates their migration and systemic dissemination (155).

Taken together, these findings illustrate the complex interplay

between TEP-derived EVs and tumor cells, underscoring their

pivotal role in cancer progression and metastasis. Deciphering

these mechanisms holds promise for the development of novel

targeted therapies and anti-metastatic strategies.
4.4 Platelets’ activities during
metastatization

During cancer metastasis, TEPs play a pivotal role in PMN

formation as illustrated in Table 2 (167). One key mechanism is
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tumor cell–induced platelet aggregation (TCIPA), in which platelets

encapsulate CTCs, shielding them from immune surveillance and

promoting metastatic spread via microthrombus formation (163).

TCIPA also fosters lung metastasis in malignant melanoma models

through the release of chemokines (CCL2, CXCL12, IL-1a, IL-1b)
and recruitment of TAMs, driving their polarization toward an M2

phenotype (168).

At the vascular level, platelets increase endothelial permeability

and vascular leakiness, facilitating CTCs extravasation through the

secretion of junction-regulating molecules, including VEGF,

Angpt2, Angptl4, CCL2, fibrinogen, and CXCL12 (156). They

also enhance CTCs adhesion and docking on the endothelium via

tissue factor-mediated clot formation, which recruits macrophages

expressing CD11b, CD68, F4/80, and CX3CR1 (158). Platelet

activation additionally drives granulocyte recruitment

(CD11b+MMP9+Ly6G+) through the release of CXCL5 and

CXCL7, which bind granulocyte CXCR2 (169, 170). Importantly,

granulocyte depletion alone is insufficient to block the formation of

metastatic foci, underlining the indispensable contribution of

platelets in this early step (169).

Another central pathway involves platelet C-type lectin-like

receptor 2 (CLEC-2), which binds podoplanin on tumor cells. This

interaction is crucial for vascular permeability changes and cancer

cell dissemination: podoplanin-positive lung tumor cells fail to

metastasize in Clec2-deficient mice, and CLEC-2 depletion

abrogates pro-metastatic thrombus formation in vivo (157, 171).

Platelets also contribute to angiogenesis, another key feature of

PMN establishment (127). Upon tumor-induced activation, they

serve as major transporters of VEGF (159), which triggers the

release of von Willebrand factor (vWF) and subsequent secretion of
TABLE 2 Key stages, mechanisms, and molecules involved in platelet-PMN formation.

PMN stage Mechanisms Molecules involved Ref

Vascular leakness

- Increased endothelial permeability

VEGF, Angpt2, Angptl4, CCL2, fibrinogen, and
CXCL12

(156)

CLEC-2/Podoplanin interaction (157)

- Enhanced CTC adhesion and docking on the
endothelium

Tissue factor-mediated clot formation (158)

Angiogenesis
- Recruitment of bone marrow-derived endothelial cells

Secretion of VEGF, vWF, PDGF, TGF-b, and
ANGPT-1

(159, 160)

ECM remodelling - Activation of the MAPK-p42/44 and AKT and
upregulation of MMPs

Transfer of CD41 from PEVs to tumor cells (155)

Inflammation and immune response
- Suppression of IFNg-mediated responses

BMDC, MDSC and activation of GITR on NK
cells

(161)

- Secretion of pro-inflammatory cytokines IL-6, IL-10, TGF-b (161)

- Formation of neutrophil extracellular traps and
macrophages NETosis

PSGL-1/P-selectin interaction (162)

- Immune escape
TCIPA and microthrombi formation (163)

MHC-I transfer from platelets to tumor cells (164)

- Neutrophil activation GPIb–Mac-1 interactions (165)

- NK dampening miR-183 transferred by PEVs (166)
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PDGF, TGF-b, and angiopoietin-1 (ANGPT-1). These mediators

recruit bone marrow–derived endothelial progenitor cells that drive

neovascularization (160).

