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Single-cell/spatial
integration reveals an
MES2-like glioblastoma
program orchestrated by
immune communication
and regulatory networks
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Junshan Wan1, Jinpeng Wu1, Chao Wang1*, Pin Guo1*

and Yugong Feng 1*

1Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China,
2Institute of Neuroscience & Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow
University, Suzhou, Jiangsu, China, 3Qingdao Central Hospital, University of Health and Rehabilitation
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Background: Glioblastoma (GBM) exhibits marked plasticity and intense

microenvironmental crosstalk. We aimed to delineate mesenchymal programs

with spatial resolution, clinical relevance, and mechanistic anchors.

Methods: We integrated single-cell RNA-seq, bulk transcriptomes, and Visium

spatial data. After rigorous QC and Harmony integration, we annotated 12 cell

states using canonical markers, decoupler-based ORA, and AUCell. Tumor

boundaries were defined by inferCNV/CopyKAT; developmental potential by

CytoTRACE2 and PHATE. Post-translational modification (PTM) axes were scored

from curated gene sets. A cell type-aware GNN linked bulk expression to a

patient-similarity graph for survival modeling and gene-level hazard attribution.

Network convergence combined bulk WGCNA (TCGA/CGGA), single-cell

hdWGCNA, BayesPrism deconvolution, and external GEO validation. Ligand–

receptor (LR) signaling was inferred with LIANA+, embedded in a signed causal

network, andmapped spatially. ARRDC3 expression was assessed in GBM tissues;

U251 gain- and loss-of-function assays evaluated proliferation and migration.

Results: We resolved major GBM states, including two mesenchymal programs

(MES1-like, MES2-like). CNV-high regions marked malignant cores, and

CytoTRACE2 identified high-potency niches within MES2-like and Proliferation

states along non-linear trajectories. PTM landscapes segregated by state; S-

nitrosylation, glycosylation, and lactylation were enriched in mesenchymal

programs. A GNN risk score stratified overall survival in TCGA (n=157) and

generalized to CGGA-325 (n=85) and CGGA-693 (n=140). MES2-like

abundance remained an independent adverse predictor (HR = 2.31; 95% CI,

1.04–5.10). MES2-high tumors upregulated EMT, TNFa/NF-kB, JAK/STAT,

hypoxia, angiogenesis, and glycolysis; S-nitrosylation associated with increased

hazard. Cross-modal convergence defined a conservative MES2 core enriched

for ECM remodeling, collagen modification, focal adhesion, and TGF-b
regulation. LR analysis prioritized a TAM-to-MES2 axis (e.g., GRN–TNFRSF1A,

ADAM9/10/17–ITGB1, TGFB1–ITGB1/EGFR) converging on a CEBPD-centered
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module. Spatial mapping localized MES2 hotspots within CNV-defined territories

and revealed a TNFRSF1A–CEBPD–ARRDC3 focus at an infiltrative rim. ARRDC3

was upregulated in GBM tissues; in U251 cells, knockdown promoted and

overexpression suppressed proliferation and migration, indicating context-

dependent roles.

Conclusions:MES2-like GBM is an ECM-driven, stress-adapted state with strong

prognostic impact. We nominate CEBPD and TNFRSF1A/ITGB1 as actionable

nodes and identify ARRDC3 as a spatially restricted effector with context-

dependent tumor-modulatory functions warranting therapeutic exploration.
KEYWORDS

MES2-like glioblastoma, cell type-aware graph neural network, TAM-MG-MES2
communication, spatial transcriptome analysis, arrestin domain containing 3
1 Introduction

Glioblastoma (GBM) is an exceptionally aggressive and

heterogeneous brain tumor that poses a formidable challenge in

neuro-oncology, with limited therapeutic options and poor

prognosis (1). Although significant progress has been made in

understanding glioma biology, the complex molecular networks

driving GBM invasiveness remain insufficiently characterized (2). A

defining feature of GBM pathophysiology is its intricate tumor

microenvironment (TME), which not only supports tumor growth

but also contributes to therapeutic resistance and recurrence (3, 4).

Recent studies have emphasized the dynamic interactions

between tumor cells and various cellular components within the

microenvironment, including immune cells, endothelial cells, and

stromal elements, that collectively regulate tumor progression (5).

Among the molecular subtypes of GBM, the mesenchymal (MES)

subtype has emerged as a key determinant of malignancy,

characterized by pronounced plasticity, enhanced invasiveness,

and resistance to conventional therapies (6). Importantly, GBM

cells rarely exist in fixed cellular states; instead, they exhibit

remarkable plasticity, transitioning between transcriptional

programs in response to microenvironmental cues and

therapeutic pressures. Within this mesenchymal category, recent

high-dimensional analyses have further dissected the phenotype

into distinct MES1- and MES2-like states with unique molecular

signatures (7). Notably, the MES2-like program is marked by

adaptations to hypoxia and inflammatory signaling, representing

a dynamic and invasive tumor subpopulation intimately associated

with disease progression (8). However, the regulatory circuits and

microenvironmental interactions that generate and sustain the

MES2-like state remain poorly understood.

This knowledge gap is partly attributable to inherent limitations

of bulk profiling methods, which obscure the subtle heterogeneity

and spatial organization within tumors. The advent of single-cell

RNA sequencing (scRNA-seq) has revolutionized neuroscience and
02
oncology by providing cell-resolved insights into the tumor

ecosystem, enabling precise delineation of tumor and stromal

phenotypes (9). Complementing this, spatial transcriptomics

preserves tissue architecture while interrogating gene expression,

allowing analysis of cellular neighborhoods, spatially constrained

signaling, and niche-specific regulatory events (10). Integrating

single-cell and spatial transcriptomics thus holds promise for

elucidating the complex crosstalk between tumor cell states and

their microenvironment, particularly the interactions driving

mesenchymal transition.

Emerging evidence implicates a MES2-like mesenchymal

program as a driver of invasion, stress adaptation, and therapy

resistance in GBM, yet its regulatory circuitry, spatial niches, and

immunologic dependencies remain unresolved. We therefore set

out to delineate the core MES2-like network, map its localization

within tumor ecosystems, and identify upstream cues and

transcriptional effectors that could be leveraged to rewire the

mesenchymal state.
2 Methods

2.1 Data sources

Single-cell transcriptomic data were downloaded from GEO

under accession numbers GSE103224 (8 GBM samples),

GSE138794 (20 GBM samples), and GSE139448 (6 GBM

samples). Spatial transcriptomic data were obtained from

GSE194329, of which four samples were analyzed in detail

(GBM2: IDH-wt recurrent tumor; GBM3: IDH-wt primary

tumor; GBM5_1: IDH-wt primary tumor; GBM5_2: IDH-wt peri-

tumoral tissue). Bulk RNA-seq data were obtained from TCGA (157

GBM samples) and from the Chinese Glioma Genome Atlas

(CGGA mRNA325, 85 GBM; CGGA mRNA693, 140 GBM).

Additional microarray cohorts were included from GSE4290 (77
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GBM, 23 normal) and GSE68848 (228 GBM, 28 normal). The

overall research design process is shown in Figure 1.
2.2 Single cell processing

Raw FASTQ files were processed with 10x Genomics Cell

Ranger (11), alignment to Human reference GRCh38 (2024-A).

Protein-coding genes were annotated using the GENCODE v47

reference genome. To ensure data quality, we excluded samples with

insufficient coverage (<1,000 detected cells) or low complexity

(<500 detected genes). After quality control, 21 out of the initial

34 GBM single-cell samples were retained for downstream analysis.

Single-cell RNA-seq data were processed with Scanpy (12). Raw

counts were normalized to a fixed library size and log-transformed,

followed by selection of 2,000 highly variable genes across samples.

Gene expression values were scaled, and dimensionality reduction

was performed using principal component analysis(PCA). We

clustered and evaluated the performance of various batch

correction methods (Harmony, scanorama, combat) within the
Frontiers in Immunology 03
principal component representation (PCR) space. Based on a

proximity graph, we used the leiden algorithm for multi-scale

clustering at resolutions ranging from 0.3-0.9. Benchmarker was

then used to systematically evaluate the results at each resolution,

comprehensively examining biological fidelity and batch effect

removal (13). Batch effects were corrected with Harmony

integration, after which a neighborhood graph was constructed.

