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Flavonoids are a vital class of dietary polyphenolic compounds that have
attracted considerable attention owing to their powerful immunoregulatory
and anti-inflammatory effects. This review summarizes recent advances in
understanding the role of flavonoids in regulating immune cells and their
therapeutic application in inflammatory diseases. We present an overview of
the definition, classification, and dietary sources of flavonoids and detail their
requlatory effects on multiple key immune cells, therapeutic potential of
flavonoids in various inflammatory diseases, as well as discuss strategies to
improve their bioavailability and targeting. Despite the promising
immunoregulatory properties of flavonoids, their clinical utilization is impeded
by issues such as low bioavailability, considerable interindividual variability, and
the absence of high-quality randomized controlled trials. Future research needs
to focus on elucidating the precise mechanisms of flavonoids, optimizing their
pharmacokinetic properties, and conducting more standardized clinical trials to
facilitate the transformation of these natural compounds into standardized
immunomodulatory therapeutic agents.
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1 Introduction

Inflammatory diseases have emerged as a significant global public health concern,
encompassing inflammatory bowel disease (IBD), rheumatoid arthritis (RA), metabolic
inflammatory disorders, neuroinflammatory conditions, respiratory inflammatory diseases,
etc. Global data indicate that the prevalence of IBD ranges from 0.5% to 1% in Western
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nations and is increasing in emerging industrialized countries and
may reach 1% in numerous regions by 2030 (1). RA affects
approximately 0.5% to 1% of people worldwide (2). Metabolic
inflammatory disorders, an inflammatory condition resulting
from obesity and type 2 diabetes, collectively pose a substantial
threat to human health (3). The shared pathological foundation of
these diseases is immune system dysfunction, resulting in the
overproduction of inflammatory mediators, inappropriate
activation of immune cells, and ultimately causing tissue damage
(4). The persistent presence of inflammation and the disruption of
immune homeostasis are the primary mechanisms contributing to
the chronic progression and treatment difficulties of these diseases.

Contemporary therapeutic approaches for inflammatory
diseases include nonsteroidal anti-inflammatory drugs (NSAIDs),
corticosteroids, disease-modifying antirheumatic drugs
(DMARD:s), and biologics (5). Although these therapies have
effectively managed symptoms and decelerated disease
progression, long-term use is often associated with severe adverse
effects, including increased infection risk, osteoporosis, metabolic
disorders, and the likelihood of malignant tumors (6, 7).
Additionally, a considerable proportion of patients exhibit poor
response to existing treatments or gradually lose responsiveness (8).
Therefore, the development of secure and effective novel anti-
inflammatory drugs or supplementary treatment strategies has
become an urgent clinical need. In this context, flavonoid
compounds derived from natural plants have attracted
widespread attention owing to their broad immunomodulatory
effects and minimal toxicity (9).

Flavonoids are a class of polyphenolic compounds characterized
by a C6-C3-C6 fundamental structure, capable of regulating
immune cell function through various mechanisms. However,
their clinical application faces challenges. Their low
bioavailability, short half-life in the body, and complex metabolic
conversion make it difficult to achieve effective therapeutic
concentrations (10). Furthermore, the immunoregulatory effects
of flavonoids display dose-dependent and cell-specific
characteristics, potentially exhibiting bidirectional regulatory
effects, thereby complicating their clinical application (11, 12).
Recent years have witnessed advancements in the research
concerning the immunomodulatory effects of flavonoids.
Advanced high-sensitivity analytical techniques enable researchers
to identify flavonoids and their metabolites in vivo even when
concentrations are extremely low, facilitating a more precise
evaluation of their bioavailability (13). Studies on structure-
activity relationships have identified crucial active domains,
guiding the development of more efficient flavonoid derivatives
(14). Randomized controlled trials (RCTs) and non-RCT clinical
trials have proved the therapeutic value of flavonoids in various
diseases (15, 16).

Current reviews mainly focus on the impacts of particular
subclasses of flavonoids or their effects within particular disease
contexts, while a holistic perspective is absent. Many dietary
components contain multiple flavonoids. Thus, traditional
Chinese medicine, Tibetan medicine, and other ethnic medicines
frequently consist of compound formulations containing diverse
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flavonoids. Furthermore, inflammatory diseases frequently coexist.
It is of great significance to understand in detail the abundance of a
specific flavonoid compound in a certain food or medicine and its
therapeutic effects, mainly in different immune cells and various
inflammatory diseases. We aimed to summarize how flavonoids
regulate immune cells and their applications in the treatment of
inflammatory diseases. By integrating the latest research evidence,
we will provide a comprehensive understanding of the
immunoregulatory capabilities of flavonoids and their rational
application in the clinical treatment of inflammatory diseases.

2 Definition, classification, and dietary
sources of flavonoids

Flavonoids are a category of polyphenolic compounds that are
commonly present in consumable plants and foods, including fruits,
vegetables, grains, and nuts, primarily present in the form of B-
glycosides (17). The fundamental structure of these compounds is
constituted by a 15-carbon framework, which is comprised of two
benzene rings (A and B) linked through a heterocyclic furan ring (C)
(18). Currently, the identification of flavonoid compounds has
exceeded 10, 000, with the figure continuing to increase (19).
Flavonoids are classified according to their chemical structure into
anthocyanins, flavan-3-ols, flavonols, flavones, flavanones,
isoflavones, etc (Table 1). The physiological effects of flavonoids
include anti-inflammatory properties, immune modulation,
antioxidant activity, and regulation of gut microbiota (9, 20-22).

The absorption process of flavonoids is complicated and
affected by their chemical structure, solubility, membrane
permeability, and the metabolism of gut microbiota. Different
classes of flavonoids possess distinct structural features, resulting
in variations in their metabolic pathways and bioavailability within
the body (23). However, the bioavailability of most flavonoids is
limited due to their prevalence in glycoside forms, making them
difficult for the digestive system to absorb (24). Flavonoid glycosides
need to be hydrolyzed into aglycone forms so that they can pass
through intestinal epithelial cells effectively (25). Additionally, some
flavonoids are quickly broken down and become inactive by
enzymes in the intestines and liver after ingestion, which, to some
extent, reduces the amount of active compounds that reach the
bloodstream (23). Recent research has developed drug delivery
systems by adding flavonoids into carriers, such as
nanoemulsions, metal-organic frameworks, and alginate-chitosan
microspheres. These systems provided new approaches to improve
the absorption and bioavailability of flavonoids (26-28).

3 The regulatory effect of flavonoids
on immune cells

3.1 Macrophages

Macrophages are a type of innate immune cells with phagocytic
and antigen-presenting functions, playing a crucial role in various

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1703672
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

ABojounwiwi| Ul s1913U0I4

¢0

610" UISIa1UO

TABLE 1 Common classifications of flavonoids and dietary sources.

Classification Common compounds Chemical structure and molecular formula Dietary sources Mean* (mg/100g) Reference
Peppers, tasmanian 752.68
Raspberries, black 669.01
Cyanidin Plum, Illawara, raw (Podocarpus elatus) 555.72 (29-31)
Elderberries, raw (Sambucus spp.) 485.26
Juice concentrate, elderberry 411.40
Juice concentrate, black currant 201.28
Bilberry, raw 97.59
Cowpeas, black seed cultivar, mature seeds, 94.60
Delphinidin o raw (Vigna unguiculata Subsp. Sinensis) : (29, 32, 33)
onCisHn 07" c black Rib
Prrants, european black, raw (Ribes 89.62
nigrum)
Eggplant, raw (Solanum melongena) 85.69
Al i , wine, , red,
?ohohc beverage, wine, table, red, Syrah or 12165
Shiraz
Anthocyanidins Alcoholic beverage, wine, dessert, sweet 94.83
Bl ies, i highbush),
Malvidin ueb'en.'les cultivated (highbush), raw 6759 (29, 34, 35)
(Vaccinium spp.)
Blueberries, rabbiteye, raw (Vaccinium spp.) 63.45
Blueberries, wild (lowbush), raw (Vaccinium 5716
spp.) ’
Radishes, raw (Raphanus sativus) 63.13
Strawberries, raw (Fragaria X ananassa) 24.85
Pelargonidin Strawberries, frozen, unsweetened 19.32 (29, 36, 37)
Raspberries, black 16.69
Juice, strawberry 11.79
Cranberries, raw (Vaccinium macrocarpon) 30.54
Bilb 8 20.45
Peonidin ey raw (29, 38, 39)
Blueberries, cultivated (highbush), raw 2029
(Vaccinium spp.) :
(Continued)
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TABLE 1 Continued

Classification Common compounds Chemical structure and molecular formula Dietary sources Mean* (mg/100g) Reference
Blueberries, rabbiteye, raw (Vaccinium spp.) | 15.90
Cowpeas, black seed cultivar, mature seeds, 11.07
raw (Vigna unguiculata Subsp. Sinensis) ’
Guajiru (coco-plum), raw 55.72
Bilberry, raw 42.69
Blueberries, rabbiteye, raw (Vaccinium spp.) | 36.25
Petunidin (29, 35, 40)
Blueberries, cultivated (highbush), raw 3153
(Vaccinium spp.) :
Cowpeas, black seed cultivar, mature seeds, 2782
raw (Vigna unguiculata Subsp. Sinensis) ’
Blueberries, rabbiteye, raw (Vaccinium spp.) | 98.47
Cacao beans 88.45
OH
(+)-Catechin @"“ Grape seeds, raw 74.63 (29, 42, 43)
HO SN C15H14O6
\qj\ Tea, green, large leaf, Quingmao, brewed 67.60
OH
H Cocoa, dry powder, unsweetened 64.82
Cocoa, dry powder, unsweetened 196.43
Baking chocolate, unsweetened, squares 141.83
OH
(-)-Epicatechin Ho o ‘\©[ Cacao beans 99.18 (29, 44, 45)
Monomers ) OHC,5H1406
(Catechins) and their “OH Grape seeds, raw 93.31
Flavan-3-ols Do
gallate derivatives H
(41) Candies, chocolate, dark 84.40
Cacao beans 156.67
Tea, green, large leaf, Quingmao, brewed 19.80
OH )
(-)-Epigallocatechin OH Tea, white, brewed 18.65 (29, 46, 47)
Ho O onCi1sH1407 Tea, green, brewed, decaffeinated 16.02
“/OH
H Broadbeans, immature seeds, raw (Vicia
15.47
faba)
Cacao beans 8262.00
(+)-Gallocatechin (29, 48, 49)
Marrowfat pea, canned, drained solids 4.33
(Continued)
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TABLE 1 Continued

Classification Common compounds

Chemical structure and molecular formula

OH

Dietary sources

Broadbeans, immature seeds, raw (Vicia

Mean* (mg/100g)