Beyond angiogenesis, platelets remodel the TME and modulate

the immune response. They recruit BMDCs and MDSCs, which

suppress IFNg-mediated responses through Glucocorticoid-induced

Tumor Necrosis Factor Receptor Ligand (GITRL) and secrete pro-

inflammatory cytokines (IL-6, IL-10, and TGF-b) that enhance

inflammation and metastasis (161). Platelets also activate

neutrophils to produce neutrophil extracellular traps (NETs) and

subsequently undergo NETosis through TLR4 signaling in a P-

selectin–dependent manner, thereby promoting platelet aggregation

and endothelial activation (172). Activated platelet P-selectin further

mediates the recruitment of immune cells (TAMs, monocytes,

neutrophils) through binding to PSGL-1 (162). Interestingly,

platelets protect tumor cells from immunosurveillance through

direct or indirect inhibition of immune cell engagement (173). In

breast cancer cell lines, the interaction between platelets and cancer

stem cells induced platelet release of TGF-b, which inhibited NK cell

activity (174). Additionally, platelet-derived MHC-I can be

transferred to tumor cells, shielding them from NK cell–mediated

killing and thereby promoting tumor growth (164).

Collectively, platelets are central orchestrators of premetastatic

and metastatic niche formation, regulating angiogenesis, immune

evasion, vascular remodeling, and ECM dynamics. While many

pathways have been elucidated, further studies are required to fully

define their mechanistic contributions and therapeutic potential

in metastasis.

4.4.1 Platelet-derived EVs and their cargo in
cancer metastasis

Several studies have attributed a critical role to PEVs in

regulating various tumor hallmarks, including proliferation,

resistance to cell death, invasion, metabolic reprogramming,

immunity, and angiogenesis (Table 3) (180) (Figure 2). Recent

studies have demonstrated that the transfer of CD41 from PEVs to

tumor cells stimulates the activation of the MAPK-p42/44 and AKT

signalling pathways, as well as the upregulation of MMPs necessary

for ECM remodelling and invasion (155). PEVs have been shown to

enhance tumor cell invasion by stimulating MMP-2 synthesis and

secretion, as well as by promoting the transcription of MMP-9,

VEGF, IL-8, and HGF mRNAs, factors closely associated with lung

cancer metastasis (181). Furthermore, PEVs can transfer miR-223
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to different target cells, supporting the metastatic progression (182).

In particular, miR-223 promotes invasion and influences the

expression of tumour suppressors, such as EPB41L3, in lung

cancer cells, thus enhancing their metastatic capability (165).

Critical immunoregulatory functions within the TME are

achieved by activating neutrophils via GPIb–Mac-1 interactions

and by promoting macrophage polarization toward an M2

phenotype (183). Furthermore, PEVs also exhibited the capacity

to transfer miR-183 to NK cells, dampening their ability to kill

cancer cells (184). Moreover, the transfer of CXCR4 by PEVs, a

chemokine receptor that activates key signalling pathways,

enhances tumor cell migration and supports the survival of CTCs

in circulation (166).

Besides the release of their cargo, the number of PEVs themselves

has been shown to play a crucial role in determining the pro-

tumorigenic effect (142). PEV concentrations in the blood of lung

cancer patients are elevated compared with those of healthy controls.

In a cohort of 136 NSCLC patients, PEV levels measured after three

months of chemotherapy or targeted therapy were significantly

higher in those with disease progression than in patients with

controlled disease (176). In addition, Odaka et al. reported that

serum levels of PEVs (CD41+-EVs and CD61+-EVs) were

significantly higher in patients with pancreatic ductal

adenocarcinoma (PDAC) than in healthy controls, supporting their

potential as predictive biomarkers for PDAC (175). In vitro and in

vivo studies by Zhao and colleagues demonstrated that the PKCa
agonist PMA increased PKCa levels and enhanced PEV production,

thereby promoting lung metastasis in nude mice. Conversely,

treatment with the PKCa inhibitor GÖ6976 produced the opposite

effect, highlighting PKCa as a key regulator of PEV release (185).

