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Defined metabolic states
shape T cell fate and function
across culture conditions
Kayla Sylvester*, Natasha Karassina, Anthony C. Lauer,
Gediminas Vidugiris and Jolanta Vidugiriene*

Research and Development, Promega Corporation, Madison, WI, United States
Introduction: T cell metabolism is a key determinant of immune function and

therapeutic efficacy, yet current expansion protocols often neglect how culture

conditions influence metabolic programming. We employed a modular, low-

input bioluminescent assay platform to profile how media, activation strength,

and metabolic perturbation define metabolic trajectories that persist through

early expansion and influence downstream outcomes.

Methods: A multifactorial experimental design was used to evaluate early T-cell

activation across media (ICXF, TexMACS, RPMI+FBS) and activators (TransAct,

Dynabeads, ImmunoCult). Low-input bioluminescent assays were used to

quantify metabolic cofactors (ATP, NAD+, NADP(H)), reducing capacity, and

nutrient usage (glucose, lactate, malate). Conditions that yield metabolically

distinct phenotypes were selected for deeper analysis of proliferation, cytokine

secretion, cytotoxicity, and flow cytometric profiling. To validate and functionally

confirm these phenotypes, pathway-specific metabolic inhibitors were

introduced in follow-up experiments.

Results: By measuring intracellular ATP, NAD+, NADP(H), reducing capacity, and

nutrient flux, we identified media- and activation-specific metabolic states that

emerged upon T-cell activation and persisted through early expansion. ICXF with

TransAct promoted a glycolytic, NAD-rich phenotype associated with rapid

expansion. In contrast, TexMACS with ImmunoCult supported oxidative

metabolism, enriched for TSCM-like cells, and enhanced cytotoxicity despite

slower growth. Early lactate levels strongly predicted downstream expansion (r

= 0.68, p < 0.0001), highlighting glycolytic activity as a key determinant of

proliferative potential. Functional validation with pathway-specific inhibitors

revealed media-dependent vulnerabilities, highlighting distinct metabolic wiring.

Conclusion: This approach enables predictive, multiplexed metabolic profiling

using minimal sample input and offers a scalable strategy to optimize T-cell

manufacturing for memory enrichment and cytotoxic potency.
KEYWORDS

T cell metabolism, ex vivo expansion, immunometabolism, bioluminescent assays,
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Introduction

Adoptive T-cell therapy has emerged as an innovative treatment

strategy in cancer immunotherapy, particularly for hematological

malignancies. Yet its broader clinical success is hindered by several

challenges, including limited persistence of transferred cells, antigen

escape, and the immunosuppressive tumor microenvironment (1–3).

One critical and often underappreciated factor contributing to these

limitations is the metabolic fitness of T cells, especially during ex vivo

expansion, where intense stimulation can drive terminal differentiation

and functional exhaustion (4–8). Efforts to improve T cell function

increasingly focus on modulating their metabolic state, particularly

during early activation when reprogramming first begins (9–12).

Upon activation, naïve T cells exit their quiescent, catabolic

state and initiate profound metabolic reprogramming, marked by

increased uptake of glucose and amino acids to support rapid

growth and proliferation (13–15). This shift redirects metabolism

from mitochondrial oxidative phosphorylation to an anabolic

program dominated by aerobic glycolysis, fueling the biosynthetic

demands of clonal expansion and effector differentiation (16–18).

In contrast, the formation and maintenance of memory T cells

are sustained by a metabolically distinct state that favors

mitochondrial oxidative metabolism, particularly enhanced fatty

acid oxidation, supporting long-term survival and self-renewal (19,

20). These divergent metabolic programs are orchestrated by a

combination of intrinsic factors, including transcriptional and

epigenetic regulators, and extrinsic cues such as nutrient

availability, cytokine signals (e.g., IL-2, IL-15), and the strength

and duration of T cell receptor (TCR) stimulation (21–25).

Under ex vivo conditions, however, standard T-cell expansion

protocols are designed to rapidly maximize cell yield and typically

emphasize strong and sustained activation in nutrient-rich

environments (26–28). These conditions preferentially promote

effector-like differentiation with sustained glycolytic metabolism,

yielding cell populations that differ metabolically and

phenotypically from the heterogeneous subsets generated in vivo

(29, 30). Consequently, ex vivo–expanded T cells often exhibit

diminished persistence and functional capacity after in vivo

transfer, underscoring the need to mimic physiological

differentiation cues during manufacturing (31, 32).

Thus, assessing metabolic state during in vitro expansion provides

a framework for optimizing culture conditions and improving the

functional quality of cell therapy products. Strategies to enhance

metabolic fitness have included cytokine modulation (e.g., IL-7 and

IL-15), nutrient restriction or reprogramming, and the use of

pharmacologic agents to promote mitochondrial metabolism and

memory-like differentiation (33, 34). Memory-like CAR T cells,

which exhibit enhanced oxidative metabolism, demonstrate superior

persistence and antitumor activity, whereas glycolysis-driven CAR T

cells are more prone to exhaustion and reduced efficacy (35–38).

Despite the growing recognition that metabolism shapes

therapeutic outcomes, most manufacturing protocols still rely on

phenotypic markers such as CD69/CD25 expression or cytokine

secretion, which may not reliably reflect underlying metabolic fitness.

Efforts to integrate metabolic assessments into manufacturing pipelines
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have been limited by the complexity and low throughput of existing

technologies (39, 40). Techniques like Seahorse extracellular flux

analysis and stable isotope tracing provide mechanistic depth but are

not readily scalable for routine use (41).

