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Background: Glioblastoma (GBM) exhibits marked plasticity and intense
microenvironmental crosstalk. We aimed to delineate mesenchymal programs
with spatial resolution, clinical relevance, and mechanistic anchors.

Methods: We integrated single-cell RNA-seq, bulk transcriptomes, and Visium
spatial data. After rigorous QC and Harmony integration, we annotated 12 cell
states using canonical markers, decoupler-based ORA, and AUCell. Tumor
boundaries were defined by inferCNV/CopyKAT; developmental potential by
CytoTRACE2 and PHATE. Post-translational modification (PTM) axes were scored
from curated gene sets. A cell type-aware GNN linked bulk expression to a
patient-similarity graph for survival modeling and gene-level hazard attribution.
Network convergence combined bulk WGCNA (TCGA/CGGA), single-cell
hdWGCNA, BayesPrism deconvolution, and external GEO validation. Ligand—
receptor (LR) signaling was inferred with LIANA+, embedded in a signed causal
network, and mapped spatially. ARRDC3 expression was assessed in GBM tissues;
U251 gain- and loss-of-function assays evaluated proliferation and migration.
Results: We resolved major GBM states, including two mesenchymal programs
(MES1-like, MES2-like). CNV-high regions marked malignant cores, and
CytoTRACE? identified high-potency niches within MES2-like and Proliferation
states along non-linear trajectories. PTM landscapes segregated by state; S-
nitrosylation, glycosylation, and lactylation were enriched in mesenchymal
programs. A GNN risk score stratified overall survival in TCGA (n=157) and
generalized to CGGA-325 (n=85) and CGGA-693 (n=140). MES2-like
abundance remained an independent adverse predictor (HR = 2.31; 95% Cl,
1.04-5.10). MES2-high tumors upregulated EMT, TNFa/NF-xB, JAK/STAT,
hypoxia, angiogenesis, and glycolysis; S-nitrosylation associated with increased
hazard. Cross-modal convergence defined a conservative MES2 core enriched
for ECM remodeling, collagen modification, focal adhesion, and TGF-
regulation. LR analysis prioritized a TAM-to-MES2 axis (e.g., GRN-TNFRSF1A,
ADAM9/10/17-1TGB1, TGFB1-ITGB1/EGFR) converging on a CEBPD-centered
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module. Spatial mapping localized MES2 hotspots within CNV-defined territories
and revealed a TNFRSF1IA-CEBPD—-ARRDCS3 focus at an infiltrative rim. ARRDC3
was upregulated in GBM tissues; in U251 cells, knockdown promoted and
overexpression suppressed proliferation and migration, indicating context-
dependent roles.

Conclusions: MES2-like GBM is an ECM-driven, stress-adapted state with strong
prognostic impact. We nominate CEBPD and TNFRSF1A/ITGB1 as actionable
nodes and identify ARRDC3 as a spatially restricted effector with context-
dependent tumor-modulatory functions warranting therapeutic exploration.

MES2-like glioblastoma, cell type-aware graph neural network, TAM-MG-MES2

communication, spatial transcriptome analysis, arrestin domain containing 3

1 Introduction

Glioblastoma (GBM) is an exceptionally aggressive and
heterogeneous brain tumor that poses a formidable challenge in
neuro-oncology, with limited therapeutic options and poor
prognosis (1). Although significant progress has been made in
understanding glioma biology, the complex molecular networks
driving GBM invasiveness remain insufficiently characterized (2). A
defining feature of GBM pathophysiology is its intricate tumor
microenvironment (TME), which not only supports tumor growth
but also contributes to therapeutic resistance and recurrence (3, 4).

Recent studies have emphasized the dynamic interactions
between tumor cells and various cellular components within the
microenvironment, including immune cells, endothelial cells, and
stromal elements, that collectively regulate tumor progression (5).
Among the molecular subtypes of GBM, the mesenchymal (MES)
subtype has emerged as a key determinant of malignancy,
characterized by pronounced plasticity, enhanced invasiveness,
and resistance to conventional therapies (6). Importantly, GBM
cells rarely exist in fixed cellular states; instead, they exhibit
remarkable plasticity, transitioning between transcriptional
programs in response to microenvironmental cues and
therapeutic pressures. Within this mesenchymal category, recent
high-dimensional analyses have further dissected the phenotype
into distinct MES1- and MES2-like states with unique molecular
signatures (7). Notably, the MES2-like program is marked by
adaptations to hypoxia and inflammatory signaling, representing
a dynamic and invasive tumor subpopulation intimately associated
with disease progression (8). However, the regulatory circuits and
microenvironmental interactions that generate and sustain the
MES2-like state remain poorly understood.

This knowledge gap is partly attributable to inherent limitations
of bulk profiling methods, which obscure the subtle heterogeneity
and spatial organization within tumors. The advent of single-cell
RNA sequencing (scRNA-seq) has revolutionized neuroscience and
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oncology by providing cell-resolved insights into the tumor
ecosystem, enabling precise delineation of tumor and stromal
phenotypes (9). Complementing this, spatial transcriptomics
preserves tissue architecture while interrogating gene expression,
allowing analysis of cellular neighborhoods, spatially constrained
signaling, and niche-specific regulatory events (10). Integrating
single-cell and spatial transcriptomics thus holds promise for
elucidating the complex crosstalk between tumor cell states and
their microenvironment, particularly the interactions driving
mesenchymal transition.

Emerging evidence implicates a MES2-like mesenchymal
program as a driver of invasion, stress adaptation, and therapy
resistance in GBM, yet its regulatory circuitry, spatial niches, and
immunologic dependencies remain unresolved. We therefore set
out to delineate the core MES2-like network, map its localization
within tumor ecosystems, and identify upstream cues and
transcriptional effectors that could be leveraged to rewire the
mesenchymal state.

2 Methods
2.1 Data sources

Single-cell transcriptomic data were downloaded from GEO
under accession numbers GSE103224 (8 GBM samples),
GSE138794 (20 GBM samples), and GSE139448 (6 GBM
samples). Spatial transcriptomic data were obtained from
GSE194329, of which four samples were analyzed in detail
(GBM2: IDH-wt recurrent tumor; GBM3: IDH-wt primary
tumor; GBM5_1: IDH-wt primary tumor; GBM5_2: IDH-wt peri-
tumoral tissue). Bulk RNA-seq data were obtained from TCGA (157
GBM samples) and from the Chinese Glioma Genome Atlas
(CGGA mRNA325, 85 GBM; CGGA mRNA693, 140 GBM).
Additional microarray cohorts were included from GSE4290 (77
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GBM, 23 normal) and GSE68848 (228 GBM, 28 normal). The
overall research design process is shown in Figure 1.

