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Inflammatory responses represent a core pathological process driving the

progression of both acute and chronic kidney diseases. As a key effector of the

innate immune system, the NLRP3 inflammasome is widely activated in renal

resident cellsand infiltrating immune cells, positioning it as a critical nexus linking

metabolic dysregulation, cellular stress, and tissue injury. Accumulating

preclinical and clinical evidence in recent years demonstrates that aberrant

activation of the NLRP3 inflammasome directly promotes glomerular damage,

tubulointerstitial inflammation, fibrosis, and vascular dysfunction through the

release of IL-1b and IL-18 and the induction of pyroptosis, thereby contributing

to the pathogenesis of diverse renal disorders including acute kidney injury (AKI),

diabetic kidney disease (DKD), IgA nephropathy, lupus nephritis, and chronic

renal fibrosis. This review systematically delineates the multilayered regulatory

mechanisms of the NLRP3 inflammasome within the renal microenvironment—

including upstream activating signals, downstream effector pathways, and

crosstalk with autophagy, mitochondrial dynamics, and epigenetic regulation.

We particularly focus on how disease-specific triggers in kidney pathologies such

as hyperglycemia, uric acid, lipotoxicity, and ischemia reperfusion

instrumentalize NLRP3 to drive irreversible renal injury. Critically, we provide a

comprehensive evaluation of current advances in the development of small-

molecule inhibitors targeting the NLRP3 inflammasome pathway, encompassing

preclinical and clinical trial data for agents that directly modulate NLRP3 protein

conformation, inhibit ASC oligomerization, block caspase-1 activity, or neutralize

IL-1b. We further dissect the differential therapeutic efficacy, tissue selectivity,

safety margins, and emerging resistance mechanisms of these inhibitors across

distinct renal disease models, while highlighting key translational challenges—

including the lack of validated biomarkers, difficulties in patient stratification, and

inefficient renal-targeted drug delivery. This review aims to establish a systematic
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theoretical framework for mechanistic research into renal inflammatory diseases

and to provide a target rationale and a clinical development roadmap for the

design of next-generation precision anti-inflammatory therapies, thereby

accelerating the translation of NLRP3-targeted interventions from bench to

bedside for patients with kidney disease.
KEYWORDS

NLRP3 inflammasome, kidney disease pathogenesis, small-molecule inhibitors,
pyroptosis, therapeutic targeting
GRAPHICAL ABSTRACT

NLRP3 inflammasome and kidney diseases
1 Introduction

The incidence of kidney disease has been increasing year by year,

especially chronic kidney disease (CKD), which has now become one

of the major diseases threatening global public health. It is estimated

that there are 850 million kidney disease patients worldwide (based

on the current global population of approximately 7.2 billion, nearly 1
02
in 10 people are affected), with CKD causing approximately 2.4

million deaths annually. According to data from China, the

prevalence of CKD among adults is 10.8%, with an estimated 120

million CKD patients across all age groups (1). Current research has

found that the basic causes of CKD are numerous, including primary

and secondary glomerulonephritis, DKD, hypertensive nephropathy,

tubulointerstitial diseases, genetic diseases, and more (2). Pathological
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studies have shown that programmed cell death (apoptosis) plays a

major role in AKI and its progression to CKD. This programmed cell

death is a major pathological mechanism leading to renal unit loss

and acute tubular necrosis (3). Relevant studies indicate that the levels

of inflammatory markers are positively correlated with the

occurrence and progression of CKD (4). Although many patients

may not exhibit obvious clinical signs of inflammation, inflammatory

factors can bind to damaged renal tissue cells and deposit in the

kidney tissue, leading to excessive deposition of the extracellular

matrix in the injured renal cells, thus promoting fibrosis progression

(5). The presence of chronic low-grade inflammation in CKD

patients is a reliable indicator of CKD prognosis and an

independent risk factor affecting disease progression (6). The

inflammatory response is a stress reaction that occurs when the

body is exposed to external threats or environmental stresses. It has

dual regulatory functions: on one hand, it can eliminate damaged or

dead cells within the body, maintaining the body’s health; on the

other hand, spontaneous inflammation and long-term chronic

inflammation in the body can exacerbate the condition and lead to

a series of complications (7, 8). Helicobacter pylori causing long-term

gastric mucosal inflammation can lead to the development of gastric

cancer (9). Long-term, chronic sterile inflammation in the synovial

tissue of rheumatoid arthritis can lead to joint inflammation, pain,

and even deformity. The novel coronavirus (SARS-CoV-2) can

trigger the release of inflammatory factors in the body, leading to a

cytokine storm, which causes multiorgan failure and death in patients

(10). The inflammatory response is induced by various

inflammasomes, and NLRP3 is a key regulatory protein. A

comprehensive understanding of the role and regulatory

mechanisms of NLRP3 in signaling pathways is of significant

research guidance significance for disease prevention and drug

discovery (11, 12). NLRP3 can be divided into three parts based on

the protein’s structure and function: PYD, NACHT, and LRR. The

PYD region located at the N-terminus can bind with the PYD

structural domain of other proteins, forming a PYD–PYD complex

to activate downstream reactions, playing a role in recruiting and

linking. For example, binding with the C-terminal PYD region of

ASC forms the NLRP3–ASC complex (13). The NACHT domain

binds to ATP, hydrolyzing it into adenosine diphosphate (ADP) to

release energy, which plays an important regulatory role in

downstream proteins of NLRP3. The LRR region is rich in highly

conserved leucine-rich repeat sequences and has a positive charge.

Upon activation, it can form a NEK7–NLRP3 complex with NIMA-

related kinase 7 (NEK7) through ion interactions and can be easily

modified by ubiquitination, leading to self-inhibition of NLRP3 (11,

14) (Figure 1). Current research (15–17) shows that inflammation

responses play a role in kidney diseases caused by various reasons.

Inflammatory responses, mediated by inflammasomes as a central

factor in sterile inflammatory reactions, contribute significantly to the

progression of kidney diseases through pyroptosis. Therefore,

interventions targeting inflammation based on the characteristics of

pyroptosis are likely to offer excellent therapeutic effects in the

prevention and treatment of various kidney diseases, bringing new

targets to clinical diagnosis and treatment.
Frontiers in Immunology 03
2 Regulation and inhibition of the
classical activation pathway of NLRP3

2.1 Regulation mechanism of the NLRP3
classical signaling pathway

In resting phagocytes, NLRP3 is present at low levels and

predominantly exists in a ubiquitinated, inactive, yet stable state

(18). Canonical activation of the NLRP3 inflammasome requires

two sequential signals. The priming signal is typically initiated by

pathogen- or damage-associated molecular patterns—such as

lipopolysaccharide (LPS)—which engage Toll-like receptor 4

(TLR4) to form a (TLR4/MD-2/LPS)2 hexameric complex with

myeloid differentiation factor 2 (MD-2) (19). This activates the

MyD88-dependent pathway involving IL-1 receptor-associated

kinase 1 (IRAK1) and TNF receptor-associated factor 6 (TRAF6),

ultimately promoting nuclear translocation of NF-kB and

upregulating NLRP3 and pro-IL-1b expression. The second

activation signal is provided by a diverse array of structurally

unrelated stimuli—including viral RNA, fungal hyphae,

extracellular ATP, hyaluronic acid, reactive oxygen species (ROS),

uric acid crystals, b-amyloid proteins, and perturbations in

transmembrane ion flux—many of which drive sterile

inflammation relevant to kidney injury (19).

Upon stimulation, these triggers induce disintegration of the

trans-Golgi network (TGN), generating dispersed vesicle-like

structures termed disrupted TGN (dTGN). Phosphatidylinositol-

4-phosphate (PtdIns4P), a negatively charged phospholipid

enriched on dTGN membranes, recruits cytosolic NLRP3 via

electrostatic interaction with its leucine-rich repeat (LRR)

domain, facilitating its oligomerization (20). Following

recruitment, NLRP3 undergoes activating posttranslational

modifications such as deubiquitination and acetylation, whereas

phosphorylation can suppress its activity. Notably, SIRT2

deacetylates NLRP3 and thereby inhibits assembly of the NLRP3/

ASC/caspase-1 complex, exerting anti-inflammatory effects. The

decline in SIRT2 content and activity with aging contributes

significantly to immune dysregulation and the increased

susceptibility to inflammatory diseases in the elderly (21).

Activated NLRP3 binds the C-terminus of NEK7 via its LRR

domain to form the NLRP3–NEK7 complex, which nucleates the

adaptor protein ASC through homotypic PYD–PYD interactions.

ASC then recruits procaspase-1 via CARD–CARD binding, enabling

its autocatalytic cleavage into active caspase-1. The resulting NLRP3

inflammasome complex cleaves pro-IL-1b and pro-IL-18 into their

mature, bioactive forms for extracellular release and also cleaves

gasdermin D (GSDMD). The N-terminal fragment of GSDMD forms

plasma membrane pores that facilitate cytokine secretion and execute

pyroptotic cell death (17). This cascade is tightly counterbalanced by

endogenous inhibitors: PYD-only proteins (POPs), including POP1,

POP2, and POP4, and CARD-only proteins (COPs), such as INCA,

Iceberg, and caspase-12, which competitively disrupt PYD or CARD

interactions, thereby preventing inflammasome assembly and

limiting excessive inflammation (22).
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2.2 Inhibition of NLRP3 activation at the
transcriptional stage

Receptors on the outer membrane of phagocytic cells receiving

stimulation from activating factors and NF-kB translocating into

the nucleus to upregulate the expression of inflammatory proteins

are key steps in the transcriptional activation of NLRP3. Z20 targets

and binds to TLR4/MD-2, inhibiting the secretion of inflammatory

factors and inflammatory responses, thereby effectively reducing

organ damage induced by LPS and improving the survival rate of

septic mouse models (23). T5342126 is a novel small-molecule

TLR4 inhibitor that targets and binds to TLR4, preventing the

formation of the TLR4–MD-2 complex, inhibiting TLR4 activity,

and effectively enhancing the analgesic effect of morphine (19).

Curcumin binds to the hydrophobic pocket of the MD-2 molecule,

obstructing the formation of the TLR4/MD-2 complex and

downregulating the activation of NF-kB (24). E5564 can inhibit

the TLR4/NF-kB signaling pathway, reduce the activation of the

NF-kB signaling pathway in macrophages caused by needle-like

uric acid crystals in gout patients, and produce an effective anti-

inflammatory effect (25). miR-233 can inhibit the activation of NF-

kB by directly targeting the gene sequence of IRAK1, thereby

producing an anti-inflammatory effect (26). The deubiquitinating

enzyme A20 can recruit TNFR1 and cleave the Lys-63-linked

polyubiquitin chains on it, leading to its deubiquitination and

inactivation, thereby inhibiting the activation of NF-kB (27).

BAY-117082 selectively and irreversibly inhibits IKK activity and

exhibits significant anti-inflammatory activity in a mouse model of

arrhythmogenic cardiomyopathy. Bortezomib can inhibit the

ubiquitination of IkB subunits, downregulate NF-kB activity,
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reduce tumor volume in lung adenocarcinoma mice, and clinical

studies have confirmed a significant improvement in survival rates

for multiple myeloma patients treated with bortezomib (28).
2.3 Inhibition of NLRP3/ASC/caspase-1
complex formation

The formation of the NLRP3/ASC/caspase-1 complex can be

inhibited by competitive binding using POPs and COPs, as well as

by preventing protein deubiquitination, phosphorylation, and other

activating actions to suppress complex formation and achieve anti-

inflammatory effects. VX-765 and Ac-YVAD-cmk are both selective

inhibitors of caspase-1. Experimental evidence has shown that VX-

765 can significantly inhibit polyphyllin VI-induced activation of

NLRP3 inflammasomes and cell death (29). Ac-YVAD-cmk can

improve cognitive function in stroke mice through this pathway

and restore hippocampal volume (30). b-AP15 targets the DUBs

UCH37 and USP14 subtypes, inhibiting LPS-induced IL-1b
secretion, reducing cell death caused by nigericin. Similarly,

WP1130 targets four DUBs subtypes and exhibits activity similar

to b-AP15. Research suggests that they can also inhibit the caspase-

1 pathway by preventing the cleavage of the p10 subunit of caspase-

1, thereby hindering complex formation (31). Bile acid receptor

(TGR5) agonists such as betulinic acid, INT-777, and LCA can

activate the PKA kinase by upregulating the TGR5/cAMP/PKA

pathway. This introduction of a phosphate group at this juncture

deactivates NLRP3, thereby exerting an anti-inflammatory effect

(32). MCC950 has been experimentally proven through drug

affinity, target stability, and other tests. It targets a small segment
FIGURE 1

Structural details of the activated NLRP3 inflammasome disk. NLRP3 molecules are colored by domain. (a) Ribbon diagram of the activated NLRP3
inflammasome disk viewed from the top (PDB: 8EJ4). (b) Surface representation of the activated NLRP3 inflammasome disk viewed from the bottom
and side, with the nucleating PYD–PYD filament formed by NLRP3 PYD (dark green) and ASC PYD (light purple) at the center of the disk (PDB: 8EJ4).
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on the NACHT domain of the NLRP3 protein, known as the

Walker B region, inducing a conformational change that inhibits

NLRP3 activity. It exhibits significant inhibitory effects on

inflammation triggered by LPS, Mycobacterium tuberculosis, and

other pathogens (33).
3 Other regulatory pathways of NLRP3

3.1 Regulation of the non-classical
activation pathway of NLRP3

As shown in region C of Figure 2, the three proteins Caspase-4, 5,

and 11 can be activated by intracellular bacterial endotoxins, leading to

the release of IL-1b and IL-18 by the NLRP3/ASC/caspase-1 complex.