In this study, to enhance metabolic T-cell fitness during ex vivo

expansion, we employed a suite of sensitive, easy-to-use

bioluminescent assays to profile key metabolic parameters under

varying culture conditions (42, 43). By measuring intracellular ATP

levels and redox cofactors (NAD(P)(H)), alongside extracellular

metabolites such as glucose, lactate, and malate, we achieved

sensitive, multiplexed analysis of energy status, redox balance,

and nutrient utilization using minimal sample input. Integrating

these metabolic profiles with functional readouts, we demonstrate

that media composition and activation strength jointly shape early

metabolic programs—particularly glycolytic activity and cofactor

availability—which in turn influence proliferative capacity and

differentiation into memory- or effector-like phenotypes.

Together, these insights provide a foundation for rationally

designing culture conditions that yield T-cell products with

enhanced functionality and therapeutic potential.
Materials and methods

Donor material and T cell preparation

Peripheral blood mononuclear cells (PBMCs) were isolated

from leukapheresis products (Leukopaks; STEMCELL

Technologies, Cat. #70500) obtained from three healthy adult

donors. Samples were collected under IRB-approved protocols

provided by the vendor.

PBMCs were isolated by density gradient centrifugation at 300

× g for 10 minutes and resuspended in isolation buffer consisting of

PBS with 1% BSA and 2 mM EDTA at a concentration of 5 × 107

cells/mL. CD3+ T cells were enriched via negative selection using

the EasySep Human T Cell Isolation Kit (STEMCELL Technologies,

Cat. #17951) according to the manufacturer’s protocol.

Isolated T cells were cryopreserved in CryoStor CS10

(STEMCELL Technologies, Cat. #07930) using a controlled-rate

freezer and stored in liquid nitrogen. Prior to use, cells were thawed

and rested overnight in TexMACS medium (Miltenyi Biotec, Cat.

#130-097-196) at 37°C and 5% CO2. Both non-activated and

activated T cells were maintained under these conditions.

Cell counts and viability were assessed using ViaCount reagent on

a Guava easyCyte cytometer (Cytek Biosciences) and were recorded

throughout all experiments. These measurements were used tomonitor

cell health and to normalize metabolite measurements on a per-cell

basis, as well as to calculate secretion rates and integrated cell-hours.
Early T-cell activation and metabolic
remodeling

T cells from 2–3 donors were activated at 1 × 106 cells/mL in 6-

well plates in either TexMACS or ImmunoCult-XF T cell Expansion
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medium (ICXF, STEMCELL Technologies, Cat. #10981). Cells were

activated using either T cell TransAct (Miltenyi Biotec, Cat. #130-

111-160) or ImmunoCult Human CD3/CD28 T Cell Activator

(STEMCELL Technologies, Cat. #10971) and supplemented with

IL-7 and IL-15 each at 2.5 ng/mL (Miltenyi Biotec, Cat. #130-095–

361 and #130-095-764).

On Day 3, metabolic activity was evaluated using

bioluminescent assays (see Bioluminescent Metabolite Assays).

Flow cytometry was used to measure CD25 and CD69 expression

(see Flow Cytometry), and cytokine secretion (IFN-g and TNF-a)
was quantified from Day 2 supernatants (see Cytokine Assays).

Average cell volume was calculated based on mean cell diameter

reported by the ViCell automated cell counter (Beckman Coulter).
Metabolic profiling across activation
conditions

A full-factorial design assessed three media (TexMACS, ICXF,

RPMI 1640 [Gibco, Cat. #11875093] supplemented with 10% FBS

[Gibco, Cat. #A5670401]), four activators (TransAct, ImmunoCult,

Dynabeads Human T-Activator CD3/CD28 [Thermo Fisher

Scientific, Cat. #11161D] at 1:1 and 2:1 bead-to-cell ratios), and

two cytokine regimens: IL-2 at 30 IU/mL (IL2) or 60 IU/mL (IL2h),

and IL-7/IL-15 each at 2.5 ng/mL (IL7/15) or 5 ng/mL (IL7/15h),

yielding 48 unique conditions (Table 1). This screen was performed

using T cells from a single donor to enable broad condition

sampling. T cells were seeded and activated at 1 × 106 cells/mL in

384-well plates (Corning, Cat. #3570) and harvested on Day 3.

Metabolic profiling included intracellular ATP, NAD+, NADP

(H), reducing potential, and extracellular glucose, lactate, and

malate levels (see Bioluminescent Metabolite Assays). These seven

features were Z-score normalized prior to dimensionality reduction

and clustering. Principal component analysis (PCA) was performed

in Python using scikit-learn (v1.5.2) to reduce dimensionality. The

top three principal components, which together explained

approximately 68% of the total variance, were used for K-means

clustering (k = 4), with cluster number determined by silhouette

analysis. PCA visualizations were generated using matplotlib and

seaborn, with samples color-coded by media or cluster.
Validation across donors

Eight representative activation conditions (Table 2) were

selected from the 48-condition screen to represent each of the

four K-means–defined metabolic clusters. Selections were based on

cluster membership, condition uniqueness, and variation across

media, activator, and cytokine combinations to ensure phenotypic

breadth and experimental diversity. Each of these conditions was

subsequent ly t e s t ed in 2–3 independent donors to

assess reproducibility.