2.2 Single cell processing

Raw FASTQ files were processed with 10x Genomics Cell
Ranger (11), alignment to Human reference GRCh38 (2024-A).
Protein-coding genes were annotated using the GENCODE v47
reference genome. To ensure data quality, we excluded samples with
insufficient coverage (<1,000 detected cells) or low complexity
(<500 detected genes). After quality control, 21 out of the initial
34 GBM single-cell samples were retained for downstream analysis.
Single-cell RNA-seq data were processed with Scanpy (12). Raw
counts were normalized to a fixed library size and log-transformed,
followed by selection of 2,000 highly variable genes across samples.
Gene expression values were scaled, and dimensionality reduction
was performed using principal component analysis(PCA). We
clustered and evaluated the performance of various batch
correction methods (Harmony, scanorama, combat) within the

10.3389/fimmu.2025.1699134

principal component representation (PCR) space. Based on a
proximity graph, we used the leiden algorithm for multi-scale
clustering at resolutions ranging from 0.3-0.9. Benchmarker was
then used to systematically evaluate the results at each resolution,
comprehensively examining biological fidelity and batch effect
removal (13). Batch effects were corrected with Harmony
integration, after which a neighborhood graph was constructed.
Cells were clustered with the leiden algorithm (resolution 0.8). To
focus on robust clusters, only clusters containing at least 300 cells
were retained. Cell-type markers for GBM were obtained from
previously published article (Supplementary Table 1) (14). Using
decoupler (15), we applied over-representation analysis (ORA) and
AUCell to score the activity of marker gene sets (=3 markers per cell
type). Gene sets for GO Biological Processes (BP) and post-
translational modification (PTM) enzymes were obtained from
MsigDB (https://www.gsea-msigdb.org/gsea/msigdb) and
previously published article (Supplementary Table 2) (16).
Enrichment scores were estimated per cell type, and differential
activity was assessed with a moderated t-test, retaining pathways
with adjusted p < 0.05.
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2.3 Tumor cell recognition

Copy number variation (CNV) inference was performed using
the infercnvpy (17). Cells from GBM-associated states were
analyzed, while non-tumor cells (Such as endothelial cells and T
cells) served as reference “normal” populations. CNV profiles were
estimated using a 250-gene sliding window. For classification, CNV
scores were calculated for all cells, and the mean score of reference
cells plus 1.5 standard deviations was used as the threshold to
identify cells with elevated CNV as putative tumor cells. Tumor cells
were subjected to functional profiling. Pathway activities were
estimated with PROGENy gene sets and enrichment of custom
molecular modification signatures was assessed by ORA (16).
Significant pathways and PTM score (adjusted p < 0.05) were
identified per cell type.

2.4 Differentiation potential inference

Cellular differentiation potential was inferred using
CytoTRACE2 (18). Default parameters were applied with a fixed
random seed to ensure reproducibility. The resulting CytoTRACE2
scores were embedded using PHATE for 3D visualization (19). Cell-
type identities and CytoTRACE2 scores were overlaid on the
PHATE embeddings to illustrate lineage hierarchies and
differentiation gradients across GBM cell populations.

2.5 scRNA deconvolution, survival and
functional analysis

Bulk RNA-seq datasets from TCGA and CGGA cohorts were
batch-corrected using ComBat-seq (20), and cell-type proportions
were inferred with BayesPrism using tumor cell states (21).
Associations between deconvolved tumor cell states and patient
survival were evaluated by Cox proportional hazards regression,
including both univariate and multivariate models, with survival
differences assessed by Kaplan-Meier analysis. For functional
characterization, we stratified tumors by MES2-like abundance
(above vs. below median) and performed differential expression
analysis using DESeq2 (22). Significantly dysregulated genes were
subjected to pathway enrichment against MSigDB hallmark gene
sets. In parallel, gene sets representing post-translational
modifications were scored using gene set variation analysis
(GSVA), and their associations with clinical outcomes were
further assessed through Cox regression.

2.6 MES2-like module definition based on
bulk level

Weighted gene co-expression network analysis (WGCNA) was
applied to bulk RNA-seq profiles (TCGA and CGGA) to identify
co-expression modules associated with BayesPrism-inferred cell
fractions. Soft-thresholding powers were selected using scale-free
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topology criteria, and modules were defined by hierarchical
clustering and dynamic tree cutting. Module eigengenes were
correlated with cell-type fractions, and genes from modules
associated with MES2-like states were extracted. MES2-like
module genes, defined as differentially upregulated genes in the
high-MES2 group, was used to compute activity scores for the
tumor cell type.

2.7 Graph construction and transformer-
based survival modeling

To identify cell type-specific marker genes, we performed
differential expression analysis across cell types. Genes were
ranked within each cell type against all others by the Wilcoxon
rank-sum test (log2FC>1 and adjust P < 0.05). Clinical data were
used to construct patient-similarity networks, followed by
appropriate preprocessing (min-max scaling, one-hot encoding,
or rank scaling). Similarity matrices were derived using multiple
metrics, including Gower distance, local-scaling kernels, and multi-
view fusion, and graphs were subsequently built by retaining each
patient’s five nearest neighbors with mutual k-Nearest Neighbors
(kNN) filtering; to guarantee full connectivity, a minimum
spanning tree backbone was added. Gene expression matrices
were log,-transformed and standardized using training set
statistics to avoid information leakage, and clinical survival
metadata were matched by patient identifiers. To incorporate
biological priors, genes were projected onto cell type signatures-
level representations through a masked projector with residual
connections, which were then modeled using a Transformer-
based graph neural network. Survival prediction was formulated
with a Cox proportional hazards head, trained under Adam
optimization with dropout regularization and early stopping, and
the best-performing model state was selected based on validation
concordance index.

2.8 MES2-like module definition based on
scRNA level

Cell type-specific co-expression networks were constructed using
high-dimensional WGCNA (hdWGCNA) (23), after removing
mitochondrial and ribosomal genes. This framework aggregates cells
into metacells, optimizes soft-thresholding powers, and delineates
distinct transcriptional modules. Module eigengenes were correlated
with cell type and sequencing traits, and hub genes were defined based
on intramodular connectivity (kME). Functional enrichment of
ranked intramodular genes was performed using fgsea (v1.28)
against GO BP pathways. Protein-protein interaction (PPI) support
was integrated from the STRINGdDb (v12.0) human network, retaining
only experimentally supported edges. We further combined
topological overlap matrices (TOM) from hdWGCNA with
STRING PPI adjacency to construct integrative co-expression-PPI
networks. Hub genes were defined as those with both high co-
expression connectivity and PPI degree centrality.
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2.9 Integrative identification of MES2 hub
genes

To validate the robustness of MES2-associated signals, we
systematically integrated bulk and scRNA resources. Two
independent GEO cohorts (GSE4290 and GSE68848) were
curated, and stringent outlier detection ensured removal of
aberrant samples prior to downstream analysis. Differential
expression was first profiled with limma (24). To guard against
false positives driven by case—control imbalance, we complemented
this with RankCompV2 (24), which detects genes showing consistent
reversals in relative expression orderings (REOs) between gene pairs:
REOs stable in normal brain defined the background, while GBM-
specific reversals were assessed by Fisher’s exact test. Genes
significant by the REO test were considered differential expression
by RankCompV2, and only differentially expressed genes (DEGs)
corroborated by both approaches were retained for downstream
analyses, integrating absolute expression shifts with rank-based
regulatory changes. We then converged multiple layers of evidence
to define putative MES2 hub genes: WGCNA module, hdAWGCNA
module, sScRNA DEGs from MES2-like clusters, bulk MES2-specific
signatures inferred by deconvolution, and upregulated genes across
both GEO cohorts. Intersections across these modalities yielded a
conservative set of recurrent genes, representing a high-confidence
MES2-like core program.

2.10 Regulatory network inference and
transcription factor analysis

We applied the SCENIC workflow to infer gene regulatory
networks (GRN) and transcription factors (TFs) activity at single-
cell resolution. Raw UMI matrices were preprocessed with Scanpy,
followed by pySCENIC (25), which integrates three modules: (i)
GRN inference using pyscenic grn with a comprehensive set of
human TFs to identify co-expression modules; (ii) cis-regulatory
motif enrichment against curated motif and cisTarget databases to
refine TF-target interactions; and (iii) regulon activity quantification,
generating cell-by-regulon AUC matrices. Cell type-specific
regulatory programs were derived by testing differential regulon
activity across annotated clusters using Wilcoxon rank-sum tests.
TFs significantly enriched in MES2-like (adjusted P < 0.05, |log,FC|
> 1) were designated as up- or down-regulated master regulators.
This approach enabled the identification of TFs shaping MES2-like
states and provided a network-level perspective linking
transcriptomic programs to regulatory control.