Additionally, these three proteins can directly act on GSDMD (34),
Frontiers in Immunology 05
producing effects similar to the classical activation pathway. Emricasan

has been shown to inhibit liver inflammation and fibrosis, effectively

alleviating alcohol-induced cirrhosis (35).
3.2 The effect and inhibition of
transmembrane ion flux on NLRP3

Experimental data comparing the content of intracellular

protein complexes indicate that K+ efflux can drive the

aggregation of NLRP3, whereas Cl− efflux promotes the

aggregation of ASC (36). As shown in region D of Figure 2,

inhibiting ion flux can play a suppressive role in the activation of

NLRP3. Some NLRP3 activators like imiquimod and CL097 activate

NLRP3 by inducing K+ efflux (37). NPBB is a Cl− channel blocker

that can maintain low levels of intracellular Cl−, thereby inhibiting
FIGURE 2

Canonical activation of NLRP3 proceeds via a two-step pathway. Step 1: Signal 1 (also termed “priming”), acts through cell surface receptors such as
TNF-R, TLR, or IL-1R. This pathway induces priming at both the transcriptional level (NLRP3 itself or, more prominently, precursor forms of IL-1
family cytokines) and the posttranslational level (NLRP3 and other pathway components). This includes removal and addition of modifications that
place NLRP3 into a primed or “armed” state. Subsequently, signal 2 can trigger NLRP3 activation. This may involve multiple agonists, many of which
act by inducing intracellular potassium efflux. These potassium-dependent agonists include pore-forming toxins (e.g., nigericin or LukAB), amyloid
proteins, ion channels, and lysosome-disrupting agents. Additionally, potassium-independent agonists exist, which appear to act via mitochondria
and/or mitochondria-derived activators, such as oxidized mitochondrial DNA or cardiolipin. Through currently unknown molecular steps, both
potassium-dependent and potassium-independent stimuli converge on NLRP3 and promote its activation, involving conformational changes that
enable initial binding to ASC and subsequently to caspase-1. This may occur via one of two parallel pathways and may involve the adaptor protein
NEK7. Within the fully assembled inflammasome, caspase-1 processes IL-1 family cytokines as well as other substrates such as GSDMD. Particularly
in its cleaved form, GSDMD forms pores that facilitate the release of IL-1 and other alarmins but also lead to cell death in the form of pyroptosis.
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the activation of NLRP3; the antiplatelet drug ticagrelor acts on Cl−

channels by inducing the degradation of channel proteins and

inhibiting the membrane localization of chloride channel proteins

to inhibit Cl− efflux achieving the effect of inhibiting the activation

of NLRP3 (38).
3.3 The effect and inhibition of
endoplasmic reticulum-related proteins on
NLRP3

SREBP2 and SCAP, located on the endoplasmic reticulum, form

an NLRP3/SREBP2/SCAP ternary complex that “transports”

NLRP3 from the endoplasmic reticulum to the Golgi membrane,

optimizing the assembly process of the inflammasome. The

nitrofuran group of ESI targets the endoplasmic reticulum,

disrupting its homeostasis. By influencing the synthesis of

caspase-1 and reducing the secretion of IL-1b, an anticancer effect

similar to bortezomib is generated (31). Terbutaline, fatostatin, and

25-HC can inhibit the SREBP2/SCAP pathway on the endoplasmic

reticulum at the cellular level and in mouse experiments, affecting

the assembly of NLRP3 and inhibiting the inflammatory response

induced by LPS (39).
3.4 The effect and inhibition of
mitochondria and related proteins on
NLRP3

In the resting state, NLRP3 is located in the endoplasmic

reticulum, whereas ASC is dispersed in the cytoplasm. As shown

in area D of Figure 2, upon external stimulation, the MAVS protein

located on the mitochondrial membrane interacts with the N-

terminus of NLRP3, recruiting NLRP3 and ASC together,

facilitating their activation. MAVS is an important protein for

NLRP3 activation. Knocking out the MAVS gene in mice

significantly inhibits the increase in IL-1b levels induced by LPS.

MicroRNA-33/33* is an important regulatory factor for cholesterol

homeostasis, which can silence AMPK posttranscriptionally,

disrupt mitochondrial homeostasis, reduce MAVS activity, and

hinder its recruitment of NLRP3 and ASC (40). Moreover,

mitochondrial damage leads to the release of ROS, activating the

NLRP3 inflammasome. Mitochondrial autophagy can suppress the

activation of the inflammasome. Choline kinase (ChoK) inhibitors

can promote mitochondrial autophagy by halting choline intake.

After treatment with RSM932A, LPS-induced macrophages exhibit

significant suppression of inflammatory effects, effectively

alleviating symptoms in Muckle–Well syndrome in mice (41).
3.5 The effect and inhibition of
inflammatory cytokines on NLRP3

Inflammatory cytokines are endogenous substances secreted

into the extracellular space by immune cells upon activation,
Frontiers in Immunology 06
which can exert activating or inhibitory effects on surrounding

other immune cells. Canakinumab is a fully human monoclonal

IgG1/k antibody used to treat various IL-1-mediated inflammatory

diseases. It selectively binds to free IL-1b, blocking its interaction

with IL-1R, thereby inhibiting IL-1b activity. In clinical trials across

various disease models, canakinumab has demonstrated significant

anti-inflammatory effects in conditions such as cryopyrin-

associated periodic syndromes (CAPS), systemic juvenile

idiopathic arthritis (sJIA), and tumor necrosis factor receptor-

associated periodic syndrome (TRAPS) (42).

TNF-amonoclonal antibodies such as etanercept, adalimumab,

and infliximab can bind to free extracellular TNF-a, inhibiting the
activation of NLRP3. Clinical evidence has shown significant

therapeutic effects of adalimumab in immune-mediated chronic

diseases like psoriasis and Crohn’s disease (43). IL-10 targets to

reduce the translation expression of NLRP3, demonstrating a

significant inhibitory effect on inflammation. However, IL-10 has

a short half-life in vivo and is prone to inactivation. A PEGylated IL-

10 inhibitor, pegilodecakin, extends the stimulation time of IL-10

receptors, exerting a significant anti-inflammatory effect. Clinical

trials evaluating the safety and effectiveness of combination therapy

with anti-PD-1 monoclonal antibody inhibitors are currently

underway (44).

In summary, the activation factors of NLRP3 are diverse, and

this pathway is closely associated with the occurrence and

progression of many challenging diseases. Exploring novel NLRP3

inhibitors holds great promise for a wide range of applications.

Inhibiting the activity of NLRP3 inflammasomes can significantly

alleviate AKI and septic myocarditis damage (45, 46). In recent

years, research on the regulatory mechanisms of the NLRP3

inflammasome has become a frontier hotspot. The small-molecule

inhibitor MCC950 has been shown to directly inhibit the activity of

NLRP3, attracting significant attention. A deep understanding of

the physiological and pathological processes of inflammation, along

with the exploration of new targets and highly selective inhibitors

based on its activation pathways, can provide a fresh approach to

treating major inflammatory-related diseases. The detailed

pathways of NLRP3 activation are illustrated in Figures 2, 3 below.
3.6 The mechanism of NLRP3
inflammasome activation in the kidneys

NF-kB/NLRP3 is one of the important pathways for NLRP3

inflammasome activation. ROS-induced NLRP3 inflammasome

activation promotes the formation of calcium oxalate kidney

stones (47). Research has shown that inhibiting the NLRP3

inflammasome in diabetic nephropathy improves podocyte injury

by suppressing lipid accumulation (48). The potential renal

protective effect of resveratrol in a rat model of gouty

nephropathy may involve inhibiting the NF-kB signaling

pathway, subsequently suppressing NLRP3 activation to block the

recruitment of Caspase-1 for IL-1b and IL-18, reducing their

secretion, inhibiting the occurrence of pyroptosis, a type of

programmed cell death in renal cells’ initial stages, thus
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potentially reversing the inflammatory damage in the kidney tissue

of rats with gouty nephropathy. Research suggests that the potential

renal protective effect of resveratrol in a rat model of gouty

nephropathy may involve inhibiting the NF-kB signaling

pathway, subsequently suppressing NLRP3 activation to block the
Frontiers in Immunology 07
recruitment of caspase-1 for IL-1b and IL-18, reducing their

secretion, inhibiting the initiation of programmed cell death in

renal cells, particularly the occurrence of pyroptosis at the initial

stage, thus reversing the inflammatory damage in the kidney tissue

of rats with gouty nephropathy (49). Epimedium glycoside and
FIGURE 3

Key steps of pyroptosis mediated by gasdermin (GSDM) family proteins, organized into two major pathways: pathway 1—inflammasome-dependent
GSDM activation and pyroptosis; inflammasome activation—stimuli trigger the assembly and activation of inflammasomes. GSDM cleavage: Activated
inflammasomes recruit and activate inflammatory caspases (or other proteases), which cleave gasdermin (GSDM) into its C-terminal (GSDM-CT) and
N-terminal (GSDM-NT) domains. Mitochondrial damage and pore formation: GSDM-NT translocates to the plasma membrane. Concurrently,
reactive oxygen species (ROS) induce mitochondrial damage, further promoting GSDM-NT–mediated pore (GSDM pore) formation in the plasma
membrane. Pyroptotic cell death: Pore formation disrupts osmotic balance, leading to cellular swelling, release of intracellular contents, and
ultimately pyroptosis. Pathway 2: Protease-dependent GSDM activation and ESCRT-mediated pore repair–associated pyroptosis; GSDM cleavage:
specific proteases directly cleave gasdermin (GSDM), generating GSDM-CT and GSDM-NT. Pore formation and Ca²+ influx: GSDM-NT forms pores in
the plasma membrane, triggering Ca²+ influx. ESCRT-mediated pore repair and shedding: The influx of Ca²+ recruits the ESCRT (endosomal sorting
complex required for transport) machinery, which attempts to repair the pores. During this repair process, pore-containing membrane regions are
shed (“shedding”), yet pyroptosis still ensues. In summary, this figure comprehensively depicts the core mechanisms of pyroptosis involving GSDM
cleavage, pore formation, and ESCRT complex–mediated modulation, highlighting the central paradigm of pyroptosis: “pore formation →

(attempted repair) → cell death”.
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magnolol may alleviate kidney damage in patients with lupus

nephritis (LN) by modulating the NF-kB/NLRP3 pathway (50,

51). Research has shown that the purinergic receptor P2X7 plays

a significant role in the activation of the NLRP3 inflammasome

(52). In the lupus nephritis mouse model, the study found a

significant increase in inflammatory molecules in the P2X7/

NLRP3 signaling pathway. Inhibiting P2X7 can suppress the

assembly of NLRP3–ASC–caspase-1, indicating the crucial role of

the NLRP3 inflammasome in LN. A recent study found that P2X4

in an ischemia–reperfusion (I/R)-induced AKI mouse model

triggers kidney inflammation and renal cell apoptosis by

activating the NLRP3 inflammasome (53). Conversely, P2X4

deficiency can prevent ischemic AKI, reduce renal tubular

necrosis, alleviate renal cell apoptosis, and decrease neutrophil

infiltration in the kidney. High glucose, lipopolysaccharides, and

oxidative stress can promote the assembly and activation of the

NLRP3 inflammasome (54, 55). ROS-thioredoxin-interacting

protein (TXNIP) is another important molecule in the process of

NLRP3 inflammasome activation. Gao et al. and Wang et al. found

that in a high-glucose environment, TXNIP activates the reduced

form of nicotinamide adenine dinucleotide phosphate (NADPH)

oxidase, leading to NLRP3 inflammasome activation in podocytes,

subsequently causing podocyte damage (56, 57). Wen et al. found

that inhibiting mitochondrial ROS production can suppress the

colocalization of NLRP3 and TXNIP, as well as the activation of the

NLRP3 inflammasome. Additionally, TXNIP siRNA significantly

inhibited the activation of the NLRP3 inflammasome in a mouse

model of I/R injury. This study indicates that the mROS-TXNIP-

NLRP3 pathway is a key signaling cascade in I/R-induced AKI,

providing a new avenue for gene therapy targeting the NLRP3

inflammasome signaling pathway (58).
3.7 The mechanism of NLRP3 activation in
the kidney independent of inflammasome

Apart from the NLRP3 inflammasome, NLRP3 also exerts its

function independently of the inflammasome in the kidney. Wang

et al. reported that NLRP3, independent of the inflammasome,

directly promotes transforming growth factor-b (TGF-b) signaling
and R-Smad activation, thereby inducing epithelial–mesenchymal

transition (59). The fibrotic signals induced by TGF-b can be

attenuated in fibroblasts lacking NLRP3 (60). NLRP3 can also

form a complex with ASC and caspase-8 in mitochondria,

regulating cell apoptosis in kidney and intestinal epithelium (61).

During the apoptosis process, mitochondrial antiviral signaling

protein (MAVS) can associate with and activate caspase-8 in

mitochondria (62). Kim et al. found that under hypoxic

conditions, NLRP3 in renal tubular cells relocalized from the

cytoplasm to the mitochondria and interacted with MAVS (63).

The absence of NLRP3 or MAVS during hypoxia reduced

mitochondrial ROS production and mitochondrial membrane

depolarization, thereby protecting the kidney from injury.

Therefore, NLRP3 can act independently of the inflammasome,

and further research is needed to elucidate its mechanisms.
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4 Inflammasome and kidney diseases

4.1 Inflammasome and CKD

Inflammatory responses significantly promote the progression

of CKD by activating the NLRP3–ASC–caspase-1 axis to induce

and release inflammatory cytokines like IL-1b and IL-18, which

play pivotal roles in the onset and advancement of CKD (16).

Studies have revealed that the NLRP3 inflammasome signaling

pathway is present in myocytes and possesses biological activity.

Notably, the TLR4/NLRP3 inflammasome pathway contributes to

the promotion of skeletal muscle inflammation in patients with

CKD (64). Anti-inflammatory diets hold potential for the

prevention of CKD (65). NLRP3 is involved in the occurrence

and development of kidney disease, whether in glomerular cells,

tubular cells, interstitial cells, or infiltrating inflammatory cells (66).

In lupus model mice, activation of the NLRP3 inflammasome was

observed in podocytes, leading to renal tissue damage, podocyte

foot process disruption, and the manifestation of proteinuria (67).

In diabetic nephropathy mice, significant expression of NLRP3 and

caspase-1 is observed in glomerular endothelial cells and podocytes.

When NLRP3 or caspase-1 is knocked out in mice, there is a

significant reduction in urinary protein levels (68). Mice with

NLRP3 knockout exhibit a noticeable attenuation in foot cell

damage induced by elevated homocysteine and in the progression

of glomerulosclerosis (16). In an obese-related foot cell injury

mouse model, knocking out ASC results in a decrease in foot cell

NLRP3 inflammasome activation. This leads to a reduction in

urinary protein levels and a mitigation of glomerulosclerosis (69).

The NLRP3 inflammasome is involved in renal interstitial damage.

Ikeda et al. found a significant increase in the expression of NLRP3,

ASC, and caspase-1, along with increased secretion of mature IL-1b
in mice with renal tubulointerstitial injury induced by albumin

overload (70). This led to a pronounced exacerbation of renal

tubulointerstitial damage. In a unilateral ureteral obstruction

(UUO)-induced renal tubulointerstitial inflammation model,

NLRP3 knockout mice exhibit significantly reduced renal tubular

injury and interstitial fibrosis compared with wild-type mice (71).

In a mouse model of renal tubular injury induced by albumin

overload, the activation of the NLRP3/caspase-1/inflammatory

cytokine cascade was observed, leading to cell apoptosis and

phenotypic changes. Severe tubular structural damage and renal

tubular cell apoptosis were also evident (72). This indicates the

involvement of NLRP3 in renal tubular injury. Hyperuricemia is a

significant risk factor for cardiovascular and kidney diseases. When

human proximal tubular epithelial cells are stimulated with uric

acid in vitro, there is a marked increase in the expression of NLRP3

and the activation of IL-1b (73). Similarly, when human mesangial

cells are stimulated with high glucose in vitro, the expression of

NLRP3, caspase-1, and IL-1b increases in a time-dependent manner

(74). In addition to animal experiments and in vitro studies, the

NLRP3 inflammasome also plays a crucial role in the occurrence

and development of kidney diseases in humans. In human renal

biopsy tissues, including IgA nephropathy, lupus nephritis, minimal

change disease, hypertensive nephropathy, and secondary focal
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segmental glomerulosclerosis, significantly increased expression of

NLRP3 mRNA has been detected compared with normal tissues.

This elevated expression is positively correlated with kidney

function impairment, suggesting that NLRP3 may be involved in

the pathogenesis of CKD (71). The expression of NLRP3 has been

detected in podocytes of patients with lupus nephritis, along with an

increase in urine protein levels. This finding indicates a relationship

between the activation of NLRP3, podocyte damage, and the

formation of proteinuria (67). In patients with mesangial

proliferative glomerulonephritis, an increased expression and

secretion of NLRP3, caspase-1, IL-1b, and IL-18 have been

observed in the renal tubular epithelial cells. This is accompanied

by tubular epithelial cell degeneration, tubular atrophy,

inflammatory cell infiltration, and inflammatory cell expression of

the mentioned factors in the renal interstitium (75). Granata et al.

found increased gene expression of NLRP3 inflammasome

components and pro-inflammatory cytokines in peripheral blood

mononuclear cells of CKD patients undergoing hemodialysis (76).