Cells were clustered with the leiden algorithm (resolution 0.8). To

focus on robust clusters, only clusters containing at least 300 cells

were retained. Cell-type markers for GBM were obtained from

previously published article (Supplementary Table 1) (14). Using

decoupler (15), we applied over-representation analysis (ORA) and

AUCell to score the activity of marker gene sets (≥3 markers per cell

type). Gene sets for GO Biological Processes (BP) and post-

translational modification (PTM) enzymes were obtained from

MsigDB (https://www.gsea-msigdb.org/gsea/msigdb) and

previously published article (Supplementary Table 2) (16).

Enrichment scores were estimated per cell type, and differential

activity was assessed with a moderated t-test, retaining pathways

with adjusted p < 0.05.
FIGURE 1

Research design framework.
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2.3 Tumor cell recognition

Copy number variation (CNV) inference was performed using

the infercnvpy (17). Cells from GBM-associated states were

analyzed, while non-tumor cells (Such as endothelial cells and T

cells) served as reference “normal” populations. CNV profiles were

estimated using a 250-gene sliding window. For classification, CNV

scores were calculated for all cells, and the mean score of reference

cells plus 1.5 standard deviations was used as the threshold to

identify cells with elevated CNV as putative tumor cells. Tumor cells

were subjected to functional profiling. Pathway activities were

estimated with PROGENy gene sets and enrichment of custom

molecular modification signatures was assessed by ORA (16).

Significant pathways and PTM score (adjusted p < 0.05) were

identified per cell type.
2.4 Differentiation potential inference

Cellular differentiation potential was inferred using

CytoTRACE2 (18). Default parameters were applied with a fixed

random seed to ensure reproducibility. The resulting CytoTRACE2

scores were embedded using PHATE for 3D visualization (19). Cell-

type identities and CytoTRACE2 scores were overlaid on the

PHATE embeddings to illustrate lineage hierarchies and

differentiation gradients across GBM cell populations.
2.5 scRNA deconvolution, survival and
functional analysis

Bulk RNA-seq datasets from TCGA and CGGA cohorts were

batch-corrected using ComBat-seq (20), and cell-type proportions

were inferred with BayesPrism using tumor cell states (21).

Associations between deconvolved tumor cell states and patient

survival were evaluated by Cox proportional hazards regression,

including both univariate and multivariate models, with survival

differences assessed by Kaplan-Meier analysis. For functional

characterization, we stratified tumors by MES2-like abundance

(above vs. below median) and performed differential expression

analysis using DESeq2 (22). Significantly dysregulated genes were

subjected to pathway enrichment against MSigDB hallmark gene

sets. In parallel, gene sets representing post-translational

modifications were scored using gene set variation analysis

(GSVA), and their associations with clinical outcomes were

further assessed through Cox regression.
2.6 MES2-like module definition based on
bulk level

Weighted gene co-expression network analysis (WGCNA) was

applied to bulk RNA-seq profiles (TCGA and CGGA) to identify

co-expression modules associated with BayesPrism-inferred cell

fractions. Soft-thresholding powers were selected using scale-free
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topology criteria, and modules were defined by hierarchical

clustering and dynamic tree cutting. Module eigengenes were

correlated with cell-type fractions, and genes from modules

associated with MES2-like states were extracted. MES2-like

module genes, defined as differentially upregulated genes in the

high-MES2 group, was used to compute activity scores for the

tumor cell type.
2.7 Graph construction and transformer-
based survival modeling

To identify cell type-specific marker genes, we performed

differential expression analysis across cell types. Genes were

ranked within each cell type against all others by the Wilcoxon

rank-sum test (log2FC>1 and adjust P < 0.05). Clinical data were

used to construct patient-similarity networks, followed by

appropriate preprocessing (min–max scaling, one-hot encoding,

or rank scaling). Similarity matrices were derived using multiple

metrics, including Gower distance, local-scaling kernels, and multi-

view fusion, and graphs were subsequently built by retaining each

patient’s five nearest neighbors with mutual k-Nearest Neighbors

(kNN) filtering; to guarantee full connectivity, a minimum

spanning tree backbone was added. Gene expression matrices

were log2-transformed and standardized using training set

statistics to avoid information leakage, and clinical survival

metadata were matched by patient identifiers. To incorporate

biological priors, genes were projected onto cell type signatures-

level representations through a masked projector with residual

connections, which were then modeled using a Transformer-

based graph neural network. Survival prediction was formulated

with a Cox proportional hazards head, trained under Adam

optimization with dropout regularization and early stopping, and

the best-performing model state was selected based on validation

concordance index.
2.8 MES2-like module definition based on
scRNA level

Cell type-specific co-expression networks were constructed using

high-dimensional WGCNA (hdWGCNA) (23), after removing

mitochondrial and ribosomal genes. This framework aggregates cells

into metacells, optimizes soft-thresholding powers, and delineates

distinct transcriptional modules. Module eigengenes were correlated

with cell type and sequencing traits, and hub genes were defined based

on intramodular connectivity (kME). Functional enrichment of

ranked intramodular genes was performed using fgsea (v1.28)

against GO BP pathways. Protein-protein interaction (PPI) support

was integrated from the STRINGdb (v12.0) human network, retaining

only experimentally supported edges. We further combined

topological overlap matrices (TOM) from hdWGCNA with

STRING PPI adjacency to construct integrative co-expression-PPI

networks. Hub genes were defined as those with both high co-

expression connectivity and PPI degree centrality.
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2.9 Integrative identification of MES2 hub
genes

To validate the robustness of MES2-associated signals, we

systematically integrated bulk and scRNA resources. Two

independent GEO cohorts (GSE4290 and GSE68848) were

curated, and stringent outlier detection ensured removal of

aberrant samples prior to downstream analysis. Differential

expression was first profiled with limma (24). To guard against

false positives driven by case–control imbalance, we complemented

this with RankCompV2 (24), which detects genes showing consistent

reversals in relative expression orderings (REOs) between gene pairs:

REOs stable in normal brain defined the background, while GBM-

specific reversals were assessed by Fisher’s exact test. Genes

significant by the REO test were considered differential expression

by RankCompV2, and only differentially expressed genes (DEGs)

corroborated by both approaches were retained for downstream

analyses, integrating absolute expression shifts with rank-based

regulatory changes. We then converged multiple layers of evidence

to define putative MES2 hub genes: WGCNA module, hdWGCNA

module, scRNA DEGs from MES2-like clusters, bulk MES2-specific

signatures inferred by deconvolution, and upregulated genes across

both GEO cohorts. Intersections across these modalities yielded a

conservative set of recurrent genes, representing a high-confidence

MES2-like core program.
2.10 Regulatory network inference and
transcription factor analysis

We applied the SCENIC workflow to infer gene regulatory

networks (GRN) and transcription factors (TFs) activity at single-

cell resolution. Raw UMI matrices were preprocessed with Scanpy,

followed by pySCENIC (25), which integrates three modules: (i)

GRN inference using pyscenic grn with a comprehensive set of

human TFs to identify co-expression modules; (ii) cis-regulatory

motif enrichment against curated motif and cisTarget databases to

refine TF-target interactions; and (iii) regulon activity quantification,

generating cell-by-regulon AUC matrices. Cell type-specific

regulatory programs were derived by testing differential regulon

activity across annotated clusters using Wilcoxon rank-sum tests.

TFs significantly enriched in MES2-like (adjusted P < 0.05, |log2FC|

> 1) were designated as up- or down-regulated master regulators.

This approach enabled the identification of TFs shaping MES2-like

states and provided a network-level perspective linking

transcriptomic programs to regulatory control.
2.11 Cell-cell communication analysis

To systematically characterize the signaling crosstalk shaping

MES2-like GBM states, we applied the LIANA+ framework (26),

which integrates multiple LR inference methods including

SingleCellSignalR, Connectome, CellPhoneDB, NATMI, logFC-

based scoring, CellChat, and a geometric mean consensus.
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Significance was assessed with 1,000 permutations, and method-

specific p-values were aggregated into a consensus ranking via

LIANA’s meta-aggregation procedure.