2.11 Cell-cell communication analysis

To systematically characterize the signaling crosstalk shaping
MES2-like GBM states, we applied the LIANA+ framework (26),
which integrates multiple LR inference methods including
SingleCellSignalR, Connectome, CellPhoneDB, NATMI, logFC-
based scoring, CellChat, and a geometric mean consensus.
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Significance was assessed with 1,000 permutations, and method-
specific p-values were aggregated into a consensus ranking via
LIANA’s meta-aggregation procedure.

We focused on interactions where macrophage/microglia
(TAM-MG) served as the sender and MES2-like cells as the
receiver. Candidate interactions were filtered to retain only those
consistently significant across CellChat, CellPhoneDB, and
consensus geometric mean (P < 0.05), with positive LR log,FC
values indicating upregulated signaling. To further prioritize
biologically relevant signals, predicted ligands and receptors were
intersected with independent gene signatures of upregulated genes
from bulk GBM datasets (GEO), thereby highlighting TAM-MG-
MES2-like signaling axes supported by both single-cell inference
and orthogonal bulk validation.

2.12 Causal signaling inference with
CORNETO/CARNIVAL

To connect extracellular receptor activity with downstream
transcriptional regulators of the MES2-like state, we integrated LR
interaction scores with TF regulon specificity profiles.LR scores
derived from LIANA+ were used as upstream inputs, while MES2-
like-specific hub TFs, prioritized by regulon specificity scores (RSS)
from pySCENIC, were designated as downstream outputs. Both
input and output scores were provided as quantitative constraints to
the CORNETO implementation of CARNIVAL (Unifying multi-
sample network inference from prior knowledge and omics data
with CORNETO (27), which optimizes causal signaling flows over
the SIGNOR prior knowledge network (http://signor.uniroma2.it/).

2.13 Inference of CEBPD-MES2 regulons

To reconstruct transcriptional regulatory relationships specific
to MES2-like cells, we applied ARACNe-AP (100 bootstraps, P <
1xe®) (28). For motif-level validation, we retrieved transcription
start sites (TSS) and promoter coordinates (-1 kb to +100 bp) of
candidate targets from Ensembl Biomart and extracted
corresponding genomic sequences (hg38). Position weight
matrices (PWMs) for CEBPD were obtained from JASPAR2024,
converted into MEME format, and scanned across promoter
sequences using FIMO (29) (MEME Suite, P < le-4). Significant
motif hits were then intersected with promoter regions of CEBPD-
inferred targets, generating a refined set of direct regulatory
candidates. Motif matches were annotated with genomic
coordinates, binding scores, and associated target genes, providing
sequence-level support for CEBPD-MES2-like regulatory edges.

2.14 Graph-based integration and spatial
domain characterization

Visium spatial transcriptomic data from four GBM specimens
(GBM2, GBM3, GBM5_1, GBM5_2) were processed using Scanpy
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for standard quality control, excluding spots with <200 detected
genes or >25% mitochondrial content. Spatial graphs were
constructed for each section with a 50 um radius cutoff, and
highly variable genes were selected before downstream analysis.
Batch alignment across tissue sections was performed using
STAligner (30), which embeds each slice as a subgraph and
iteratively aligns paired sections. Optimal clustering resolution
was determined by maximizing the silhouette score across leiden
partitions. To distinguish malignant from non-malignant spots,
large-scale CNV was inferred using CopyKAT and inferCNV (17,
31). For within-sample clustering, we applied GraphST with
mclust-based refinement, ensuring spatial coherence of identified
domains (32). Pathway activities were then inferred with decoupler
(PROGENYy framework), and spatial density maps were generated
for MES2-like hub genes.

2.15 Spatial LR inference

To explore spatially organized cell-cell communication, we
applied LIANA+ in a spatial mode to each GBM section.
Normalized and log-transformed expression matrices were used
as input, and spatial neighbor graphs were constructed with a
Gaussian kernel (bandwidth = 200 pm, cutoff = 0.1). LR
interactions were inferred using the consensus resource,
integrating multiple published databases. For each candidate
interaction, we computed both global (Moran’s I) and local
(cosine similarity) statistics to assess spatial autocorrelation and
co-enrichment, with significance determined by 100 random
permutations. From the global LR atlas, we focused on a curated
panel of interactions implicated in glioblastoma biology. Significant
pairs (Moran’s I p < 0.05) were visualized as spatial feature maps,
displaying both interaction scores and permutation-based p-values

across tissue domains.

2.16 Clinical sample collection

This research was approved by the Ethics Committee of the
Affiliated Hospital of Qingdao University (Approval Number:
QYFYWZLL30508), and all participants provided written
informed consent. A total of 6 patients diagnosed with
glioblastoma (GBM) were enrolled in this study, with the control
group consisting of normal brain tissue adjacent to the tumor. All
tissue samples were stored in liquid nitrogen to preserve their
integrity for subsequent molecular analysis.

2.17 Quantitative real-time PCR

Total RNA was extracted using Trizol reagent, and
complementary DNA (cDNA) was synthesized with the
Advantage RT for PCR Kit (Shandong Sparkjade Biotechnology
Co., Ltd., China). Quantitative real-time PCR (qRT-PCR) analysis
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was subsequently performed using the iQTM SYBR Green
Supermix (Yeasen Biotech Co., Ltd., China). Relative gene

expression levels were calculated using the 274" method.

2.18 Western blot

Cellular and tissue proteins were extracted using RIPA buffer.
Protein concentrations were determined using a BCA protein assay
kit (Meilun, China). Equal amounts of protein were separated by
electrophoresis on 10% SDS-PAGE gels and subsequently
transferred onto polyvinylidene fluoride (PVDF) membranes
(Thermo Fisher Scientific). The membranes were first incubated
with a protein-free blocking buffer for 10 minutes, followed by
overnight incubation at 4°C with primary antibodies against
Arrestin Domain Containing 3 (ARRDC3, ab64817, Abcam, UK)
and GAPDH (60004-1, Proteintech, China). Afterward, the
membranes were incubated with horseradish peroxidase (HRP)-
conjugated secondary antibodies for 50 minutes at room
temperature. Protein bands were detected using enhanced
chemiluminescence (ECL) reagents and visualized with a
chemiluminescent imaging system (Millipore, USA).

2.19 Immunohistochemistry

Tissue sections were incubated with anti-ARRDC3 antibody
(Proteintech Europe, Manchester, UK) overnight at 4°C.
Colorimetric reactions were carried out in accordance with the
manufacturer’s instructions (Thermo Scientific, Freemont, CA,
USA) following washing and application of secondary antibodies.
Nuclei were counterstained with hematoxylin (Carl Roth,
Karlsruhe, Germany). Sections were digitized using a NIKON
Eclipse Ti full-slide scanner.

The staining intensity of ARRDC3 was categorized as

» « » «

“negative,” “weak,” “moderate,” or “strong,” and assigned a score
of 0, 1, 2, or 3, respectively. The proportion of positive cells was
divided into four categories: 1 (<10%), 2 (11-50%), 3 (51-80%), and
4 (>80%). The immunohistochemical score was calculated as the
product of staining intensity and the proportion of positive cells,

yielding a total score ranging from 0 to 12.