Reference

4.15
Ej[‘)" faba)
Ho o orCisH1407 .
Strawberry tree fruit (arbutus), raw 1.60
OH
Currants, red, raw 1.28
Sorghum bran, Sumac (Sorghum bicolor) 2927.64
Spices, cinnamon, ground (Cinnamomum
R 2508.78
aromaticum)
Dimers and
P th idi 51-53
Polymers (50) roanthocyamans OH Cocoa, dry powder, unsweetened 2435.11 ( )
ym ry p
C30H26013
o Cacao beans (Theobroma cacoa) 1568.49
Sorghum grain (Sorghum bicolor) 1346.28
Tea, black, brewed, prepared with tap water 1.58
Tea, black, brewed, prepared with tap water,
X 0.35
decaffeinated
o o
Theaflavin "O\WGH Tea, green, brewed, decaffeinated 0.12 (29, 54)
HO__ o O 0. 0NC29H24012
gl, oo~ \/U Tea, black, ready-to-drink, plain and 0.05
H o flavored :
Tea, green, brewed, flavored 0.02
o Tea, black, brewed, prepared with tap water | 81.30
HO.
Tea, black, brewed, prepared with tap water,
X 49.03
decaffeinated
Tea, instant, tened with , plain and
Thearubigins (41) ea, instant, sweetened with sugar, plain an 2795 (29, 55
flavored, prepared
Tea, black, ready-to-drink, plain and
25.49
flavored
Tea, instant, unsweetened, powder, prepared | 23.65
Capers, raw 233.84
Capers, canned (Capparis spinosa) 172.55
Flavonols (56) Quercetin Lovage, leaves, raw 170.00 (29, 57)
Juice concentrate, elderberry 108.16
Dock, raw (Rumex spp.) 86.20
(Continued)
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TABLE 1 Continued

Classification Common compounds Chemical structure and molecular formula Dietary sources Mean* (mg/100g) Reference

Capers, raw 259.19
Spices, saffron (Crocus sativus) 205.48

Kaempferol Capers, canned (Capparis spinosa) 131.34 (29, 58, 59)
g:i’el,l I:;)w (Brassica oleracea (Acephala 16.80
Mustard greens, raw (Brassica juncea) 38.30
Carob kibbles 47.74
Juice concentrate, black currant 20.85

Myricetin o Fennel, leaves, raw 19.80 (29, 60, 61)

OHCISHIOOS

Parsley, fresh (Petroselinum crispum) 14.84
Carob kibbles 11.67
Spices, parsley, dried (Petroselinum
Cﬁspu nf) Y ( 331.24
Dill weed, fresh (Anethum graveolens) 43.50

Isorhamnetin Sea buckthorn berry, raw 38.29 (29, 62, 63)
Kale, raw (Brassica oleracea (Acephala
Group)) 23.60
Mustard greens, raw (Brassica juncea) 16.20
Sp'ices, parsley, dried (Petroselinum 4503.50
crispum)
Parsley, fresh (Petroselinum crispum) 215.46

Apigenin Spices, celery seed (Apium graveolens) 78.65 (29, 65, 66)
Vinespinach, (basella), raw (Basella alba) 62.20

Flavones (64) Celery, Chinese, raw 24.02

Oregano, Mexican, dried 1028.75
Spices, celery seed (Apium graveolens) 762.40

Luteolin Juniper berries, ripe (Juniperus communis) 69.05 (29,67, 68)
Juniper berries, green, unripe (Juniperus 51,40
communis)

(Continued)
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TABLE 1 Continued

Classification Common compounds Chemical structure and molecular formula Dietary sources Mean* (mg/100g) Reference
Thyme, fresh (Thymus vulgaris) 45.25
Oregano, Mexican, dried 85.33
Peppermint, fresh (Mentha x
piperita L. nothosubsp. 30.92
It on piperita)
Eriodictyol ©/ (29, 70)
HO. SN Cy5H1,06 Lemons, raw, without peel (Citrus limon) 21.36
" Juice, sour orange 14.54
Juice, lemon, canned or bottled 10.56
Juice, tangelo 74.89
Limes, raw (Citrus latifolia) 43.00
OH
Yuzu, 28.7
Flavanones (69) Hesperetin [ jo\ HEL raw 873 (29, 71)
HO\@:T; C16H1406 Lemons, raw, without peel (Citrus limon) 27.90
H O Oranges, raw, all commercial varieties 2725
(Citrus sinensis) :
Oregano, Mexican, dried 372.00
Kumgquats, raw (Fortunella spp.) 57.39
OH Grapefruit, raw (not specified as to color) 53.00
Naringenin HO o ©/ (Citrus paradisi) ’ (29, 70, 72)
Ci5H120s
Juice, tangelo 4251
H
Grapefruit, raw, pink and red, all areas .64
(Citrus paradisi) :
Red clover 833.00
Soybeans, mature seeds, raw 8.46
Formononetin Clover sprouts, raw 3.15 (74, 75)
Alfalfa seeds, sprouted, raw 1.43
Isoflavones (73)
Beans, pink, mature seeds, raw 1.05
Soy meal, defatted, raw 114.71
Genistein Soymilk skin or film (Foo jook or yuba), raw = 101.40 (74, 76)
Soy flour, full-fat, raw 98.77
(Continued)
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TABLE 1 Continued

Classification Common compounds Chemical structure and molecular formula Dietary sources Mean* (mg/100g) Reference
Soybeans, flakes, defatted 91.22
Soy flour (textured) 89.42
Soy flour, full-fat, roasted 89.46
Soy meal, defatted, raw 80.77
Daidzein Soymilk skin or film (Foo jook or yuba), raw = 80.03 (74, 77)
Soybeans, mature seeds, raw (Korea) 78.86
Soy flour, full-fat, raw 72.92
Red clover 1322.00
Clover sprouts, raw 14.08
HO o__0O
Coumestrol O P Kala chana, mature seeds, raw 6.13 (74, 78, 79)
Ci5HsOs
o O Beans, pinto, mature seeds, raw 1.80
OH
Alfalfa seeds, sprouted, raw 1.60
Soybeans, mature seeds,
22.37
raw (Europe)
Soy flour (textured) 20.02
Glycitei 74, 80
yettemn Soybeans, mature seeds, raw (Korea) 18.76 ( )
Soybeans, mature seeds, raw (Australia) 17.12
Soy flour, full-fat, roasted 16.40
Chickpeas (garbanzo beans, bengal gram), 154
mature seeds, raw i
Kala chana, mature seeds, raw 1.26
Biochanin A Beans, great northern, mature seeds, raw 0.60 (74, 81, 82)
Clover sprouts, raw 0.59
Cowpeas, common, (blackeyes, crowder, 0.58

southern), mature seeds, raw

*According to USDA database, mean values were reported as mg/100g of fresh weight of edible portion of food. For beverages, mean values reported on a liquid basis (mg/mL) were converted to a weight basis (mg/100 g) using the corresponding specific gravities. Tea was
prepared as infusions (1% infusion = 1g tea leaves/100ml boiling water). Mean values of tea were reported as mg/100g of tea infusions (mg per 100 ml brewed tea prepared from 1g of dry tea leaves).
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diseases (83). Activated macrophages are generally categorized into
two kinds: M1 macrophages, which participate in pro-inflammatory
responses, and M2 macrophages, which engage in anti-
inflammatory responses (84). In inflammatory conditions, a key
therapeutic strategy is to promote the differentiation of pro-
inflammatory M1 macrophages into anti-inflammatory M2
macrophages. Flavonoids have been demonstrated to have the
capacity to ameliorate inflammatory diseases by suppressing M1
polarization and enhancing M2 polarization in macrophages.
Quercetin, puerarin, and luteolin can increase M2 markers (e.g.,
Argl and IL-10) via the PI3K/Akt, PPARY, or AMPK pathways,
thereby facilitating macrophage polarization towards M2 (85-87).
In contrast, baicalin, Allium cepa L. peel extract, apigenin, and
hesperidin can prevent macrophage polarization toward the M1
phenotype by blocking the JAK/STAT, MyD88/NF-xB, MAPK,
direct kinase targets (IRAK4), or Jagged1/Notchl pathways (88—
91). Flavonoids have also been proven to influence macrophage
polarization by regulating metabolic reprogramming.
Phellodendrin has been shown to inhibit HIF-1lo.-regulated
macrophage PI3K/Akt and glycolysis, restoring the M1/M2
macrophage balance in periodontitis, thereby reducing the pro-
inflammatory effects and immune dysfunction caused by
overactivated M1 macrophages (92).

NLRP3 inflammasome is a multiprotein complex existing in
macrophages linked to a number of chronic inflammatory diseases.
It can initiate the death of inflammatory cells and the release of the
pro-inflammatory cytokines IL-1f and IL-18 (93). It also serves as
the main target for flavonoid compounds in regulating
macrophages. Quercetin, luteolin, and apigenin can prevent
NLRP3 inflammasome assembly, activate caspase-1, and cleave
Gasdermin D (GSDMD) through reactive oxygen species (ROS)
scavenging or Nrf2/HO-1 activation, thereby decreasing IL-1f
secretion, inhibiting macrophage pyroptosis, and suppressing
macrophage-driven inflammation (94-96).

New delivery systems have been developed to improve the
effectiveness of flavonoid compounds targeting macrophages.
Macrophage membrane-modified baicalin liposomes (MM-BA-
LP), compared to conventional baicalin liposomes (BA-LP), offer
better cerebral targeting, improved pharmacokinetics, and longer
retention in the bloodstream (97). Zhang et al. constructed M2M@
BANPs by loading baicalin onto poly (lactic-co-glycolic acid)
nanoparticles and encapsulating them within M2 macrophage
membranes. Under the coating of M2M, M2M@BANPs can
effectively target ischemic brain tissue and accumulate in
microglia and neurons. This reprograms microglia from M1 to
M2, significantly impacting therapeutic effects in ischemic
stroke (98).

Although most flavonoids show their anti-inflammatory
properties, certain studies have reported their pro-inflammatory
effects. In the tumor microenvironment, vitexin has been observed
to promote macrophage polarization towards the M1 phenotype via
the VDR/PBLD pathway, thereby enhancing anticancer activity
(99). In the mouse peritoneal infection model, intraperitoneal
injection of epigallocatechin gallate (EGCG) significantly
increased the quantity of monocytes/macrophages in both the
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peritoneal cavity and peripheral blood. EGCG can also induce
pro-inflammatory responses in macrophages and promote
phagocyte migration in co-culture systems containing
macrophages, indicating that EGCG is an effective agent for
preventing bacterial infections (100). The divergent regulatory
effects of flavonoids on macrophage anti-inflammatory and pro-
inflammatory responses indicate that their regulation is contingent
upon environmental factors.

3.2 Neutrophil

Neutrophils are the most abundant type of leukocytes in the
circulatory system. As effector cells of the innate immune system,
they play a key role in the pathophysiological processes of
inflammatory and autoimmune disorders (101, 102). Recent
studies have shown that, beyond eliminating pathogens through
traditional phagocytosis, neutrophils participate in anti-infective
defense and inflammatory responses by releasing neutrophil
extracellular traps (NETs), secreting inflammatory mediators (e.g.,
cytokines, chemokines, and lipid mediators), and producing ROS
(103, 104). However, excessive activation of neutrophils can result
in tissue damage and the development of inflammatory diseases.
Flavonoids have shown anti-inflammatory effects through the
regulation of neutrophils.