T cells were seeded and activated at 1 × 106 cells/mL in non-

treated 24-well plates using media, activators, and cytokines shown

in Table 1. On Day 3, metabolic profiling was conducted as
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described in Section 8, with lactate secretion and intracellular

NADP(H) levels serving as the primary readouts. Flow cytometry

was used to evaluate CD25 and CD69 expression (see Flow

Cytometry), and cytokine secretion (IFN-g and TNF-a) was

measured from culture supernatants (see Cytokine Assays).
T cell expansion and metabolite analysis

Following activation and metabolic profiling on Day 3

(Validation Across Donors), T cells from representative

conditions were seeded at 5 × 105 cells per well into GREX24

vessels (Wilson Wolf Manufacturing, Cat. #80192M) for expansion.

Activators were removed at the time of transfer, and cytokines were

replenished and maintained throughout the culture period.

Supernatants were collected on Day 7 and used to measure

glucose consumption, lactate secretion, and malate accumulation.

Fold expansion was calculated relative to the number of viable cells

seeded into GREX24 vessels on Day 3. Viability and expansion were

evaluated on Day 7, with Day 10 included for supplemental

comparison. Lactate:glucose and lactate:malate ratios were

calculated from the secretion rates, and Pearson correlation

analysis was used to assess the relationship between lactate

accumulation on Day 3 and fold expansion through Day 7.
Metabolic inhibition

To investigate condition-specific metabolic dependencies, T

cells were cultured in either ICXF with ImmunoCult activator or

TexMACS with TransAct activator, each supplemented with IL-7

and IL-15 (2.5 ng/mL each). At activation on Day 0, cells were

treated with 5 mM 2-deoxyglucose (2DG; Sigma-Aldrich) to inhibit

glycolysis, 20 µM Rotenone (Sigma-Aldrich) to inhibit

mitochondrial complex I, or 0.2 µM Antimycin A (Sigma-

Aldrich) to inhibit mitochondrial complex III. On Day 3, cells

were transferred to GREX24 vessels with activators removed, and

inhibitors and cytokines were replenished. Intracellular ATP and

NAD were measured on Day 3. Lactate secretion and fold

expansion were assessed from Day 3 to Day 7. All metrics were

reported as percent inhibition relative to untreated, activated

controls. Statistical comparisons were conducted using Welch’s

unpaired t-test to account for unequal variances between groups.
TABLE 1 Activation conditions overview.

Category Details

Media ICXF, RPMI+FBS, TexMACS

Activators
Dynabeads 1:1, Dynabeads 2:1,
ImmunoCult, TransAct

Cytokines IL2, IL2 h, IL7/15, IL7/15 h

Total Unique Conditions 48

Samples per Condition 4
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Post-expansion phenotype and function

To evaluate long-term effects, T cells from selected conditions

were analyzed post-expansion. Memory phenotype was assessed on

Day 10 by flow cytometry using CD45RA, CD62L, CD4, and CD8

antibodies (see Flow Cytometry). T cell subsets were gated as

follows: TSCM (stem cell memory, CD45RA+CD62L+CD95+), TCM

(central memory, CD45RA-CD62L+), TEM (effector memory,

CD45RA -CD62L - ) , a nd TEMRA ( t e rm in a l e ff e c t o r ,

CD45RA+CD62L-).

Cytotoxicity assays were performed using the HiBiT Ramos T-

Cell Killing Bioassay (JA1411; Promega) according to the

manufacturer’s CD8+ T Cell TDCC Assay Protocol. Briefly, T

cells were co-cultured with Ramos target cells expressing HiBiT at

defined effector-to-target (E:T) ratios of 1:0.3, 1:0.6, 1:1, 1:2.5, 1:5,

1:10, and 1:20, in the presence of 0.92 ng/mL blinatumomab.

Specific lysis was calculated relative to spontaneous release (no

effector cells) and maximum lysis (digitonin-treated targets). AUC

was used to quantify overall cytotoxic activity across the E:T

response curves. The assay was performed using T cells from two

independent donors, each tested in technical triplicate.
Bioluminescent metabolite assays

Bioluminescent metabolite assays were performed using

Promega kits and read on a GloMAX Discover plate reader (Cat.

#GM3000 ) . A s s a y s we r e s e t up a c co rd i n g t o t h e

manufacturer’s protocols.

Intracellular ATP, NAD+, and NADP(H) were quantified using

CellTiter-Glo 2.0 (Cat. #G9242), NAD/NADH-Glo (Cat. #G9071),

and NADP/NADPH-Glo (Cat. #G9081), respectively. Reducing

potential was measured using the RealTime-Glo MT Cell

Viability Assay (Cat. #G9711). For kinetic readouts, RealTime-

Glo luminescence was recorded hourly for 72 hours (equivalent

to 3 days) using a SparkCyto plate reader (Tecan, Cat. #30085834)

maintained at 37°C and 5% CO2.

Extracellular metabolites (glucose, lactate, malate) were measured

from supernatants collected at the indicated timepoints after activation.

Supernatants were acidified with 0.4 N HCl to halt enzymatic activity,

neutralized with 0.5 MTrizma base, and stored at −20°C. Samples were

diluted using an Echo Acoustic Liquid Handler (Beckman Coulter) and

analyzed using Promega kits for glucose (Cat. #J6021), lactate (Cat.

#J5021), and malate (Cat. #J8021).

Extracellular metabolite concentrations were determined by

comparing sample values to media-only controls: for lactate and

malate, background levels were subtracted, while glucose

consumption was calculated by subtracting sample concentrations

from the initial media-only baseline. All measurements were

converted to concentrations using internal assay standards.

Secretion and consumption rates were calculated based on time

elapsed and integrated cell-hours, representing the cumulative

viable cell burden over the measurement period.
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Flow cytometry

Flow cytometry was used to assess activation and memory

markers. CD25 (BV605, BioLegend, Cat. #302636) and CD69

(Pacific Blue, BioLegend, Cat. #310932) were assessed on Day 3

(Supplementary Figure S1). CD4 (APC, Miltenyi, Cat. #130-113-

210), CD8 (FITC, Miltenyi, Cat. #130-113-875), CD45RA (PE/Cy7,

BioLegend, Cat. #304112), and CD62L (BV785, BioLegend, Cat.