2.20 Cell culture and lentivirus
transfection.

U251 cells were cultured in DMEM medium supplemented with
10% fetal bovine serum at 37°C under a 5% CO, atmosphere. The
design and synthesis of ARRDC3 knockdown and overexpression
shRNAs were conducted by OBiO Technology (Shanghai, China);
detailed sequence information is provided in the Supplementary
Table 3. The transfection procedure was carried out in accordance
with the manufacturer’s instructions, and subsequent experimental
assays were performed following transfection.
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2.21 Cell counting kit—8 assay

Cells transfected with lentivirus were seeded into 96-well plates
at a density of 3x10° cells per well and incubated for 24 hours.
Subsequently, 10uL of CCK-8 reagent (C6005, NCM Biotech) was
added to each well, and the plates were further incubated for 2
hours. The absorbance was then measured at a wavelength of
450 nm.

2.22 EdU incorporation experiments

The EdU incorporation assay was utilized to assess cellular
proliferation dynamics. EdU-labeled cells were detected and
visualized following the manufacturer’s instructions, using the
BeyoClick EdU Cell Proliferation Detection Kit (containing Alexa
Fluor 647; Beyotime, China). The proliferation rate was determined
as the percentage of EdU-positive cells relative to the total
cell population.

2.23 Transwell migration assay

A Transwell assay was performed to assess the migratory ability
of U251 cells. Following serum starvation, transfected cells were
seeded into the upper chambers, while 10% fetal bovine serum
(FBS) was added to the lower chambers as a chemoattractant. After
incubation for 24 hours at 37°C, the migrated cells were fixed,
stained, and quantified. The migration capacity was determined
based on the average number of migrated cells from three randomly
selected fields.

2.24 Statistical analysis

All tests were two-sided unless noted; data are mean + SD from
>3 independent experiments; significance set at P<0.05 or
FDR<0.05(Benjamini-Hochberg). Experimental-normality and
variance were checked (Shapiro-Wilk, Levene); two-group tests
used unpaired t or Mann-Whitney; multi-group tests used one-
way ANOVA with Tukey/Sidak or Kruskal-Wallis with Dunn. IHC
scores used Mann-Whitney.

3 Results
3.1 Single-cell integration and annotation

After stringent quality control, normalization, and highly
variable gene selection, we built a KNN graph in PCA space and
systematically compared batch-correction strategies (ComBat,
Scanorama, Harmony). Harmony best preserved biological
structure while maximizing batch mixing, with an optimal
resolution around 0.8 based on the joint behavior of the
silhouette coefficient, LISI, and graph connectivity, yielding 12
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clusters (Figure 2A; Supplementary Figures 1A, B). Cluster
identities were assigned using curated marker genes together with
decoupler-based ORA and AUCell scoring, recovering the major
GBM-related states: astrocyte-like (AC-like); mesenchymal-like 1
(MESI-like); mesenchymal-like 2 (MES2-like); neural progenitor
cell-like 1/2 (NPCI1-like/NPC2-like); oligodendrocyte precursor
cell-like (OPC-like); oligodendrocyte (OLG); proliferative cells
(Proliferation); TAM-MG; endothelial cells (EC); and smooth
muscle cells (SMC); the two scoring approaches agreed with
marker-expression dot plots (Figure 2B). Simultaneously, using
canonical markers, we annotated clusters into malignant states
(MES2-like, MES1-like, NPC2-like, NPC1-like, AC-like, OPC-like,
and a Proliferation-high group) and non-malignant lineages (T
cells, TAM-microglia, endothelial, SMC, oligodendrocytes), which
segregate in the embedding with tumor cells spanning an NPC/AC/
OPC-to-MES continuum and proliferation overlaying multiple
states (Figures 2C, D). Sample-level compositions revealed
marked inter-patient heterogeneity, with several tumors enriched
for MES2-like and immune populations (Supplementary
Figure 1C). GO programs further captured cell type-specific
biology-e.g., OPC enriched for myelin assembly, OPC-like cells
for OPC-progenitor proliferation, TAM-MG for phagocytosis/
inflammatory response, EC for sprouting angiogenesis (with
blood-brain barrier maintenance), Proliferation for mitotic cell
cycle/DNA replication, and MES2-like for glycolysis and hypoxia
adaptation-providing a coherent functional map that mirrors the
separability seen in tumor correlation patterns (Figure 2E;
Supplementary Figure 1D).

3.2 CNV-based tumor delineation and
developmental gradients across GBM
states

Using inferCNV, we observed broad, chromosome-scale copy-
number shifts across malignant clusters, with relatively flat profiles in
reference lineages (EC/T cells) (Figure 3A). A per-cell CNV score
highlighted focal regions of elevated aneuploidy on the UMAP
(Figure 3B); setting a data-driven threshold at the reference mean
+ 1.5 s.d. separated putative tumor from normal cells and
recapitulated their manifold distribution (Figures 3C, D).
CytoTRACE2-based mapping of developmental potential on the
unified UMAP revealed a pronounced enrichment of high-potency
cells within the MES2-like and Proliferation compartments, forming
a continuous outward gradient of decreasing potential. In contrast,
AC-, OPC-, and NPC-like populations localized to the low-potency
(differentiated) pole, consistent with more mature lineage states
(Figure 3E; Supplementary Table 4). Stemness scores varied
significantly across cell types (Kruskal-Wallis test, P < 2.2 x 107'°,
Figure 3F). While group medians were broadly comparable, MES2-
like cells showed a conspicuous right-skewed distribution, indicating
a subpopulation with elevated CytoTRACE2-inferred stemness
(Figure 3G). 3D PHATE embeddings did not resolve a single
linear lineage; instead, multiple partially overlapping trajectories
emanated from these high-stemness niches toward several
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Integration, clustering and annotation of the single-cell GBM atlas. (A) UMAP of the Harmony-integrated dataset colored by leiden clusters
(resolution =0.8; labels 0-12). (B) Cell-type scoring using decoupler with over-representation analysis (ORA) and AUCell enrichment. Scores are
row-wise Z-scaled; columns are hierarchically clustered. (C) Dot plot of canonical marker genes across leiden clusters. Dot size denotes the fraction
of cells expressing the gene within a cluster; color encodes mean normalized expression. (D) Final cell-state annotation projected onto the UMAP:
AC-like, MES1-like, MES2-like, NPC1-like, NPC2-like, OPC-like, Oligodendrocyte, Proliferation, TAM-MG, Endothelial, SMC and T cell. (E) Pairwise

correlation heatmap (Pearson’s r, Z-scaled) of cell-type signature scores.

differentiated endpoints (Figure 3H). Branches intersected and
rejoin, indicating state interconversion and plasticity rather than a
fixed differentiation order across tumor cell subtypes. Across
malignant cell states, signaling and PTM segregated in a
biologically coherent way. Across malignant states, we observed
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sharply delineated signaling and PTM landscapes that track with
cellular phenotypes (Supplementary Figures 2A, B). The
Proliferation state was dominated by growth-factor cascades
(EGFR-PI3K-MAPK and WNT) accompanied by PTMs linked to
proteome remodeling (S-nitrosylation, NEDDylation, B-
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hydroxybutyrylation). Lineage-biased states showed distinct axes:
OPC-like cells centered on TGF-B/p53 with broad PTM
reprogramming; NPCl1-like cells coupled TGF-B/p53 with
succinylation, malonylation, and FAT10ylation; NPC2-like cells
paired TGF-B/p53 with deubiquitination, B-hydroxybutyrylation,
and ATGS8ylation. Mesenchymal programs bifurcated: MES2-like
cells engaged hypoxia-angiogenesis and inflammatory signaling
(hypoxia, VEGF, NF-«B/TNFoa, JAK-STAT, with androgen
inputs) and were enriched for myristoylation, S-nitrosylation, and
FAT10ylation; AC-like cells emphasized p53 and NF-kB/TNFo
alongside ATG8ylation, lipidation (myristoylation/palmitoylation),
ISGylation, UFMylation, and malonylation. MES1-like cells featured
JAK-STAT with p53/NF-xB/TNFa. and PTMs such as lactylation,
UFMylation, and glycosylation. Collectively, these patterns resolve
tumor cell states into (i) a growth-factor—driven proliferative axis, (ii)
lineage-skewed NPC/OPC programs, and (iii) stress/inflammation-
dominated mesenchymal states-each with a characteristic PTM
“fingerprint” that likely underpins state-specific biology.