The levels of caspase-1, IL-1b, and IL-18 were significantly higher

than those in the healthy control group. This suggests the

involvement of the NLRP3–ASC–caspase-1 axis in the occurrence

and progression of kidney disease. The study by Lichtnekert et al.

demonstrates that in a model of anti-glomerular basement

membrane crescentic glomerulonephritis, endogenous glomerular

cells cannot induce glomerulonephritis through the NLRP3–ASC–

caspase-1 axis. However, dendritic cells present in the renal

interstitium can activate this axis to secrete IL-1b, indicating that

this process is independent of the NLRP3 inflammasome and does

not rely on ASC-mediated caspase-1 activation (66). Another study

demonstrates that in a model of serum-induced nephrotoxic

nephritis, knockout mice lacking the NLRP3 and ASC genes

exhibit significantly reduced glomerular damage and related

inflammatory responses compared with the wild-type mice. In

ASC knockout mice, a decrease in the secretion of active IL-1b is

observed, whereas no changes are observed in NLRP3 knockout

mice. This indicates the involvement of another potential molecular

mechanism independent of the NLRP3 inflammasome. This may be

related to the release of high-mobility group protein 1 in an NLRP3-

mediated manner during glomerular nephritis (77), highlighting the

complexity of NLRP3’s role in kidney diseases.

4.1.1 Role and mechanism of the NLRP3
inflammasome in renal fibrosis

Renal fibrosis serves as a pivotal mechanism and shared

pathway in the progression of CKD, culminating in progressive

renal function decline and eventual end-stage renal failure (78).

Adenine diet and UUO activate the NLRP3 inflammasome through

ROS (79, 80). Recent reports further reveal NLRP3 inflammasome-

dependent NF-kB activation following subtotal nephrectomy (81).

The NLRP3 inflammasome drives renal fibrosis by activating T cells

via the IL-23/IL-17 axis (79). Notably, MCC950 administration

concurrent with adenine diet initiation attenuates renal fibrosis by

inhibiting NLRP3 inflammasome activation, whereas delayed

MCC950 treatment on day 7 of the diet fails to confer protection

(80), underscoring the therapeutic necessity of early intervention to
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suppress inflammation and fibrosis progression. Endothelial cells

(ECs) have also been implicated in renal fibrosis. In primary tubular

epithelial cells (TECs) isolated from mouse kidneys, TGF-b induces

NLRP3 upregulation. NLRP3 subsequently promotes TEC

epithelial-to-mesenchymal transition (EMT) through Smad2/3

phosphorylation, leading to myofibroblast (MF) differentiation

and elevated expression of a-smooth muscle actin (a-SMA) and

matrix metalloproteinase 9 (MMP9). Conversely, TGF-b treatment

of TECs from NLPR3−/− mice results in reduced Smad2/3

phosphorylation and diminished a-SMA/MMP9 expression,

confirming that NLRP3 facilitates TEC-driven renal fibrosis via

the TGF-b/Smad pathway (59). Emerging evidence highlights the

NLRP3 inflammasome as a central mediator of DKD progression.

Its activation in podocytes not only exacerbates glomerular

inflammation but also promotes advanced glomerulosclerosis,

establishing NLRP3 as a key inducer of renal fibrosis (82–84).

Podocytes are highly specialized glomerular epithelial cells that

are crucial for maintaining the integrity of the filtration barrier and

particularly susceptible to metabolic stress. Notably, the therapeutic

potential of targeting and inhibiting inflammasomes to regulate

podocyte metabolism can exert a favorable renoprotective effect

(85). In a multiple low-dose streptozotocin-induced diabetic mouse

model, genetic NLRP3 inhibition mitigates oxidative stress,

attenuates renal inflammation and fibrosis, and improves renal

function (81). Beyond pathogen- or endotoxin-derived stimuli,

mitochondrial ROS generation (86, 87) and lysosomal membrane

destabilization (88) are recognized as critical triggers of NLRP3

inflammasome activation. Recent studies further demonstrate that

PIPK3 modulates pyroptosis by stimulating NLRP3 inflammasome

signaling (89). Collectively, these findings emphasize the

therapeutic potential of targeting oxidative stress-mediated

pyroptosis to prevent DKD driven by inflammasome

hyperactivation. NLRP3 inflammasome-induced renal fibrosis is

detailed in Figure 4 below.

Extracellular calcium initiates signal transduction via the

calcium-sensing receptor, effectively activating the NLRP3

inflammasome and inducing renal fibrosis (90). Schmidt-Lauber

et al. also demonstrated that NLRP3 inflammasome activation

promotes IL-1b secretion and renal fibrosis in a mouse model of

contrast-induced nephropathy (91). In vitro experiments further

indicate that IL-1b can drive the progression of CKD and induce the

transformation of renal tubular epithelial cells into fibroblasts (92).

Knockout of the NLRP3 gene preserves mitochondrial morphology

in mouse renal tubules, ameliorates CKD-associated hypertension

and proteinuria, and mitigates renal fibrosis (93, 94). In summary,

the NLRP3 inflammasome mediates renal fibrosis through oxidative

stress and inflammatory pathways (95). Additionally, NLRP3 can

independently mediate renal inflammation, injury, and fibrosis

outside of its role in the inflammasome complex.

4.1.2 Role and mechanism of the NLRP3
inflammasome in DKD

The latest statistics from the International Diabetes Federation

indicate that the global prevalence of diabetes has reached

approximately 537 million individuals, with an adult incidence
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rate of 1 in 10. It is projected that by 2045, the total number of

people with diabetes will increase to approximately 783 million,

with an estimated adult incidence rate of 1 in 8 (96). With

advancing research, the critical role of pyroptosis in the

development and progression of DKD has been established. DKD

is one of the most common causes of CKD. Under diabetic

conditions, increased renal glucose load contributes to

microvascular damage through elevated ROS, activation of the

polyol pathway, and upregulation of injury mediators. Abnormal

accumulation of ROS activates a cascade of signaling molecules,

further upregulating injury mediators and exacerbating renal

damage (97). Glomerular hyperperfusion, hyperpressure, and

hyperfiltration are key factors in DKD. Increased extracellular

matrix synthesis, glomerular fibrosis, tubular basement membrane

disruption, and interstitial infiltration mediate tubulointerstitial

fibrosis, gradually progressing to DKD. Among these factors, the

role of inflammation has gained increasing recognition, with the

NLRP3 inflammasome emerging as a key focal point of research.

Specifically, chronic low-grade inflammation, which is primarily

mediated through the IL-6 and NLRP3 inflammasome signaling

pathways, contributes to the pathogenesis of diabetic kidney disease
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(98). NLRP3 mRNA levels are elevated in the kidneys of patients

with type 2 diabetes and are even higher in those with diabetic

nephropathy (DN) (99). Another study also found increased

expression of the NLRP3 inflammasome in the renal tubules of

diabetic patients with tubulointerstitial injury (68). Activation of the

NLRP3 inflammasome has been observed in glomerular endothelial

cells and podocytes in mouse models of DN (68). Activation of the

NLRP3 inflammasome induces the production of pro-inflammatory

cytokines and further promotes insulin resistance in patients with

DN (100). Conversely, knockout or inhibition of NLRP3 reduces

diabetic kidney injury (68). The activation of the NLRP3

inflammasome during DN involves multiple pathways, including

the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway (101),

the ROS/TXNIP pathway (102), the NF-kB pathway, and the P2X7/

NLRP3 pathway (103). Additionally, autophagy can suppress the

activation of the NLRP3 inflammasome (104). In a rat model of DN,

mitophagy alleviates systemic inflammatory responses and further

damage by modulating the M1/M2 macrophage balance,

maintaining homeostasis (105). Recent studies (106) have shown

that NLRP3 mediates renal damage in a mouse model of DN by

inhibiting podocyte autophagy.
FIGURE 4

Schematic illustration of NLRP3 inflammasome- and TGF-b-induced renal fibrosis. When danger signals such as damage-associated molecular
patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) bind to Toll-like receptors (TLRs) on renal macrophages/dendritic cells,
transcriptional activation of the NF-kB signaling pathway is triggered. This activation leads to increased expression of inflammasome-associated
components, including NLRP3, ASC, pro-caspase-1, pro-IL-1b, and pro-IL-18. Subsequently, events such as potassium efflux (K+), reactive oxygen
species (ROS) generation, and lysosomal damage are induced. These events lead to NLRP3 activation and oligomerization, which in turn recruits ASC
and pro-caspase-1 to form the inflammasome complex, ultimately converting pro-caspase-1 into biologically active caspase-1. Activated caspase-1
cleaves pro-IL-1b and pro-IL-18 into their mature inflammatory cytokines, IL-1b and IL-18, thereby mediating inflammation. In addition, activated
caspase-1 cleaves GSDMD into NT-GSDMD, inducing pore formation in the plasma membrane and mediating pyroptosis, a regulated form of
necrotic cell death (necroinflammation). Simultaneously, TGF-b binds to its receptor (TGF-bR); the activated NLRP3 inflammasome induces ROS
generation, which enhances phosphorylation of regulatory Smad proteins (Smad2, Smad3, and Smad4), thereby promoting their transcriptional
activation. This activation drives expression of fibrosis-related genes, such as collagen and a-smooth muscle actin. Crosstalk between the NF-kB/
NLRP3/IL-1b/IL-18 axis and the TGF-b/Smad signaling pathway may contribute to the development of renal fibrosis and associated injury.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1703560
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Luo et al. 10.3389/fimmu.2025.1703560
Pyroptosis primarily occurs when inflammasomes, such as the

nucleotide-binding oligomerization domain-like receptor protein 3

(NLRP3) inflammasome, are stimulated by inflammatory factors or

pathogens to form complexes. This process further activates

caspase-1, which cleaves downstream GSDMD into a 242-amino-

acid N-terminal domain (GSDMD-N) and a 199-amino-acid C-

terminal domain (GSDMD-C). GSDMD-N forms pores in the cell

membrane, disrupting intracellular and extracellular homeostasis,

leading to cell swelling, rupture, and the release of cellular contents

and inflammatory cytokines such as interleukin (IL)-1b and IL-18,

causing necrosis and intense inflammatory responses (107, 108).

Caspase-1 is a key factor in initiating the canonical pyroptosis

signaling pathway (109). The GSDMD protein is cleaved into

GSDMD-N and GSDMD-C by active Caspase-1, with GSDMD-N

forming pores in the cell membrane, leading to cell swelling,

rupture, and necrosis accompanied by strong inflammatory

responses (110). Studies have reported that silencing caspase-1 in

a diabetic mouse model blocks inflammasome stimulation and

protects against the progression of DKD (111). Evidence suggests

that activation of the caspase-4/5/11 pathway contributes to various

diseases, including inflammatory disorders, severe diabetic

complications, and neurodegenerative diseases (112, 113).

Caspase-11, a critical protein in the canonical pyroptosis pathway,

suppresses the release of inflammatory cytokines when silenced,

improving glomerular filtration function and podocyte morphology

(114). Caspase-4, the human homolog of caspase-11, shows

significantly increased protein expression in podocytes exposed to

high-glucose environments. Studies indicate that high glucose

promotes the expression of caspase-4 mRNA and protein in

podocytes, and ELISA results show that high glucose increases IL-

1b concentrations. Silencing caspase-4 via siRNA effectively

suppresses the elevation of IL-1b levels in podocytes under high-

glucose stimulation (115). Traditionally, caspase-3 activation was

thought to induce apoptotic cell death; however, new evidence

suggests that caspase-3 activation may also lead to pyroptotic cell

death (116). Other studies report that, in addition to caspase-1,

activation of caspase-3 and caspase-7 can trigger pyroptosis (117).

Activation of caspase-8 can further activate the NLRP3

inflammasome, suggesting that caspase-8 may also be a key

mediator of pyroptotic cell death (118). As research advances, an

increasing number of caspase family members and their inhibitors

have been identified, providing new insights and directions for

studying pyroptosis-related signaling pathways and their potential

roles in promoting DKD. Caspase inhibitors hold promise as novel

therapeutic targets for treating DKD. A study found that high-

glucose treatment significantly increases GSDMD mRNA and

protein expression in podocytes, and silencing GSDMD

suppresses mitochondrial ROS generation, indicating that

GSDMD-dependent pyroptosis promotes renal inflammation and

is a critical factor in the pathogenesis of DKD (119). Increased

expression of caspase-4/11 and GSDMD-N proteins has been

observed in podocytes under high-glucose conditions. These

findings highlight the indispensable role of GSDMD, a key

downstream substrate of pyroptosis, in this process. GSDMD

inhibitors may play a crucial role in suppressing pyroptotic cell
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death, making them promising candidates for fundamentally

preventing the onset of DKD.

4.1.2.1 NLRP3 inflammasome and glomerular damage

The glomerular capillary wall is composed of endothelial cells,

the basement membrane, and visceral epithelial cells (podocytes),

surrounded by mesangial cells and matrix. Li Fang et al. detected the

expression of caspase-1, IL-1b, and IL-18 in DN renal tubules,

which positively correlated with the severity of proteinuria. In the

same specimens, the expression of inflammatory factors was higher

in renal tubules than in glomeruli (120). Hong Feng et al. were the

first to demonstrate that high glucose induces the expression and

activation of NLRP3 and pro-caspase-1 in mesangial cells, leading

to the release of IL-18, increased glomerular and mesangial area,

and enhanced collagen accumulation in the kidney (121). Chenlin

Gao et al. found that receptor-interacting protein kinase 2 (RIPK2)-

mediated podocyte autophagy negatively regulates ROS-NLRP3

inflammasome signaling under high-glucose conditions. High

glucose activates autophagy in the short term but suppresses it

over prolonged periods. Activation of NLRP3 inhibits podocyte

autophagy, weakening the protective effects mediated by autophagy

and exacerbating podocyte damage (122). Chun Zhang et al.

observed foot process effacement, loss of slit diaphragm

molecules , and glomeruloscleros is in mice fol lowing

homocysteine-induced NLRP3 activation (123). Studies have

shown that Syk participates in the activation of the Syk/JNK/

NLRP3 signaling pathway in high-glucose-induced HK2 cells and

rat glomerular mesangial cells, mediating glomerular hypertrophy

and mesangial expansion in diabetic rats. Furthermore, Syk can

induce apoptosis in HK2 cells. JNK activation translocates into the

nucleus, where it alters AP-1 transcription and expression through

posttranscriptional mechanisms, potentially leading to insulin

resistance (IR), insulin deficiency, hyperglycemia, and a high-

glucose-mediated inflammatory cycle, thereby exacerbating the

progression of DN. ERK1/2 can also phosphorylate intracellular

PLA2, releasing arachidonic acid and eicosanoids, thereby altering

renal hemodynamics in DN. Additionally, ERK1/2 can promote

mesangial cell proliferation and glomerulonephritis via PKC and

PTK, accelerating the progression of DN (124). Literature reports

indicate that activation of p38MAPK is essential for NLRP3-

mediated IL-1 secretion and plays a critical role in the secretion

of IL-1b and IL-18 (125). When activated by the inflammasome,

p38MAPK enhances the binding capacity of activator protein-1

(AP-1) and increases TGF-b gene expression, thereby positively

regulating p38MAPK signaling through a feedback loop.