NETs are network-like structures composed of chromatin and
granular proteins released by activated neutrophils. Although these
structures contribute to defense mechanisms by capturing
pathogens, the excessive or abnormal NETs formation can
contribute to the pathogenesis of inflammatory and autoimmune
disorders. NETs can amplify localized inflammation and induce
tissue damage. Accumulating evidence indicates that flavonoids
exert anti-inflammatory effects by regulating neutrophil function
and inhibiting NETs formation through multiple signaling
pathways. For instance, quercetin inhibits NETs formation by
targeting the P2X7R/P38MAPK/NOX2 signaling pathway (105),
thereby alleviating oxidative stress and inflammatory responses in
neutrophils. Astilbin suppresses NETs formation by regulating the
purinergic P2Y6 receptor and the IL-8/CXCR2 pathway (106).
Dihydromyricetin blocks NETs formation through the HIF-la/
VEGFA pathway (107). Additionally, calycosin decreases NET's
formation and neutrophil-mediated inflammation by acting on
the TLR4/NF-xB pathway (108). Overall, these results show that
flavonoids are effective inhibitors of NETs, potentially assisting in
the reduction of inflammation and the development of
autoimmune conditions.

ROS serve as critical effector molecules for neutrophil killing of
pathogens, but excessive ROS may cause tissue damage. Research
shows that luteolin can inhibit the production of ROS by regulating
neutrophils, a process aided by the suppression of Rafl activity
(109). Flavonoids are capable of inhibiting overall ROS production;
however, their effectiveness varies among different types. The
condensation product of taxifolin with glyoxylic acid (DfTf)
significantly decreases extracellular ROS levels with no effect on
intracellular ROS. In contrast, naringin is more effective at
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inhibiting intracellular ROS (110). The role of ROS, intracellularly
and extracellularly, varies in health and disease. Intracellular ROS
has been shown to suppress IL-1f expression, thereby limiting
neutrophil recruitment. In contrast, extracellular ROS appears to
enhance IL-1B expression, promoting the recruitment of
neutrophils to form collaborative clusters (111). The regulatory
effects of flavonoids on intracellular and extracellular ROS show
their divergent roles in different disease contexts.

3.3 Dendritic cells

Dendritic cells (DCs) are essential antigen-presenting cells that
orchestrate immune responses by modulating T cell activation and
differentiation, serving as a crucial connection between innate and
adaptive immunity. Impairment of DCs has been demonstrated to
play a role in the onset of inflammatory and autoimmune disorders.
Recent studies indicate that flavonoids can exert
immunomodulatory effects by further influencing T cells through
the regulation of the immune response of DCs. Silibinin has been
proven to inhibit the upregulation of co-stimulatory molecules and
major histocompatibility complex (MHC) class II molecules on
lipopolysaccharide (LPS) stimulated mature DCs, while also
suppressing the release of pro-inflammatory cytokines IL-12, IL-
23, and TNF-a, as well as CD4" T cell proliferation and Th1/Th17
function, indicating strong immunosuppressive activity (112). RelB
is a critical protein in the NF-xB pathway. Apigenin has been shown
to inhibit RelB expression and nuclear translocation, affecting DC
maturation and antigen presentation, which alters T cell responses
from pro-inflammatory Th1/Th17 phenotypes to regulatory T cells
(Tregs), thus alleviating inflammatory responses (113). Galangin
and naringin have also been shown to contribute to this tolerance-
inducing process. Treatment of DCs with galangin results in
decreased expression of CD86 and MHC II molecules, with
increased expression of programmed death ligand 1 (PD-L1) and
IL-10 secretion. This promotes T helper (Th) cells differentiation
into Tregs, reducing inflammatory responses (114). Conversely,
naringin has been shown to promote the differentiation and
maturation of DCs through the KBP4/NR3C1/NRF2 axis, thus
providing a novel therapeutic approach for NRF2-dependent
autoinflammatory conditions (115).

34T cells

T cells are a key immune cell of the adaptive immune system
with the capacity of controlling immunological responses. CD4" T
cells, also known as Th cells, can differentiate into Th1, Th2, Th17,
T follicular helper cells (Tth), and Tregs, regulating immunological
responses throughout the body collaboratively (116). Our previous
study demonstrated that phloretin inhibits glucose uptake and
proliferation in activated CD4+ T cells and modulates the Th17/
Treg balance through AMPK signaling pathway (117). Cytotoxic T
lymphocytes (CTLs), also known as CD8" T cells, are responsible
for eliminating contaminated and cancer cells by releasing perforin
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and granzyme, leading to the initiation of apoptosis through
interactions between Fas and Fas ligand (118). Dysfunction of T
cell subsets and activities may cause the occurrence of autoimmune
illnesses and tumor immune escape. Flavonoids can help restore
immune homeostasis by regulating T cell differentiation. Apigenin
is found to induce apoptosis in CD8" T cells and decrease levels of
inflammatory cytokines, including IL-6, IFN-y, and IL-17, by
inhibiting the STAT3/IL-17 signaling pathway. This effectively
downregulates CTLs activity and alleviates tissue damage (119).
Naringin shows promise in the treatment of autoimmune hepatitis
by regulating essential genes associated with T cell responses, such
as IL-6 and TNF (120).

T cell exhaustion represents a considerable challenge in cancer
treatment. The expression of immune checkpoint molecules, PD-L1
and indoleamine 2, 3-dioxygenasel (IDOL1), is responsible for this
process (121). Tumor cells frequently enhance the expression of
these molecules to evade immune detection. Flavonoids have been
shown to have the ability to recover T cell function by regulating the
status of immune checkpoints. Myricetin can reduce the expression
of PD-L1 and IDOL1 induced by IFN-y in lung cancer cells, by
targeting the JAK-STAT-IRF1 signal pathway. This reduction can
help recover T cell proliferation and effector activity (122). Icariin
has been demonstrated to directly induce ferroptosis in colorectal
cancer cells while simultaneously promoting CD8" T cell activation
and IFN-v secretion, thereby augmenting the therapeutic efficacy of
programmed cell death proteinl (PD-1) checkpoint inhibitors
(123). Baicalin has been shown to improve the CD8" T cell/Treg
ratio against resistance to anti-PD-1 therapy via modifying the
composition of the gut microbiota (124). Furthermore, flavonoids
can augment the immune system’s capacity to combat tumors by
modulating T cell autophagy. Baicalin has been shown to promote
the degradation of CD274 within autolysosomes, a process
facilitated by increased interaction between CD274 and LC3,
which shows the potential of baicalin to interfere as a CD274
inhibitor to tumors (125).

3.5 B cells

B cells are also a key part of the adaptive immune system,
producing antibodies that fight infections, however, disorders may
lead to autoimmune diseases and allergy. Flavonoids have been
shown to have the capacity to regulate the balance and function of B
cells. Baicalin can lower the levels of pro-inflammatory cytokines
(e.g., IL-1PB, IL-2, IL-4, IL-6, IL-17A, and TNF-a) and chemokines,
by regulating the ratio of different types of B cells (decreasing the
ratio of B220" lymphocytes and increasing the ratio of memory B
cells) and inhibiting TGE-P1 signaling, associated with fibrosis and
immune regulation. This indicates that it might help prevent the
growth of abnormal B cells and diminish immune system activation
(126). Formononetin has been shown to suppress IgE production by
B cells and mast cell activation by downregulating key signaling
pathways, the JAK/STAT and PI3K/Akt pathways, suggesting that
flavonoids may have a broader immunomodulatory role in allergy
and IgE-related diseases (127).
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In addition, flavonoids can also regulate mast cells, eosinophils,
and other immune cells, thereby alleviating allergic reactions and
autoimmune diseases (128, 129). Flavonoids can regulate multiple
signaling pathways, which gives them the potential to exert a wide
range of effects on different immune cells. Their roles as
antioxidants, which is another common mechanism they act on,
can directly eliminate ROS from macrophages and neutrophils or
stimulate the body’s intrinsic antioxidant responses to alleviate
inflammation. Additionally, they can modulate macrophages via
the Nrf2/HO-1 pathway, inhibiting the dissemination of
inflammatory signals. A notable observation is their capacity to
trigger a transition in immune cells, including macrophages,
dendritic cells, and T cells, from a pro-inflammatory to an anti-
inflammatory state during periods of inflammation, which occurs
irrespective of the specific cell type. However, in the presence of
tumors, flavonoids have been observed to induce a pro-
inflammatory transformation in immune cells.

4 Flavonoids’ therapeutic applications
in inflammatory diseases

Flavonoids have been demonstrated to exert regulatory effects
on immune cells and inflammatory factors. Accumulating evidence
from existing RCTs indicates that flavonoids may serve as
adjunctive therapies for inflammatory diseases (Table 2). The
following section provides a detailed overview of the therapeutic

mechanisms of flavonoids in inflammatory diseases.

4.1 Anti-inflammatory effects in
inflammatory bowel disease

IBD is a chronic intestinal disorder closely linked to immune
system dysfunction. Corticosteroids and 5-aminosalicylic acid are
conventional IBD medications, but they sometimes have limited
effectiveness and may cause side effects such as diabetes and kidney
problems (153). Recent immunosuppressants and biologics have
demonstrated efficacy for numerous patients; however, they also
elevate the risk of severe cardiovascular complications, including
thrombosis (154). Flavonoids are a relatively harmless type of
medicine that may help treat IBD. Cohort studies have found a
correlation between high intake of anthocyanins and quercetin and
a lower risk of ulcerative colitis (UC) (155, 156). In patients with
moderate to severe UC, treatment with anthocyanin-rich extracts
has been shown to lower calprotectin levels, indicating therapeutic
benefits. However, these extracts were less effective in patients with
Crohn’s disease (136). Although studies have shown that
anthocyanins do not have a significant benefit on Crohn’s disease,
anthocyanin-rich maqui extract inhibited the NLRP3
inflammasome and mast cell activation in mice with TNBS-
induced colitis (157). Therefore, further research is needed to
understand the role of anthocyanins in Crohn’s disease.
Flavonoids have been shown to have positive effects on colitis by
modulating immune cell activity and preventing them from
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becoming pro-inflammatory. In a DSS mouse model of colonic
lesions, puerarin has been found to directly inhibit M1 polarization
of macrophages, while luteolin and formononetin have been
demonstrated to regulate the M1/M2 balance of macrophages (87,
158, 159). Some flavonoids below have been reported to alleviate
colitis through various mechanisms. EGCG can inhibit Thl cell
polarization, while hyperoside can regulate the Th17/Treg balance,
hesperidin helping rebalancing Th1/Th2 and Thl7/Treg, and
wogonin has been found to activate the AhR pathway, thereby
preventing ILC3 from transforming into ILCI (160-163).
Flavonoids may also regulate the immune system and help
prevent and treat inflammatory bowel disease by interacting with
gut microbiota in bidirectional interactions. On one hand, following
colon entry, flavonoid metabolites display gut microbiota-
dependent characteristics, such as equol, a metabolite derived
from soy isoflavones, which forms entirely dependent on the
presence and composition of gut microbiota (164, 165). On the
other hand, flavonoids entering the intestine also affect the
composition of the gut microbiota (166). This effect not only
directly influences the abundance of IBD-related gut microbiota
but also helps gut microbiota to produce short-chain fatty acids
(SCFAs), regulators of T lymphocytes, macrophages, and
neutrophils, contributing to gut homeostasis (167-170). Taxifolin
has been demonstrated to modify gut microbiota composition,
which can lead to increased SCFAs production, thereby
suppressing the production of TNF-c, IL-1f, and IL-6 in colonic
tissue, thus ameliorating DSS-induced colitis (171).