3.3 Cell type-aware GNN stratifies survival
and interpretable risk genes

We built a cell type -constrained, graph-based survival model
that integrates bulk transcriptomes with clinical similarity
(Figure 4A, see methods). The resulting risk score separated
outcomes with striking consistency. In TCGA GBM (n=157),
Kaplan-Meier curves showed a clear divergence between predicted
low- and high-risk groups. The two independent CGGA cohorts
(CGGA-325, n=85; CGGA-693, n=140) reproduced this separation,
yielding similarly steep survival gradients (Figures 4B-D). Thus, the
graph-aware model trained on TCGA generalized without re-fitting
to external data. To anatomize what drives risk, we derived gene-
level attributions and summarized them as directional “hazard
contour” maps that couple each gene’s expression with its
neighborhood context on the patient graph. Representative RMHZ
genes (high expression — high hazard), such as RNF150 and LY6E,
showed monotonic increases along the hazard vector, with high-risk
samples clustering in the high-expression/high-neighbor-expression
quadrant. Conversely, MHZ genes (low expression — high hazard),
exemplified by SCN11A and CHCHD?2, displayed the opposite
orientation, indicating that loss of these signals associates with
poorer survival (Figure 4E; Supplementary Table 5). Aggregating
across patients yielded a compact panel of top risk enhancers and
protectors, providing an interpretable, network-aware signature
rather than a black-box score.

3.4 MES2-like abundance marks an
aggressive program linked to poor
outcome

After batch-effect correction, TCGA and CGGA samples were

well intermingled in the low-dimensional embedding, indicating
effective removal of cohort effects (Figure 5A). We then related
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malignant state fractions to survival (Supplementary Table 6).
Univariate Cox models showed higher Proliferation and MES2-
like fractions associated with increased hazard (Figure 5B). In a
multivariable Cox model including significant malignant states,
MES2-like remained an independent adverse predictor (HR =
231, 95% CI 1.04-5.10, P = 0.039) (Figure 5C). Consistently,
patients stratified by MES2-like abundance (above vs. below
median) showed shorter progression-free survival in the high-
MES2 group (stratified log-rank P = 0.022; Figure 5D).
Transcriptionally, high-MES2 tumors up-regulated hallmark
programs of invasion, inflammation, and metabolic stress—
including epithelial-mesenchymal transition, TNFo/NF-xB
signaling, hypoxia, multiple STAT axes, angiogenesis, and
glycolysis (Figure 5E). PTM scoring further highlighted outcome-
linked chemistry: in univariate Cox analyses, glycosylation (and to a
lesser extent S-nitrosylation and lactylation) associated with
increased hazard (Figure 5F); in a multivariable Cox analysis, S-
nitrosylation remained significant (Figure 5G). Concordantly,
MES2-high tumors displayed elevated glycosylation and S-
nitrosylation (Figure 5H). This is consistent with our single-cell
analyses in Supplementary Figures 2A, B, where MES2-like cells
scored highest for hypoxia, NF-xB, and JAK/STAT pathway activity
and showed enrichment of S-nitrosylation signatures.
Mechanistically, hypoxia and inflammation-responsive signaling
can reinforce mesenchymal transition, immune evasion, and
metabolic rewiring, while S-nitrosylation, a redox-sensitive post-
translational modification, fine-tunes effector proteins within these
axes and has been implicated in therapy resistance. Together, these
data support a model in which hypoxia, NF-kB/STAT signaling,
and S-nitrosylation are key drivers of the MES2 program and likely
contribute to adverse prognosis in GBM.

3.5 Network convergence pinpoints a
robust MES2-like core program

To bridge bulk and single-cell evidence, we first performed
WGCNA on bulk RNA-seq from TCGA and CGGA after
deconvolution of malignant states. Several bulk co-expression
modules correlated positively with the MES2-like fraction, with
the black module standing out (Figure 6A; Supplementary
Figures 2C, D). Genes from this black module were significantly
up-regulated in the MES2-high group, and when projected to
single-cell resolution, the corresponding gene-set score was
selectively enriched in MES2-like malignant cells with minimal
signal in other states (Supplementary Figure 2E). At MES2-like
single cell level, hdAWGCNA resolved eight MES2-like modules
(M1-M8), for which intramodular connectivity (kME)
highlighted recurrent hubs (e.g., collagen/ECM enzymes, redox
and hypoxia-responsive genes) (Figure 6B; Supplementary
Figures 2F-H). Module eigengenes localized to the MES2-like
domain on the UMAP, confirming cell-state specificity
(Figure 6C), and differential ME analyses showed selective
activation of these modules in MES2-like cells relative to other
malignant states (Figure 6D). Network visualization of the leading
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MES2-like abundance and PTM links to adverse outcome. (A) PCA of the pooled TCGA and CGGA cohorts after batch correction. Points are
individual tumors; colored ellipses denote 95% data ellipses per cohort. Broad intermixing indicates minimal residual cohort effects. (B) Univariate
Cox regression of malignant state fractions. Dots show hazard ratios (HRs) and bars 95% Cls. Proliferation and MES2-like associate most strongly
with increased hazard; NPC/OPC/AC-like tend toward neutral/prote ctive effects. (C) Multivariable Cox model including malignant states. MES2-like
remains an independent adverse predictor (HR = 2.31, 95% CI 1.04-5.10, P = 0.039), whereas MES1-like is not significant. The vertical dashed line
marks HR = 1. (D) Kaplan—Meier curves for progression-free survival after stratifying tumors by MES2-like abundance (above vs. below median). The
high-MES2 group shows shorter PFS (stratified log-rank P = 0.022); tables indicate numbers at risk. (E) Differential expression between high- vs. low-
MES2 tumors. Volcano plot (left) with up-regulated genes in red and down-regulated in blue. Gene-set enrichment of up-regulated genes (right)
highlights EMT, TNFa/NF-xB, hypoxia, JAK/STAT, angiogenesis, and glycolysis hallmark programs. (F) Outcome associations for PTM programs
scored by GSVA. Univariate Cox HRs (points) with 95% Cls (bars) show that glycosylation, and to a lesser extent S-nitrosylation and lactylation, track
with increased hazard, while several acylation/ubiquitylation processes trend oppositely. (G) Multivariable Cox model for PTM programs.