#304830) were assessed on Day 10. Samples were acquired using a

Guava easyCyte 12HT cytometer (Cytek) and analyzed using

FlowJo v10. Gating strategy included exclusion of debris and

doublets followed by quadrant gating on CD45RA and CD62L

within CD4+ or CD8+ populations (see Supplementary Figure S4).
Cytokine assays

Cytokines (IL-2, IFN-g, TNF-a) were measured from cell

culture supernatants using luminescent immunoassay kits

(Promega, Cat. #W6020, W6040, W6050). Assays were performed

according to the manufacturer’s instructions using internal assay

standards provided. Supernatants were diluted in PBS containing

0.1% BSA to ensure measured values fell within the linear range of

the assay.
Statistical analyses

All statistical analyses were performed using GraphPad Prism

v10 (GraphPad Software) unless otherwise specified. Differences

between two groups, such as activated vs. not activated T cells in

Figure 1, were assessed using two-tailed, unpaired Mann–Whitney

U tests, selected due to unequal variances, non-normal

distributions, and the use of unpaired samples from independent

cultures. For comparisons involving more than two groups, one-

way ANOVA followed by Tukey’s multiple comparisons test was

used to assess significance across conditions. For inhibitor studies

where variances differed between media conditions, Welch’s

unpaired t-test was employed to account for unequal variances

and compare the magnitude of inhibition between matched media

environments (e.g., TexMACS vs ICXF).

Principal component analysis (PCA) and K-means clustering

were conducted using Python and the scikit-learn v1.5.2 library.

Seven metabolic features, ATP, NAD+, total NADP(H), reducing

potential, glucose consumption, lactate secretion, and malate levels,

were Z-score normalized using StandardScaler to ensure all features

contributed equally regardless of their dynamic range. The top three

principal components, which explained approximately 68% of the

total variance, were used for downstream clustering and

visualization. K-means clustering (k = 4) was applied on these

components, with cluster number determined via silhouette

analysis. Visualization was performed using matplotlib v3.10.0

and seaborn v0.13.2.
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Correlation analyses were conducted using Pearson’s

correlation coefficient (r) to evaluate relationships between

metabolic parameters (e.g., lactate secretion) and downstream

outcomes (e.g., fold expansion). These analyses were used to

identify predictive associations between early metabolic activity

and subsequent functional performance.

Sample sizes, statistical tests, and replicate numbers are

reported in the respective figure legends. Statistical test selection

was guided by sample structure (paired vs. unpaired), variance

equality, and distribution assumptions, each confirmed per analysis.
Ethics statement

Human samples were obtained as leukopak products (Cat.

#70500) under IRB-approved protocols via STEMCELL

Technologies. Informed consent was obtained in accordance with

the Declaration of Helsinki.
Results

Early T-cell activation is coupled to rapid
metabolic remodeling

Early metabolic reprogramming shapes T cell fate, but tools to

monitor these transitions during early activation remain limited. To

address this, we stimulated T cells from three independent donors

under four defined conditions combining two CD3/CD28-based

activators (TransAct and ImmunoCult) with two commonly used

media (ICXF and TexMACS). On Day 3 post-activation, cells were

assessed using a panel of bioluminescent assays focused on

metabolic activity, including energy production, redox balance,

and nutrient consumption, alongside conventional activation

markers (Figure 1A).

T cells displayed hallmark signs of early activation in all

conditions, with increased cell size and elevated expression of

CD25 and/or CD69 (Figures 1B, C, Supplementary Figure S1).

Although all groups showed activation, cytokine secretion differed

substantially. IL-2, IFN-g, and TNF-a levels were elevated across

conditions, but with distinct production patterns between them

(Figure 1D), providing a functional context for interpreting the

associated metabolic changes.

To monitor metabolic activity during early activation, we used

the RealTime-Glo MT Viability assay, which reports NAD(P)H-

dependent reductase activity over time in live cells (44). This

approach captures dynamic changes in metabolic activity during

the priming phase, when proliferation has not yet begun but

metabolic engagement is increasing. All activated conditions

showed higher luminescence than non-activated controls over the

first 72 hours, with substantial variation in magnitude and kinetics

depending on the activation condition (Figure 1E).

Activation also led to substantial changes in intracellular

metabolic cofactors, which reflect key aspects of cellular energy

status and redox balance. ATP levels increased two- to three-fold
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relative to resting cells, rising from approximately 0.6–0.8 fmol/cell

to 1.2–2.3 fmol/cell (Figure 1F). NAD+ levels were also elevated

across conditions, consistent with increased catabolic activity

(Figure 1G). The largest shifts were observed in total NADP(H),

which increased 6- to 66-fold (Figure 1H), suggesting strong

engagement of biosynthetic and redox-supporting pathways, with

variation across activation environments. These changes were

reliably detected using only 1,000 to 5,000 cells per assay point,

highlighting the sensitivity and scalability of the assay platform.

To gain insight into metabolic pathway activity, media

supernatants were analyzed to assess extracellular metabolite

dynamics during activation. Glucose consumption and lactate

secretion increased across all stimulation conditions, reflecting

elevated glycolytic activity typical of early effector programming

(Figures 1I, J). Malate accumulation was also observed, indicating

ongoing metabolite processing that may reflect increased

mitochondrial activity or intermediate cycling through the TCA

cycle (Figure 1K). These measurements reveal how nutrients are

consumed, and byproducts are released during activation, offering a

distinct perspective from intracellular assays and helping infer

which pathways are engaged.