Consequently, when this pathway is activated and TGF-b is

overexpressed, a vicious cycle ensues, promoting mesangial cell

proliferation and extracellular matrix accumulation.

4.1.2.2 NLRP3 inflammasome and tubulointerstitial
damage in DN

Tubulointerstitial fibrosis is one of the primary causes of DN,

with multiple contributing factors, including heavy proteinuria,

epithelial-to-mesenchymal transition (EMT) of renal tubular

epithelial cells, and interstitial cell infiltration. Wallys Garrido
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et al. also found that caspase-1, IL-18, IL-6, IL-10, and the pro-

fibrotic marker a-SMA were all upregulated, mediating renal injury

and proteinuria (126). Kehong Chen et al. discovered in DN renal

tubular epithelial cells that the expression of optineurin (OPTN)

was negatively correlated with NLRP3 inflammasome activation,

which mediated renal interstit ial inflammation (127).

Overexpression of OPTN promoted mitophagy, thereby

inhibiting NLRP3 inflammasome activation. Wenbei Han et al.

demonstrated in a rat model of DN that inflammasome activation

and TLR4/NF-kB signaling mediated the transdifferentiation of

renal tubular epithelial cells (128). Chenxu Ge et al. observed

significant insulin resistance and glucose intolerance in an obese

animal model, accompanied by renal inflammation and increased

expression of IL-1b, IL-18, TNF-a, and IL-6, potentially mediated

by NF-kB/NLRP3 signaling, which was further validated in human

immortalized renal tubular epithelial cells (129). IncRNA-GM4419

can activate the NF-kB pathway by directly interacting with the p50

subunit of NF-kB, and p50 can also directly interact with the

NLRP3 inflammasome (130). Wei Li et al. found that total

astragalus extract (TEA) reduced doxorubicin-induced

morphological changes, viability loss, and cell death in renal

tubular epithelial cells by inhibiting the ROS-ERK1/2-NLRP3

inflammasome axis, strongly indicating that the NLRP3

inflammasome plays a critical role in tubular damage and

interstitial fibrosis in DN (131).

4.1.2.3 NLRP3 inflammasome and the treatment of
diabetic nephropathy

Current clinical management of diabetic nephropathy (DN)

remains anchored in the use of angiotensin-converting enzyme

inhibitors (ACEIs) or angiotensin II receptor blockers (ARBs) to

inhibit the renin–angiotensin–aldosterone system (RAAS). Although

these agents effectively delay disease progression, they are incapable

of reversing or eliminating established renal injury (132).

Consequently, a rapidly expanding body of research has centered

on the NLRP3 inflammasome as a pivotal therapeutic node, seeking

to identify interventions that may not only halt but potentially reverse

DN by targeting upstream activators and downstream effectors of

inflammasome signaling. Targeting the NF-kB signaling pathway:

Multiple pharmacological agents have been identified that mitigate

renal injury in diabetic nephropathy through suppression of NF-kB
signaling. Liquiritigenin alleviates high glucose (HG)-induced

extracellular matrix accumulation, oxidative stress, and

inflammation by concurrently inhibiting NF-kB and NLRP3

inflammasome pathways (132). The Huangkui capsule reduces

tubular epithelial-to-mesenchymal transition (EMT) via blockade of

the TLR4/NF-kB signaling axis (128). The insulin-sensitizing agent

pioglitazone downregulates the expression of advanced glycation end

products (AGEs), their receptor RAGE, and NF-kB, thereby

suppressing NLRP3 activation and downstream pro-inflammatory

mediators. Fisetin (FIS) inhibits NF-kB activation and ameliorates

insulin resistance by targeting receptor-interacting protein kinase 3

(RIP3)-mediated inflammatory signaling (129). Pharmacological

blockade of adenosine A3 receptors reduces nuclear translocation

of NF-kB and attenuates caspase-1 activation in renal tubular
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epithelial cells of diabetic rats (126). Thrombomodulin domain 1

(THBD1) protects against DN-associated renal injury by suppressing

NF-kB/NLRP3 activation, dampening Nrf2 activity, and reducing

podocyte autophagy (133). These findings collectively highlight NF-

kB as a master regulatory node whose targeted inhibition may serve

as a powerfu l indirec t s t ra tegy to suppress NLRP3

inflammasome activation.

Through the inhibition of ROS generation, apocynin, an anti-

inflammatory compound, suppresses ROS production and thereby

attenuates NLRP3 activation. In DN rat models, apocynin

intervention correlates with reduced expression of the X-linked

inhibitor of apoptosis protein (XIAP), which parallels decreased

NLRP3 levels—suggesting that XIAP may participate in ROS-

mediated NLRP3 inflammasome activation (134). The redox-

sensitive transcription factor Nrf2 serves as a central endogenous

regulator of ROS homeostasis; minocycline and curcumin exert

renoprotective effects, at least in part, by modulating Nrf2 activity

(101, 135). Multiple herbal extracts, including luteolin (136),

curcumin, crocin, cinnamon, and garlic extracts, inhibit NLRP3

inflammasome activation by suppressing ROS generation,

mitigating oxidative stress, or enhancing insulin sensitivity (137).

Rapamycin activates autophagy, reduces ROS accumulation, and

protects podocytes. Optineurin suppresses NLRP3 activation by

enhancing mitophagy and reducing mitochondrial ROS (mtROS)

production (127). Total extract of astragalus (TEA) inhibits NLRP3

activation by blocking ERK1/2 signaling within the ROS–ERK1/2–

NLRP3 axis (57). Current research on ROS inhibitors remains

heavily focused on traditional herbal compounds; rigorous

mechanistic dissection and comprehensive pharmacotoxicological

profiling are essential to accelerating their clinical translation.

Targeting NLRP3 inflammasome activity: Minocycline attenuates

NLRP3 inflammasome activation by silencing NLRP3 or ASC gene

expression or by inhibiting caspase-1 activity. Silencing of TXNIP

enhances the expression of antioxidant factors and suppresses high

glucose-induced NLRP3 inflammasome activation and podocyte

injury (138). Glibenclamide, verapamil, and salidroside inhibit HG-

induced TXNIP upregulat ion and subsequent NLRP3

inflammasome assembly (57, 139). Genetic ablation of NLRP3

reduces the expression of TXNIP and NADPH oxidase 4

(NOX4), enhances superoxide dismutase (SOD) production, and

attenuates IL-1b and IL-18 expression (140). NLRP3 silencing (141)

further suppresses ROS generation and TGF-b1-induced EMT in

renal tubular epithelial cells, restores podocyte autophagy, and

ameliorates HG-induced podocyte damage. Li Fang et al. (120)

demonstrated that tauroursodeoxycholic acid (TUDCA) enhances

endoplasmic reticulum (ER) stress adaptation and reduces NLRP3

activation triggered by proteinuria in DN. MCC950, a highly

selective NLRP3 inhibitor, specifically blocks caspase-1-dependent

NLRP3 activation and IL-1b secretion without interfering with TLR

signaling or the priming phase of inflammasome assembly (142); it

improves renal function, reduces mesangial expansion and

basement membrane fibrosis, and attenuates tubular dilation—

effects achieved independently of changes in body weight or

glycemia (143). IL-22 inhibits NLRP3 activation, reduces

albuminuria, and attenuates renal fibrosis (144). Genetic deletion
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of TLR4 mitigates HG-induced podocyte injury and renal damage

via suppression of the NLRP3 inflammasome (145). In

macrophages, regulated in development and DNA damage

response 1 (REDD1), which is partially localized to mitochondria,

promotes NLRP3 activation via ROS generation and potentially

through NF-kB-dependent mechanisms. Faustine Pasto et al.

showed that REDD1 deficiency in macrophages cocultured with

adipocytes reduces NLRP3 expression, IL-1b secretion, and insulin

resistance (146). Collectively, inhibition of NLRP3 inflammasome

activation significantly attenuates renal tissue damage and partially

restores renal function; however, clinically viable, tissue-specific

NLRP3-targeted therapeutics remain scarce and urgently require

further development.

Downstream of inflammasome activation, direct targeting of

effector cytokines—particularly IL-1b and IL-18—offers a

complementary therapeutic approach. The U.S. Food and Drug

Administration (FDA) has approved several IL-1b antagonists,

including rilonacept, canakinumab, and anakinra, which reduce

glycated hemoglobin levels, enhance insulin secretion, and suppress

systemic inflammation in patients with type 2 diabetes, albeit with

suboptimal pharmacokinetic profiles (147). Losartan also suppresses

IL-1b expression and partially inhibits NLRP3 inflammasome

activation (148). Dapagliflozin, an SGLT2 inhibitor, reduces systemic

inflammation by lowering circulating levels of C-reactive protein, IL-6,

and TNF-a (149). Ginsenoside compound K (CK) inhibits ROS-

mediated NLRP3 activation and NF-kB/p38 MAPK signaling and

exhibits synergistic effects with MCC950 and VX765 (a caspase-1

inhibitor) in suppressing the IL-1b concentration (150).

With the advancement of research both domestically and

internationally, pyroptosis has been firmly established as a critical

contributor to the initiation and progression of DKD. Here, we

systematically summarize the key molecular components involved in

pyroptotic signaling, including inflammasome assembly (notably the

NLRP3 inflammasome), activation of the caspase family (particularly

caspase-1/4/5/11), and the pore-forming activity of GSDMD.

Nevertheless, our current understanding of how pyroptosis

mechanistically drives DKD pathogenesis remains incomplete. The

precise molecular events governing each step of pyroptotic execution,

from inflammasome priming to membrane rupture, have not yet been

fully elucidated. Moreover, the functional significance of pyroptosis-

induced cell death in the context of DKD progression is still largely

confined to preclinical models. Therefore, comprehensive and

mechanistic investigations are urgently needed to delineate the

specific roles and regulatory networks of pyroptosis and

inflammasome activation in DKD—insights that may ultimately

reveal novel therapeutic targets for this devastating complication

of diabetes.

4.1.3 The role and mechanisms of the NLRP3
inflammasome in IgA nephropathy

Immunoglobulin A (IgA) nephropathy is currently recognized as

the most prevalent primary glomerular disease worldwide, with 20%–

40% of patients progressing to end-stage kidney disease within 20
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years of diagnosis (151). The pathogenesis is primarily attributed to

the mesangial deposition of immune complexes containing

aberrantly glycosylated IgA1, followed by T lymphocyte-mediated

inflammatory responses; innate immune mechanisms also contribute

significantly to disease initiation and progression (152). Nucleotide-

binding oligomerization domain-like receptor protein 3 (NLRP3), a

recently identified pattern recognition receptor, is expressed in

multiple resident renal cells—including tubular epithelial cells,

mesangial cells, and podocytes. Upon activation by exogenous or

endogenous stimuli, NLRP3 assembles with the adaptor protein

apoptosis-associated speck-like protein containing a CARD (ASC)

to form the NLRP3 inflammasome. This complex activates caspase-1,

which in turn drives the maturation and secretion of the pro-

inflammatory cytokines interleukin-18 (IL-18) and interleukin-1b
(IL-1b), thereby amplifying local and systemic inflammation (153,

154). A growing body of evidence indicates that the NLRP3

inflammasome plays a pivotal role in both the initiation and

progression of IgA nephropathy and is intimately linked to injury

of intrinsic renal cells—including podocytes, mesangial cells,

glomerular endothelial cells, and tubular epithelial cells (155–157).

Notably, certain traditional Chinese herbal medicines exert

renoprotective effects in IgA nephropathy by targeting the NLRP3

inflammasome and its downstream signaling components, thereby

modulating inflammatory cytokine production and associated

pathways to attenuate disease progression.

4.1.3.1 The role of the NLRP3 inflammasome in IgA
nephropathy

An expanding body of evidence demonstrates that the NLRP3

inflammasome contributes to the pathogenesis of multiple kidney

diseases, including IgA nephropathy (154, 158). In patients with

IgA nephropathy, circulating levels of NLRP3 inflammasome-

derived cytokines, notably interleukin-18 (IL-18) and interleukin-

1b (IL-1b), are significantly elevated (154, 159), underscoring the

inflammasome’s central role in disease progression. Targeted

inhibition of NLRP3 within the kidney has therefore emerged as a

promising therapeutic strategy for IgA nephropathy (156). Further

mechanistic insights reveal that colorectal neoplasia differentially

expressed (CRNDE), a long non-coding RNA, exacerbates IgA

nephropathy by promoting NLRP3 inflammasome activation in

macrophages; conversely, CRNDE suppression enhances NLRP3

degradation, thereby attenuating renal inflammation (155).

Clinically, peripheral blood mononuclear cells from IgA

nephropathy patients exhibit elevated NLRP3 mRNA expression,

which correlates positively with renal fibrosis indices (160).

Moreover, serum exosomes from these patients show markedly

increased NLRP3 levels, which correlate positively with proteinuria

severity and Katafuchi histological scores and negatively with the

estimated glomerular filtration rate (eGFR). Importantly, NLRP3

inflammasome expression within renal tissue is significantly

upregulated and strongly correlates with its levels in circulating

exosomes (161). Within the tubulointerstitium of IgA nephropathy

kidneys, the expression of the NLRP3 inflammasome, IL-18, and
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monocyte chemoattractant protein-1 (MCP-1) is markedly

increased and positively correlates with the degree of proteinuria,

tubular atrophy, interstitial inflammatory cell infiltration, and

fibrosis (162). The activation of the NLRP3 inflammasome in IgA

nephropathy is orchestrated through multiple interconnected

pathways—including NF-kB signaling, impaired autophagy,

mitochondrial reactive oxygen species (mtROS) overproduction,

and exosome-mediated intercellular communication (154).

Critically, injury or dysfunction of intrinsic renal cells, including

podocytes, mesangial cells, glomerular endothelial cells, and tubular

epithelial cel ls , is closely linked to activation of the

NLRP3 inflammasome.

4.1.3.2 NLRP3 and podocyte injury

Podocytes constitute the final filtration barrier of the

glomerulus. Their injury—manifested ultrastructurally by foot

process effacement and detachment, and histologically by

hypertrophy, focal sclerosis, Bowman’s capsule adhesion, and

podocyte loss—represents a hallmark lesion in IgA nephropathy

and a key driver of proteinuria and progressive renal decline (163–

165). Podocyte injury is now widely recognized as a central

mechanism underlying disease progression in IgA nephropathy

(163, 164). Emerging evidence indicates that IgA1-containing

immune complexes directly trigger NLRP3 inflammasome

activation in both macrophages and podocytes in IgA

nephropathy (159). Compared with healthy controls, renal tissue

from IgA nephropathy patients exhibits significantly elevated

NLRP3 inflammasome expression. Notably, co-localization of

NLRP3 with the macrophage marker F4/80 is detectable within

podocytes, suggesting phenotypic transition. Patients with an

estimated glomerular filtration rate (eGFR) < 60 mL·min−1·(1.73

m²)−1 show markedly increased tubular NLRP3 expression, whereas

those with heavy proteinuria (≥3.5 g·day−1) exhibit significantly

elevated glomerular NLRP3 levels. Critically, aberrantly

glycosylated IgA1 isolated from the serum of IgA nephropathy

patients induces NLRP3 expression in cultured podocytes and

upregulates F4/80—a macrophage lineage marker—concomitant

with increased expression of the adhesion molecule vascular cell

adhesion molecule-1 (VCAM-1) and the fibrotic marker a-smooth

muscle actin (a-SMA). These findings indicate that pathogenic

IgA1 not only activates the NLRP3 inflammasome in podocytes but

also initiates podocyte-to-macrophage transdifferentiation (PMT).