(H) Heatmap of PTM GSVA scores (z-scaled) comparing MES2-low vs. MES2-high tumors. *P<0.05; **P<0.01; ***P<0.001.
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MES2-like module revealed tightly interlinked subnetworks
enriched for an invasion-metabolic axis-glycolysis, mitochondrial
respiration, apoptotic signaling, and angiogenesis (Figure 6E),
concordant with the transcriptional hallmarks observed in high-
MES2 tumors in Figure 5E.

We next integrated signals across modalities. Intersecting genes
from bulk WGCNA (TCGA/CGGA), single-cell hdWGCNA,
MES2-like single-cell markers, BayesPrism-derived bulk MES2-
specific DEGs, and two independent GEO validations yielded a
conservative core set, representing MES2 genes that recur across
platforms and cohorts (Figure 6F; Supplementary Figure 3A,
Supplementary Table 7). Functional enrichment of this intersects
(Figure 6G) converged on extracellular-matrix remodeling and its
regulators-collagen biosynthesis and modification, ECM-receptor
interaction, focal adhesion, and TGF-b receptor signaling
regulation-together with IGFBP-mediated transport and blood-
vessel morphogenesis. These convergent networks position MES2-
like GBM as an ECM-driven, vascular-interacting, stress-adapted
state, and nominate collagen-modifying enzymes and TGF-f/
adhesion nodes as tractable mechanistic anchors for the
MES?2 program.

3.6 TAM-MES2 signaling axis converges on
a CEBPD-centered transcriptional program

We next explored the immune and MES2-like tumor
microenvironment. Using LIANA+ across seven inference
engines, we assembled a consensus LR atlas and retained
interactions supported by multiple methods with P <0.05
(Figure 7A; Supplementary Figures 3C-E, Supplementary
Table 8). Prioritizing edges with MES2-like as the target and
either TAM-MG or T cells as the source highlighted a compact
set of high-magnitude, high-specificity signals (Figure 7B),
including growth—factor pathways (TIMP2—CD44, ADAMY9/10/
17—ITGBI1, TGFB1—ITGBI1/EGFR), scavenger/clearance routes
(APOE/PSAP/C1Q/C3—LRP1/ABCA1/CD81), immune-
checkpoint-like axes (LGALS9/SPP1—CD44, CD47), and
inflammatory cues (GRN—TNFRSF1A). We observed markedly
stronger ligand-receptor signaling between TAM-MG and MES2-
like cells than between T cells and MES2-like cells. Accordingly,
subsequent analyses focused on the TAM-MG — MES2-like
communication axis. To increase stringency, we required that
both LR be up-regulated in GBM across two independent GEO
cohorts (GSE4290, GSE68848); the majority of the above pairs
passed this external filter (Figures 7C, D). At the transcriptional
layer, integrative analysis of MES2-like TFs up-regulated at single-
cell resolution and GBM DEGs in bulk datasets yielded a core set of
candidate regulators (Figure 7E; Supplementary Figure 3B,
Supplementary Table 9). Their regulon activity (AUC) and
expression were markedly enriched in MES2-like cells
(Figure 7F). To mechanistically connect extracellular cues to the
MES2 program, we embedded the high-confidence LR inputs and
MES2-enriched TFs into a signed, directed prior-knowledge
network and solved for causal flows. The optimal solution
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converged on CEBPD as a central integrator downstream of
TNFo/NF-kB, TGF-f, and MAPK/JAK-STAT cascades, linking
TAM-MG-derived ligands to MES2-like transcription (Figure 7G).
ARACNe analysis and Motif analysis and promoter scanning
confirmed bona fide CEBPD binding motifs within promoters of
multiple MES2-like hub genes (e.g., ARRDC3, CALD1, HILPDA,
NAMPT, PLOD2, SLC39A14, SPRY1, TMEM45A), reinforcing
direct regulatory control (Figure 7H; Supplementary Figures 3F,
4A, Supplementary Table 10). Together, these data delineate a
TAM-MG-to-MES2-like signaling axis that feeds into a CEBPD-
centered transcriptional module, rationalizing how inflammatory
and matrix-remodeling inputs cooperate with hypoxia/STAT/NF-
KB programs to drive the MES2-like state.

3.7 Spatial integration, clustering, and
malignant-spot calling across four GBM
sections

We analyzed Visium data from GBM2, GBM3, GBM5_1, and
GBM5_2. After alignment, spots from all sections were well
intermixed in the low-dimensional space (Figure 8A), indicating
effective cross-section integration. Graph-based clustering across
the combined embedding yielded a stable partition at leiden
resolution =0.5, which maximized the silhouette score
(Figures 8B, C). Each cluster contained contributions from
multiple sections, with sample composition varying across
clusters (Figure 8D), consistent with both shared and specimen-
specific spatial niches.

Spots from the GBM5_2 peritumoral tissue were predominantly
assigned to cluster 5.

To separate malignant from non-malignant tissue, we inferred
large-scale CNV. CopyKAT classified a substantial subset of spots as
aneuploid (tumor) that localized to discrete regions of the
embedding (Figure 8E; Supplementary Figure 4B), and tumor
fractions differed across clusters (Figure 8F). Concordantly,
CopyKAT classified most putatively normal (aneuploid-negative)
spots into cluster 5. We therefore used as the inferCNV reference
only those GBM5_2 spots within cluster 5 that were labeled
“normal” by CopyKAT (Figures 8G, H). The CNV score formed
a continuous gradient with a high-aneuploidy core and tapering
margins (Figure 9A). Thresholding the score (reference mean + 2
s.d.) yielded robust tumor vs. normal calls that reproduced this
gradient (Figure 9B) and, when mapped back to tissue coordinates,
localized to compact tumor territories in each section (Figure 9C).
Within GBM2, GBM3, GBM5_1, and GBM5_2, CNV-high regions
co-registered with GraphST/mclust tumor domains and
histopathologic tumor areas (Figures 9D-G). Quantitatively, CNV
scores were consistently elevated inside the GraphST tumor masks
relative to adjacent compartments for all specimens. The high-CNV
(malignant) compartments collapsed onto single dominant Leiden
clusters: GBM2-cluster 1, GBM3-cluster 0, GBM5_1-cluster 1, and
GBM5_2-cluster 1. Notably, in GBM5_2 the domain with elevated
CNV scores spatially overlapped with the GraphST/mclust tumor
cluster, indicating tumor infiltration into adjacent histologically
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normal tissue. We therefore annotated this region as a tumor-
infiltrated normal zone. Together, these analyses reveal a spatially
coherent aneuploid “malignant core” shared across patients and
provide a principled scaffold for subsequent localization of MES2-
like programs and cell-cell signaling.