We focused on interactions where macrophage/microglia

(TAM-MG) served as the sender and MES2-like cells as the

receiver. Candidate interactions were filtered to retain only those

consistently significant across CellChat, CellPhoneDB, and

consensus geometric mean (P < 0.05), with positive LR log2FC

values indicating upregulated signaling. To further prioritize

biologically relevant signals, predicted ligands and receptors were

intersected with independent gene signatures of upregulated genes

from bulk GBM datasets (GEO), thereby highlighting TAM-MG-

MES2-like signaling axes supported by both single-cell inference

and orthogonal bulk validation.
2.12 Causal signaling inference with
CORNETO/CARNIVAL

To connect extracellular receptor activity with downstream

transcriptional regulators of the MES2-like state, we integrated LR

interaction scores with TF regulon specificity profiles.LR scores

derived from LIANA+ were used as upstream inputs, while MES2-

like-specific hub TFs, prioritized by regulon specificity scores (RSS)

from pySCENIC, were designated as downstream outputs. Both

input and output scores were provided as quantitative constraints to

the CORNETO implementation of CARNIVAL (Unifying multi-

sample network inference from prior knowledge and omics data

with CORNETO (27), which optimizes causal signaling flows over

the SIGNOR prior knowledge network (http://signor.uniroma2.it/).
2.13 Inference of CEBPD-MES2 regulons

To reconstruct transcriptional regulatory relationships specific

to MES2-like cells, we applied ARACNe-AP (100 bootstraps, P <

1×e-8) (28). For motif-level validation, we retrieved transcription

start sites (TSS) and promoter coordinates (−1 kb to +100 bp) of

candidate targets from Ensembl Biomart and extracted

corresponding genomic sequences (hg38). Position weight

matrices (PWMs) for CEBPD were obtained from JASPAR2024,

converted into MEME format, and scanned across promoter

sequences using FIMO (29) (MEME Suite, P < 1e−4). Significant

motif hits were then intersected with promoter regions of CEBPD-

inferred targets, generating a refined set of direct regulatory

candidates. Motif matches were annotated with genomic

coordinates, binding scores, and associated target genes, providing

sequence-level support for CEBPD-MES2-like regulatory edges.
2.14 Graph-based integration and spatial
domain characterization

Visium spatial transcriptomic data from four GBM specimens

(GBM2, GBM3, GBM5_1, GBM5_2) were processed using Scanpy
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for standard quality control, excluding spots with <200 detected

genes or >25% mitochondrial content. Spatial graphs were

constructed for each section with a 50 μm radius cutoff, and

highly variable genes were selected before downstream analysis.

Batch alignment across tissue sections was performed using

STAligner (30), which embeds each slice as a subgraph and

iteratively aligns paired sections. Optimal clustering resolution

was determined by maximizing the silhouette score across leiden

partitions. To distinguish malignant from non-malignant spots,

large-scale CNV was inferred using CopyKAT and inferCNV (17,

31). For within-sample clustering, we applied GraphST with

mclust-based refinement, ensuring spatial coherence of identified

domains (32). Pathway activities were then inferred with decoupler

(PROGENy framework), and spatial density maps were generated

for MES2-like hub genes.
2.15 Spatial LR inference

To explore spatially organized cell–cell communication, we

applied LIANA+ in a spatial mode to each GBM section.

Normalized and log-transformed expression matrices were used

as input, and spatial neighbor graphs were constructed with a

Gaussian kernel (bandwidth = 200 μm, cutoff = 0.1). LR

interactions were inferred using the consensus resource,

integrating multiple published databases. For each candidate

interaction, we computed both global (Moran’s I) and local

(cosine similarity) statistics to assess spatial autocorrelation and

co-enrichment, with significance determined by 100 random

permutations. From the global LR atlas, we focused on a curated

panel of interactions implicated in glioblastoma biology. Significant

pairs (Moran’s I p < 0.05) were visualized as spatial feature maps,

displaying both interaction scores and permutation-based p-values

across tissue domains.
2.16 Clinical sample collection

This research was approved by the Ethics Committee of the

Affiliated Hospital of Qingdao University (Approval Number:

QYFYWZLL30508), and all participants provided written

informed consent. A total of 6 patients diagnosed with

glioblastoma (GBM) were enrolled in this study, with the control

group consisting of normal brain tissue adjacent to the tumor. All

tissue samples were stored in liquid nitrogen to preserve their

integrity for subsequent molecular analysis.
2.17 Quantitative real-time PCR

Total RNA was extracted using Trizol reagent, and

complementary DNA (cDNA) was synthesized with the

Advantage RT for PCR Kit (Shandong Sparkjade Biotechnology

Co., Ltd., China). Quantitative real-time PCR (qRT-PCR) analysis
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was subsequently performed using the iQTM SYBR Green

Supermix (Yeasen Biotech Co., Ltd., China). Relative gene

expression levels were calculated using the 2−DDCT method.
2.18 Western blot

Cellular and tissue proteins were extracted using RIPA buffer.

Protein concentrations were determined using a BCA protein assay

kit (Meilun, China). Equal amounts of protein were separated by

electrophoresis on 10% SDS-PAGE gels and subsequently

transferred onto polyvinylidene fluoride (PVDF) membranes

(Thermo Fisher Scientific). The membranes were first incubated

with a protein-free blocking buffer for 10 minutes, followed by

overnight incubation at 4°C with primary antibodies against

Arrestin Domain Containing 3 (ARRDC3, ab64817, Abcam, UK)

and GAPDH (60004-1, Proteintech, China). Afterward, the

membranes were incubated with horseradish peroxidase (HRP)-

conjugated secondary antibodies for 50 minutes at room

temperature. Protein bands were detected using enhanced

chemiluminescence (ECL) reagents and visualized with a

chemiluminescent imaging system (Millipore, USA).
2.19 Immunohistochemistry

Tissue sections were incubated with anti-ARRDC3 antibody

(Proteintech Europe, Manchester, UK) overnight at 4°C.

Colorimetric reactions were carried out in accordance with the

manufacturer’s instructions (Thermo Scientific, Freemont, CA,

USA) following washing and application of secondary antibodies.

Nuclei were counterstained with hematoxylin (Carl Roth,

Karlsruhe, Germany). Sections were digitized using a NIKON

Eclipse Ti full-slide scanner.

The staining intensity of ARRDC3 was categorized as

“negative,” “weak,” “moderate,” or “strong,” and assigned a score

of 0, 1, 2, or 3, respectively. The proportion of positive cells was

divided into four categories: 1 (<10%), 2 (11–50%), 3 (51–80%), and

4 (>80%). The immunohistochemical score was calculated as the

product of staining intensity and the proportion of positive cells,

yielding a total score ranging from 0 to 12.
2.20 Cell culture and lentivirus
transfection.

U251 cells were cultured in DMEM medium supplemented with

10% fetal bovine serum at 37°C under a 5% CO2 atmosphere. The

design and synthesis of ARRDC3 knockdown and overexpression

shRNAs were conducted by OBiO Technology (Shanghai, China);

detailed sequence information is provided in the Supplementary

Table 3. The transfection procedure was carried out in accordance

with the manufacturer’s instructions, and subsequent experimental

assays were performed following transfection.
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2.21 Cell counting kit−8 assay

Cells transfected with lentivirus were seeded into 96-well plates

at a density of 3×10³ cells per well and incubated for 24 hours.

Subsequently, 10mL of CCK-8 reagent (C6005, NCM Biotech) was

added to each well, and the plates were further incubated for 2

hours. The absorbance was then measured at a wavelength of

450 nm.
2.22 EdU incorporation experiments

The EdU incorporation assay was utilized to assess cellular

proliferation dynamics. EdU-labeled cells were detected and

visualized following the manufacturer’s instructions, using the

BeyoClick EdU Cell Proliferation Detection Kit (containing Alexa

Fluor 647; Beyotime, China). The proliferation rate was determined

as the percentage of EdU-positive cells relative to the total

cell population.
2.23 Transwell migration assay

A Transwell assay was performed to assess the migratory ability

of U251 cells. Following serum starvation, transfected cells were

seeded into the upper chambers, while 10% fetal bovine serum

(FBS) was added to the lower chambers as a chemoattractant. After

incubation for 24 hours at 37°C, the migrated cells were fixed,

stained, and quantified. The migration capacity was determined

based on the average number of migrated cells from three randomly

selected fields.
2.24 Statistical analysis

All tests were two-sided unless noted; data are mean ± SD from

≥3 independent experiments; significance set at P<0.05 or

FDR<0.05(Benjamini-Hochberg). Experimental-normality and

variance were checked (Shapiro-Wilk, Levene); two-group tests

used unpaired t or Mann-Whitney; multi-group tests used one-

way ANOVA with Tukey/Sidak or Kruskal-Wallis with Dunn. IHC

scores used Mann-Whitney.
3 Results

3.1 Single-cell integration and annotation

After stringent quality control, normalization, and highly

variable gene selection, we built a KNN graph in PCA space and

systematically compared batch-correction strategies (ComBat,

Scanorama, Harmony). Harmony best preserved biological

structure while maximizing batch mixing, with an optimal

resolution around 0.8 based on the joint behavior of the

silhouette coefficient, LISI, and graph connectivity, yielding 12
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clusters (Figure 2A; Supplementary Figures 1A, B). Cluster