Together, these results show that bioluminescent assays can

sensitively detect early metabolic changes following T-cell

activation. This approach captures shared metabolic shifts

associated with activation as well as condition-specific differences

that emerge across diverse culture environments.
Metabolic profiling reveals media-specific
phenotypes

Building on our initial findings of condition-dependent

metabolic differences during early activation, we applied our assay

suite as a screening tool for metabolic phenotyping of activated T

cells. To capture global metabolic patterns, we employed a

combinatorial experimental design (Table 2) and used principal

component analysis (PCA) to dissect the influence of medium,

activation method, and cytokine supplementation on the metabolic

state of T cells (Figure 2A).

To reduce dimensionality and visualize trends, PCA was applied

to seven key metabolic features: ATP, total NADP(H), NAD,

reducing potential, lactate, glucose, and malate. The first two

principal components explained 68% of the total variance. PC1

was primarily associated with glycolytic activity (glucose

consumption, lactate secretion, NAD+ levels), while PC2 was

driven by energy and redox status (ATP, total NADP(H))

(Figure 2B). Samples segregated distinctly by media, indicating

that the culture environment is the dominant determinant of

metabolic phenotype.

To formalize these trends, we applied K-means clustering to the

standardized metabolic data. The optimal number of clusters (k = 4)

was selected based on silhouette analysis, revealing four discrete

metabolic states (Figure 2C). One-way ANOVA followed by Tukey

HSD post-hoc tests confirmed highly significant differences (p <

0.001) in all metabolic markers across clusters (Figures 2D–J).
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FIGURE 1

Multiparametric assessment identifies variation in T-cell activation across conditions. (A) Schematic of the experimental workflow and metabolic
pathways assessed. CD3+ T cells from 2–3 donors were stimulated under four defined activation/media conditions (TexMACS [TM] or ICXF media
combined with ImmunoCult [SC] or TransAct [TA] CD3/CD28 activators) and profiled on Day 3 for activation markers, cytokine secretion, and
metabolic features. (B–K) Comparison of not activated (Not Act) and activated (Act) T cells. (B) Average cell volume (fL). (C) Percentage of CD25+ or
CD69+ T cells measured by flow cytometry. (D) Cytokine secretion (IFNg, TNFa, IL-2) measured 48 h post-activation. Not Act samples, which
showed minimal or no cytokine production, are grouped together for display. Statistical comparisons were made between each Act condition and
the Not Act group for each cytokine. (E) Metabolic reducing potential (measured as relative luminescence units, RLU) over 72 h for three conditions:
Not Act, TM + SC, and ICXF + TA. (F–H) Intracellular ATP, NAD+, and total NADP + NADPH levels (all in fmol/cell). (I, J) Glucose consumption and
lactate secretion (both in pmol/hr/cell) measured in culture media. (K) Malate accumulation levels (fmol/hr/cell). Each graph includes data from 2–3
donors. Shapes represent stimulation conditions. Each data point represents the average of 2–3 biological replicates (independent cultures) for a
given donor and condition. Statistical comparisons used two-tailed, unpaired Mann–Whitney tests. Significance levels: p < 0.01 (**), p < 0.001 (***),
p < 0.0001 (****).
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Cluster 0, composed exclusively of ICXF samples, exhibited the

highest glucose, lactate, and malate levels but the lowest ATP levels,

indicative of a highly glycolytic and potentially metabolically stressed

state. Cluster 1, also ICXF-derived, displayed reduced glycolytic flux

and elevated ATP and NAD+, suggesting a more energetically

balanced, yet glycolysis-dependent phenotype. Cluster 2, dominated

by TexMACS samples, had the lowest glucose uptake and lactate

secretion while maintaining high ATP levels, consistent with a more

oxidative and energy-efficient profile. Cluster 3, composed primarily of

RPMI samples (with some TexMACS and ICXF), was characterized by

the highest ATP and total NADP(H) levels and intermediate glycolytic

activity, reflecting a metabolically balanced and biosynthetically active

phenotype. The detailed composition of each cluster is provided in the

supplemental material (Supplementary Table S1).
Validation of metabolic and functional
profiles across representative conditions

To determine whether the metabolic phenotypes observed in

our initial screen were consistent across donors and independent

experiments, we selected eight representative activation–medium

combinations spanning the four K-means–defined metabolic

clusters (Table 1, Figure 3A). These conditions were chosen to

capture the diversity of metabolic profiles observed in the screen

and included variation in media, activators, and cytokine conditions

to ensure broad phenotypic representation.

For this analysis, we focused on lactate and NAD(P)H, two

features that contributed most to the first two principal components

in the PCA shown in Figure 2B, C. Lactate reflects glycolytic activity

associated with PC1, while NAD(P)H serves as a marker of anabolic

redox status represented by PC2. As shown in Figures 3B, C, these

metabolic profiles were consistently reproduced across multiple

donors and experimental replicates. T cells activated in ICXF

(clusters 0 and 1) exhibited higher lactate secretion and elevated

NAD(P)H levels compared to those cultured in TexMACS or RPMI

(clusters 2 and 3). These results demonstrate that early metabolic

profiles are shaped predominantly by culture medium, with overall

patterns remaining stable across donor backgrounds.
Frontiers in Immunology 07
However, when comparing responses within the same medium,

differences between activators also became apparent. TransAct

stimulation resulted in higher lactate secretion and increased

NAD(P)H levels relative to ImmunoCult activator (SC), with

Dynabeads (Dyna) producing intermediate values (Figure 3C).