3.8 Spatially localized immuno-
mesenchymal signaling coincides with
MES2 niches

Across all four Visium sections, spatial pathway cartography
disclosed a convergent malignant program (Figure 10A): JAK/
STAT and WNT activities were uniformly elevated within high-
CNV tumor territories, whereas hypoxia signaling was tightly
confined to tumor cores and conspicuously absent from the peri-
tumoral infiltrative compartment of GBM5_2. Primary tumors
(GBM3 and GBM5_1) shared a consistent enrichment landscape
across oncogenic pathways, underscoring a common core of
malignant signaling. By contrast, the recurrent specimen (GBM2)
exhibited a distinct rewiring with focal enrichment of estrogen and
MAPK pathways specifically within tumor regions, suggesting
recurrence- or therapy-associated endocrine/mitogen-driven
signaling. Together, these maps highlight (i) pan-malignant
vulnerabilities (JAK/STAT, WNT), (ii) a spatial decoupling of
hypoxia from infiltrative margins, and (iii) a recurrence-specific
estrogen/MAPK axis that may inform stratified interventions.
Spatial scoring of the MES2-hub gene set showed focal “hot
spots” embedded within tumor regions of each specimen (GBM2/
5_1/5_2) (Figure 10B). We next asked which LR signals are
preferentially organized around these niches. Using LIANA+ in
spatial mode with a Gaussian neighbor kernel, we aggregated
consensus calls from multiple resources and ranked interactions
by mean strength and spatial significance (permutation-based
Moran’s P) (Figures 10C-F). We next focused on the two
candidate receptors highlighted in Figure 6G (TNFRSF1A and
ITGB1). Spatial maps showed that their TAM to MES2-like
interactions (e.g., GRN-TNFRSF1A and CD14/ADAMY/
ADAM17-ITGB1) were maximally enriched within high-CNV
tumor-core domains and diminished toward infiltrative margins
(Supplementary Figures 5A-D). We next examined the
TNFRSF1A-CEBPD-ARRDC3 axis at single-spot resolution.
Strikingly, receptor (TNFRSF1A), transcription factor (CEBPD),
and downstream effector (ARRDC3) showed spatially co-localized
high expression specifically at the infiltrative rim of GBM5\_2-the
region we defined as tumor infiltration into adjacent tissue—while
this coordinated peak was not observed in the other sections
(Figure 10G). The hotspot coincided with MES2-like enrichment,
elevated hypoxia/NF-kB/STAT activity, and the TAM—MES2
ligand flow (e.g,, GRN—TNFRSF1A), and was supported by
CEBPD motif hits in the ARRDC3 promoter. Together, these
data nominate a microenvironment-linked invasion module in
which TNF-receptor signaling funnels through C/EBPS to activate
ARRDCS3 at the tumor-brain interface-a previously unrecognized,
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spatially restricted program that may underlie mesenchymal
infiltration and offers a focused targetable axis.

3.9 ARRDC3 affects the proliferation and
migration ability of U251 cells

Firstly, we validated the mRNA expression levels of several
previously identified DEGs in both the control group and GBM
group (Figure 11A). Among these genes, ARRDC3 mRNA was
markedly upregulated in the GBM group (P < 0.0001).
Furthermore, the protein expression level (P < 0.0001) and
immunohistochemical scoring results (P < 0.0001) of ARRDC3
were also significantly elevated in the GBM group compared to the
control group (Figures 11B-E).

To investigate the functional role of ARRDC3, we performed
lentivirus-mediated knockdown of ARRDC3 in U251 cells. Both the
mRNA (P < 0.0001) and protein levels (P < 0.001) of ARRDC3 were
significantly reduced following transfection (Figures 11F-H). Cell
viability assays using CCK-8 demonstrated that the viability of
U251 cells in the sh-ARRDC3 group was significantly higher than
that in the sh-NC group at 24 h (P <0.05),48 h (P <0.001),and 72 h
(P < 0.0001) (Figure 11I). The EdU incorporation assay further
confirmed that the proliferative capacity of U251 cells was enhanced
after ARRDC3 knockdown (P < 0.001) (Figures 11], K). Moreover,
Transwell assay results indicated a significant increase in the
migratory ability of U251 cells following ARRDC3 knockdown (P
< 0.01) (Figures 11L, M).

To further substantiate these findings, we conducted gain-of-
function experiments by overexpressing ARRDC3 in U251 cells.
The mRNA (P < 0.01) and protein levels (P < 0.001) of ARRDC3
were significantly increased after transfection (Supplementary
Figures 6A-C). Notably, the cell viability of the OE-ARRDC3
group was significantly lower than that of the OE-NC group at 24
h (P <0.05),48 h (P <0.001), and 72 h (P < 0.0001) (Supplementary
Figure 6D). Consistently, both the proliferative capacity (P <
0.0001) and migratory ability (P < 0.01) of U251 cells were
significantly suppressed upon ARRDC3 overexpression
(Supplementary Figures 6E-H).

4 Discussion

Using integrated single-cell, bulk, and spatial transcriptomics,
we delineate a mesenchymal-like (MES2-like) malignant state in
GBM as a central driver of aggressiveness, therapeutic resistance,
and poor prognosis, consistent with emerging evidence that MES-
like transitions couple hypoxia-induced metabolic rewiring to
immune evasion (33, 34). MES2-like abundance independently
predicts shorter survival after adjustment for other malignant
states and is marked by enrichment of epithelial-to-mesenchymal
transition, NF-kB/TNFo. and JAK/STAT signaling, angiogenesis,
glycolysis, and hypoxia-adaptation programs; These observations
suggest that MES2-like features may serve as a contextual
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FIGURE 10

Spatial pathway activity, MES2 hubs, and TAM—MES2-like signaling converge in malignant niches. (A) Pathway activity (Z-scored within section) for
14 oncogenic programs across the four Visium specimens (GBM2, GBM3, GBM5_1, GBM5_2). Columns "0/1" denote cluster; tumor territories show
concordant elevation of JAK/STAT and WNT, with specimen-specific features (e.g., estrogen/MAPK in GBM2). (B) Spatial score maps of the 25-gene
MES2 hub set; warmer colors indicate higher scores. Hotspots localize within malignant regions in all sections. (C—F) LIANA+ (spatial mode)
consensus ranking of ligand—receptor pairs from TAM-MG (source) to MES2-like (target) for each section. Points are scaled by spatial specificity
(permutation-based Moran's statistic) and colored by mean interaction strength; labels show representative top interactions. A recurrent signal is
GRN—TNFRSF1A (boxed), accompanied by ADAM9/17—ITGB1, SPP1—-CD44, A2M/PSAP/APOE—LRP1/ABCAL, and complement/coagulation axes,
indicating an immune-mesenchymal communication hub. (G) Spatial expression maps for the TNFRSFIA-CEBPD—-ARRDC3 axis in each section.
Receptor (TNFRSF1A), transcription factor (CEBPD), and effector (ARRDC3) co-localize with MES2-hub hotspots inside tumor cores; notably, in
GBM5_2 they peak at the tumor—brain interface (infiltrative rim), consistent with a spatially restricted, TAM-driven mesenchymal program.
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Verification of ARRDC3 expression in clinical samples and the impact of ARRDC3 knockdown on the proliferation and migration of U251 cells. (A)
mMRNA expression of differential genes in clinical samples. (B, C) Protein expression and quantitative results of ARRDC3 in clinical samples. (D, E)
Representative immunohistochemical staining images and corresponding scoring results from the control group and the GBM group are presented
(F) mRNA expression levels of ARRDC3 in U251 cells following transfection. (G, H), Protein expression and quantitative results of ARRDC3 in U251
cells following transfection. (I) CCK-8 reagent was added to the transfected U251 cells, and the corresponding absorbance values were measured at
24 h, 48 h, and 72 h at a wavelength of 450 nm. (J, K) EdU incorporation assay assessing U251 cell proliferation, and quantitative analysis of EdU-
positive cells relative to total DAPI-stained cells. (L, M) The transwell migration assay was performed, and quantitative analysis was conducted to