Flavonoids may also play a role in preventing the progression of
UC to colorectal cancer. Glabridin has been demonstrated to inhibit
STAT3 phosphorylation, regulate MMP1/3 activity, alleviate
inflammation, reduce extracellular matrix degradation and
decrease the occurrence of epithelial-mesenchymal transitions
(172). Neohesperidin (NHP) can inhibit macrophage migration
into target tissues and decrease pro-inflammatory cytokine levels,
including TNF-o, IL-1B, IL-6, and COX-2, at both mRNA and
protein levels, exceeding that of mesalazine at similar
concentrations (173). Vitexin has been shown to reduce the
quantity of M1 phenotype macrophages in healthy tissue adjacent
to tumors, enhance M1 macrophage polarization within tumor
tissue, and impede the progression from ulcerative colitis to
colorectal cancer (174).

4.2 Anti-inflammatory effects in
rheumatoid arthritis

RA is a chronic inflammatory disease that causes persistent
inflammation of the synovial membrane and joint damage,
potentially resulting in disability (175). Although the use of
traditional medications, DMARDs, and innovative biologic agents
has collectively improved treatment outcomes, numerous patients
exhibit insufficient responses to existing therapies or adverse side
effects, highlighting the necessity for novel treatment strategies
(176). Recent evidence from epidemiological and clinical studies
suggests that dietary flavonoids may play an important role in RA
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TABLE 2 RCTs of flavonoids in the treatment of inflammatory diseases.

Diseases

Flavonoids

Efficacy variables

Sample
size and
region

References

RA Silymarin 300 me/da ositive The number of tender and swollen joints, duration of morning stiffness, severity of pain, disease activity, and disability indices, n=122 Zugravu GS
ive
(50-80% Silybin) g/day P European League Against Rheumatism (EULAR) responses, levels of fatigue, depression, and anxiety| Romania et al. (130)
Puerarin 400 me/da ositive Carotid intima-media thickness]; n=119 Yang M et al.
saay P The homeostasis model assessment of insulin resistance (HOMA-IR) | China (131)
L . Triglycerides, total cholesterol, LDL-cholesterol, apolipoproteins, CT-1 and hs-CRP |; n=351 Hang Y et al.
B
aicalin 500 mg/day positive Proportion of eligible patients maintaining good/moderate EULAR response after treatment 1 China (132)
Early morning stiffness (EMS), morning, and after-activity pain |; n=50 Javadi F et al.
avadi F et al.
Quercetin 500 mg/day positive | DAS-28 and HAQ scores |; women only (133)
Plasma tumor necrosis factor-alpha (TNF-ar) level | Iran
=20
Quercetin + 166 mg + 133 negative Serum levels of TNF-a, interleukin-1beta (IL-1beta), interleukin -6(IL-6), C-reactive protein (CRP); Korean Health Assessment ?19 women) Bae SC et al.
vitamin C mg, tid 8 Questionnaire (KHAQ), Visual Analogue Scale(VAS). Korea (134)
Alpha-
=19 Kometani T
glucosylhesperidin | 3 g/day positive | ACR20 response rate T n ometant
Japan et al. (135)
(Hsp-G)
001001
Ulcerative Anthocyanin-Rich i th 0 ITlg ecative | Clinical response rate. Mavo sc n=24 Biedermann L
nthocyanin, negative inical response rate, Ma: ore .
Colitis (UC) Extract CY i 8 P Y Swiss et al. (136)
three times daily
. . . Hemoglobin level 1, erythrocyte sedimentation rate |; n=70 Rastegarpanah
il 14
Silymarin 0 mg/day positive Disease activity index (DAI) | Iran M (137)
=92
Irritable bowel . . i . n=9 Jalili M et al.
Soy isoflavones 40 mg/day positive | TNF-o level, NF-xb level, fecal serine protease enzyme activity | only women
syndrome (138)
Iran
Weight, body mass index (BMI), fat mass, and waist circumference |;
Obesity Fla\'lonoidj» . 200 mL/day positive low-dénsity lipol')rotein. ch'ol'esterol (LDL-C), glycated hemoglobin (Alc) levels, interferon gamma (IFENY), TNF-o,, leptin, n=4.2 Navajas-Porras
enriched juice plasminogen activator inhibitor (PAI-1) |; Spain B et al. (139)
Glutathione peroxidase 1 (GPX1), adiponectin 1
Non-alcoholic
fatty liver o . Plasma levels of alanine aminotransferase, fasting blood glucose (FBG), fatty liver index (FLI), HOMO-IR, quantitative insulin n=92 Yari Z et al.
i Hesperidin 1g/d positive . .
disease sensitivity check index (QUICKI) | Iran (140)
(NAFLD)
Type 2 diabetes ~ Anthocyanin + 0.28 g/day + . . . _— . . n=60 Teparak C
Fast! 1 FBG), gl h: HbAlc), 1 1 LDL) |; lar filtrat
mellitus dietary fibre 1.26 g/day positive asting blood glucose (FBG), glycated haemoglobin (HbAlc), low density lipoprotein (LDL) |; glomerular filtration rate 1 Thailand (141)
(Continued)
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FBG, insulin, HbA1c, homeostasis model assessment of insulin resistance (HOMO-IR), low-density lipoprotein cholesterol (LDL-

juice

=50
Rutin 500 mg/day positive ¢), total cholesterol (CHOL), LDL.HDL ratio, atherogenic index of plasma (AIP), malondialdehyde (MDA), IL-6 |; quantitative ?ran Bazyar H (142)
insulin sensitivity check index (QUICKI), HDL-c, total antioxidant capacity (TAC) 1
Eriomin
ix of
. (aAmllx ,0 . Blood glucose, HOMO-IR, glucagon, interleukin-6, TNF-o0,, and alkaline phosphatase |; Glucagon-like peptide 1 (GLP-1), n=45 Cesar TB et al.
Hyperglycemia eriocitrin plus 200 mg/day positive . . .
. triglycerides 1 Brazil (143)
other citrus
flavonoids)
X IL-6, fat percentage |; i ,
Multipl EGCG t 800 d 60 =51 de la Rubia Ort
v 1p.e . * cocond mg/day + positive | Butyrylcholinesterase enzyme (BuChE), B-hydroxybutyrate (BHB), Paraoxonase 1 (PON1), albumin and functional capacity (the n R ¢ a Bubia Grt
sclerosis (MS) oil ml/day o Spain JE et al. (144)
Expanded Disability Status Scale (EDSS)) 1
Bronchial . . . Symptom disappearance time, the incidence rates of complications, the incidence rates of adverse events and the level of IL-6, IL- = n=180 Yao W et al.
. Naringenin 5 mg/kg, 5 days positive .
pneumonia 8, TNF-ou); IL-107 China (145)
=50
COVID-19 Nano-silymarin 210 mg/day negative | Symptoms resolution time, laboratory parameters, and hospitalization duration ?ran Aryan H (146)
Chronic Soy bread 3 slices/day . n=10 Ahn-Jarvis |
TNE-
pancreatitis (isoflavones) (99 mg/d) positive NE-o USA et al. (147)
Alzheimer’ = i SM
diszeaeslen::;) Silymarin 450 mg/day positive | Catalase and malondialdehyde serum levels |, Mini Mental State Exam (MMSE) 1 ;lrai?) zaa\fl?l;)
n=60
T ti Theadom A
ra'un?a'lc Enzogenol 1000 mg/day positive Incidence of cognitive failure (mean CFQ score) after 6 weeks | New cadom
brain injury (149)
Zealand
R . L . . . . . n=265 Cho SH et al.
Asthma Soy isoflavones 98 mg/day positive | The number of severe asthma exacerbations in asthmatic patients with the high PAI-1-producing genotype | USA (150)
Atopic Licochalcone A . n=26 Udompataikul
0.025Y t The rel t
dermatitis lotion a posttive e relapse rate | Thailand M etal. (151)
h idin-
. esPen n y ' n=159 Valls RM et al.
Hypertension enriched orange 600 mg/day positive | Systolic blood pressure, pulse pressure| Spain (152)
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treatment. A study from the US National Health and Nutrition
Examination Survey (NHANES) indicated that adults in the US
with elevated flavonoid consumption may exhibit a reduced
likelihood of developing RA (177). Furthermore, individuals with
active rheumatoid arthritis may experience alleviation of their
condition and a reduction in inflammatory markers due to
specific flavonoid compounds or flavonoid-rich extracts, such as
silymarin and curcumin, with effects superior to those of DMARDs
(130, 178).