identities were assigned using curated marker genes together with

decoupler-based ORA and AUCell scoring, recovering the major

GBM-related states: astrocyte-like (AC-like); mesenchymal-like 1

(MES1-like); mesenchymal-like 2 (MES2-like); neural progenitor

cell–like 1/2 (NPC1-like/NPC2-like); oligodendrocyte precursor

cell–like (OPC-like); oligodendrocyte (OLG); proliferative cells

(Proliferation); TAM-MG; endothelial cells (EC); and smooth

muscle cells (SMC); the two scoring approaches agreed with

marker-expression dot plots (Figure 2B). Simultaneously, using

canonical markers, we annotated clusters into malignant states

(MES2-like, MES1-like, NPC2-like, NPC1-like, AC-like, OPC-like,

and a Proliferation-high group) and non-malignant lineages (T

cells, TAM-microglia, endothelial, SMC, oligodendrocytes), which

segregate in the embedding with tumor cells spanning an NPC/AC/

OPC-to-MES continuum and proliferation overlaying multiple

states (Figures 2C, D). Sample-level compositions revealed

marked inter-patient heterogeneity, with several tumors enriched

for MES2-like and immune populations (Supplementary

Figure 1C). GO programs further captured cell type-specific

biology-e.g., OPC enriched for myelin assembly, OPC-like cells

for OPC-progenitor proliferation, TAM-MG for phagocytosis/

inflammatory response, EC for sprouting angiogenesis (with

blood-brain barrier maintenance), Proliferation for mitotic cell

cycle/DNA replication, and MES2-like for glycolysis and hypoxia

adaptation-providing a coherent functional map that mirrors the

separability seen in tumor correlation patterns (Figure 2E;

Supplementary Figure 1D).
3.2 CNV-based tumor delineation and
developmental gradients across GBM
states

Using inferCNV, we observed broad, chromosome-scale copy-

number shifts across malignant clusters, with relatively flat profiles in

reference lineages (EC/T cells) (Figure 3A). A per-cell CNV score

highlighted focal regions of elevated aneuploidy on the UMAP

(Figure 3B); setting a data-driven threshold at the reference mean

+ 1.5 s.d. separated putative tumor from normal cells and

recapitulated their manifold distribution (Figures 3C, D).

CytoTRACE2-based mapping of developmental potential on the

unified UMAP revealed a pronounced enrichment of high-potency

cells within the MES2-like and Proliferation compartments, forming

a continuous outward gradient of decreasing potential. In contrast,

AC-, OPC-, and NPC-like populations localized to the low-potency

(differentiated) pole, consistent with more mature lineage states

(Figure 3E; Supplementary Table 4). Stemness scores varied

significantly across cell types (Kruskal–Wallis test, P < 2.2 × 10−16,

Figure 3F). While group medians were broadly comparable, MES2-

like cells showed a conspicuous right-skewed distribution, indicating

a subpopulation with elevated CytoTRACE2-inferred stemness

(Figure 3G). 3D PHATE embeddings did not resolve a single

linear lineage; instead, multiple partially overlapping trajectories

emanated from these high-stemness niches toward several
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differentiated endpoints (Figure 3H). Branches intersected and

rejoin, indicating state interconversion and plasticity rather than a

fixed differentiation order across tumor cell subtypes. Across

malignant cell states, signaling and PTM segregated in a

biologically coherent way. Across malignant states, we observed
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sharply delineated signaling and PTM landscapes that track with

cellular phenotypes (Supplementary Figures 2A, B). The

Proliferation state was dominated by growth-factor cascades

(EGFR–PI3K–MAPK and WNT) accompanied by PTMs linked to

proteome remodeling (S-nitrosylation, NEDDylation, b-
FIGURE 2

Integration, clustering and annotation of the single-cell GBM atlas. (A) UMAP of the Harmony-integrated dataset colored by leiden clusters
(resolution =0.8; labels 0–12). (B) Cell-type scoring using decoupler with over-representation analysis (ORA) and AUCell enrichment. Scores are
row-wise Z-scaled; columns are hierarchically clustered. (C) Dot plot of canonical marker genes across leiden clusters. Dot size denotes the fraction
of cells expressing the gene within a cluster; color encodes mean normalized expression. (D) Final cell-state annotation projected onto the UMAP:
AC-like, MES1-like, MES2-like, NPC1-like, NPC2-like, OPC-like, Oligodendrocyte, Proliferation, TAM-MG, Endothelial, SMC and T cell. (E) Pairwise
correlation heatmap (Pearson’s r, Z-scaled) of cell-type signature scores.
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FIGURE 3

Copy-number–based malignant calling and developmental potential across GBM states. (A) Inferred large-scale CNVs across chromosomes (chr1–
22) stratified by cell state (rows). Red/blue denote relative gains/losses. (B) Per-cell CNV burden projected onto the Harmony UMAP. (C) Distribution
of cnv_score. (D) CNV-low (normal) and CNV-high (tumor) assignments mapped back to the UMAP. (E) CytoTRACE2 developmental potency
projected onto the UMAP (purple = more differentiated; yellow/orange = higher potency). (F) Stemness scores across cell states, showing significant
differences (Kruskal–Wallis P < 2.2 × 10−16). (G) CytoTRACE2 score heatmap on the UMAP highlighting continuous gradients from high-potency
cores toward differentiated peripheries. (H) PHATE manifold colored by cell states reveals branching trajectories rather than a single linear
differentiation order. *P<0.05.
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hydroxybutyrylation). Lineage-biased states showed distinct axes:

OPC-like cells centered on TGF-b/p53 with broad PTM

reprogramming; NPC1-like cells coupled TGF-b/p53 with

succinylation, malonylation, and FAT10ylation; NPC2-like cells

paired TGF-b/p53 with deubiquitination, b-hydroxybutyrylation,
and ATG8ylation. Mesenchymal programs bifurcated: MES2-like

cells engaged hypoxia–angiogenesis and inflammatory signaling

(hypoxia, VEGF, NF-kB/TNFa, JAK–STAT, with androgen

inputs) and were enriched for myristoylation, S-nitrosylation, and

FAT10ylation; AC-like cells emphasized p53 and NF-kB/TNFa
alongside ATG8ylation, lipidation (myristoylation/palmitoylation),

ISGylation, UFMylation, and malonylation. MES1-like cells featured

JAK–STAT with p53/NF-kB/TNFa and PTMs such as lactylation,

UFMylation, and glycosylation. Collectively, these patterns resolve

tumor cell states into (i) a growth-factor–driven proliferative axis, (ii)

lineage-skewed NPC/OPC programs, and (iii) stress/inflammation-

dominated mesenchymal states-each with a characteristic PTM

“fingerprint” that likely underpins state-specific biology.
3.3 Cell type-aware GNN stratifies survival
and interpretable risk genes

We built a cell type -constrained, graph-based survival model

that integrates bulk transcriptomes with clinical similarity

(Figure 4A, see methods). The resulting risk score separated

outcomes with striking consistency. In TCGA GBM (n=157),

Kaplan–Meier curves showed a clear divergence between predicted

low- and high-risk groups. The two independent CGGA cohorts

(CGGA-325, n=85; CGGA-693, n=140) reproduced this separation,

yielding similarly steep survival gradients (Figures 4B–D). Thus, the

graph-aware model trained on TCGA generalized without re-fitting

to external data. To anatomize what drives risk, we derived gene-

level attributions and summarized them as directional “hazard

contour” maps that couple each gene’s expression with its

neighborhood context on the patient graph. Representative RMHZ

genes (high expression→ high hazard), such as RNF150 and LY6E,

showed monotonic increases along the hazard vector, with high-risk

samples clustering in the high-expression/high-neighbor-expression

quadrant. Conversely, MHZ genes (low expression → high hazard),

exemplified by SCN11A and CHCHD2, displayed the opposite

orientation, indicating that loss of these signals associates with

poorer survival (Figure 4E; Supplementary Table 5). Aggregating

across patients yielded a compact panel of top risk enhancers and

protectors, providing an interpretable, network-aware signature

rather than a black-box score.
3.4 MES2-like abundance marks an
aggressive program linked to poor
outcome

After batch-effect correction, TCGA and CGGA samples were

well intermingled in the low-dimensional embedding, indicating

effective removal of cohort effects (Figure 5A). We then related
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malignant state fractions to survival (Supplementary Table 6).