These trends suggest that stronger activation enhances both

glycolytic and anabolic metabolism. This is further supported by

flow cytometric analysis (Figure 3D), where conditions associated

with greater metabolic activity also exhibited higher expression of

CD25 and CD69, consistent with more robust TCR signaling.

To explore the relationship between early metabolic activity and

functional output, we measured cytokine secretion across the same

set of conditions. In this context, the strength of stimulation

appeared to be the primary factor influencing effector cytokine

production. TransAct consistently induced higher levels of IFN-g
and TNF-a compared to ImmunoCult, across all media. Cytokine

levels were generally lower in RPMI-supported cultures, regardless

of activator used.

In summary, these findings demonstrate that early metabolic

states are shaped primarily by culture medium and are consistent

across donors and experiments. Importantly, these adaptations are

established within the first 72 hours following activation, before

detectable proliferation, during a critical window when cells initiate

the biosynthetic and energetic programs required for

downstream expansion.
Expansion dynamics are coupled to media-
specific metabolism

To determine whether media-dependent metabolic phenotypes

observed during activation were sustained during expansion and

whether they correlated with cell proliferation, we assessed both

metabolic activity and growth between Day 3 and Day 7 post

activation (Figure 4A).

Glucose consumption, lactate production, and malate

accumulation were measured to profile metabolic activity

(Supplementary Figure S3). The patterns established during

activation were largely maintained during early stages of

expansion, with the highest metabolic activity observed in ICXF

medium. To facilitate comparisons, we calculated two metabolic

ratios: lactate-to-glucose (Figure 4B), reflecting glycolytic efficiency,

and lactate-to-malate (Figure 4C), providing a relative measure of

glycolysis versus mitochondrial metabolism. Similar approaches

have been used to infer metabolic preferences in T cell subsets,

with high lactate-to-glucose ratios indicating glycolytic skewing

typical of effector T cells, and lower ratios suggesting oxidative

metabolism characteristic of memory subsets (45, 46). While these

ratios do not quantify flux directly, they offer a practical overview of

dominant metabolic outputs.

As shown in Figure 4, T cells activated in ICXF, particularly

with TransAct and IL-2, exhibited consistently higher lactate-to-

glucose and lactate-to-malate ratios, indicating sustained glycolytic

activity. In contrast, lower lactate-to-malate ratios in TexMACS and

RPMI suggested greater mitochondrial involvement.
TABLE 2 Representative activation conditions used for donor validation.

Condition # Media Activator Cytokine(s)

1 ICXF ImmunoCult (SC) IL7/15

2 ICXF TransAct (TA) IL7/15

3 ICXF TransAct (TA) IL2

4 TexMACS (TM) Dynabeads (Dyna) IL2

5 TexMACS (TM) ImmunoCult (SC) IL7/15

6 TexMACS (TM) TransAct (TA) IL7/15

7 RPMI+FBS ImmunoCult (SC) IL7/15

8 RPMI+FBS TransAct (TA) IL2
Each condition reflects a unique medium, activator, and cytokine combination selected from the 48-
condition screen (Figure 2). Abbreviations in parentheses match those used in figure labels.
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FIGURE 2

Activation medium drives metabolic profile of T cells. (A) Schematic of the experimental workflow and metabolic pathways investigated. T cells from
a single donor were activated under 48 conditions combining three media types, four CD3/CD28-based activators, and two cytokine cocktails at
two concentrations. Cells were harvested on Day 3 for metabolic profiling. (B, C) Principal component analysis (PCA) of intracellular metabolite
profiles. (B) PCA colored by medium and marked by activator to visualize condition-dependent variation. (C) PCA colored by K-means cluster (k =
4), identifying four metabolically distinct groups. (D–J) Metabolite levels grouped by K-means cluster. (D) Metabolic reducing potential (measured as
relative luminescence units, RLU). (E–G) Intracellular metabolite levels: ATP (µM), NAD+ (nM), and total NADP(H) (RLU). (H, I) Extracellular metabolite
concentrations: glucose consumption and lactate secretion (both in mM). (J) Malate levels (µM). Each point represents the average of four technical
replicates for a given activation condition. Box plots represent Tukey distribution: boxes span the interquartile range (IQR), whiskers extend to 1.5×
IQR, and diamonds indicate outliers. Statistical comparisons were performed using one-way ANOVA followed by Tukey’s multiple comparisons test.
Significance levels are indicated as follows: p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), and p < 0.0001 (****).
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These metabolic differences aligned with total cell expansion

(Figure 4D) and proliferation rates. T cells in ICXF expanded more

rapidly, with the shortest doubling times (19–22 hours), compared

to slower expansion in TexMACS (19–34.5 hours) and RPMI (18–

32 hours). Across conditions, higher glycolytic activity was
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associated with greater fold expansion, linking early metabolic

programming to proliferative capacity.