Flavonoids may assist in the treatment of RA by regulating
immune dysregulation in the synovial microenvironment. A key
factor in RA development is the imbalance between pro-
inflammatory effector T cells and anti-inflammatory Tregs, where
flavonoids can directly correct and restore balance in the immune
system. Naringin can inhibit the migration and polarization of
CD4" T lymphocytes in the synovium by regulating mitochondrial
fission (179). In a collagen-induced arthritis (CIA) model,
kaempferol was found to reduce the quantity of pathogenic CD4+
effector memory T cells while increasing naive T cells and Tregs,
thereby ameliorating the condition (180), while berberine and rutin
augment Treg activity to assist in the management of RA (181).
Kurarinone inhibits the differentiation of pro-inflammatory Thl
and Th17 cells by directly activating the antioxidant Nrf2/KEAP-1
pathway, thus alleviating RA symptoms (182). Morin alleviates RA
by inhibiting Th17 differentiation and fatty acid synthesis following
PPARY activation (183). Hesperidin alleviates RA by inhibiting
Th17 activation, as well as reducing serum levels of TNF-a, IL-6,
and IL-17A, ultimately improving joint pathology and clinical
score (184). In the adjuvant-induced arthritis (AIA) rat model,
Cyanidin enhances the outcomes of RA by reestablishing the Th17/
Treg balance and suppressing the differentiation of Tth cells via
ROCK?2 signaling (185). This targeted regulation of T cell subsets is
crucial for attaining sustained remission of RA and is closely related
to the control of autoreactive T cells (186). Macrophages also play
an important role in coordinating RA synovitis and joint
degradation (187). Flavonoids can prevent pro-inflammatory
macrophages from functioning and promote their conversion into
anti-inflammatory cells, thereby combating arthritis. Hesperidin
inhibits macrophage infiltration into tissues by diminishing COX-2
expression (188). Acacetin binds specifically to the ATP domain of
HSP90, causing HSP90 to detach from COX-2, which leads to
COX-2 being ubiquitinated and broken down in macrophages,
thereby reducing inflammatory reactions (189). Icariin, delivered
via exosomes from mesenchymal stem cells, has been shown to
convert pro-inflammatory M1 macrophages in synovial tissue into
anti-inflammatory M2 macrophages, at the same time inhibiting
glycolysis (190). Flavonoids can also prevent abnormal crosstalk
between different immune cell groups that triggers the
inflammatory cascade in RA (191). An adverse feedback loop
exists between T cells and macrophages, wherein cytokines
produced by T cells, such as IL-17A, diminish the function of
synovial macrophages and worsen inflammation. Cyanidin has
been shown to suppress this IL-17A-mediated impairment,
thereby halting this intercellular inflammatory transmission (192).
Neutrophils are essential in the pathogenesis of RA and represent
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an important target for therapeutic intervention, as they perpetuate
inflammation through the secretion of cytokines, chemokines, and
reactive oxygen species, in addition to forming NETs (193).
Flavonoids can prevent these harmful processes to treat RA.
Quercetin can inhibit neutrophil infiltration into tissues, induce
apoptosis in active neutrophils, and obstruct NETs formation by
interfering with autophagy (194). Rutin can obstruct neutrophil
migration to joints and suppress the local synthesis of TNF-o (195).
Refractory RA is when an individual with RA fails to respond to
DMARD:s treatment (196). The overexpression of the drug efflux
pump P-glycoprotein (P-gp) in lymphocytes is regarded as a
mechanism of DMARDs resistance (197). Nobiletin, functioning
as a P-gp inhibitor, can suppress P-gp overexpression in
lymphocytes in the AIA rat model when co-administered through
a nanodelivery system, providing novel insights for refractory RA
(26, 198). Flavonoid compounds may also exert beneficial effects on
the overall integrity of joint structures. For instance, they can
promote chondrocyte differentiation via the MAPK signalling
pathway, inhibit synovial autophagy and fibroblast-like
synoviocyte activation, making flavonoids even better candidates
for comprehensive anti-arthritic agents (199-201).

4.3 Anti-inflammatory effects in metabolic
disorders

Metabolic disorders, such as obesity, type 2 diabetes (T2DM),
and atherosclerosis, are caused by a persistent low-grade
inflammatory condition known as ‘metabolic inflammation’ (202).
Metabolic stress activates immune cells, such as macrophages and
neutrophils, in metabolic organs, including adipose tissue, the liver,
the pancreas, and blood vessels (203). These activated immune cells
produce cytokines, contribute to cellular damage, and promote
insulin resistance. Analysis of plasma samples from T2DM
patients adhering to a Mediterranean diet for 12 weeks revealed
an elevation in plasma concentrations of naringin, hesperetin and
hesperidin, resulting in a reduction of inflammation and oxidative
stress in individuals with T2DM (204). Flavonoids can regulate
immune cells to inhibit the progression of metabolic inflammation.

4.3.1 Anti-inflammatory effects in obesity and
fatty liver

Adipose tissue serves as the primary site of inflammation in
metabolic inflammatory disorders. Flavonoids can reduce
inflammation by regulating macrophage polarization, as the
infiltration of macrophages and pro-inflammatory (M1)
polarization are hallmark traits of obesity (205). In obese mice,
dietary supplementation with kaempferol has demonstrated a
reduction in intestinal inflammation and a decrease in the influx
of immune cells into the intestines, thereby mitigating systemic
metabolic issues (206). Apigenin, when delivered in nanoparticle
delivery systems, promotes the transition of adipose tissue towards
the M2 phenotype, thereby reducing obesity-related inflammation
(207). 7, 8-Dihydroxyflavone and baicalin are two flavonoids with
similar effects, blocking key inflammatory signaling pathways,
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including NF-xB and JNK, in macrophages, reducing insulin
resistance in overweight individuals (208, 209). When metabolic
inflammation extends to the liver, it may result in non-alcoholic
fatty liver disease (NAFLD), a condition for which flavonoids
demonstrate significant protective potential. Nobiletin, a citrus
flavonoid, inhibits hepatic lipid accumulation and decelerates the
progression of NAFLD by regulating M1/M2 macrophage
polarization through enhanced autophagy and by suppressing the
NLRP3 inflammasome, a critical contributor to inflammatory cell
death (210). Hyperoside similarly promotes M2 macrophage
polarization in an Nr4Al-dependent manner, contributing to the
amelioration of NAFLD (211). Researchers have discovered that
green tea extract, Theaphenon E (TE), protects the liver by
diminishing lipid accumulation and preserving elevated CD4" T
cell counts (212).

4.3.2 Anti-inflammatory effects in diabetic
vascular complications

Flavonoids can help prevent inflammation that may potentially
harm the pancreatic beta cells. A study found that a flavonoid-rich
diet, mixing cocoa powder and carob flour, may preserve B-cell
mass in diabetic rats through preventing macrophages from
infiltrating into the pancreatic islets and inhibiting NF-xB-
mediated inflammation. This approach may help regulate insulin
secretion and delay the development of T2DM (213). The persistent
inflammation and hyperglycemia associated with diabetes
inevitably have severe effects on blood vessels and tissues, leading
to a series of serious complications (214). Flavonoids can alleviate
these complications by regulating immune cell-mediated immune
responses in affected tissues. Kaempferol mitigates diabetic
retinopathy by targeting retinal microglia, which are the resident
macrophages of the central nervous system. Kaempferol
significantly diminishes the pro-inflammatory response of
microglia and promotes an anti-inflammatory M2-like phenotype,
thereby contributing to maintaining retinal integrity (215).
Hyperoside may help treat diabetic nephropathy by regulating the
T cell balance towards anti-inflammatory Th2 and Treg populations
and by promoting macrophage polarization from the M1 to the M2
phenotype (216). Cardamonin inhibits diabetic cardiomyopathy by
preventing M1 macrophages from infiltrating the cardiomyocyte
and modifying their morphology. Meanwhile, cardamonin can
activate KEAP1 to release the transcription factor NRF2, which
activates a strong protective program that shields cardiomyocytes
from damage by weakening inflammation and free radicals (217).

4.3.3 Anti-inflammatory effects in cardiovascular
diseases

Inflammatory responses are key drivers of the development and
progression of cardiovascular diseases. Immune cells contribute to
pathological cardiovascular remodeling by inducing endothelial
dysfunction, vascular remodeling, cardiomyocyte injury, and
fibrotic changes (218, 219). Moreover, immunosenescence has
emerged as an important contributor to the pathogenesis of
atherosclerosis and hypertension (220). Flavonoids exert multiple
protective effects in cardiovascular inflammatory conditions. In the
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vascular endothelium, flavonoids promote endothelial cell survival
and function (221, 222). As for cardiomyocytes, they regulate
autophagy and alleviate cellular swelling and fibrosis in heart
failure conditions (222-224). Within vascular smooth muscle
cells, flavonoids suppress their proliferation, migration, and
inflammatory activation (225). Furthermore, by regulating the gut
microbiota, flavonoids strengthen intestinal barrier integrity and
thereby mitigate microbiota-driven cardiovascular pathology (226).
Beyond their suppression of general inflammatory mediators,
flavonoids can specifically target disease-relevant inflammatory
markers, highlighting their therapeutic potential in managing
cardiovascular inflammation (227).

Atherosclerosis is an inflammatory arterial disorder that may
lead to strokes and myocardial infarctions. Flavonoids can not only
inhibit cytokines but also regulate macrophage metabolic
reprogramming, thereby preventing the formation of lipid-laden
‘foam cells’ that contribute to the development of atherosclerotic
plaques (228). Wogonin, a flavonoid isolated from Scutellaria
baicalensis, activates the PPARa-KLF11-YAP1 transcription
complex, which redirects macrophage energy metabolism away
from pro-inflammatory glycolysis towards protective fatty acid
oxidation, thereby inhibiting foam cell formation and alleviating
plaque inflammation (229). Quercetin can limit pyroptosis of
macrophages by blocking the KEAP1/NRF2 interaction (230).
Hawthorn leaf flavonoids can inhibit sSPLA2-IIA in macrophages,
thereby reducing macrophage inflammation (231). Both
mechanisms have been shown to slow atherosclerosis progression
in ApoE—/— mice fed a high-fat diet by targeting macrophages. In
terms of reducing the formation of atherosclerotic plaques,
biochanin A (BCA) promotes macrophage cholesterol efflux,
while kaempferol suppresses macrophage inflammatory responses
(232, 233). Elevated blood glucose levels prompt neutrophils to
release NETS, resulting in vascular damage. Prenylchalcones may
inhibit this process, indicating their potential as supplementary
therapies for metabolic disorders (234).

Hypertension is also strongly associated with immune
activation and chronic inflammation. Aberrant immune responses
promote vascular inflammation, leading to endothelial dysfunction,
vascular remodeling, and increased peripheral vascular resistance,
which eventually drive blood pressure elevation (235, 236). Cohort
studies indicate that flavonoids not only reduce the risk of
developing hypertension but also prevent hypertension-related
target organ damage and improve long-term clinical outcomes
(237-240). The paraventricular nucleus (PVN) of the
hypothalamus, a bilateral structure adjacent to the third ventricle,
plays a critical role in central blood pressure regulation. Beyond
their anti-inflammatory effects, flavonoids can regulate immune
and inflammatory processes within the PVN through actions on
immune cells, thereby contributing to blood pressure control.
Puerarin and anthocyanins attenuate blood pressure elevation in
salt-induced prehypertensive rats by suppressing NLRP3
inflammasome activation and ROS production in the PVN (241,
242). Similarly, luteolin ameliorates hypertension by inhibiting NF-
kB-mediated inflammatory signaling and the PI3K/Akt pathway
within the hypothalamic PVN (243).
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4.4 Anti-inflammatory effects in
neuroinflammation and neurodegenerative
diseases

Neuroinflammation is characterized by immune cells in the
central nervous system (CNS), mainly microglia and astrocytes,
remaining persistently activated, which is regarded as a
predominant mechanism in numerous neurodegenerative and
neurological diseases (244). Microglia can exert neuroprotective
effects by phagocytosing harmful protein aggregates; however,
excessive phagocytosis of these aggregates may lead to neuronal
damage and disease progression (245). In pathological conditions,
peripheral immune cells, such as T cells and neutrophils, may also
infiltrate the brain and spinal cord, further intensifying the
inflammation (246, 247). Flavonoids can alleviate
neuroinflammatory processes and decrease the progression of
neurodegenerative diseases through their regulatory effects on
immune cells, particularly microglia (248).