Univariate Cox models showed higher Proliferation and MES2-

like fractions associated with increased hazard (Figure 5B). In a

multivariable Cox model including significant malignant states,

MES2-like remained an independent adverse predictor (HR ≈

2.31, 95% CI 1.04–5.10, P = 0.039) (Figure 5C). Consistently,

patients stratified by MES2-like abundance (above vs. below

median) showed shorter progression-free survival in the high-

MES2 group (stratified log-rank P = 0.022; Figure 5D).

Transcriptionally, high-MES2 tumors up-regulated hallmark

programs of invasion, inflammation, and metabolic stress—

including epithelial–mesenchymal transition, TNFa/NF-kB
signaling, hypoxia, multiple STAT axes, angiogenesis, and

glycolysis (Figure 5E). PTM scoring further highlighted outcome-

linked chemistry: in univariate Cox analyses, glycosylation (and to a

lesser extent S-nitrosylation and lactylation) associated with

increased hazard (Figure 5F); in a multivariable Cox analysis, S-

nitrosylation remained significant (Figure 5G). Concordantly,

MES2-high tumors displayed elevated glycosylation and S-

nitrosylation (Figure 5H). This is consistent with our single-cell

analyses in Supplementary Figures 2A, B, where MES2-like cells

scored highest for hypoxia, NF-kB, and JAK/STAT pathway activity

and showed enrichment of S-nitrosylation signatures.

Mechanistically, hypoxia and inflammation-responsive signaling

can reinforce mesenchymal transition, immune evasion, and

metabolic rewiring, while S-nitrosylation, a redox-sensitive post-

translational modification, fine-tunes effector proteins within these

axes and has been implicated in therapy resistance. Together, these

data support a model in which hypoxia, NF-kB/STAT signaling,

and S-nitrosylation are key drivers of the MES2 program and likely

contribute to adverse prognosis in GBM.
3.5 Network convergence pinpoints a
robust MES2-like core program

To bridge bulk and single-cell evidence, we first performed

WGCNA on bulk RNA-seq from TCGA and CGGA after

deconvolution of malignant states. Several bulk co-expression

modules correlated positively with the MES2-like fraction, with

the black module standing out (Figure 6A; Supplementary

Figures 2C, D). Genes from this black module were significantly

up-regulated in the MES2-high group, and when projected to

single-cell resolution, the corresponding gene-set score was

selectively enriched in MES2-like malignant cells with minimal

signal in other states (Supplementary Figure 2E). At MES2-like

single cell level, hdWGCNA resolved eight MES2-like modules

(M1–M8), for which intramodular connectivity (kME)

highlighted recurrent hubs (e.g., collagen/ECM enzymes, redox

and hypoxia-responsive genes) (Figure 6B; Supplementary

Figures 2F–H). Module eigengenes localized to the MES2-like

domain on the UMAP, confirming cell-state specificity

(Figure 6C), and differential ME analyses showed selective

activation of these modules in MES2-like cells relative to other

malignant states (Figure 6D). Network visualization of the leading
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FIGURE 4

Cell type–aware graph survival modeling generalizes across cohorts and yields interpretable risk genes. (A) Schematic workflow of the cell type-
aware, graph-based survival modeling pipeline. (B–D) Kaplan–Meier curves for the training set (TCGA; B) and two external validation cohorts
(CGGA-325, C; CGGA-693, D). Samples were split by the median predicted risk. Shaded bands indicate 95% CIs; tables show numbers at risk. All
splits show significant separation by log-rank test. (E) Left: “Hazard contour” examples illustrating how risk varies jointly with a gene’s expression in a
sample (x-axis) and in its graph neighborhood (y-axis). Warmer colors indicate higher predicted hazard; yellow lines show fitted trends; points are
low- (blue) and high-risk (red) patients. RNF150 and LY6E exemplify risk-enhancing genes (higher expression → higher hazard), whereas SCN11A and
CHCHD2 exemplify risk associated with reduced expression. Right: ranked top-20 genes from the attribution analysis, grouped as risk-enhancing
(red) versus risk-mitigating/low-expression-linked risk (blue); hub genes highlighted.
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FIGURE 5

MES2-like abundance and PTM links to adverse outcome. (A) PCA of the pooled TCGA and CGGA cohorts after batch correction. Points are
individual tumors; colored ellipses denote 95% data ellipses per cohort. Broad intermixing indicates minimal residual cohort effects. (B) Univariate
Cox regression of malignant state fractions. Dots show hazard ratios (HRs) and bars 95% CIs. Proliferation and MES2-like associate most strongly
with increased hazard; NPC/OPC/AC-like tend toward neutral/prote ctive effects. (C) Multivariable Cox model including malignant states. MES2-like
remains an independent adverse predictor (HR = 2.31, 95% CI 1.04–5.10, P = 0.039), whereas MES1-like is not significant. The vertical dashed line
marks HR = 1. (D) Kaplan–Meier curves for progression-free survival after stratifying tumors by MES2-like abundance (above vs. below median). The
high-MES2 group shows shorter PFS (stratified log-rank P = 0.022); tables indicate numbers at risk. (E) Differential expression between high- vs. low-
MES2 tumors. Volcano plot (left) with up-regulated genes in red and down-regulated in blue. Gene-set enrichment of up-regulated genes (right)
highlights EMT, TNFa/NF-kB, hypoxia, JAK/STAT, angiogenesis, and glycolysis hallmark programs. (F) Outcome associations for PTM programs
scored by GSVA. Univariate Cox HRs (points) with 95% CIs (bars) show that glycosylation, and to a lesser extent S-nitrosylation and lactylation, track
with increased hazard, while several acylation/ubiquitylation processes trend oppositely. (G) Multivariable Cox model for PTM programs.
(H) Heatmap of PTM GSVA scores (z-scaled) comparing MES2-low vs. MES2-high tumors. *P<0.05; **P<0.01; ***P<0.001.
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FIGURE 6

Co-expression analysis nominates a MES2-like core program. (A) Bulk WGCNA across TCGA/CGGA (using BayesPrism-inferred cell fractions)
showing module–trait correlations. Cells display Pearson r (FDR in parentheses). Several modules—including the black module—correlate strongly
and positively with the MES2-like fraction. (B) hdWGCNA on malignant single cells identifies eight MES2-like modules (M1–M8). Bars list
representative hub genes ranked by intramodular connectivity (kME). (C) Feature maps of module eigengenes (hMEs) projected onto the single-cell
UMAP. MES2-like modules localize to the MES2-like neighborhood. (D) Differential module-eigengene (DME) analysis across cell types. Points
denote modules, positioned by average log2 fold-change (x-axis) and –log10 (FDR) (y-axis); MES2-like and NPC1-like–biased modules are
highlighted. (E) Network view of the top MES2-like module (M1). Left, integrative co-expression–PPI graph (hdWGCNA TOM × STRING v12); node
size reflects connectivity, labeled nodes are hubs. Right, co-expression-only layout. Bottom, fgsea of kME-ranked genes shows enrichment for
glycolysis, glucose/mitochondrial respiration, apoptotic signaling, and angiogenesis programs (NES and FDR shown). (F) Evidence integration. Venn
diagram of genes from bulk-WGCNA (TCGA/CGGA), hdWGCNA modules, MES2-like single-cell markers, bulk MES2-specific DEGs (deconvolution),
and GEO validations (GSE4290/GSE68848 up-regulated). The central intersection yields a conservative MES2 core set. (G) Functional enrichment of
the intersecting genes (GO BP/KEGG/Reactome). Top terms include collagen biosynthesis/modifying enzymes, extracellular matrix organization,
focal adhesion/ECM–receptor interaction, IGFBP transport, TGF-b receptor signaling, and blood-vessel morphogenesis (bars: –log10; adjusted P).
FDR, Benjamini–Hochberg; TOM, topological overlap matrix; kME, eigengene-based intramodular connectivity; fgsea v1.28; STRING v12.
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MES2-like module revealed tightly interlinked subnetworks

enriched for an invasion-metabolic axis-glycolysis, mitochondrial

respiration, apoptotic signaling, and angiogenesis (Figure 6E),

concordant with the transcriptional hallmarks observed in high-

MES2 tumors in Figure 5E.