Importantly, lactate levels at Day 3 correlated strongly with total

expansion by Day 7 (Pearson r = 0.68, p < 0.0001; Figure 4E),

suggesting early glycolytic activity predicts short-term expansion.
FIGURE 3

Metabolic and functional diversity across representative T-cell activation conditions. (A) Schematic of the validation workflow. Eight representative
activation conditions were selected from the 48-condition screen (Table 1; abbreviations as defined there). Cells were harvested on Day 3 for
metabolic and functional profiling. (B–F) Summary of Day 3 measurements. (B) Lactate secretion (mM) measured from culture media. (C)
Intracellular total NADP (H) levels (fmol/cell). (D) Percentage of CD25+ or CD69+ T cells measured by flow cytometry. (E–F) Cytokine secretion: IFNg
(ng/mL) (E) and TNFa (ng/mL) (F). Data summarize two to three donors tested in 2–3 experiments each. Box plots represent Tukey distribution.
Shapes represent different donors. Statistical comparisons were performed using one-way ANOVA followed by Tukey’s multiple comparisons test.
Most features showed statistically significant differences between conditions. Exact values are reported in Supplementary Table S2.
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FIGURE 4

Metabolic signatures predict expansion outcomes following activation. (A) Schematic of the expansion workflow. T cells from 2–3 donors were
activated under eight representative conditions (Table 1; abbreviations as defined there) and transferred to GREX24 vessels on Day 3 for continued
culture. (B, C) Metabolic ratios calculated from the rate of metabolite secretion or consumption between Day 3 and Day 7: lactate-to-glucose ratio
(B) and lactate-to-malate ratio (C). (D) Fold expansion from Day 3 to Day 7 is shown as box plots (left axis). Viability on Day 7 is overlaid as pink dots
(right axis). (E) Correlation between lactate levels on Day 3 (mM) and fold expansion through Day 7. Pearson correlation: r = 0.6840, p = 3.079e–07.
Box plots (B–D) show Tukey distribution. Statistical comparisons were performed for panels B–C using one-way ANOVA followed by Tukey’s
multiple comparisons test. For panel C, all pairwise comparisons were performed, but significance is summarized using a single bracket to indicate
the overall difference between TexMACS and ICXF conditions for clarity. Significance levels are indicated as follows: p < 0.05 (*), p < 0.01 (**), and p
< 0.0001 (****).
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This relationship was not maintained between Day 7 andDay 10, when

proliferation declined (Supplementary Figure S3D), likely due to

nutrient depletion, increased cell density, or a metabolic transition

toward a less proliferative state.
Targeted inhibition confirms media-
specific metabolic dependencies

To validate the distinct metabolic profiles established under

each culture condition, we assessed their responses to glycolytic and

mitochondrial inhibition. Cells were cultured in the presence of 2-

deoxyglucose (2DG; a glycolysis inhibitor), Rotenone (a Complex I

inhibitor), or Antimycin A (a Complex III inhibitor), and metabolic

and proliferative metrics were assessed.

Inhibition of glycolysis with 2DG significantly reduced

intracellular ATP levels in both media conditions. ICXF-

expanded cells exhibited greater inhibition (~60–80%) than those

in TexMACS (~43–61%) (Figure 5A). NAD levels were also more

strongly inhibited in ICXF, with more than 2-fold greater inhibition

compared to TexMACS (Figure 5B). These reductions in energy

metabolites corresponded with marked inhibition of both lactate

secretion and cell expansion in ICXF (Figures 5C, D), whereas

TexMACS-expanded cells showed less inhibition of lactate

secretion and a more modest reduction in proliferation. These

data support a greater glycolytic dependence in ICXF and

enhanced metabolic flexibility in TexMACS.

To assess mitochondrial contributions, T cells were treated with

Rotenone or Antimycin A. Both inhibitors caused greater ATP

inhibition in TexMACS (~69% for Rotenone and ~44% for

Antimycin A) than in ICXF (~22% and ~4%, respectively)

(Figure 5A), suggesting higher mitochondrial contribution to ATP

production in TexMACS-expanded cells. NAD levels were more

inhibited by Rotenone in TexMACS, while Antimycin A caused

similarly high inhibition in both media without a significant

difference (Figure 5B). Lactate secretion increased in response to

mitochondrial inhibition, particularly in TexMACS-expanded cells,

though the magnitude of this effect varied across donors (Figure 5C).

This trend supports a compensatory shift toward glycolysis when

mitochondrial respiration is impaired. Growth inhibition from Day 3

to Day 7 was observed in both media. Rotenone significantly reduced

proliferation in both conditions, while Antimycin A caused greater

inhibition in TexMACS, though substantial effects were also observed

in ICXF (Figure 5D). These findings confirm that ICXF-expanded cells

are more glycolysis-dependent, while TexMACS-expanded cells are

more sensitive to mitochondrial inhibition, consistent with their

distinct metabolic phenotypes. To determine whether these metabolic

states translate into functional differences, we next assessed T cell

phenotype and effector function.
Metabolism environment directs T cell
phenotype and function

Metabolic cues during early T-cell activation not only support

effector functions but also play a pivotal role in shaping memory
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differentiation. TSCM (stem cell memory) cells, in particular, are

highly valued for their longevity and antitumor potency in adoptive

therapies, and their generation has been linked to oxidative

metabolic programming (35, 47, 48).

Given the distinct metabolic programs supported by ICXF and

TexMACS during activation and expansion, we next examined

whether these conditions influenced memory phenotype and

effector function (Supplementary Figure S4). Phenotypic analysis

revealed that T cells expanded in ICXF contained a higher

proportion of CD45RA-CD62L+ cells, consistent with a TCM-like

(central memory) phenotype. In contrast, TexMACS-expanded

cells were enriched for CD45RA+CD62L+ cells, indicative of a

TSCM-like population (Figure 6A). The development of TSCM cells

has been linked to mitochondrial respiration and reduced reliance

on glycolysis, consistent with the more oxidative metabolic profile

observed in TexMACS cultures.

Functionally, TexMACS-expanded T cells exhibited superior

cytolytic activity against target cells compared to those expanded in

ICXF (Figures 6B, C). This enhanced effector function aligns with

the phenotypic and metabolic characteristics of TSCM cells, which

comb in e h i gh p ro l i f e r a t i v e po t en t i a l w i t h s t r ong

mitochondrial fitness.