Following PMT, these transformed podocytes secrete pro-

inflammatory cytokines that amplify inflammatory cascades and

promote renal fibrosis—key pathological features of IgA

nephropathy (158).

4.1.3.3 NLRP3 and mesangial cell proliferation

Mesangial cells reside between glomerular capillaries,

embedded within the mesangial matrix. They maintain direct

contact with endothelial cells and intimate crosstalk with

podocytes, collectively forming the functional architecture of the
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glomerulus. Disruption of mesangial cell homeostasis, whether by

immune complexes, hemodynamic stress, or metabolic insults,

triggers their pathological activation. This activation drives

mesangial cell proliferation and hypertrophy, expansion of the

extracellular matrix, release of pro-inflammatory mediators, and

complement activation, ultimately culminating in mesangiolysis

and loss of glomerular capillary loops, thereby impairing

glomerular filtration (166). In IgA nephropathy, aberrant

deposition of IgA within the mesangium serves as a potent trigger

for NLRP3 inflammasome activation, initiating a cascade of

local ized inflammation that promotes mesangia l cel l

hyperproli ferat ion and excessive extracel lular matrix

accumulation—key histopathological features driving progressive

glomerular injury. This IgA–NLRP3 axis is now widely regarded as

a central pathogenic mechanism in IgA nephropathy. Tripartite

motif (TRIM) proteins, a family of E3 ubiquitin ligases, play critical

regulatory roles in innate immunity. Using an in vitro model of

human glomerular mesangial cells (GMCs) stimulated with

pathogenic IgA1, researchers demonstrated that IgA1 promotes

GMC proliferation via NLRP3 inflammasome activation. Notably,

TRIM40 suppresses IgA1-induced GMC proliferation by inhibiting

NLRP3 inflammasome assembly and downstream signaling (167).

Furthermore, in a cellular model of IgA nephropathy established by

culturing human renal tubular epithelial cells (HK-2 cells) with

conditioned medium from IgA-stimulated human mesangial cells

(HMCs), NLRP3 mRNA and protein expressions were significantly

upregulated in HK-2 cells, accompanied by increased levels of ASC

and caspase-1-indicating that mesangial-derived inflammatory

signals can propagate NLRP3 activation to tubular compartments,

thereby linking glomerular injury to tubulointerstitial

inflammation (168).
4.1.3.4 NLRP3 and glomerular endothelial cell injury

Clinical studies consistently report that endothelial damage,

often accompanied by endothelial cell loss, is a hallmark

histopathological feature of IgA nephropathy (169). In acute

glomerular lesions of IgA nephropathy, endothelial cell

proliferation, fibrinoid necrosis, and the presence of cellular or

fibrocellular crescents are strongly associated with hematuria, with

or without concurrent proteinuria. In chronic lesions, segmental or

global glomerulosclerosis correlates significantly with the severity of

proteinuria and elevated serum creatinine levels. Collectively, injury

to glomerular capillaries and loss of endothelial integrity in both

acute and chronic phases of IgA nephropathy are thought to

directly contribute to hematuria, proteinuria, and progressive

renal dysfunction (169). In animal models of IgA nephropathy,

ultrastructural abnormalities such as endothelial vacuolization and

mesangial interposition have been observed, further supporting the

role of endothelial injury in disease progression (170). Galactose-

deficient IgA1 (Gd-IgA1) immune complexes exhibit high affinity

for glomerular endothelial cells. Their deposition triggers glycocalyx

shedding and disrupts the glomerular filtration barrier. Moreover,
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Gd-IgA1 complexes accelerate the production of adhesion

molecules and pro-inflammatory cytokines in endothelial cells.

This endothelial damage, induced by Gd-IgA1 deposition, may

enhance the permeability of mesangial regions to immunoglobulins

and amplify subsequent inflammatory responses—thereby

potentiating core pathogenic mechanisms in IgA nephropathy

(171). In vitro models using human glomerular endothelial cells

exposed to high glucose demonstrate robust activation of the

NLRP3 inflammasome, accompanied by excessive secretion of IL-

18 and IL-1b—suggesting that metabolic stress synergizes with

immune injury to exacerbate endothelial dysfunction via

inflammasome signaling (172). Notably, retinoic acid receptor

responder 1 (Rarres1) is detectably expressed in glomerular and

peritubular capillary endothelial cells in IgA nephropathy and

related glomerulopathies. Induction of Rarres1 in endothelial cells

represents a conserved molecular mechanism that drives

inflammation and fibrosis through activation of the NF-kB
signaling pathway (173).
4.1.3.5 NLRP3 and tubular epithelial cell injury

In IgA nephropathy, injury to renal tubular epithelial cells

primarily arises from glomerular filtration barrier dysfunction

and pathological crosstalk between mesangial and tubular

compartments. Filtered proteins, including albumin (ALB),

complement components, cytokines, growth factors, and

galactose-deficient IgA1 (Gd-IgA1), play pivotal roles in driving

tubulointerstitial damage. These filtered molecules stimulate

proximal tubular epithelial cells to secrete a spectrum of

inflammatory mediators, thereby establishing a pro-inflammatory

microenvironment within the tubulointerstitium (174). Crosstalk

between mesangial cells and tubular epithelial cells is mediated by

key signaling molecules, including TNF-a, TGF-b1, and MCP-1

(175). NLRP3 is expressed in human kidney biopsy specimens and

in primary human proximal tubular cells (HPTCs), and its

expression levels correlate with clinical outcomes in IgA

nephropathy . In hea l thy human kidneys , NLRP3 is

predominantly localized to renal tubules and, within human

proximal tubular cells (HPTCs), to mitochondria. Compared with

control kidneys, renal tissues from patients with IgA nephropathy

exhibit significantly elevated NLRP3 gene expression. Although

NLRP3 protein can be detected in glomeruli, its expression is

primarily confined to the tubular epithelial compartment. In vitro,

stimulation of HPTCs with TGF-b1 transiently induces NLRP3

mRNA and protein expression. However, over time, these cells

undergo phenotypic transition, losing their epithelial identity

through transcriptional reprogramming and ubiquitin-mediated

degradation, which coincides with progressive downregulation of

NLRP3 expression. Consistent with these in vitro findings, low

NLRP3 mRNA expression in renal biopsies correlates with a

linearly increased risk of the composite endpoint of serum

creatinine doubling and progression to end-stage kidney disease

in IgA nephropathy patients (176). Collectively, these data indicate
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that NLRP3 is predominantly a tubule-expressed protein in the

human kidney, and its expression is paradoxically reduced in

progressive IgA nephropathy.

4.1.3.6 Therapeutic modulation of the NLRP3
inflammasome in IgA nephropathy by natural compounds

Tripterygium wilfordii (Lei Gong Teng) is widely used in the

treatment of inflammatory and autoimmune diseases. Extensive

clinical, animal, and in vitro studies confirm its potent anti-

inflammatory effects (177, 178). Mechanistically, Tripterygium

and its bioactive constituents modulate immune cell function and

suppress expression of cytokines, adhesion molecules, and

inflammatory mediators through multiple signaling pathways—

including NF-kB, MAPK, STAT, NLRP3 inflammasome, and

Wnt (179). Diterpenoids 1 and 6 isolated from Tripterygium

inhibit LPS-induced inflammation in murine macrophages by

suppressing MAPK and NF-kB signaling and STAT3 activation,

thereby reducing NLRP3 inflammasome assembly and expression

of inflammatory mediators such as COX-2, iNOS, IL-6, IL-1b, and
IL-18 (180). Triptolide, a principal bioactive diterpenoid epoxide

from Tripterygium, exhibits the strongest anti-inflammatory and

immunosuppressive activity among its constituents (181). In IgA

nephropathy rat models, triptolide significantly reduces serum

creatinine (SCr), blood urea nitrogen (BUN), and 24-h urinary

protein excretion. It also lowers serum levels of TNF-a, IL-17A,
interferon-g (IFN-g), and IL-4, attenuates renal IgA deposition, and

suppresses renal expression of IL-1b, caspase-1, IL-18, and NLRP3

—suggesting its renoprotective effects are mediated, at least in part,

through inhibition of NLRP3 inflammasome activation (182).

Triptolide’s anti-inflammatory action is further linked to

suppression of the NLRP3/TLR4 axis, reducing IL-1b and IL-18

levels, limiting immune complex deposition and mesangial

proliferation, and ameliorating proteinuria (183). Celastrol, a

quinone methide triterpenoid extracted from Tripterygium root

bark, possesses anti-inflammatory, immunosuppressive, and

antitumor activities (184). It inhibits NF-kB signaling,

downregulates NLRP3 expression, and blocks caspase-1 cleavage,

thereby suppressing IL-1b and IL-18 production in LPS-stimulated

macrophages (185). In IgA nephropathy models, celastrol

attenuates hematuria and proteinuria by inhibiting the Notch

signaling pathway in renal tissue (186). Wogonoside alleviates

mesangial cell proliferation and matrix expansion in IgA

nephropathy rats. It elevates cytoplasmic NF-kB levels while

reducing nuclear NF-kB translocation and dose-dependently

lowers SCr, BUN, IL-1b, TNF-a, 24-h urinary protein, and red

blood cell counts. It also suppresses the renal expression of nuclear

NF-kB, nuclear/total NF-kB ratio, NLRP3, ASC, pro-caspase-1, and

caspase-1 (187). Baicalin reduces BUN, SCr, and 24-h urinary

protein in rats with mesangial proliferative glomerulonephritis. It

decreases the kidney-to-body weight ratio, glomerular apoptosis

rate, and renal mRNA and protein levels of NLRP3 and caspase-1

(43, 188). Plumbagin significantly reduces urinary protein, SCr, and

BUN in IgA nephropathy rats. It attenuates renal oxidative stress by
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lowering ROS and malondialdehyde (MDA) levels while enhancing

superoxide dismutase (SOD) activity. Plumbagin also reduces

serum MDA, IL-1b, IL-18, and TNF-a and downregulates renal

expression of NLRP3, ASC, caspase-1, PI3K, Akt, and NF-kB (49,

189). In a separate study, plumbagin suppressed apoptosis and

oxidative stress in renal tissue, reduced pro-IL-1b and pro-IL-18

levels, and inhibited NLRP3/ASC/caspase-1 protein expression

(190). It also inhibits proliferation of human mesangial cells and

downregulates the expression of TGF-b1, CTGF, and fibronectin

(FN) (191). Geniposide dose-dependently reduces 24-h urinary

protein, BUN, and SCr in IgA nephropathy mice. It attenuates

IgA deposition, mesangial expansion, and inflammatory cell

infiltration, while suppressing renal oxidative stress and

inflammation. Geniposide significantly reduces renal NLRP3

protein expression. Notably, NLRP3 knockout (KO) mice exhibit

similar protective effects as geniposide treatment (100 mg/kg),

whereas geniposide shows no additional benefit in NLRP3 KO

mice—strongly implicating NLRP3 as its primary molecular target

(192). Icariin, a flavonoid from epimedium, reduces urinary red

blood cells, proteinuria, and urinary N-acetyl-b-D-glucosaminidase

(NAG) in experimental IgA nephropathy rats. It diminishes renal

IgA deposition and suppresses renal protein expression of NF-kB
p65 and MCP-1, as well as mRNA levels of IL-4, IL-10, and IL-13

(193). Icariin also lowers serum IL-1b, IL-6, and IL-18, reduces

renal expression of TGF-b1, collagen IV (Col IV), and FN1, and

inhibits nuclear translocation of NF-kB p65, TNF-a, and VCAM-1

(194). Its renoprotective mechanism involves blockade of NF-kB
nuclear translocation and NLRP3 inflammasome activation,

thereby reducing downstream pro-inflammatory cytokine

production (195). Artemisinin, derived from Artemisia annua,

alleviates renal injury in IgA nephropathy mice. Network

pharmacology and molecular docking analyses, validated

experimentally, suggest that artemisinin activates the Akt/Nrf2

signaling pathway to exert therapeutic effects (196). Artemisinin

significantly reduces 24-h urinary protein and hematuria, lowers

serum creatinine, BUN, total cholesterol, and triglycerides, while

increasing serum albumin and total protein. It suppresses renal

production of IL-4 and IL-17, ameliorates glomerular mesangial

matrix expansion and cell proliferation, and protects renal

structure. Mechanistically, artemisinin enhances exosome

secretion, which in turn inhibits NF-kB/NLRP3 inflammasome

activation (197). When combined with hydroxychloroquine,

artemisinin further amplifies exosome release from tubular

epithelial cells; upon uptake by mesangial cells, these exosomes

suppress NF-kB signaling and NLRP3 inflammasome activity,

downregulating the expression of IkBa, p-p65, NLRP3, ASC, IL-
1b, and caspase-1, ultimately attenuating renal inflammation (197).

Emerging evidence indicates that ROS generation, coupled with

activation of NF-kB and the NLRP3 inflammasome, constitutes a

central pathogenic axis driving the progression of IgA nephropathy

(198). In murine models of IgA nephropathy, treatment with

osthole, a bioactive coumarin derivative, confers significant

renoprotection: It prevents proteinuria, improves renal function,
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and halts progressive histopathological lesions, including

glomerular hyperce l lu lar i ty , g lomerulosc leros i s , and

periglomerular monocyte infiltration. Mechanistically, osthole

reduces renal superoxide anion levels and promotes nuclear

translocation of the antioxidant transcription factor Nrf2. It

concurrently suppresses activation of NF-kB and the NLRP3

inflammasome in renal tissue, leading to decreased expression of

MCP-1 and reduced monocyte infiltration. In vitro, osthole inhibits

ROS production and NLRP3 inflammasome activation in

stimulated macrophages. In activated mesangial cells, it similarly

attenuates ROS generation and downregulates MCP-1 protein

expression. Collectively, these findings demonstrate that osthole

exerts its therapeutic effects in IgA nephropathy primarily by

targeting renal oxidative stress and interrupting the ROS–NF-kB–
NLRP3 inflammatory cascade—positioning it as a promising multi-

target natural agent for disease modification.

4.1.4 Role and mechanisms of the NLRP3
inflammasome in lupus nephritis

Systemic lupus erythematosus (SLE) is a chronic autoimmune

disease characterized by the production of pathogenic

autoantibodies, lymphocyte hyperproliferation, and inflammatory

injury to multiple organs. Renal involvement, manifesting as LN, is

a frequent and severe complication, presenting clinically with

proteinuria, hematuria, progressive renal dysfunction, and, in

advanced cases, end-stage kidney failure. LN remains a leading

cause of mortality in SLE patients (199). The pathogenesis of LN is

highly complex, involving both innate and adaptive immune-

mediated inflammatory cascades that converge on renal tissue

destruction. Central to this process is the activation of the NLRP3

inflammasome, which amplifies local and systemic inflammation

through multiple interconnected pathways. In SLE, immune

complexes containing anti-DNA or anti-RNA autoantibodies

activate the NLRP3 inflammasome in monocytes and

macrophages via two synergistic mechanisms: (i) upregulation of

TLR-dependent NF-kB signaling, which primes inflammasome

component expression, and (ii) induction of mtROS, which

provides the critical second signal for NLRP3 assembly. This dual

activation drives enhanced secretion of IL-1b and IL-17, thereby

exacerbating systemic autoimmunity and renal inflammation (200).