We next integrated signals across modalities. Intersecting genes

from bulk WGCNA (TCGA/CGGA), single-cell hdWGCNA,

MES2-like single-cell markers, BayesPrism-derived bulk MES2-

specific DEGs, and two independent GEO validations yielded a

conservative core set, representing MES2 genes that recur across

platforms and cohorts (Figure 6F; Supplementary Figure 3A,

Supplementary Table 7). Functional enrichment of this intersects

(Figure 6G) converged on extracellular-matrix remodeling and its

regulators-collagen biosynthesis and modification, ECM-receptor

interaction, focal adhesion, and TGF-b receptor signaling

regulation-together with IGFBP-mediated transport and blood-

vessel morphogenesis. These convergent networks position MES2-

like GBM as an ECM-driven, vascular-interacting, stress-adapted

state, and nominate collagen-modifying enzymes and TGF-b/
adhesion nodes as tractable mechanistic anchors for the

MES2 program.
3.6 TAM–MES2 signaling axis converges on
a CEBPD-centered transcriptional program

We next explored the immune and MES2-like tumor

microenvironment. Using LIANA+ across seven inference

engines, we assembled a consensus LR atlas and retained

interactions supported by multiple methods with P < 0.05

(Figure 7A; Supplementary Figures 3C–E, Supplementary

Table 8). Prioritizing edges with MES2-like as the target and

either TAM-MG or T cells as the source highlighted a compact

set of high-magnitude, high-specificity signals (Figure 7B),

including growth–factor pathways (TIMP2→CD44, ADAM9/10/

17→ITGB1, TGFB1→ITGB1/EGFR), scavenger/clearance routes

(APOE/PSAP/C1Q/C3→LRP1/ABCA1/CD81), immune–

checkpoint–like axes (LGALS9/SPP1→CD44, CD47), and

inflammatory cues (GRN→TNFRSF1A). We observed markedly

stronger ligand–receptor signaling between TAM-MG and MES2-

like cells than between T cells and MES2-like cells. Accordingly,

subsequent analyses focused on the TAM-MG → MES2-like

communication axis. To increase stringency, we required that

both LR be up-regulated in GBM across two independent GEO

cohorts (GSE4290, GSE68848); the majority of the above pairs

passed this external filter (Figures 7C, D). At the transcriptional

layer, integrative analysis of MES2-like TFs up-regulated at single-

cell resolution and GBM DEGs in bulk datasets yielded a core set of

candidate regulators (Figure 7E; Supplementary Figure 3B,

Supplementary Table 9). Their regulon activity (AUC) and

expression were markedly enriched in MES2-like cells

(Figure 7F). To mechanistically connect extracellular cues to the

MES2 program, we embedded the high-confidence LR inputs and

MES2-enriched TFs into a signed, directed prior-knowledge

network and solved for causal flows. The optimal solution
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converged on CEBPD as a central integrator downstream of

TNFa/NF-kB, TGF-b, and MAPK/JAK–STAT cascades, linking

TAM-MG-derived ligands to MES2-like transcription (Figure 7G).

ARACNe analysis and Motif analysis and promoter scanning

confirmed bona fide CEBPD binding motifs within promoters of

multiple MES2-like hub genes (e.g., ARRDC3, CALD1, HILPDA,

NAMPT, PLOD2, SLC39A14, SPRY1, TMEM45A), reinforcing

direct regulatory control (Figure 7H; Supplementary Figures 3F,

4A, Supplementary Table 10). Together, these data delineate a

TAM-MG-to-MES2-like signaling axis that feeds into a CEBPD-

centered transcriptional module, rationalizing how inflammatory

and matrix-remodeling inputs cooperate with hypoxia/STAT/NF-

kB programs to drive the MES2-like state.
3.7 Spatial integration, clustering, and
malignant-spot calling across four GBM
sections

We analyzed Visium data from GBM2, GBM3, GBM5_1, and

GBM5_2. After alignment, spots from all sections were well

intermixed in the low-dimensional space (Figure 8A), indicating

effective cross-section integration. Graph-based clustering across

the combined embedding yielded a stable partition at leiden

resolution =0.5, which maximized the silhouette score

(Figures 8B, C). Each cluster contained contributions from

multiple sections, with sample composition varying across

clusters (Figure 8D), consistent with both shared and specimen-

specific spatial niches.

Spots from the GBM5_2 peritumoral tissue were predominantly

assigned to cluster 5.

To separate malignant from non-malignant tissue, we inferred

large-scale CNV. CopyKAT classified a substantial subset of spots as

aneuploid (tumor) that localized to discrete regions of the

embedding (Figure 8E; Supplementary Figure 4B), and tumor

fractions differed across clusters (Figure 8F). Concordantly,

CopyKAT classified most putatively normal (aneuploid-negative)

spots into cluster 5. We therefore used as the inferCNV reference

only those GBM5_2 spots within cluster 5 that were labeled

“normal” by CopyKAT (Figures 8G, H). The CNV score formed

a continuous gradient with a high-aneuploidy core and tapering

margins (Figure 9A). Thresholding the score (reference mean + 2

s.d.) yielded robust tumor vs. normal calls that reproduced this

gradient (Figure 9B) and, when mapped back to tissue coordinates,

localized to compact tumor territories in each section (Figure 9C).

Within GBM2, GBM3, GBM5_1, and GBM5_2, CNV-high regions

co-registered with GraphST/mclust tumor domains and

histopathologic tumor areas (Figures 9D–G). Quantitatively, CNV

scores were consistently elevated inside the GraphST tumor masks

relative to adjacent compartments for all specimens. The high-CNV

(malignant) compartments collapsed onto single dominant Leiden

clusters: GBM2-cluster 1, GBM3-cluster 0, GBM5_1-cluster 1, and

GBM5_2-cluster 1. Notably, in GBM5_2 the domain with elevated

CNV scores spatially overlapped with the GraphST/mclust tumor

cluster, indicating tumor infiltration into adjacent histologically
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RE 7FIGU

Spatially organized TAM–MES2-like communication. (A) UpSet summary of significant ligand–receptor (L–R) pairs (permutation P<0.05) detected by
LIANA+ across three methods (geometric mean, CellPhoneDB, CellChat). Bars indicate intersection sizes; most calls were supported by all three
resources. (B) Consensus L–R signals from immune sources toward MES2-like targets. Bubble color encodes interaction strength; size denotes
specificity. (C) Cross-cohort validation of L–R partners. Heat map shows whether each ligand and receptor complex is up-regulated in both bulk
GBM datasets (GSE4290 and GSE68848; yellow = present in both). (D) Ranked TAM–MG→MES2-like interactions, emphasizing specificity-enriched
pairs that localize to MES2-like niches. (E) Intersection analysis of transcription factors (TFs) up-regulated in MES2-like cells and in GEO cohorts
identifies a small, recurrent TF set; labels include CEBPD, CEBPB, HIF1A, NFKB1/2, and others. (F) Hub-TF activity (AUCell regulon scores, left) and
expression (right) across cell states (z-scores). (G) Putative signaling cascade linking microenvironmental cues to MES2-like programs: TNF-receptor
signaling (TNFRSF1A) converges on CEBPD, which in turn connects to MES2-hub genes. (H) Motif evidence for CEBPD binding in the ARRDC3
promoter (FIMO hits with representative logos), supporting a TNFRSF1A→CEBPD→ARRDC3 module at the tumor–brain interface.
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FIGURE 8

Spatial integration, clustering, and malignant-spot calling across four GBM sections. (A) Joint embedding (UMAP) of Visium spots from GBM2, GBM3,
GBM5_1, and GBM5_2 after cross-section alignment; colors indicate specimen of origin. (B) Silhouette analysis over Leiden resolutions identifies a
stable partition at r = 0.5 (red dot). (C) Leiden clusters (0–9) on the same embedding. (D) Cluster composition by specimen (stacked bars), showing
both shared and section-specific niches. (E) CopyKAT large-scale CNV calls projected onto the embedding (orange, tumor/aneuploid; blue, normal/
undefined). (F) Tumor fractions per cluster derived from CopyKAT. (G) Cell-count summaries: top, counts of spots labeled as Ref (reference) versus
Infer (to be profiled) for inferCNV; bottom, per-cluster counts by specimen. (H) inferCNV heat maps across chromosomes for Infer (top) and Ref
(bottom) spots, illustrating broad aneuploidy in tumor territories and diploid profiles in the reference set selected from GBM5_2.
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FIGURE 9