These findings suggest that the metabolic environment during

early activation not only determines expansion kinetics but also

influences memory differentiation. By supporting a more oxidative

metabolic program, TexMACS favors the generation of

metabolically resilient and functionally potent TSCM-like cells,

which may offer advantages in therapeutic applications.
Discussion

Recent advances have highlighted that metabolic programming

is not merely a byproduct of T-cell activation but a primary

determinant of fate, function, and therapeutic efficacy (49–51).

Our study supports and expands on this paradigm by showing

that early metabolic profiling of T cells under defined culture

conditions can predict proliferation, differentiation trajectories,

and cytotoxic potential—key attributes of effective adoptive

cell therapies.

While prior studies have profiled T cell metabolism using

technologies such as Seahorse assays or transcriptomics, these

approaches are often limited to end-point measurements or low

throughput. In contrast, our study applies bioluminescent assays

that enable repeated or real-time metabolic profiling across

clinically relevant expansion conditions. This platform offers

predictive insights using minimal cell input and straightforward,

plate-based assays, making it readily implementable in both

research and manufacturing settings without specialized

equipment or complex workflows. Consistent with previous

studies demonstrating the importance of glycolysis in supporting

T-cell activation, biomass accumulation, and clonal expansion (52,

53), our data show that glycolytic activity is rapidly upregulated

upon activation and correlates with early proliferative capacity.

Culturing activated T cells in ICXF medium, which promotes
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strong glycolytic engagement, resulted in the highest proliferative

rates, particularly when combined with potent activation via

TransAct. This is in line with prior findings demonstrating that

high glycolytic flux sustains mTORC1 activity and effector

differentiation (53). However, such metabolic wiring also

correlated with more differentiated TCM and TEM (effector

memory) subsets, suggesting that excessive glycolysis may drive

commitment at the expense of long-term persistence (7, 37).
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By contrast, TexMACS medium fostered a more balanced

metabolic profile, with moderate glycolysis and higher malate

output, consistent with greater mitochondrial engagement. This

balance correlated with an enrichment of TSCM subsets, especially

under milder activation with the ImmunoCult activator. This

mirrors work by Gubser et al. (47) and Sukumar et al. (35),

which showed that mitochondrial metabolism and spare

respiratory capacity are hallmarks of T cells with greater in vivo
FIGURE 5

Targeted inhibition confirms media-dependent metabolic differences in T cells. (A–D) Percent inhibition of metabolic and expansion metrics
following treatment with 2DG, Antimycin A, or Rotenone, relative to untreated controls in matched conditions. Data are shown for TexMACS (blue)
and ImmunoCult-XF (orange) media. (A, B) Intracellular ATP (A) and NAD (B) levels measured on Day 3. (C) Percent inhibition of lactate secretion
rate from Day 3 to Day 7. (D) Growth rate inhibition calculated from fold expansion between Day 3 and Day 7. Box plots represent Tukey
distribution. Data summarize two donors. Statistical comparisons were performed using Welch’s unpaired t-tests. Significance levels are indicated as
follows: ns=not significant, p < 0.05 (*), p < 0.01 (**), and p < 0.0001 (****).
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persistence and antitumor efficacy. Notably, TexMACS-expanded

cells also exhibited the strongest cytolytic function in our killing

assays, underscoring the functional relevance of balanced

metabolic states.

These metabolic profiles emerged within the first 72 hours,

prior to significant proliferation, suggesting that metabolic priming

during early activation sets a trajectory for downstream outcomes.

This echoes recent reports that early nutrient sensing and redox

balance influence epigenetic programming and transcriptional

commitment (29, 48). Our use of bioluminescent metabolic assays

allowed for high-sensitivity measurements using minimal input,

offering a scalable, real-time window into these early decisions.

Importantly, while our findings highlight how defined metabolic

environments guide T-cell outcomes in vitro, recent studies, and our

own observations, underscore that T cells expanded ex vivo often

diverge metabolically from their in vivo counterparts. A deeper
Frontiers in Immunology 13
understanding of these differences may inform the design of next-

generation culture systems that more closely recapitulate the metabolic

programs of physiologically activated T cells, ultimately enhancing the

functionality and persistence of therapeutic products.

In conclusion, our results reinforce the concept that metabolism is

a central regulator of T-cell fate. Future efforts to integrate metabolic

assessment into manufacturing workflows may enable more precise

engineering of T-cell products tailored to clinical goals, whether rapid

tumor clearance or long-term immune surveillance.
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FIGURE 6

Functional responses of T cells activated in different media conditions. (A–C) Functional assessments were performed on Day 10 post-activation
using T cells expanded under representative media and activation conditions. (A) Memory phenotype distribution of CD4+ and CD8+ T cell subsets
assessed by flow cytometry using CD45RA and CD62L expression. Box plots represent Tukey distribution. (B) Specific lysis (%) of HiBiT Ramos target
cells co-cultured with T cells and blinatumomab at seven effector-to-target (E:T) ratios. Lysis was calculated relative to spontaneous release (Ramos
cells alone, no T cells) and maximum lysis (digitonin-treated Ramos). (C) Quantification of cytotoxic activity based on area under the curve (AUC)
from E:T response curves. Data summarize two donors. Statistical comparisons were performed using one-way ANOVA with Tukey’s multiple
comparisons test. Significance levels are indicated as follows: ns=not significant, p < 0.05 (*), p < 0.01 (**), and p < 0.0001 (****). TM, TexMACS; TA,
TransAct; SC, StemCell ImmunoCult.
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