Additionally, complement component C3a, generated upon

immune complex-mediated complement activation, stimulates

ATP release from macrophages and dendritic cells. Extracellular

ATP then engages the purinergic receptor P2X7, triggering NLRP3

inflammasome assembly and subsequent IL-1b maturation and

secretion. This pathway further amplifies inflammatory injury in

LN and contributes to disease progression (200, 201).

4.1.4.1 NLRP3 inflammasome in the pathogenesis of lupus
nephritis

Under physiological conditions, inflammatory responses serve

to eliminate pathogens and promote tissue repair. However,

dysregulated or excessive inflammation can inflict significant
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tissue damage. Although the NLRP3 inflammasome, a key

component of the innate immune system, plays a critical role in

host defense against infection, its hyperactivation contributes to the

pathogenesis of multiple autoimmune diseases, including LN.

Clinical evidence demonstrates that the expression levels of

NLRP3 and caspase-1 are significantly elevated in renal biopsies

from LN patients (202). Moreover, NLRP3 mRNA levels are

markedly upregulated in LN kidney tissue and inversely correlate

with renal function (71). These clinical observations are further

supported by robust experimental data from murine lupus models.

In (NZB×NZW)F1 lupus-prone mice, renal NLRP3 inflammasome

activation is markedly enhanced (203). Zhao et al. confirmed

pronounced upregulation of the NLRP3 inflammasome in the

kidneys of MRL/lpr mice; notably, pharmacological or genetic

inhibition of NLRP3 attenuates disease severity in this model

(204). Conversely, forced overexpression of NLRP3 exacerbates

end-organ damage in lupus mice, underscoring its pathogenic

role in LN progression (205). Earlier work from our group

demonstrated that pharmacological inhibition of pro-caspase-1

activation reduces IL-18 production, subsequently dampening

IFN-g secretion, and confers significant protection in murine LN

models (206). Kahlenberg et al. were the first to employ genetic

knockout models to dissect inflammasome function in lupus.

Compared with wild-type mice, caspase-1−/− lupus mice exhibit

significantly reduced serum titers of anti-dsDNA antibodies and

anti-ribonucleoprotein antibodies, along with attenuated type I

interferon responses, thereby decreasing immune complex

formation and subsequent renal damage (207). This suggests that

caspase-1 is involved in the pathogenesis of LN. The pathogenic

roles of NLRP3-derived cytokines IL-1b and IL-18 in SLE have long

been established in preclinical models (208–210). Our earlier

studies further revealed that plasma and renal IL-18 levels

positively correlate with proteinuria, histopathological damage,

and IgG immune complex deposition in BXSB lupus mice—

suggesting that elevated IL-18 may directly contribute to

glomerular filtration barrier disruption and autoimmune renal

injury in LN (211). Interleukin-18 binding protein (IL-18BP), the

endogenous high-affinity antagonist of IL-18, is significantly

upregulated in both renal tissue and peripheral blood of LN

patients. Importantly, an imbalance between IL-18 and IL-18BP

may actively contribute to lupus pathogenesis (212, 213). Recent

clinical studies corroborate these findings, reporting significantly

elevated serum levels of IL-1b and IL-18 in SLE patients—

highlighting the clinical relevance of inflammasome-derived

cytokines in disease progression (214, 215). Intriguingly, loss of

NLRP3 function has also been linked to autoimmune dysregulation.

Sester et al. serendipitously discovered a spontaneous NLRP3

mutation in NZB mice (216). This mutation may alter host–

microbiome interactions and promote the generation of

autoreactive antibodies. More directly, Lech et al. demonstrated

that genetic deletion of NLRP3 or ASC in lupus-prone mice leads to

hyperactivation of dendritic cells and macrophages, excessive

production of pro-inflammatory mediators, and accelerated T-
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and B-cell proliferation (217). Mechanistically, NLRP3 and ASC

deficiency strongly suppresses TGF-b receptor-mediated

immunosuppressive signaling. Collectively, these findings reveal a

paradoxical duality of the NLRP3 inflammasome in autoimmunity:

Basal, homeostatic NLRP3 activity may be essential for immune

tolerance and suppression of aberrant lymphocyte activation;

however, sustained or excessive NLRP3 inflammasome activation

drives cytokine storm, immune dysregulation, and target organ

damage—thereby fueling LN progression. This delicate balance

must be carefully considered in the development of NLRP3-

targeted therapies for LN: Complete inhibition may risk

unleashing compensatory hyperinflammation, whereas selective or

con t e x t - d ep enden t modu l a t i on may o ff e r op t ima l

therapeutic benefit.

4.1.4.2 Renal injury mechanisms mediated by the NLRP3
inflammasome in lupus nephritis

The evidence outlined above establishes that core components

of the NLRP3 inflammasome—including NLRP3, ASC, and

caspase-1—are critically involved in the pathogenesis of LN.

Below, we delineate how activated NLRP3 inflammasome

signaling drives renal injury by modulating both circulating

immune cells and intrinsic renal cells. A central mechanism

involves the NLRP3 inflammasome’s regulation of CD4+ T-cell

differentiation—particularly the Th1 and Th17 subsets, which are

key drivers of renal inflammation in LN. The inflammasome

promotes Th1 and Th17 polarization primarily through caspase-

1–dependent secretion of IL-1b and IL-18. In both human and

murine systems, IL-1b—in synergy with TGF-b—induced the

expression of the transcription factors IRF4 and RORgt, thereby
promoting the differentiation of naïve CD4 T cells into pathogenic

Th17 cells. Conversely, IL-18 acting in concert with IL-12 drives

naïve CD4 T cells toward a Th1 fate characterized by IFN-g
production. Notably, IL-18 itself is also secreted by Th1 cells,

creating a self-amplifying inflammatory loop. In experimental

autoimmune encephalomyelitis (EAE), a Th1/Th17-driven model,

genetic ablation of NLRP3 significantly attenuates disease severity

by dampening Th1- and Th17-mediated immune responses.

Further mechanistic insight comes from studies of ASC-deficient

CD4 T cells, which paradoxically secrete elevated levels of the

immunoregulatory cytokine IL-10. This IL-10 surge suppresses

proliferation of neighboring T cells and inhibits their production

of IFN-g and IL-2, highlighting a cell-intrinsic immunosuppressive

function of ASC in T cells (218).

Activation of the NLRP3 inflammasome also critically

contributes to the pathogenesis of LN by modulating the function

of macrophages and dendritic cells. Infiltrating renal macrophages

exacerbate glomerular injury and tubulointerstitial inflammation

through the secretion of IL-1b and IL-18. In SLE, abundant

neutrophil extracellular traps (NETs) are released into the

circulation. These NETs directly activate the NLRP3

inflammasome in both human and murine macrophages,

triggering robust IL-1b and IL-18 secretion. In turn, IL-18
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stimulates neutrophils to generate additional NETs—establishing a

self-amplifying positive feedback loop that accelerates systemic

inflammation in SLE (216). During SLE flares, cell death releases

double-stranded DNA (dsDNA), which, together with subsequently

generated anti-dsDNA autoantibodies, engages TLR4 onmonocytes

and macrophages. This interaction induces ROS production and

potassium efflux, both of which serve as canonical triggers for

NLRP3 inflammasome assembly. Notably, pharmacological

antioxidants or genetic downregulation of TLR4 significantly

suppresses NLRP3 activation in these myeloid cells (219). More

recently, it has been demonstrated that reduced serum high-density

lipoprotein (HDL) levels in SLE patients impair cholesterol efflux in

dendritic cells. This lipid dysregulation activates the NLRP3

inflammasome, enhancing secretion of pro-inflammatory

cytokines and promoting polarization of CD4+ T cells toward

Th1 and Th17 phenotypes. Crucially, knockdown of NLRP3

expression in dendritic cells markedly attenuates these

inflammatory and immunomodulatory effects, underscoring the

central role of NLRP3 in bridging lipid metabolism, innate

immunity, and adaptive T-cell responses in SLE (220).

4.1.4.3 NLRP3 inflammasome activation in intrinsic renal
cells drives lupus nephritis

It has been firmly established through both in vivo and in vitro

studies that intrinsic renal cells in humans and rodents, including

podocytes (221–223), mesangial cells (121, 224), glomerular

endothelial cells (68), and tubular epithelial cells (225, 226), are

capable of expressing the NLRP3 inflammasome. Upon activation,

these cells cleave pro-caspase-1 into its active form, leading to the

maturation and secretion of pro-inflammatory cytokines such as IL-

1b and IL-18—thereby directly contributing to local renal

inflammation and tissue injury. Below, we focus on the impact of

NLRP3 inflammasome activation in tubular epithelial cells and

podocytes, two key cellular compartments in LN. Tubulointerstitial

inflammation is a critical determinant of disease progression in LN.

Upon injury, damaged or necrotic tubular epithelial cells release

DAMPs—including ROS, extracellular ATP, uric acid, nucleic

acids, and extracellular matrix components (e.g., hyaluronan,

biglycan). These DAMPs activate the NLRP3 inflammasome

within neighboring tubular epithelial cells, triggering the release

of inflammatory cytokines and chemokines that recruit neutrophils,

macrophages, natural killer cells, and lymphocytes into the renal

interstitium. This cascade amplifies local inflammation and

accelerates tubulointerstitial injury (227). Our previous work

demonstrated that elevated IL-18 expression in tubular epithelial

cells correlates strongly with the severity of tubulointerstitial

damage in LN (228). Faust et al. further confirmed that

upregulation of IL-18 in renal tubules positively correlates with

histological and functional kidney injury in murine LN models

(229, 230). In LN, anti-dsDNA autoantibodies can bind directly to

tubular epithelial cells, promoting tubulointerstitial inflammation, a

process likely mediated, at least in part, by NLRP3 inflammasome

activation. Moreover, NLRP3 signaling in tubular cells not only
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drives inflammation but also contributes to tissue repair and,

paradoxically, to maladaptive fibrogenesis (231). Thus, the

NLRP3 inflammasome in tubular epithelial cells is intimately

linked to both the inflammatory and fibrotic phases of

tubulointerstitial injury in LN. Podocytes are essential for

maintaining the structural and functional integrity of the

glomerular filtration barrier—and are consistently targeted in LN.

Zhang et al. first demonstrated in a hyperhomocysteinemia model

that NLRP3 inflammasome activation in podocytes induces foot

process effacement, contributing to glomerulosclerosis and

proteinuria (221). Shahzad et al. further showed that NLRP3

activation in glomerular intrinsic cells (particularly podocytes)

exacerbates glomerular injury in murine models of diabetic

nephropathy, highlighting a conserved pathogenic role across

glomerulopathies (231). In the context of SLE and LN, recent

groundbreaking work from Prof. Niansheng Yang’s team revealed

that podocyte NLRP3 is activated by ROS in both LN patients and

murine models. Critically, this activation directly mediates

podocyte injury and contributes to disease pathogenesis—

underscoring the indispensable role of podocyte-intrinsic NLRP3

signaling in LN progression (67).

4.1.4.4 Therapeutic targeting of the NLRP3
inflammasome in lupus nephritis: emerging opportunities

As outlined above, the NLRP3 inflammasome plays a pivotal

role in the pathogenesis of LN, offering novel avenues for targeted

therapeutic intervention. Numerous studies have explored

pharmacological agents capable of suppressing NLRP3

inflammasome activation, including inhibitors of its assembly and

regulators of IL-1b and IL-18 secretion; however, most of these

agents lack specificity for the NLRP3 pathway. Recently, however,

two highly selective inhibitors targeting the NLRP3–ASC–caspase-

1–IL-1b/IL-18 axis have emerged, holding significant promise for

treating NLRP3-driven diseases, including LN and other

autoimmune conditions. b-Hydroxybutyrate (BHB), a ketone

body produced during fasting or caloric restriction, directly

inhibits NLRP3 inflammasome activation by blocking potassium

efflux and ASC oligomerization. Notably, BHB’s inhibitory effect is

independent of its chirality and does not rely on classical starvation-

associated pathways—including AMPK signaling, ROS modulation,

autophagy, or glycolysis inhibition. In both murine and human

macrophage models, BHB significantly reduces LPS-induced

secretion of IL-1b and other inflammatory cytokines. In NLRP3-

dependent murine disease models, including Muckle–Wells

syndrome, familial cold autoinflammatory syndrome, and

monosodium urate crystal-induced peritonitis, BHB consistently

suppresses caspase-1 activation and IL-1b release, confirming its

broad anti-inflammatory efficacy (232). MCC950 is a small-

molecule inhibitor that selectively blocks both canonical and non-

canonical NLRP3 inflammasome activation, without affecting

AIM2, NLRC4, or NLRP1 inflammasomes (142). In preclinical

models, MCC950 reduces systemic IL-1b levels and ameliorates

disease severity in experimental autoimmune encephalomyelitis.
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Critically, in the NZM2328 murine model of LN, MCC950

treatment significantly attenuates podocyte foot process

effacement, improves renal histopathology, and reduces

proteinuria—providing direct evidence of its renoprotective

potential in lupus nephritis (47). Accumulating evidence

underscores the indispensable role of the NLRP3 inflammasome

in LN pathogenesis. DAMPs generated during immune

dysregulation activate NLRP3 in both circulating immune cells

and intrinsic renal cells, leading to caspase-1–dependent

maturation and secretion of IL-1b and IL-18. Despite extensive

research, the precise molecular mechanisms by which NLRP3

contributes to LN progression remain incompletely defined,

necessitating further mechanistic and clinical investigations.

While the development of pathway-specific inhibitors, such as

BHB and MCC950, offers exciting therapeutic potential, their

efficacy and safety in human LN patients remain to be rigorously

validated in clinical trials. Translating these preclinical successes

into clinical reality will require sustained, multidisciplinary efforts.

In summary, as our understanding of the NLRP3 inflammasome in

LN continues to deepen, it will pave the way for novel, mechanism-

based therapies, not only for LN but also for a broad spectrum of

NLRP3-driven autoimmune and inflammatory diseases.
4.2 The inflammasome in AKI

The NLRP3 inflammasome plays a critical and context-

dependent role in the pathogenesis of AKI. In murine models of

ischemia–reperfusion injury (IRI), renal tubular epithelial cells

exhibit markedly increased NLRP3 expression, accompanied by

histopathological features of tubular necrosis, brush border loss,

and tubular dilation. These changes correlate with significant

elevations in serum creatinine, blood urea nitrogen (BUN), and

urinary protein excretion, collectively indicating that NLRP3

inflammasome activation in tubular epithelial cells is a key driver

of ischemia–reperfusion injury (IRI)-induced renal damage (58).