Spatial CNV gradients delineate malignant cores across GBM sections. (A) Joint UMAP of all Visium spots colored by local density of the continuous
CNV score (inferCNV), revealing a high-aneuploidy core and tapering margins. (B) Tumor/normal calling on the same embedding after thresholding
the CNV score using a CopyKAT-derived normal reference (mean + 2 s.d.); orange, tumor (aneuploid); blue, normal/undefined. (C) Tissue
coordinates for each section (GBM2, GBM3, GBM5_1, GBM5_2) showing spatial localization of predicted tumor (orange) versus normal (blue) spots.
(D–G) For each specimen, top: CNV-score heatmap over tissue (white→red, low→high) with the GraphST/mclust tumor mask outlined in yellow;
middle: overlay on the matched histology image; bottom: CNV scores inside (1) versus outside (0) the mask (two-sided Wilcoxon rank-sum,
p < 0.001 in all cases). CNV-high compartments co-register with computational and histopathologic tumor domains; in GBM5_2, CNV elevation
extends into the peri-tumoral rim, consistent with a tumor-infiltrated normal zone.
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normal tissue. We therefore annotated this region as a tumor-

infiltrated normal zone. Together, these analyses reveal a spatially

coherent aneuploid “malignant core” shared across patients and

provide a principled scaffold for subsequent localization of MES2-

like programs and cell–cell signaling.
3.8 Spatially localized immuno-
mesenchymal signaling coincides with
MES2 niches

Across all four Visium sections, spatial pathway cartography

disclosed a convergent malignant program (Figure 10A): JAK/

STAT and WNT activities were uniformly elevated within high-

CNV tumor territories, whereas hypoxia signaling was tightly

confined to tumor cores and conspicuously absent from the peri-

tumoral infiltrative compartment of GBM5_2. Primary tumors

(GBM3 and GBM5_1) shared a consistent enrichment landscape

across oncogenic pathways, underscoring a common core of

malignant signaling. By contrast, the recurrent specimen (GBM2)

exhibited a distinct rewiring with focal enrichment of estrogen and

MAPK pathways specifically within tumor regions, suggesting

recurrence- or therapy-associated endocrine/mitogen-driven

signaling. Together, these maps highlight (i) pan-malignant

vulnerabilities (JAK/STAT, WNT), (ii) a spatial decoupling of

hypoxia from infiltrative margins, and (iii) a recurrence-specific

estrogen/MAPK axis that may inform stratified interventions.

Spatial scoring of the MES2-hub gene set showed focal “hot

spots” embedded within tumor regions of each specimen (GBM2/

5_1/5_2) (Figure 10B). We next asked which LR signals are

preferentially organized around these niches. Using LIANA+ in

spatial mode with a Gaussian neighbor kernel, we aggregated

consensus calls from multiple resources and ranked interactions

by mean strength and spatial significance (permutation-based

Moran’s P) (Figures 10C–F). We next focused on the two

candidate receptors highlighted in Figure 6G (TNFRSF1A and

ITGB1). Spatial maps showed that their TAM to MES2-like

interactions (e.g., GRN-TNFRSF1A and CD14/ADAM9/

ADAM17-ITGB1) were maximally enriched within high-CNV

tumor-core domains and diminished toward infiltrative margins

(Supplementary Figures 5A–D). We next examined the

TNFRSF1A-CEBPD-ARRDC3 axis at single-spot resolution.

Strikingly, receptor (TNFRSF1A), transcription factor (CEBPD),

and downstream effector (ARRDC3) showed spatially co-localized

high expression specifically at the infiltrative rim of GBM5\_2-the

region we defined as tumor infiltration into adjacent tissue—while

this coordinated peak was not observed in the other sections

(Figure 10G). The hotspot coincided with MES2-like enrichment,

elevated hypoxia/NF-kB/STAT activity, and the TAM→MES2

ligand flow (e.g., GRN→TNFRSF1A), and was supported by

CEBPD motif hits in the ARRDC3 promoter. Together, these

data nominate a microenvironment-linked invasion module in

which TNF-receptor signaling funnels through C/EBPd to activate

ARRDC3 at the tumor-brain interface-a previously unrecognized,
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spatially restricted program that may underlie mesenchymal

infiltration and offers a focused targetable axis.
3.9 ARRDC3 affects the proliferation and
migration ability of U251 cells

Firstly, we validated the mRNA expression levels of several

previously identified DEGs in both the control group and GBM

group (Figure 11A). Among these genes, ARRDC3 mRNA was

markedly upregulated in the GBM group (P < 0.0001).

Furthermore, the protein expression level (P < 0.0001) and

immunohistochemical scoring results (P < 0.0001) of ARRDC3

were also significantly elevated in the GBM group compared to the

control group (Figures 11B–E).

To investigate the functional role of ARRDC3, we performed

lentivirus-mediated knockdown of ARRDC3 in U251 cells. Both the

mRNA (P < 0.0001) and protein levels (P < 0.001) of ARRDC3 were

significantly reduced following transfection (Figures 11F–H). Cell

viability assays using CCK-8 demonstrated that the viability of

U251 cells in the sh-ARRDC3 group was significantly higher than

that in the sh-NC group at 24 h (P < 0.05), 48 h (P < 0.001), and 72 h

(P < 0.0001) (Figure 11I). The EdU incorporation assay further

confirmed that the proliferative capacity of U251 cells was enhanced

after ARRDC3 knockdown (P < 0.001) (Figures 11J, K). Moreover,

Transwell assay results indicated a significant increase in the

migratory ability of U251 cells following ARRDC3 knockdown (P

< 0.01) (Figures 11L, M).

To further substantiate these findings, we conducted gain-of-

function experiments by overexpressing ARRDC3 in U251 cells.

The mRNA (P < 0.01) and protein levels (P < 0.001) of ARRDC3

were significantly increased after transfection (Supplementary

Figures 6A–C). Notably, the cell viability of the OE-ARRDC3

group was significantly lower than that of the OE-NC group at 24

h (P < 0.05), 48 h (P < 0.001), and 72 h (P < 0.0001) (Supplementary

Figure 6D). Consistently, both the proliferative capacity (P <

0.0001) and migratory ability (P < 0.01) of U251 cells were

significantly suppressed upon ARRDC3 overexpression

(Supplementary Figures 6E–H).
4 Discussion

Using integrated single-cell, bulk, and spatial transcriptomics,

we delineate a mesenchymal-like (MES2-like) malignant state in

GBM as a central driver of aggressiveness, therapeutic resistance,

and poor prognosis, consistent with emerging evidence that MES-

like transitions couple hypoxia-induced metabolic rewiring to

immune evasion (33, 34). MES2-like abundance independently

predicts shorter survival after adjustment for other malignant

states and is marked by enrichment of epithelial-to-mesenchymal

transition, NF-kB/TNFa and JAK/STAT signaling, angiogenesis,

glycolysis, and hypoxia-adaptation programs; These observations

suggest that MES2-like features may serve as a contextual
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FIGURE 10

Spatial pathway activity, MES2 hubs, and TAM→MES2-like signaling converge in malignant niches. (A) Pathway activity (Z-scored within section) for
14 oncogenic programs across the four Visium specimens (GBM2, GBM3, GBM5_1, GBM5_2). Columns “0/1” denote cluster; tumor territories show
concordant elevation of JAK/STAT and WNT, with specimen-specific features (e.g., estrogen/MAPK in GBM2). (B) Spatial score maps of the 25-gene
MES2 hub set; warmer colors indicate higher scores. Hotspots localize within malignant regions in all sections. (C–F) LIANA+ (spatial mode)
consensus ranking of ligand–receptor pairs from TAM-MG (source) to MES2-like (target) for each section. Points are scaled by spatial specificity
(permutation-based Moran’s statistic) and colored by mean interaction strength; labels show representative top interactions. A recurrent signal is
GRN→TNFRSF1A (boxed), accompanied by ADAM9/17→ITGB1, SPP1→CD44, A2M/PSAP/APOE→LRP1/ABCA1, and complement/coagulation axes,
indicating an immune–mesenchymal communication hub. (G) Spatial expression maps for the TNFRSF1A–CEBPD–ARRDC3 axis in each section.
Receptor (TNFRSF1A), transcription factor (CEBPD), and effector (ARRDC3) co-localize with MES2-hub hotspots inside tumor cores; notably, in
GBM5_2 they peak at the tumor–brain interface (infiltrative rim), consistent with a spatially restricted, TAM-driven mesenchymal program.
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FIGURE 11