4.4.1 Anti-inflammatory effects in Alzheimer's
disease

In Alzheimer’s disease (AD), amyloid-f (AB) plaques and tau
protein tangles chronically activate microglia, causing a neurotoxic
inflammatory state and impairing their phagocytic function (249).
A study based on the NHANES database found that adults in the US
population with higher flavonoid consumption exhibited a lower
risk of AD-related mortality (250). Myricetin may aid in treating
AD by blocking the p38 MAPK pathway and activating the NLRP3
inflammasome in microglia, thereby reducing AP accumulation
(251). In addition to suppressing pathological processes, flavonoids
can also enhance microglia’s protective ability. Cyanidin-3-O-
Glucoside (C3G) facilitates the transition of microglia from the
M1 to the M2 phenotype by activating the PPARY signal pathway
and enhancing the phagocytosis of AB42 by upregulating TREM2,
thereby facilitating the clearance of accumulated -amyloid (252).
Rutin has also been shown to help microglia uptake extracellular tau
oligomers, thereby directly combating AD (253). Microglial
senescence, a functional disorder state associated with aging and
AD, can be mitigated through preventive measures, thereby
alleviating neuroinflammation and cognitive decline (254).
Studies suggest that delphinidin may decelerate this process
through the AMPK/SIRT1 pathway, potentially mitigating
cognitive deficits and pathological features of AD (255).

4.4.2 Anti-inflammatory effects in demyelinating
diseases

Multiple sclerosis (MS) is an autoimmune demyelinating
disease in which both T cells and glial cells contribute to the
progression of the disease (256, 257). Flavonoids have shown
their potential for therapeutic applications in MS via regulating
both the central and peripheral immune systems. In the
experimental autoimmune encephalomyelitis (EAE) model of MS,
procyanidin B2 3, 3”-di-O-gallate (PCB2DG) has been found to
directly suppress the immune response of pathogenic CD4" T cells,
aiding in disease management. Glycolysis is crucial for T cell
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activation. PCB2DG exhibits anti-inflammatory effects by
modulating glycolytic metabolism, consequently reducing the
production of T cell-mediated inflammatory cytokines such as
IFN-y and IL-17, as well as their infiltration into the spinal cord.
This mechanism has been proved effective for treating spinal cord
injury (258). Baicalein and kaempferol have been demonstrated to
alleviate demyelination and microglial activation caused by
cuprizone poisoning by inhibiting the STAT3 and NF-«B
signaling pathways (259). Agathisflavone has been shown to
influence microglia activation through the estrogen receptor
alpha, promoting myelin regeneration and alleviating symptoms
of MS (260).

4.4.3 Anti-inflammatory effects in acute central
nervous system injury

After acute injuries such as stroke and trauma, the activation of
microglia and the infiltration of peripheral immune cells into
ischemic tissues may trigger a robust and deleterious
neuroinflammatory response (261). Flavonoids have been proven
to have therapeutic potential in repairing such damage. Quercetin
can regulate the PI3K/Akt/NF-xB signaling pathway, promoting a
transition from a pro-inflammatory M1 phenotype to an anti-
inflammatory M2 phenotype in microglia and macrophages,
thereby effectively alleviating brain ischemia/reperfusion injury
(85). In spinal cord injury models, alpinetin reduce
neuroinflammation and enhance motor function recovery by
inhibiting microglial activation (262). In an experimental
intracerebral hemorrhage model, didymin has been found to
improve cerebral function by reducing microglial activation and
pyroptosis. Furthermore, this process also leads to a reduction of
neutrophils infiltrating the perihematomal tissue, thereby helping to
alleviate post-hemorrhagic neuroinflammation (263).

4.4.4 Anti-inflammatory effects in mental, stress
and pain-related disorders

Neuroinflammation is considered a pathogenic factor in the
development of depression and anxiety (264), while flavonoids have
been demonstrated to exert therapeutic effects on depression and
anxiety by reducing neuroinflammation induced by microglia.
Luteolin can promote the Arg-1+ microglial phenotype in a
chronic stress-induced depression model, which contributes to
the suppression of microglial pro-inflammatory activity and
ameliorates depressive-like behavior (265). Hyperoside has been
demonstrated to ameliorate depressive-like behavior by promoting
M2 polarization of microglia in the hippocampus (266), and
quercetin can alleviate cognitive impairments in depressed mice
by targeting HSP90 to inhibit the activation of the NLRP3
inflammasome in microglia (267). In a mouse model of chronic
unpredictable stress (CUS) depression, morin can relieve
neuropathic pain by balancing M1/M2 microglial polarization
and inhibiting neuroinflammation (268).

A major impediment in the treatment of neurological disorders
is the blood-brain barrier, while delivery mechanisms can enhance
the efficacy of flavonoids. Xu et al. formulated BDNF(brain-derived
neurotrophic factor)-quercetin alginate nanogels and delivered
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them intranasally, resulting in a nearly 50-fold enhancement in the
bioavailability of quercetin compared to oral treatment (269).
Zhang et al. attached the blood-brain barrier-penetrating peptide
(RVG29) to the surface of nanoparticles and included 4, 4’-
dimethoxychalcone (DMC), referred to as RVG-nDMC. This
delivery system successfully traversed the blood-brain barrier
(BBB), improved the transport of DMC to dopaminergic neurons
and microglia in the substantia nigra pars compacta of Parkinson’s
disease (PD) mice, and intervened in PD (270).

4.5 Anti-inflammatory effects in respiratory
tract diseases

When pathogens invade the respiratory tract, innate immune
cells respond to the infection rapidly. However, excessive activation
might result in inflammation and damage to the respiratory system
(271). Consequently, in respiratory tract infections, it is essential for
the immune system to maintain a balance between combating
pathogens and minimizing host tissue damage (272). Flavonoids
have shown potential in this condition by directly reducing
pathogen replication and virulence while also regulating the host
immune response, offering new prospects for the treatment of
respiratory tract infections (RTT).

4.5.1 Anti-inflammatory effects in acute lung
injury

Acute lung injury (ALI) and its more severe form, acute
respiratory distress syndrome (ARDS), are serious conditions
usually caused by sepsis, trauma, or severe infection. ALI is
characterized by widespread pulmonary inflammation, alveolar
edema, and progressive respiratory failure, with neutrophils and
macrophages serving as key cellular mediators in this process (273,
274). Numerous flavonoids have demonstrated considerable
therapeutic potential in experimental models of ALI and sepsis,
particularly in sepsis-induced acute lung injury. In ALI,
macrophages typically exhibit a pro-inflammatory M1 phenotype,
secreting substantial quantities of cytokines and aggravating lung
tissue damage. Flavonoids may counteract this pathological process
by promoting the transition of macrophages toward the anti-
inflammatory M2 phenotype, thereby facilitating inflammation
resolution and initiating tissue repair mechanisms. Wogonin and
apigenin have been reported to ameliorate sepsis-induced ALI by
regulating macrophage M1/M2 polarization (275, 276). Oroxylin A
alleviates sepsis through the induction of “trained immunity”. It
increases LC3-associated phagocytosis (LAP) in macrophages via
activation of the Dectin-1-Syk signaling axis and the mTOR
pathway, thereby enhancing macrophage capacity to combat
infection and resist sepsis progression (277). Catechin hydrate
directly inhibits macrophage RasGRP1, a pro-inflammatory gene
in macrophages, thereby diminishing excessive inflammation and
oxidative stress that contribute to numerous organ dysfunctions
resulting from sepsis (278). Icariin II mitigates LPS-induced ALI by
targeting the neutrophil receptor CXCR, hence reducing excessive
neutrophil activation and the formation of NETs (279).
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4.5.2 Anti-inflammatory effects in bacterial
respiratory tract infections

With the continuous advancement of antibiotic therapies,
bacterial pneumonia has been partially controlled. However, the
emergence of drug resistance poses significant challenges to both
clinical treatment and public health, particularly in the context of
the COVID-19 pandemic, during which the prevalence of
multidrug-resistant organisms (MDROs) has increased rapidly
(280, 281). Flavonoids provide a multi-target therapeutic strategy
for bacterial pneumonia through various mechanisms, including
direct antibacterial effects, suppression of bacterial pathogenicity,
and regulation of the host’s immunological response to infection.
Pseudomonas aeruginosa is an opportunistic Gram-negative
bacterium frequently responsible for hospital-acquired pneumonia
and may lead to severe and often multidrug-resistant infections
(282). In a murine model of bacterial pneumonia, luteolin
demonstrated the capacity to inhibit M1 macrophage polarization
by suppressing the EGFR/PI3K/AKT/NF-kB and EGFR/ERK/AP-1
signaling pathways. It can simultaneously reduce lung permeability,
neutrophil infiltration, pro-inflammatory cytokine synthesis, and
pulmonary bacterial load, thereby improving the survival rate of
mice (283). Phloretin exhibits direct antibacterial and anti-biofilm
properties against non-typeable Haemophilus influenzae (NTHi),
Moraxella catarrhalis, and Streptococcus pneumoniae. In murine
models, dietary supplementation with phloretin was found to
decrease NTHi bacterial load and reduce levels of the neutrophil
chemoattractant CXCL1, thereby ameliorating pneumonia (284).
MegrA is a key regulatory factor in Staphylococcus aureus and plays
a central role in regulating bacterial virulence and resistance.
methylophiopogonanone can diminish the connection between
MgrA and DNA in S. aureus, leading to reduced toxin expression,
diminished bacterial adhesion, disruption of immune evasion
mechanisms, and enhanced neutrophil chemotaxis, thereby
preventing S. aureus-induced pneumonia in mice (285).

In addition to their therapeutic effects on existing infections,
flavonoids also demonstrate preventive potential against bacterial
infections. EGCG elicits an adjustable pro-inflammatory response
in macrophages via the 67LR/p38/JNK signaling pathway, showing
promise in the prevention of bacterial infections. Furthermore, it
can also regulate macrophage-mediated immunity, stimulate
phagocyte migration, and enhance the immune system’s capacity
to respond more swiftly and effectively to subsequent bacterial
assaults (100).

4.5.3 Anti-inflammatory effects in viral respiratory
tract infections

Whether it’s seasonal influenza or the more recent COVID-19
pandemic, various viral respiratory infections can elicit immune
responses, resulting in pulmonary damage. Flavonoids present a
multi-targeted therapeutic approach that not only inhibits viral
invasion and replication but also regulates the host’s inflammatory
response, thereby offering therapeutic benefits (286, 287). In an
experimental model of lung inflammation induced by the HIN1
subtype of influenza A virus, an RNA virus responsible for seasonal
and pandemic influenza, 5-methoxyflavone was shown to suppress
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the recruitment of CD8" T cells, attenuate inflammatory responses,
and reduce ALI (288). In a mouse model of HIN2 viral infection,
baicalin was found to directly inhibit viral replication, augment the
expression of antiviral proteins Mx1 and PKR, equilibrate the
CD4%/CD8" T cell ratio, ultimately strengthening mucosal
immunity against HON2. Although the HIN2 avian influenza
virus exhibits low pathogenicity in humans compared to other
avian influenza subtypes, these findings suggest potential
implications for the prevention of highly pathogenic avian
influenza (289). Luteolin-7-O-glucoside (LUT-7G) has been
demonstrated to ameliorate lung injury and inhibit respiratory
syncytial virus (RSV) replication by preserving mitochondrial
function in alveolar macrophages and promoting the production
of protective interferon-f3 (290).