The NLRP3 inflammasome also contributes to AKI triggered by

contrast agents and rhabdomyolysis. Genetic silencing of NLRP3

significantly ameliorates tubular epithelial cell degeneration,

apoptosis, and inflammatory cell infiltration in these models (233,

234). Cao et al. demonstrated that in murine models of sepsis-

induced AKI, renal expression of NLRP3, ASC, and caspase-1 is

markedly upregulated, accompanied by robust neutrophil

infiltration and elevated serum creatinine. Notably, NLRP3

knockout reverses neutrophil accumulation and attenuates

creatinine elevation, highlighting its pathogenic role in septic AKI

(235). Consistent with preclinical findings, elevated NLRP3

expression has been detected in renal biopsy specimens from

patients with crescentic glomerulonephritis and acute tubular

necrosis (236). Interestingly, however, the IRI model established

by Iyer et al. revealed that NLRP3 knockout significantly

ameliorated renal function injury and reduced neutrophil

infiltration in the renal interstitium, whereas ASC knockout mice
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showed no significant effect on these AKI-related changes,

suggesting that the NLRP3 inflammasome may exert additional

functions independent of ASC and caspase-1 (237). The study by

Kim et al. demonstrated that NLRP3 knockout mice were resistant

to ischemia–reperfusion injury (IRI)-induced AKI; however, in

cisplatin-induced AKI, NLRP3 deficiency did not reduce caspase-

1 levels. In fact, caspase-1 activity increased, and tubular necrosis,

tubular cell apoptosis, blood urea nitrogen, and serum creatinine

levels were not significantly attenuated (238). This indicates that

NLRP3 may play a relatively minor role in cisplatin-induced AKI.

In contrast, NLRP1 and ASC were upregulated in cisplatin-induced

AKI, suggesting that NLRP1 may be functionally involved in this

form of AKI. Thus, NLRP3 appears to exert distinct roles in AKI

depending on the underlying etiology.
4.3 The NLRP3 inflammasome participates
in renal ischemia–reperfusion injury via
associated inflammatory signaling
pathways

Renal ischemia–reperfusion injury (IRI), commonly

encountered during kidney transplantation, represents a critical

pathophysiological process leading to acute kidney failure and

significantly impairs recipient prognosis (239). Inflammatory

responses play a pivotal role in the pathogenesis and progression

of IRI. The activated NLRP3 inflammasome modulates systemic

inflammatory responses and associated cellular functions by

mediating the maturation and release of multiple pro-

inflammatory cytokines (240). Kidney transplantation remains the

optimal therapeutic strategy for end-stage renal disease, with

transplant recipients exhibiting markedly superior long-term

survival and quality of life compared with patients undergoing

dialysis. Nevertheless, renal IRI frequently accompanies kidney

transplantation procedures and severely compromises recipient

outcomes. IRI is a pathological state in which temporary

reduction of blood supply to an organ, followed by restoration of

perfusion, paradoxically induces functional impairment and even

structural damage (241). The kidney is among the primary organs

vulnerable to IRI, with underlying mechanisms potentially

involving inflammatory responses, oxygen free radicals,

intracellular calcium overload, apoptosis, and other factors (242).

Following renal ischemia, dysfunction of tubular epithelial cells and

endothelial cells activates leukocytes within the tissue, ultimately

exacerbating vascular leakage and interstitial edema (243). Upon

subsequent stimulation, the host can activate pattern recognition

receptors such as Toll-like receptors (TLRs) and NOD-like

receptors (NLRs) to exert inflammatory regulatory effects (244).

NLRs constitute a family of intracellular innate sensors—

cytoplasmic proteins that regulate inflammatory and apoptotic

responses. Among them, the NLRP3 inflammasome has attracted

particular research attention. The NLRP3 inflammasome

contributes to the progression of renal IRI by amplifying
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inflammatory responses in immune cells and modulating

interactions between immune cells and non-immune renal cells

(245). Elucidating the inflammatory signaling pathways associated

with the NLRP3 inflammasome in renal IRI may hold significant

implications for the prevention and treatment of this condition.

4.3.1 The NLRP3 inflammasome participates in
renal IRI via distinct inflammatory signaling
pathways

The kidney is endowed with an exceptionally rich blood supply

and plays a vital role in maintaining electrolyte homeostasis and

excreting metabolic waste. To support these functions, renal tissues,

particularly tubular epithelial cells, possess a high mitochondrial

density, rendering them highly sensitive to hypoxia and energy

depletion. Renal IRI is often unavoidable during kidney

transplantation. During IRI, the kidney mounts a robust

inflammatory response, with its morphology, hemodynamics,

epithelial cells, and endothelial cells all affected to varying degrees

(246). Under brief ischemic conditions, endothelial cells and

platelets can exert protective effects by inducing coagulation

dysfunction and promoting leukocyte activation; however,

prolonged or severe ischemia leads to cellular injury and death

(247). The NLR family is intimately linked to multiple renal

pathophysiological processes. Upon stimulation, activation of

innate immune signaling pathways, such as NF-kB and

inflammasome-associated pathways, initiated by NLR and related

receptor molecules can alter metabolic patterns in renal cells and

modify the phenotypes of both immune and parenchymal cells.

These changes trigger the secretion of diverse inflammatory

mediators, ultimately resulting in irreversible renal tissue damage

and functional impairment (247). During renal IRI, the NLRP3

inflammasome contributes to inflammatory responses through two

major pathways: the canonical pathway, which depends on

Caspase-1 to exert pro-inflammatory effects, and the non-

canonical pathway, which primarily relies on Caspase-4, Caspase-

5, or Caspase-11 (247).

4.3.2 The NLRP3 inflammasome participates in
renal IRI via the canonical inflammatory signaling
pathway

The assembly of the NLRP3 inflammasome plays a pivotal role

in renal IRI, contributing to multiple pathophysiological processes

including tissue damage, inflammatory responses, and fibrosis. In

exploring the mechanisms by which necrotic injury is converted

into inflammation in vivo, numerous studies have demonstrated

that the NLRP3 inflammasome primarily exerts its pro-

inflammatory effects in renal IRI through the canonical

inflammatory signaling pathway (248). Researchers utilizing

NLRP3 inflammasome-deficient mice to establish IRI models

observed, following reperfusion, enhanced proliferation of tubular

epithelial cells, reduced tubular necrosis and apoptosis, and

subsequently re-aggregated tubular epithelial cells—indicating

that the NLRP3 inflammasome impedes the repair response after
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IRI (248). Extensive evidence indicates that the NLRP3

inflammasome mediates renal IRI predominantly through the

canonical pathway dependent on Caspase-1. Wen et al. (58)

found that NLRP3 inflammasome activation was elevated in renal

IRI; in wild-type mice subjected to simulated IRI, expression levels

of NLRP3 and ASC were upregulated. Moreover, IRI promoted the

maturation and secretion of Caspase-1, IL-1b, and IL-18. In

contrast to wild-type IRI mice, NLRP3 inflammasome-deficient

IRI mice exhibited milder renal pathological damage, with

significantly suppressed levels of serum creatinine, blood urea

nitrogen, urinary neutrophil gelatinase-associated lipocalin

(NGAL), and inflammasome activation. Furthermore, the study

revealed that ROS responsible for activating the NLRP3

inflammasome during renal IRI are generated by damaged

mitochondria, and that ROS induce NLRP3 inflammasome

activation via direct interaction with TXNIP. Iyer et al.

demonstrated that NLRP3 inflammasome deficiency protects

animals from lethal renal ischemic injury: During ischemic acute

tubular necrosis, the NLRP3 inflammasome drives excessive acute

inflammation, thereby contributing to IRI-induced renal

dysfunction and lethal tubular injury (237). Comparisons between

NLRP3-deficient and wild-type mice revealed statistically

significant differences in survival rates, blood urea nitrogen,

serum creatinine, and neutrophil infiltration. Additionally, Kim

et al. reported that, compared with wild-type mice, NLRP3

inflammasome-deficient mice exhibited reduced levels of blood

urea nitrogen, serum creatinine, acute tubular necrosis scores, and

apoptosis scores, further confirming the protective effect conferred

by NLRP3 inflammasome deficiency against ischemic AKI (238).

4.3.3 The NLRP3 inflammasome participates in
renal IRI via non-canonical inflammatory
signaling pathways

Studies have shown that NLRP3 deficiency ameliorates renal

IRI in mice, whereas ASC deficiency confers less pronounced

protection against lethal renal ischemic injury (249). This suggests

that, within the kidney, components of the NLRP3 inflammasome

other than ASC may independently contribute to damage signaling.

A recent study demonstrated that the NLRP3 inflammasome can

induce pyroptosis independently of Caspase-1 and gasdermin D

(GSDMD) (250). Moreover, LPS and oxidized phospholipids can

directly bind and activate Caspase-11, Caspase-4, and Caspase-5,

triggering inflammasome assembly even in macrophages lacking

canonical adaptor proteins (251). Shigeoka et al. (252) reported that

NLRP3 deficiency impaired IL-1b and IL-18 production, yet

blockade of IL-1b and IL-18 did not significantly attenuate

cellular injury, suggesting that in renal tubular epithelial cells,

NLRP3 can initiate damage responses independent of canonical

inflammasome components, pro-inflammatory cytokines, or

chemokines. Kim et al. (63) further demonstrated that under

hypoxic conditions, ASC and NLRP3 showed no significant co-

localization; instead, NLRP3 relocalized to mitochondria in renal

tubular epithelial cells even in the absence of ASC or caspase-1,
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where it modulated mitochondrial damage and apoptosis during

ischemia–hypoxia via the mitochondrial antiviral signaling protein

(MAVS), thereby regulating renal ischemia–reperfusion injury

(IRI) independently of ASC or caspase-1.

In summary, renal IRI and the pathogenesis of numerous

inflammatory diseases are closely linked to the excessive activation of

the NLRP3 inflammasome, suggesting that NLRP3 represents

a potential therapeutic target for these conditions. However, clinically

approved pharmacological agents specifically targeting the NLRP3

inflammasome remain lacking. Recent studies have identified

several strategies capable of downregulating NLRP3 expression or

inhibiting NLRP3 inflammasome assembly. Compounds such as

nodakenin, allopurinol, epoxyeicosatrienoic acids (EETs), and

protein C activators have been shown to directly suppress NLRP3

inflammasome activation (236, 253–255). Inhibition of channel or

receptor activity, including Pannexin-1 and P2X4, can also attenuate

NLRP3 inflammasome activation (53, 256). Furthermore, microRNAs

(miRNAs), such as miR-223, miR-9, and miR-155, have been reported

to downregulate NLRP3 expression by directly targeting the NLRP3

gene (257, 258). Recently, researchers discovered that Leishmania

parasite infection induces fine-tuned transcriptional responses via
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macrophage histone H3 modifications, which can suppress activation

of both NF-kB and the NLRP3 inflammasome (259). These findings

collectively suggest that multiple therapeutic avenues exist to inhibit

NLRP3 inflammasome activity for the treatment of renal IRI;

suppressing its overactivation may represent a viable strategy for

preventing and managing renal IRI. Future research should further

elucidate the specific signaling events and molecular mechanisms by

which the NLRP3 inflammasome drives renal IRI in humans, thereby

providing novel insights and therapeutic approaches for

clinical intervention.
5 Pharmacological targeting of the
NLRP3 inflammasome in kidney
diseases

Numerous biological inhibitors targeting the NLRP3

inflammasome have been developed to date (Table 1); however,

their efficacy and safety profiles in the context of kidney diseases

remain to be fully established.
TABLE 1 Research progress of drugs targeting the NLRP3 inflammasome in kidney applications.

Drug Target Mechanism
Clinical trial
status

Kidney disease
Main adverse
effects and
reference

MCC950 NLRP3 Blocking NLRP3-induced
ASC oligomerization

Preclinical research Diabetic nephropathy,
hypertensive
nephropathy, contrast-
induced nephropathy,
kidney injury induced by
cisplatin and sepsis

Hepatotoxicity (67, 143,
260–265)

Tranilast NLRP3 Enhances NLRP3
ubiquitination; binds to
NACHT and inhibits
NLRP3-NLRP3
interactions

Clinical application Diabetic nephropathy NA (266–269)

b-Hydroxybutyrate NLRP3 Inhibits K+ efflux and
reduces ASC
oligomerization and
speck formation

Preclinical research Hyperoxalate-induced
tubular injury

NA (270)

CY-09 NLRP3 Binds to the ATP-
binding motif of the
NACHT domain and
inhibits it

Preclinical research Ischemia–reperfusion
acute kidney injury

NA (142, 271)

VX-740/765 NLRP3 ATPase activity; caspase-
1 selectively inhibits
caspase-1

Preclinical research NA Hepatotoxicity (272)

AZD9056 P2X7 Antagonizes P2X7 Phase II NA NA (273)

Brilliant Blue G P2X7 Selective P2X7
antagonism

Preclinical research Hypertensive
nephropathy, lupus
nephritis

NA (274–276)

Glibenclamide K+ channels ATP-sensitive K+

channel inhibitor
Clinical application Chronic kidney disease Glucose metabolism

abnormalities (277, 278)
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5.1 Drugs targeting NLRP3

MCC950 is currently the most potent and highly selective

NLRP3 inhibitor reported to date (261) (Table 1). As a small-

molecule diarylsulfonylurea compound, MCC950 selectively

inhibits NLRP3 inflammasome activation by blocking ASC

oligomerization (279). In diabetic nephropathy models, both in

vivo and in vitro, MCC950 attenuates glomerular basement

membrane thickening, podocyte injury, and renal fibrosis by

suppressing the NLRP3/caspase-1/IL-1b signaling axis (143, 260).

In hypertensive mice, MCC950 reduces blood pressure and

proteinuria while alleviating renal inflammation and fibrosis

(261). In crystal-induced nephropathy, MCC950 ameliorates renal

fibrosis by inhibiting inflammasome activation and the production

of IL-1b and IL-18 (262). Moreover, MCC950 mitigates podocyte

injury in models of obesity-associated glomerulopathy and lupus

susceptibility, as well as kidney damage induced by sepsis (67, 263,

264). Additionally, MCC950 improves cisplatin-induced renal

dysfunction by reducing oxidative stress and inflammation,

thereby alleviating tubular injury and fibrosis (261). Despite these

promising findings and its advantages as a small molecule with high

specificity, the safety profile of MCC950 for treating kidney diseases

remains to be fully established. Notably, a phase II clinical trial of

MCC950 for rheumatoid arthritis was halted due to hepatotoxicity

concerns (265). Tranilast, an analog of a tryptophan metabolite and

a traditional anti-allergic drug, has recently been shown to directly

target and inhibit NLRP3 activity (266). Tranilast enhances NLRP3

ubiquitination by binding to its NACHT domain, thereby

disrupting NLRP3–NLRP3 interactions and preventing

inflammasome assembly and activation (266, 267). Tranilast

reduces oxidative stress (280), inhibits mast cell infiltration (277),

suppresses extracellular matrix (ECM) deposition (278), attenuates

epithelial–mesenchymal transition (EMT) (281), decreases

proteinuria (282), and mitigates tubulointerstitial fibrosis (283),

playing a critical role in halting the progression of renal fibrosis. It

also ameliorates nephrotoxicity induced by cyclophosphamide and

cyclosporine (268, 269). Although not yet approved for kidney

diseases, tranilast is already clinically used for various inflammatory

conditions and is generally well-tolerated with minimal adverse

effects (266). Preclinical studies demonstrate its substantial

therapeutic potential in animal models of kidney disease,

warranting future clinical investigations into its efficacy and safety

across diverse renal pathologies. b-Hydroxybutyrate (BHB),

identified in recent years as an endogenous inhibitor of the

NLRP3 inflammasome, prevents K+ efflux and suppresses ASC

oligomerization and speck formation (270). Studies show that

BHB alleviates tubular injury in mice fed a high-oxalate diet and

promotes a phenotypic switch in macrophages from a pro-

inflammatory to an anti-inflammatory state. These findings

suggest that BHB may mitigate renal inflammation and holds

promise as a potential therapeutic agent for kidney-related

diseases via NLRP3 inflammasome inhibition. CY-09 is a direct
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NLRP3 inflammasome inhibitor identified to date. It binds to the