Verification of ARRDC3 expression in clinical samples and the impact of ARRDC3 knockdown on the proliferation and migration of U251 cells. (A)
mRNA expression of differential genes in clinical samples. (B, C) Protein expression and quantitative results of ARRDC3 in clinical samples. (D, E)
Representative immunohistochemical staining images and corresponding scoring results from the control group and the GBM group are presented.
(F) mRNA expression levels of ARRDC3 in U251 cells following transfection. (G, H), Protein expression and quantitative results of ARRDC3 in U251
cells following transfection. (I) CCK-8 reagent was added to the transfected U251 cells, and the corresponding absorbance values were measured at
24 h, 48 h, and 72 h at a wavelength of 450 nm. (J, K) EdU incorporation assay assessing U251 cell proliferation, and quantitative analysis of EdU-
positive cells relative to total DAPI-stained cells. (L, M) The transwell migration assay was performed, and quantitative analysis was conducted to
assess the number of migrated U251 cells. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. ns, no significance.
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biomarker to stratify patients and to prioritize combinational

strategies (e.g., myeloid-reprogramming with checkpoint

blockade, or hypoxia/metabolic-axis targeting) rather than

checkpoint inhibition alone. We therefore frame MES2-like

signatures as hypothesis-generating predictors whose clinical

utility must be established in prospective, independent cohorts

with harmonized sampling and endpoints. These features accord

with reports that MES-like GBM increases glucose consumption

under hypoxic stress, fostering invasion and resistance to

temozolomide and radiotherapy (35). Furthermore, MES2-like

states have been repeatedly linked to an immunosuppressive,

myeloid-enriched microenvironment and to inferior responses to

standard therapies in GBM. Prior single-cell and integrative spatial

studies map MES1/MES2 programs to hypoxic niches with

heightened myeloid infiltration and NF-kB/TNF pathway activity,

features associated with T-cell dysfunction and treatment

resistance. These observations suggest that MES2-like features

may serve as a contextual biomarker to stratify patients and to

prioritize combinational strategies (e.g., myeloid-reprogramming

with checkpoint blockade, or hypoxia/metabolic-axis targeting)

rather than checkpoint inhibition alone. We therefore frame

MES2-like signatures as hypothesis-generating predictors whose

clinical utility must be established in prospective, independent

cohorts with harmonized sampling and endpoints (36–38) Post-

translational modification profiling further implicates S-

nitrosylation and glycosylation as outcome-linked hallmarks in

MES2-high tumors, indicating a redox- and glycan-sensitive

regulatory axis that remodels the proteome, modulates antitumor

immunity, and sustains therapy refractoriness. To translate these

signals clinically, we developed a cell type aware graph neural

network that integrates patient similarity with transcriptomic

priors and outperforms conventional models while yielding an

interpretable, network-aware risk signature. Within this

framework, ARRDC3 emerges as a low-expression, high-risk

gene. Prior studies describe ARRDC3 as a tumor suppressor in

other cancers, where it attenuates GPCR signaling and limits

invasion, and additional evidence links ARRDC3 polymorphisms

and expression to glioma susceptibility and adverse outcomes in

related malignancies (39, 40). Together with our data, these

observations support a putative CEBPD-ARRDC3 regulatory axis

that interfaces with MES2-like programs to may promote immune

evasion and treatment resistance. Nevertheless, in this study the axis

is inferred-from single-cell and spatial expression patterns,

transcription-factor activity scoring, and cis-element enrichment-

rather than demonstrated by direct binding or causal perturbation.

Although our preliminary analyses of ARRDC3 align

with the predicted direction of effect, these findings remain

exploratory and do not exclude parallel regulation or context-

dependent mechanisms.

Central to this MES2 program is a TAM-MG-driven signaling

axis that converges on the transcription factor CEBPD, integrating

extracellular cues from ligands like GRN, APOE, and TGFB1 to

orchestrate downstream effectors such as TNFRSF1A and CEBPD.

This pathway, supported by consensus L-R-TFs inference and

causal network modeling, highlights CEBPD as a master regulator
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of hypoxia-regulated invasion and stemness in GBM, corroborating

studies where CEBPD augments extracellular matrix-integrin

interactions and promotes glioma stem-like cell maintenance,

thereby enhancing TMZ resistance (41, 42). Our data further

implicate TAM-MG as key inducers of MES-like transitions via

lipid-mediated metabolic interplay and M2-polarizing ligands,

extending observations that macrophages reprogram GBM cells

toward mesenchymal states through reciprocal interactions that

sustain tumor progression and immunosuppression (7, 43).

Our integrated spatial transcriptomic analysis of four GBM

sections provides a framework for dissecting the molecular and

spatial heterogeneity of this aggressive tumor. Joint analysis of

Visium data from primary (GBM3, GBM5_1), recurrent (GBM2),

and peritumoral (GBM5_2) specimens achieved robust cross-

section alignment and clustering, revealing shared and specimen-

specific niches (44). These findings extend prior studies on GBM

intratumoral diversity by offering a multi-patient view of conserved

tumor structures (45). A major contribution is the CNV-based

separation of malignant and non-malignant areas using CopyKAT

and inferCNV, yielding gradient scores that align with

histopathological and GraphST domains. In GBM5_2, CNV

elevation in histologically normal tissue defined as a “tumor-

infiltrated zone,” supporting evidence of microscopic infiltration

driving high recurrence rates. This approach could enhance surgical

precision and residual disease monitoring in spatial omics (46).

Spatial pathway analysis highlighted pan-malignant JAK/STAT and

WNT activation in tumor territories, marking them as therapeutic

targets for proliferation and stemness (47, 48). Hypoxia was

restricted to cores, suggesting normoxic invasion drivers

warranting model validation (49). Recurrent GBM2 showed

distinct estrogen and MAPK enrichment, implying therapy-

related adaptations and stratified treatments (50, 51). MES2-like

hotspots in tumors linked to TAM-MES2 interactions via

TNFRSF1A and ITGB1. A TNFRSF1A-CEBPD-ARRDC3 axis

peaked at GBM5_2’s infiltrative rim, co-localizing with MES2,

hypoxia/NF-kB/STAT, and GRN signaling, proposing a novel C/

EBPd-mediated invasion module (52). This context-specific axis

offers targeted opportunities, like TNFRSF1A or CEBPD inhibition,

to block mesenchymal invasion without impacting core tumor

pathways. Our findings build upon the mesenchymal axis

previously described by Xiao et al., through the biochemical

subdivision of the MES subtype into distinct molecular programs

defined by PTMs (7). the establishment of EPAS1-dominant

chronic hypoxia as a hallmark at the regulon level; the

identification of a TAM-to-MES2 ligand-receptor signaling funnel

that converges on a CEBPD-centered regulatory module; the spatial

localization of MES2 within genomic regions enriched for CNVs;

and the demonstration of independent and generalizable prognostic

significance. Together, these advances underscore the TNFRSF1A/

ITGB1/EGFR–CEBPD signaling axis and specific PTM processes—

particularly S-nitrosylation—as promising, therapeutically

actionable targets in MES2-like GBM.

This retrospective, multi-platform design (scRNA-seq, bulk,

Visium) may retain batch/sampling bias; This study is limited by

sample size, patient composition, and treatment timeframe. Certain
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cell subsets may be underrepresented. These conclusions require

further validation in a larger, multicenter cohort encompassing

both relapse and post-treatment timeframes. Future work should

include proteomic/spatial validation, targeted perturbations, and

multi-center longitudinal cohorts with prospective clinical

calibration, and risk-stratified immunotherapy will be explored.
5 Conclusion

We integrated single-cell, bulk, and spatial transcriptomics with

CNV profiling and a cell type–aware GNN to define a robust MES2-

like program that maps to high-CNV cores, shows elevated

stemness, and independently predicts poor outcome (HR = 2.31);

the GNN score generalized across TCGA/CGGA. PTM analyses

link S-nitrosylation and glycosylation to MES2-associated hypoxia/

inflammation. A TAM→MES2 axis (GRN→TNFRSF1A; ADAM9/

10/17→ITGB1; TGFB1→ITGB1/EGFR) converges on CEBPD,

with a TNFRSF1A–CEBPD–ARRDC3 hotspot at the infiltrative

rim; in U251 cells, ARRDC3 suppresses proliferation/migration

when overexpressed and promotes them when silenced.

Translationally, combine the MES2 fraction and GNN score for

stratification, prioritize CEBPD and TNFRSF1A/ITGB1 (with

potential hypoxia/NF-kB/JAK–STAT co-inhibition), and target

infiltrative rims.
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