The presence of COVID-19 not only leads to severe pneumonia
and associated sequelae but also significantly affects the
epidemiology and antimicrobial resistance patterns of other
respiratory pathogens (291, 292). The cytokine storm in COVID-
19 is an exaggerated immune response characterized by the
excessive synthesis of pro-inflammatory cytokines, potentially
resulting in ARDS and multi-organ failure. It is closely associated
with the rapid deterioration of COVID-19 and high mortality rates
(293). An RCT has shown that a flavonoid-containing mouthwash
can effectively reduce the viral load of SARS-CoV-2 in saliva (294).
Lianhua Qingwen Capsules, which have been clinically validated for
the treatment of COVID-19, contain forsythoside as a main active
ingredient, which includes rutin, quercetin, and other flavonoids,
confirming the therapeutic efficacy of flavonoids against COVID-19
infection indirectly (295). Diosmetin-7-O-B-D-pyran glucoside
(DG) and kaempferol can modulate M1/M2 macrophage
polarization, suppress endotoxin-induced cytokine storms,
enhance mouse survival rates, and concurrently limit viral activity
and replication (296, 297). Furthermore, the combination of
quercetin and dasatinib has been found to reduce the infiltration
of macrophages and neutrophils in pulmonary tissue, thereby
mitigating the inflammatory response in the lungs of patients
with COVID-19 (298). It is worth noting that hesperidin and its
aglycone metabolite hesperetin demonstrated antiviral effects at
multiple stages of COVID-19 infection. Hesperetin can inhibit
SARS-CoV-2 Spike -induced activation of the NLRP3
inflammasome, thereby attenuating excessive inflammatory
responses (299). Hesperidin interferes with the binding between
the spike protein and human angiotensin-converting enzyme 2
(hACE2), thus suppressing intercellular transmission and immune
evasion of SARS-CoV-2 (300). Furthermore, hesperetin can directly
inhibit SARS-CoV-2 replication (301). These findings indicate that
hesperidin and hesperetin exert inhibitory effects across multiple
phases of the SARS-CoV-2 life cycle. Moreover, hesperetin and
hesperidin are reported to directly suppress viral replication in
other pathogens such as RSV, zika virus (ZIKV), chikungunya virus
(CHIKYV), suggesting them as potential broad-spectrum antiviral
agents with multi-target mechanisms (302, 303). These evidences
highlight the therapeutic potential of hesperidin and hesperetin in
managing viral infections and co-infections. Further investigation is
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warranted to elucidate the precise mechanisms by which hesperidin
and hesperetin act at different stages of these viral infections.
Another important finding is that many flavonoids have been
proven to significantly inhibit the release of elastase from
neutrophils. Neutrophil elastase is a potent proteolytic enzyme
secreted by neutrophils as part of the innate immune response to
infection. However, overactivation can lead to structural damage to
alveolar and vascular tissues, contributing to the pathogenesis of
COVID-19 and other pulmonary disorders. The inhibition of
elastase allows flavonoids to assume a protective function,
improving clinical outcomes in multiple respiratory diseases (304).

4.6 Anti-inflammatory effects in asthma
and allergic diseases

Asthma and allergic diseases are characterized by chronic
inflammation and atypical immune responses, mediated through
complex interactions among multiple immune cells, with both
innate and adaptive immunity being essential. Asthma frequently
co-occurs with other allergic diseases—such as allergic rhinitis,
atopic dermatitis, and food allergies—posing significant
challenges to accurate diagnosis and effective management,
ultimately influencing patients’ quality of life (305). An RCT
indicated that oral quercetin supplementation can effectively
mitigate symptoms associated with allergic rhinitis induced by
pollen (306). Furthermore, epidemiological evidence from a
cohort study indicated an inverse association between maternal
dietary intake of flavonoids during pregnancy and the subsequent
risk of childhood asthma development (307). Flavonoids can
markedly inhibit the release of histamine and pro-inflammatory
cytokines from mast cells, which are central mediators in allergic
responses (308). Through their immunoregulatory properties,
flavonoids contribute significantly to the alleviation and
management of various asthma and allergic diseases.

4.6.1 Anti-inflammatory effects in asthma and
allergic airway inflammation

Asthma is a chronic respiratory disorder, and recent years have
witnessed significant progress in understanding the role of type 2
immunity in its pathogenesis. Type 2 immunity is an immune
response driven by Th2 cells, resulting in the synthesis of allergen-
specific immunoglobulin E (IgE) and the activation of mast cells
and basophils (309). Flavonoids exhibit diverse therapeutic
potential in targeting airway hyperresponsiveness, inflammation,
and tissue remodeling in asthma. They can modulate 3-catenin to
inhibit epithelial-mesenchymal transition (EMT) and thereby
mitigate airway remodeling in asthma (310). Additionally, they
are capable of regulating the Th1/Th2 immune balance. Research
has found that tectorigenin can reestablish this equilibrium in
asthmatic mice by upregulating the expression of Thl-associated
factors while suppressing Th2 cytokines such as IL-4, IL-5, and IL-
13, consequently reducing serum IgE levels. This
immunoregulatory effect has been linked to the activation of the
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antioxidant Keapl/Nrf2/HO-1 signaling pathway (311).
Tectochrysin and sophoraflavanone G have also been found to
suppress Th2 responses and augment the antioxidant capacity of
lung tissue, thus ameliorating allergic airway inflammation (312,
313). Flavonoids additionally regulate key intracellular signaling
pathways in both immune and structural cells. Daphnetin exerts
anti-inflammatory effects by inhibiting intracellular Ca®"
mobilization and suppressing the JAK/STAT6 signaling pathway
—a critical axis involved in Th2 cytokine production—thereby
alleviating allergic airway inflammation (314). Wogonoside can
significantly reduce airway inflammation and excessive mucus
production while enhancing airway remodeling by inhibiting the
activation of NF-xB and STAT6 in lung tissue and bronchial
epithelial cells, as well as decreasing Th2-related cytokines (IL-4,
IL-5, IL-13) in lung tissue and serum IgE levels (315). Moreover,
flavonoids can regulate immune cells implicated in asthma
pathogenesis. Tilianin suppresses Th2 immune responses by
down-regulating interferon regulatory factor 4 (IRF4) in DCs,
therefore mitigating house dust mite-induced allergic asthma (316).

4.6.2 Anti-inflammatory effects in atopic
dermatitis

Atopic dermatitis is a chronic and recurrent inflammatory
dermatosis that belongs to the spectrum of atopic diseases, which
also includes asthma and food allergies. In atopic dermatitis, an
exaggerated type 2 immune response, predominantly facilitated by
Th2 cells, can induce skin inflammation and provoke neural
sensitization, resulting in intense pruritus (317). Flavonoids have
demonstrated efficacy in alleviating symptoms by regulating skin-
infiltrating immune cells and restoring epidermal barrier integrity.
Research on a ternary compound formula containing ginsenoside
Rgl, tetrandrine, and icaritin (GTI) can mitigate atopic dermatitis-
like symptoms by reducing the infiltration of eosinophils, mast cells,
and CD4" T cells in skin tissue, as well as reducing IgE-mediated
reactions and inhibiting MAPK signaling activation. Furthermore,
it enhances epidermal barrier function by promoting the expression
of tight junction proteins (318). Emerging technologies are being
developed to overcome the challenge of flavonoid delivery across
the skin barrier. A microneedle-based delivery system incorporating
epigallocatechin gallate and L-ascorbic acid-loaded poly-y-glutamic
acid has been found to substantially ameliorate atopic dermatitis
symptoms in mice, significantly decrease serum IgE and histamine
levels, and downregulate Th2-type immune responses, ultimately
enhancing atopic dermatitis outcomes (319).

4.6.3 Anti-inflammatory effects in food allergy
Food allergy is a potentially life-threatening condition, triggered
by IgE-mediated mast cell activation. These findings suggest that
although mast cells are central to the classical allergic reaction
pathway, other immune cells, like basophils and neutrophils, may
also contribute. A range of flavonoids has demonstrated efficacy in
mitigating food allergy. Formononetin, an isoflavone, not only
inhibits degranulation of mast cells and basophils but also directly
suppresses IgE production by human peripheral blood
mononuclear cells through modulation of the JAK/STAT/PI3K-
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Akt signaling pathway, thereby attenuating allergic responses (127).
In an ovalbumin-induced murine model of food allergy, nevadensin
alleviates food allergy symptoms by inhibiting the c-Kit receptor,
reducing the proliferation of bone marrow-derived mast cells, and
promoting their apoptosis (320). Dihydromyricetin not only lowers
the quantity of B cells and mast cells in the spleens of ovalbumin-
allergic mice but also increases the population of Tregs, thereby
ameliorating food hypersensitivity (321). Emerging evidence
highlights the interplay between flavonoids, the immune system,
and gut health as a promising avenue for alleviating allergic
diseases. A comparative study has demonstrated that
neohesperidin dihydrochalcone (NHDC), an artificially
structurally modified flavonoid, exhibits superior efficacy in
mitigating ovalbumin-induced food allergy in mice compared to
its precursor compound, neohesperidin (NH). NHDC is more
effective in restoring Th1/Th2 immune homeostasis and
suppressing NOTCH/NF-kB signaling activation in the spleen.
Both compounds can positively regulate the gut microbiota by
enhancing the abundance of probiotic bacteria such as
Lactobacillus, therefore ameliorating allergic symptoms. These
findings underscore the potential of structural modifications to
significantly enhance the anti-allergic properties of flavonoids (322).

5 Strategies to enhance the
bioavailability of flavonoids

Although the immunoregulatory and anti-inflammatory
properties of flavonoids have been demonstrated through in vitro
and in vivo experiments as well as clinical studies, their therapeutic
potential is constrained by low bioavailability. A major contributing
factor is the low water solubility and limited membrane
permeability exhibited by many flavonoids, which result in
minimal gastrointestinal absorption (323). Fortunately, emerging
technologies offer strategies to overcome these pharmacokinetic
barriers, improving the clinical prospects of flavonoid therapies.