Collectively, these findings point out the pivotal role of platelets

and PEVs in metastasis. Deeper investigation into their functions

could inform the development of therapies aimed at disrupting

platelet–tumor cell interactions. Moreover, given their small size and

capacity to mediate intercellular communication, PEVs hold great

promise as novel biomarkers and therapeutic targets in oncology.
5 Conclusions and future directions

Platelets and their EVs play a pivotal role in cancer progression

and metastasis by modulating the TME, shaping immune

responses, and promoting PMN formation.
TABLE 3 Summary of clinical studies analysing PEVs in cancer using patient-derived samples.

Cancer type EV source Sample size EV isolation method Platform EV characterization Ref

PDAC serum 39 patients
MagCapture™ Exosome Isolation

Kit Phosphatidylserine
ELISA NTA, TEM (175)

Lung plasma 136 patients Centrifugation Flow cytometry – (176)

Lung Platelet-poor-plasma 86 patients Ultracentrifugation Flow cytometry TEM (177)

Lung Platelet-poor-plasma 50 patients Ultracentrifugation Flow cytometry – (178)

Lung plasma 182 patients SEC Flow cytometry NTA, TEM, WB (179)
f
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Despite the growing body of literature highlighting the

importance of platelets and their EVs in cancer progression, the

lack of standardized procedures for EV isolation, purification, and

characterization remains a major limitation that hampers cross-

study comparability.

First, the heterogeneity of platelet activation stimuli, including

thrombin, collagen, lipopolysaccharide, and calcium ionophore,

affects not only the number and size of PEVs but also, more

importantly, their molecular cargo. This variability complicates

the interpretation of findings related to cancer metastasis.

Moreover, the absence of universal reference materials and

standardized protocols further undermines the accuracy and

reliability of quantitative analyses.

A major shortcoming of many published studies is the lack of

comprehensive in vivo validation, including dose–response

assessments, biodistribution analyses, and half-life determinations

of PEVs, which are essential to confirm their translational relevance.

Indeed, most of the studies discussed in this review were conducted

using EVs derived from cell lines or in vitromodels, without clear in

vivo confirmation of their funct ional importance in

cancer progression.

To fully harness the potential of platelets and their EVs in

biomedical research and therapeutic applications, these

methodological and translational challenges must be addressed.
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5.1 Future directions

To date, no clinical trials are underway to investigate P-EVs in

cancer as diagnostic biomarkers or to explore new therapeutic

strategies aimed at blocking PEV pro-tumorigenic effects (186).

However, several ongoing clinical trials involving platelets focus on

anti-aggregating drugs designed to prevent platelet activation, but

their results remain inconclusive. For instance, randomized studies

assessing aspirin for colorectal adenoma prevention (187–190)

demonstrated some preventive effects, although the outcomes

were not universally consistent. Likewise, some primary

prevention studies have reported inconsistent results; for example,

extended follow-up analyses showed that aspirin use was associated

with a modest reduction in colorectal cancer incidence and

mortality after twenty years (191). Because platelet activation is

closely linked to EV release, it is reasonable to hypothesize that anti-

aggregating drugs might also inhibit EV secretion into circulation.

Further experimental validation of this mechanism could reveal

new therapeutic applications for these agents as neoadjuvant

treatments in oncology.

As discussed in this review, platelets hold significant potential as

biomarkers for the detection and monitoring of various cancer

types. However, several technical and methodological challenges,

including isolation procedures, stability, storage, and detection,
FIGURE 2

The role of platelets in PMN formation. Schematic representation of soluble factors and cellular composition contributing to PMN establishment,
with particular focus on platelet involvement.
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must be addressed before the use of platelets can be fully integrated

into clinical practice. Future studies should aim to modulate

platelet–tumor interactions to determine whether this approach

can meaningfully influence cancer progression and serve as an

effective therapeutic strategy, either alone or in combination with

standard treatments. Moreover, well-designed clinical trials are

essential to establish the safety, efficacy, and translational value of

platelet-based strategies in oncology.
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