ATP-binding motif within the NACHT domain of NLRP3 and

inhibits its ATPase activity, thereby blocking inflammasome

assembly and activation (142). CY-09 has demonstrated efficacy

in animal models of various diseases, including obesity and

associated non-alcoholic fatty liver disease (284), type 2 diabetes

(142), and epilepsy (285). However, reports on its application in

kidney diseases remain limited. To date, CY-09 has only been

shown to ameliorate renal dysfunction induced by ischemia-

reperfusion injury (271).
5.2 Drugs targeting caspase-1

VX-740 and VX-765 are peptidomimetic prodrugs that inhibit

caspase-1. Both compounds advanced to Phase II clinical trials for

the treatment of psoriasis, arthritis, and epilepsy; however, their

development was discontinued due to hepatotoxicity concerns

(272). To date, no clinical trials evaluating the efficacy or safety of

these agents in kidney diseases have been reported.
5.3 Drugs targeting P2X7

AZD9056 is the first P2X7 receptor antagonist to have

successfully entered clinical trials, demonstrating significant

efficacy in phase IIa trials for rheumatoid arthritis. In addition to

AZD9056, other P2X7 inhibitors, such as CE-224,535, have also

advanced into clinical development (286). However, no studies to

date have evaluated their application in the treatment of kidney

diseases. Brilliant Blue G (BBG) is a selective P2X7 receptor

antagonist. Experimental evidence indicates that BBG can

attenuate inflammation and fibrosis (274, 275). In animal models,

BBG has been shown to ameliorate renal injury in Dahl salt-

sensitive rats and LN mice (276). Mechanistically, BBG

suppresses macrophage and fibroblast infiltration, reduces the

expression of inflammatory cytokines and collagen, inhibits

apoptosis, and promotes regeneration of renal tubular epithelial

cells (287). Nevertheless, the safety profile and clinical efficacy of

BBG in human kidney diseases remain to be investigated in

controlled clinical trials.
5.4 Drugs targeting K+ channels

Lamkanfi et al. (232) demonstrated that glibenclamide

(glyburide), by binding to ATP-sensitive K+ channels, can inhibit

NLRP3 inflammasome activation. As an NLRP3 inflammasome

inhibitor, glibenclamide has been shown to attenuate adenine-

induced CKD and renal fibrosis in rats (288). However, as a

sulfonylurea antidiabetic agent, its clinical utility beyond glycemic

control is limited by the risk of hypoglycemia and glucose
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metabolism disturbances (289). Therapeutic targets and inhibitors

of the NLRP3 inflammasome are detailed in Figure 5 below.

In summary, significant progress has been made in elucidating

the functional roles of the NLRP3 inflammasome in kidney diseases.

The NLRP3 inflammasome is now recognized as a key contributor
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to the initiation and progression of multiple renal disorders;

however, its detailed mechanistic actions, clinical translatable, and

particularly its inflammasome - independent functions remain

incompletely understood and are still in their infancy. A deeper

understanding of its associated signaling pathways, regulatory
FIGURE 5

Therapeutic targets and inhibitors of the NLRP3 inflammasome include clinically approved biologics such as canakinumab, rilonacept, and anakinra,
which inhibit inflammation by blocking interleukin-1b from binding to the interleukin-1 receptor on effector cells, acting downstream of
inflammasome activation. Compounds such as disulfiram, oridonin, and tranilast inhibit inflammasome signaling at various stages, including the initial
activation step. The discovery that sulfonylurea-containing inhibitors CRID3 and glyburide selectively inhibit the NLRP3 activation step has paved the
way for second-generation clinical-grade NLRP3 inhibitors with enhanced potency and improved pharmacological profiles, such as ZYIL1, DFV890,
and selnoflast. VTX3232, VTX2735, NT-0796, and NT-0249 are additional NLRP3 inhibitors in clinical development whose structures remain
undisclosed. HT-6184 modulates NEK7 in addition to inhibiting NLRP3. The anti-allergy drug tranilast and the anticancer candidate RRx-001 may not
be specific to NLRP3, as they exhibit additional immunomodulatory activities. Other NLRP3 inhibitors in preclinical development include VENT-01,
VENT-02, and NT-0527. CRID3 reversibly binds to the NACHT domain of NLRP3. Other compounds proposed to inhibit NLRP3 via binding to its
NACHT domain include CY-09, tranilast, and the covalent NLRP3 inhibitors shikonin and oridonin. Compound E6, a novel oridonin derivative,
exhibits greater potency and selectivity. Additional inflammasome targets acting downstream of NLRP3 and other inflammasome sensors include
apoptosis-associated speck-like protein containing a CARD (ASC), GSDMD, and nerve injury-induced protein 1 (NINJ1). The small-molecule ASC
inhibitor MM01 suppresses ASC oligomerization, whereas the biologics IC-100 and the VHHASC nanobody target extracellular ASC specks. C202–
2729 is thought to non-covalently bind and inhibit translocation of the GSDMD N-terminal (NT) domain to the plasma membrane. The FDA-
approved drugs disulfiram and dimethyl fumarate, as well as the necroptosis inhibitor necrosulfonamide, inhibit GSDMD through covalent
modification; however, these molecules exhibit polypharmacological properties. The GSDMD-targeting nanobodies VHHGSDMD-1 and
VHHGSDMD-2 inhibit GSDMD polymerization in the plasma membrane without interfering with membrane insertion of the GSDMD NT domain. The
antagonistic NINJ1 monoclonal antibody (mAb) clone D1 inhibits NINJ1 polymerization and pyroptotic lysis downstream of GSDMD NT membrane
pores. DAMP, damage-associated molecular pattern; HMGB1, high-mobility group box 1; LDH, lactate dehydrogenase; LPS, lipopolysaccharide;
NF-kB, nuclear factor kappa B; TLR, Toll-like receptor.
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networks, and pathophysiological significance will be instrumental

in formulating novel strategies for the prevention and treatment of

kidney diseases. Compared with currently employed large -

molecule biologics (290), small - molecule inhibitors that directly

target the NLRP3 inflammasome offer distinct advantages,

including higher target specificity, lower manufacturing costs, and

reduced toxicity due to lower effective dosing requirements — thus

demonstrating considerable therapeutic promise. Several

investigational agents targeting the NLRP3 inflammasome or its

downstream effectors have already shown encouraging results in

non - renal diseases (291); however, research evaluating their

efficacy specifically in kidney pathologies remains limited. These

agents may hold substantial potential for treating both AKI and

CKD[ (292). Nevertheless, translating promising preclinical

findings into clinical applications will require substantial time and

effort, and the efficacy and safety profiles of these compounds in

renal disease contexts remain to be definitively established.
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6 Discussion, perspectives, and
challenges: the translational road to
targeting the NLRP3 inflammasome in
kidney disease

6.1 From mechanistic consensus to clinical
heterogeneity: the “double-edged sword”
nature of NLRP3 in kidney disease

Although a broad scientific consensus supports the pathogenic

role of the NLRP3 inflammasome in kidney diseases, its activation

exhibits remarkable functional heterogeneity across disease stages,

cell types (e.g., tubular epithelial cells, podocytes, macrophages,

dendritic cells), and even patient subpopulations. For instance,

during the early phase of AKI, moderate NLRP3 activation may

exert protective immune surveillance functions by facilitating the
FIGURE 6

The NLRP3 inflammasome is involved in kidney diseases throughout the human lifespan.
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clearance of necrotic cellular debris; conversely, in CKD, persistent

NLRP3 activation drives irreversible fibrosis and functional decline.

This “time–space–dose”–dependent duality underscores that blunt

“inhibition of NLRP3” is not a universal therapeutic solution—

instead, context-specific modulation strategies must be developed

to match disease stage, cellular microenvironment, and individual

patient profiles. Adding further complexity, NLRP3 does not operate

in isolation but is embedded within a broader “inflammatory

network,” engaging in extensive crosstalk with pathways such as

TLR4, NF-kB, cGAS-STING, RIPK3-MLKL, and the autophagy–

lysosomal system. For example, in DKD, high glucose–induced

mitochondrial ROS not only activates NLRP3 but also concurrently

suppresses PINK1/Parkin-mediated mitophagy, thereby establishing

a self-amplifying feedback loop linking “inflammation–metabolic

stress–organelle damage”. Consequently, future research must

transcend the ‘single-target’ paradigm and embrace systems

pharmacology approaches to identify critical nodal regulators (e.g.,

NEK7, TXNIP, Gasdermin D) or engineer multitarget combinatorial

interventions that simultaneously disrupt pathogenic circuits while

preserving homeostatic functions (Figure 6).
6.2 Clinical translation of small-molecule
inhibitors: bridging the gulf from
“laboratory star” to “clinical reality”

Currently, NLRP3-specific inhibitors, exemplified by MCC950,

have demonstrated striking renoprotective effects in rodent models,

including attenuation of proteinuria, suppression of interstitial

fibrosis, and improvement of renal function. Nevertheless, their

journey toward clinical application remains fraught with

formidable obstacles:
Fron
1. Species disparities and model limitations: The majority of

preclinical studies rely on acute or subacute injury models

(e.g., cisplatin-induced AKI, UUO]), which inadequately

recapitulate the protracted, decades-long progression

characteristic of human CKD. Furthermore, significant

interspecies differences exist between rodents and humans

in NLRP3 expression patterns, IL-1b cleavage efficiency,

and susceptibility to pyroptosis—leading to inaccurate

extrapolation of drug efficacy and potential clinical failure.

2. Tissue targeting and bioavailability bottlenecks: The

kidney’s structural heterogeneity, which spans the cortex,

medulla, glomeruli, and tubules, poses a major

pharmacological challenge. Most existing small molecules

are administered systemically and often fail to accumulate

at therapeutic concentrations within pathologically relevant

microenvironments, such as the hypoxic medulla or fibrotic

interstitium. Overcoming these pharmacokinetic barriers

demands innovative delivery platforms, including tubule-

or podocyte-targeted nanocarriers and ligand–drug

conjugates engineered to bind brush border receptors in

the proximal tubule—thereby enhancing renal specificity

and minimizing off-target exposure.
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3. Safety concerns and off-target effects: NLRP3 fulfills

essential physiological roles in host defense, including

antifungal and anti-intracellular bacterial immunity.

Long-term systemic inhibition may therefore compromise

immune surveillance and increase infection risk. Although

OLT1177 (dapansutrile) has demonstrated favorable safety

profiles in clinical trials for gout and osteoarthritis,

longitudinal immunological monitoring data in renal

patient cohorts, particularly those with advanced CKD or

immunosuppressive comorbidities, are still lacking. Future

therapeutic design must prioritize conditional activation

strategies, such as pH-sensitive or ROS-responsive

prodrugs that release active compounds only in inflamed

microenvironments, or localized delivery systems (e.g.,

perirenal injectables or implantable microdevices) that

restrict pharmacological action to the kidney while

sparing systemic immunity.
6.3 NLRP3-targeted therapy in the era of
precision medicine: from “one-size-fits-all”
to “patient stratification”

Current clinical trial designs largely overlook the profound

heterogeneity in patients’ inflammatory phenotypes. There is an

urgent need to establish a comprehensive biomarker signature of

NLRP3 activation to guide patient selection, predict therapeutic

response, and monitor dynamic changes during treatment.

Promising candidate biomarkers include the following: (1) plasma or

urine biomarkers: IL-18, caspase-1 p20 fragment, and N-terminal

fragment of gasdermin D; (2) peripheral blood mononuclear cell

(PBMC) assays: NLRP3 mRNA expression levels or frequency of

ASC speck formation; (3) renal biopsy-based profiling:

immunohistochemical scoring of NLRP3, ASC, and caspase-1

protein expression, or spatial transcriptomic mapping of

inflammatory “hotspot” regions. By integrating multi-omics data

(e.g., intrarenal immune microenvironment revealed by single-cell

RNA-seq, plasma proteome, metabolome), an “NLRP3 Inflammatory

Index” can be constructed to enable pre-therapeutic risk stratification.

For example, patients with a high “Pyroptosis Index” may be more

sensitive to gasdermin D inhibitors, whereas those with an “IL-1b-
dominant” profile may be better suited for IL-1 receptor antagonists

(e.g., anakinra) or upstream NLRP3 inhibitors.
6.4 Future frontiers: beyond canonical
NLRP3—exploring next-generation
intervention strategies

1. Targeting NLRP3 assembly with “molecular glues” and

allosteric modulators

Current inhibitors predominantly act on the NLRP3 NACHT

domain (e.g., MCC950), but newly identified allosteric pockets (e.g.,

the HD2 subdomain of NLRP3) and protein–protein interfaces
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(e.g., NLRP3–NEK7, ASC–ASC) offer opportunities to develop

highly selective “molecular glues” or PROTAC degraders.

2. Epigenetic and metabolic reprogramming to regulate NLRP3

Histone modifications (e.g., H3K27ac), non-coding RNAs (e.g.,

miR-223, lncRNA NEAT1), and metabolites (e.g., succinate, itaconate)

can modulate NLRP3 transcription and activation. Indirect regulatory

strategies targeting epigenetic enzymes (e.g., BET inhibitors, HDACi)

or metabolic enzymes (e.g., IRG1/itaconate pathway) may enable more

durable and safer inflammatory silencing.

3. Prospects for gene editing and cell-based therapies

In hereditary kidney diseases (e.g., familial Mediterranean fever-

associated renal amyloidosis), CRISPR-Cas9–mediated NLRP3 gene

editing or transplantation of iPSC-derived, genetically corrected renal

cells may offer “one-time curative” solutions. Although still

conceptual, these approaches warrant forward-looking investment.
6.5 Challenges and unresolved mysteries:
key scientific questions urgently requiring
breakthroughs
Fron
- Does NLRP3 exert pro-regenerative functions in renal

progenitor or repair-associated cells? Could its inhibition

impair tissue regeneration?

- How is the dynamic crosstalk—or “death dialogue”—among

pyroptosis, apoptosis, and necroptosis balanced during

kidney injury? Does a therapeutic window exist for

modulating “cell death modality switching”?

- Within the gut–kidney axis, how do microbial metabolites

(e.g., TMAO, butyrate) remotely regulate intrarenal NLRP3

activation? Can probiotics or dietary interventions be

harnessed to therapeutically modulate the “gut–renal

immune axis”?

- How do sex differences and hormonal regulation (e.g., estrogen-

mediated suppression of NLRP3) influence therapeutic

responses? Should clinical trials be stratified by sex?
6.6 Concluding remarks: toward a five-
dimensional translational framework
—”mechanism–target–patient–delivery–
monitoring”

Targeting NLRP3 for kidney disease therapy has transitioned

from the stage of “proof-of-concept” to the critical phase of

“precision translation”. Future success will depend not only on

the development of superior small-molecule chemical entities but
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also on the establishment of an integrated five-dimensional

translational medicine framework encompassing deep mechanistic

dissection, precise patient stratification, intelligent drug delivery

systems, dynamic efficacy monitoring, and real-world validation.

Only through such a holistic approach can the brilliant “light of the

inflammasome” observed in the laboratory be truly transformed

into a “clinical torch” illuminating the path to improved outcomes

for millions of patients suffering from kidney disease.
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