5.1 Nanotechnology

Studies have shown that nanotechnology and nanomaterials
have successfully enhanced the water solubility and absorption of
flavonoids. A notable example is naringenin, a hydrophobic
flavonoid with limited aqueous solubility and stability.
Electrospun pullulan nanofibers have been shown to rapidly
disintegrate in artificial saliva and completely dissolve in water.
When loaded with naringenin and sulfobutylether-f-cyclodextrin,
these nanofibers significantly improve the aqueous solubility of
naringenin, thereby enhancing its potential for oral absorption
(324). The porous structure and plasticity exhibited by
nanomaterials facilitate precise modulation of drug release
profiles, enabling sustained, targeted, and stimuli-responsive
delivery in therapeutic settings. Specially designed nanomaterials
can effectively encapsulate poorly water-soluble drugs and regulate
their release rate. In a mouse model of osteoarthritis, MXene-
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quercetin demonstrated superior effects in protective cartilage
compared to free quercetin, highlighting the therapeutic
advantages of nanodelivery systems (325). Topical drug delivery
relies on passive diffusion, and prolonged drug retention helps
improve efficacy. Nanocrystals can improve drug solubility and skin
adhesion. Rutin nanocrystal gel exhibits more than 3 times higher
permeability than conventional rutin gel, highlighting the
substantial improvement enabled by nanotechnology (326).
Nanomaterials can also help change the gastrointestinal
absorption pathways of flavonoids. Lipid—based nanoparticles can
encapsulate flavonoids and promote their integration into
chylomicrons in the intestinal tract. These chylomicrons are then
transported to the lymphatic vessels rather than the portal vein,
thereby avoiding first—pass hepatic metabolism. This route helps
increase systemic exposure and enhances the oral bioavailability of
flavonoids (327).

5.2 Liposome delivery

Phospholipids possess both hydrophilic and hydrophobic
domains, enabling them to effectively encapsulate poorly water-
soluble flavonoids. Moreover, the phospholipid bilayer membrane
of liposomes exhibits high biocompatibility and membrane fluidity,
making them helping to promote biological permeability and
nutrient absorption. At equivalent dosing, liposomal hesperidin
demonstrates superior therapeutic efficacy compared with the
unformulated compound (328).

5.3 Chemical modification

Chemical modification can significantly improve the water
solubility and stability of drugs, thereby improving their
bioavailability. Glycosylation and methylation modification of
flavonoids have emerged as promising strategies to overcome
pharmacokinetic limitations. Rutin has exhibited diverse
pharmacological activities, but its clinical utility is constrained by
poor water solubility and low bioavailability. These limitations can
be improved through glycosylation modification. In animal studies,
glycosylated rutin demonstrated stronger hepatoprotective effects
than the unmodified compound (329). Fisetin also faces challenges,
including insufficient stability, low oral bioavailability, and poor
absorption. Biocatalytic methylation using engineered
methyltransferases enables efficient modification of fisetin, leading
to improved solubility, chemical stability, and lipophilicity, thereby
enhancing its development and application (330).

5.4 Adding cosolvents

The addition of cosolvents is one of the most effective strategies
to promote the solubility of non-polar drug molecules. Cosolvents
such as ethanol and propylene glycol can efficiently extract
flavonoids from foods, fruits, or herbs and enhance the solubility
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of flavonoids in the digestive system, thereby increasing their
bioavailability. Flavonoids dissolved in ethanol can be easily
formulated into oral or injectable preparations, facilitating the
realization of their therapeutic potential (331).

6 Discussion

This review provides a comprehensive overview of the
regulatory effects of flavonoids on immune cell functions and
their strategic applications in the management of inflammatory
disorders (Figures 1 and 2). Studies have indicated that flavonoids
regulate immune cell functioning through multi-target and multi-
pathway mechanisms, exhibiting broad anti-inflammatory and
immunomodulatory properties across various inflammatory
conditions. Structurally, the C6-C3-C6 backbone serves as the
fundamental scaffold for the biological activities of flavonoids,
while different subclasses, including flavones, flavonols,
flavanones, and isoflavones, exhibit distinct functional
characteristics due to variations in their molecular structures.

With respect to immune regulation, flavonoids exhibit
substantial regulatory effects on both innate immune cells
(macrophages, neutrophils, and dendritic cells) and adaptive
immune cells (T cells and B cells), highlighting their therapeutic
relevance in immune-mediated inflammatory diseases. In intestinal
inflammatory diseases, they contribute to the reduction of gut
inflammation by preserving intestinal barrier integrity and
modulating gut microbiota composition. In RA, they suppress
synovial inflammation and prevent bone erosion. In metabolic
diseases, they improve insulin sensitivity and mitigate adipose
tissue inflammation, thereby alleviating metabolic dysregulation.
However, their in vivo efficacy is often constrained by their low
bioavailability, influenced by physicochemical characteristics,
intestinal absorption, hepatic metabolism, gut microbiota
composition, etc. To overcome the challenge of limited
bioavailability, emerging strategies such as nanodelivery systems,
structural modifications, and prodrug formulations are being
actively investigated to enhance the pharmacokinetic properties
and clinical utility. Future studies could focus on optimizing the
molecular structure of flavonoids, which may yield structurally
modified derivatives with enhanced pharmacological potency. For
inflammatory diseases such as pulmonary disorders, developing
inhalable formulations may achieve higher drug concentrations at
target sites. Furthermore, novel drug delivery systems, such as pH-
responsive carriers and yeast encapsulation, offer promising
strategies to enhance the permeability and intestinal absorption
of flavonoids.

Despite considerable advancements in the investigation of the
immunomodulatory properties of flavonoids, notable limitations
persist in the current research. Firstly, the majority of studies have
been conducted using in vitro cell models or animal models, with a
lack of clinical investigations, particularly high-quality RCTs. As
flavonoids are natural compounds, they face significant challenges
in securing patent protection, which in turn discourages
commercial investment and limits the feasibility of conducting
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FIGURE 1

Flavonoids’ regulatory effects on key immune cells. Flavonoids can regulate immune cells including macrophages, dendritic cells, neutrophils, T cells,
and B cells: inhibiting the polarization of macrophages toward the pro-inflammatory M1 phenotype and facilitating their conversion to the anti-
inflammatory M2 type; reducing neutrophil activation and NET formation; modulating dendritic cell maturation and antigen presentation; influencing
T cell differentiation, particularly by modulating Th17/Treg balance; and suppressing B cell activation and autoantibody production.

large-scale RCTs. Existing clinical studies often suffer from single-
center experiments, small sample sizes, short follow-up durations,
and the absence of standardized endpoint measures, which
challenge comparative analyses across studies and the
establishment of conclusive evidence. Dietary prevalence of
flavonoids may introduce confounding factors and compromise
the internal validity of clinical studies. These limitations collectively
undermine the robustness of current clinical evidence. Future
clinical research on flavonoids should prioritize larger sample
sizes, longer follow-up durations, and multi-center study designs
to enhance statistical power and generalizability. Moreover,
investigating the differential therapeutic responses to flavonoids
across diverse racial and population groups warrants further
exploration to support personalized treatment.

Secondly, the deficiencies in the research approach should not
be ignored. The concentrations of flavonoids employed in in vitro
research sometimes exceed those attainable in vivo. Moreover,
variations in dosing regimens, administration routes, and animal
models across studies contribute to inconsistencies and limit the
comparability of findings. For example, in quercetin treatment for
RA in mice, Shen et al. (332) administered quercetin orally using
normal saline containing 0.5% sodium carboxymethyl cellulose as
solvent, with a maximum concentration of 100 mg/kg/day. While
Yuan et al. (194) used intraperitoneal injection of a quercetin
solution without reporting solvent, concentration, or dosage used.
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Most flavonoids exhibit poor water solubility, necessitating the use
of cosolvents and solvents in experimental settings. However, the
choice of such cosolvents and solvents can significantly influence
the effective bioavailable concentration of the compound, thereby
affecting pharmacokinetic and pharmacodynamic outcomes.
Therefore, we recommend that studies involving flavonoids
clearly report details of the administration protocol, including the
compound concentration, the specific cosolvent and solvent used,
the fasting status of experimental subjects, as well as the dosing
frequency and route of administration. For studies employing
multi-component formulations, the concentrations of individual
flavonoids within the mixture should also be explicitly specified.
Standardized reporting would enhance the reproducibility and
facilitate robust meta-analyses to evaluate the therapeutic efficacy
of flavonoids. Furthermore, in vitro studies that aim to simulate oral
drug exposure should verify whether the applied flavonoid
concentrations are achievable through in vivo metabolism
following oral intake.

Third, the investigation of molecular processes remains
insufficient. While numerous signaling pathways regulated by
flavonoids have been identified, investigations into broader
regulatory networks, such as epigenetic regulation and immune
metabolic reprogramming, are still in their infancy. Future research
could focus on investigating the crosstalk among signaling
pathways modulated by flavonoids, which would significantly
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Flavonoids’ therapeutic applications in inflammatory diseases. Flavonoids show their therapeutic potential in inflammatory diseases, including
inflammatory bowel disease, rheumatoid arthritis, metabolic inflammatory disorders, neuroinflammation and neurodegenerative diseases, respiratory

tract infections and related lung diseases, asthma and allergic diseases.

enhance our understanding of their complex regulatory
mechanisms. The potential of flavonoids as modulators of
epigenetic regulators, such as TET2, is also worth investigating.
Moreover, there is a lack of comprehensive pharmacokinetics and
safety data for flavonoids. The absence of standardized analytical
methodologies has led to considerable variability in reported
bioavailability values across studies. Long-term safety evaluations
of flavonoid supplementation remain insufficient, particularly for
vulnerable populations such as pregnant women, children, and the
elderly. Moreover, research on potential interactions between
flavonoids and conventional pharmaceuticals is limited, further
contributing to uncertainties regarding their clinical application.
The potential for flavonoids to enhance metabolic effects through
combination therapy with established pharmacological agents, such
as statins, ACEI/ARB, and SGLT2/GLP-1 receptor agonists,
warrants systematic investigation. Exploring synergistic
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interactions between flavonoids and these drug classes could
reveal novel therapeutic strategies with improved efficacy.

Mechanistically, flavonoids act by concurrently modulating
multiple interconnected signaling pathways, reshaping the immune
network in a mild yet sustained manner rather than strongly
suppressing a single pathway. This characteristic renders flavonoids
particularly suitable as immunomodulatory agents for chronic
inflammatory disorders, especially for long-term maintenance
therapy during the early or remission phases of the disease. Future
research should conceptualize flavonoids as “multi-target network
regulators” rather than conventional single-target drugs and prioritize
investigations into their complex mechanisms. As a broad-spectrum
and multi-target therapeutic agent, flavonoids require more
comprehensive and rigorous evaluation of their anti-inflammatory
effects to prevent the risk of excessive immunosuppression, which may
lead to increased susceptibility to infections and malignancies.
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7 Conclusion

Flavonoids have demonstrated broad immunoregulatory and
anti-inflammatory effects in both innate and adaptive immune cells,
with evidence supporting therapeutic potential in RA, intestinal
inflammatory diseases, metabolic disorders, CVD, respiratory
diseases, etc. Their multi-target, network-based mechanisms
appear to contribute to sustained immune regulation, indicating
potential suitability for long-term management of chronic
inflammatory diseases. However, key translational challenges
remain, including poor bioavailability, methodological
inconsistencies, and a scarcity of high-quality clinical evidence.
To better understand the clinical utility of flavonoids and assess
their potential as adjunctive therapies, the following areas need to be
further investigated: structural optimization, drug targeting, and
inhalation delivery systems, standardized research reporting, and
multi-omics data integration, along with rigorous multicenter
clinical trials and comprehensive safety evaluations.
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