assess the number of migrated U251 cells. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. ns, no significance.
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biomarker to stratify patients and to prioritize combinational
strategies (e.g., myeloid-reprogramming with checkpoint
blockade, or hypoxia/metabolic-axis targeting) rather than
checkpoint inhibition alone. We therefore frame MES2-like
signatures as hypothesis-generating predictors whose clinical
utility must be established in prospective, independent cohorts
with harmonized sampling and endpoints. These features accord
with reports that MES-like GBM increases glucose consumption
under hypoxic stress, fostering invasion and resistance to
temozolomide and radiotherapy (35). Furthermore, MES2-like
states have been repeatedly linked to an immunosuppressive,
myeloid-enriched microenvironment and to inferior responses to
standard therapies in GBM. Prior single-cell and integrative spatial
studies map MES1/MES2 programs to hypoxic niches with
heightened myeloid infiltration and NF-kB/TNF pathway activity,
features associated with T-cell dysfunction and treatment
resistance. These observations suggest that MES2-like features
may serve as a contextual biomarker to stratify patients and to
prioritize combinational strategies (e.g., myeloid-reprogramming
with checkpoint blockade, or hypoxia/metabolic-axis targeting)
rather than checkpoint inhibition alone. We therefore frame
MES2-like signatures as hypothesis-generating predictors whose
clinical utility must be established in prospective, independent
cohorts with harmonized sampling and endpoints (36-38) Post-
translational modification profiling further implicates S-
nitrosylation and glycosylation as outcome-linked hallmarks in
MES2-high tumors, indicating a redox- and glycan-sensitive
regulatory axis that remodels the proteome, modulates antitumor
immunity, and sustains therapy refractoriness. To translate these
signals clinically, we developed a cell type aware graph neural
network that integrates patient similarity with transcriptomic
priors and outperforms conventional models while yielding an
interpretable, network-aware risk signature. Within this
framework, ARRDC3 emerges as a low-expression, high-risk
gene. Prior studies describe ARRDC3 as a tumor suppressor in
other cancers, where it attenuates GPCR signaling and limits
invasion, and additional evidence links ARRDC3 polymorphisms
and expression to glioma susceptibility and adverse outcomes in
related malignancies (39, 40). Together with our data, these
observations support a putative CEBPD-ARRDC3 regulatory axis
that interfaces with MES2-like programs to may promote immune
evasion and treatment resistance. Nevertheless, in this study the axis
is inferred-from single-cell and spatial expression patterns,
transcription-factor activity scoring, and cis-element enrichment-
rather than demonstrated by direct binding or causal perturbation.
Although our preliminary analyses of ARRDC3 align
with the predicted direction of effect, these findings remain
exploratory and do not exclude parallel regulation or context-
dependent mechanisms.

Central to this MES2 program is a TAM-MG-driven signaling
axis that converges on the transcription factor CEBPD, integrating
extracellular cues from ligands like GRN, APOE, and TGFB1 to
orchestrate downstream effectors such as TNFRSF1A and CEBPD.
This pathway, supported by consensus L-R-TFs inference and
causal network modeling, highlights CEBPD as a master regulator
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of hypoxia-regulated invasion and stemness in GBM, corroborating
studies where CEBPD augments extracellular matrix-integrin
interactions and promotes glioma stem-like cell maintenance,
thereby enhancing TMZ resistance (41, 42). Our data further
implicate TAM-MG as key inducers of MES-like transitions via
lipid-mediated metabolic interplay and M2-polarizing ligands,
extending observations that macrophages reprogram GBM cells
toward mesenchymal states through reciprocal interactions that
sustain tumor progression and immunosuppression (7, 43).

Our integrated spatial transcriptomic analysis of four GBM
sections provides a framework for dissecting the molecular and
spatial heterogeneity of this aggressive tumor. Joint analysis of
Visium data from primary (GBM3, GBM5_1), recurrent (GBM2),
and peritumoral (GBM5_2) specimens achieved robust cross-
section alignment and clustering, revealing shared and specimen-
specific niches (44). These findings extend prior studies on GBM
intratumoral diversity by offering a multi-patient view of conserved
tumor structures (45). A major contribution is the CNV-based
separation of malignant and non-malignant areas using CopyKAT
and inferCNV, yielding gradient scores that align with
histopathological and GraphST domains. In GBM5_2, CNV
elevation in histologically normal tissue defined as a “tumor-
infiltrated zone,” supporting evidence of microscopic infiltration
driving high recurrence rates. This approach could enhance surgical
precision and residual disease monitoring in spatial omics (46).
Spatial pathway analysis highlighted pan-malignant JAK/STAT and
WNT activation in tumor territories, marking them as therapeutic
targets for proliferation and stemness (47, 48). Hypoxia was
restricted to cores, suggesting normoxic invasion drivers
warranting model validation (49). Recurrent GBM2 showed
distinct estrogen and MAPK enrichment, implying therapy-
related adaptations and stratified treatments (50, 51). MES2-like
hotspots in tumors linked to TAM-MES2 interactions via
TNFRSF1A and ITGBI. A TNFRSF1A-CEBPD-ARRDC3 axis
peaked at GBM5_2’s infiltrative rim, co-localizing with MES2,
hypoxia/NF-kB/STAT, and GRN signaling, proposing a novel C/
EBP§-mediated invasion module (52). This context-specific axis
offers targeted opportunities, like TNFRSF1A or CEBPD inhibition,
to block mesenchymal invasion without impacting core tumor
pathways. Our findings build upon the mesenchymal axis
previously described by Xiao et al., through the biochemical
subdivision of the MES subtype into distinct molecular programs
defined by PTMs (7). the establishment of EPASI-dominant
chronic hypoxia as a hallmark at the regulon level; the
identification of a TAM-to-MES2 ligand-receptor signaling funnel
that converges on a CEBPD-centered regulatory module; the spatial
localization of MES2 within genomic regions enriched for CNVs;
and the demonstration of independent and generalizable prognostic
significance. Together, these advances underscore the TNFRSF1A/
ITGB1/EGFR-CEBPD signaling axis and specific PTM processes—
particularly S-nitrosylation—as promising, therapeutically
actionable targets in MES2-like GBM.

This retrospective, multi-platform design (scRNA-seq, bulk,
Visium) may retain batch/sampling bias; This study is limited by
sample size, patient composition, and treatment timeframe. Certain
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cell subsets may be underrepresented. These conclusions require
further validation in a larger, multicenter cohort encompassing
both relapse and post-treatment timeframes. Future work should
include proteomic/spatial validation, targeted perturbations, and
multi-center longitudinal cohorts with prospective clinical
calibration, and risk-stratified immunotherapy will be explored.

5 Conclusion

We integrated single-cell, bulk, and spatial transcriptomics with
CNV profiling and a cell type-aware GNN to define a robust MES2-
like program that maps to high-CNV cores, shows elevated
stemness, and independently predicts poor outcome (HR = 2.31);
the GNN score generalized across TCGA/CGGA. PTM analyses
link S-nitrosylation and glycosylation to MES2-associated hypoxia/
inflammation. A TAM—MES2 axis (GRN—TNFRSF1A; ADAMY/
10/17—ITGB1; TGFB1—ITGB1/EGFR) converges on CEBPD,
with a TNFRSF1A-CEBPD-ARRDC3 hotspot at the infiltrative
rim; in U251 cells, ARRDC3 suppresses proliferation/migration
when overexpressed and promotes them when silenced.
Translationally, combine the MES2 fraction and GNN score for
stratification, prioritize CEBPD and TNFRSF1A/ITGB1 (with
potential hypoxia/NF-kB/JAK-STAT co-inhibition), and target
infiltrative rims.

Data availability statement
The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be
directed to the corresponding authors.

Ethics statement

The studies involving humans were approved by The Ethics
Committee of the Affiliated Hospital of Qingdao University. The
studies were conducted in accordance with the local legislation and
institutional requirements. The participants provided their written
informed consent to participate in this study.

Author contributions

CZ: Conceptualization, Methodology, Writing — original draft,
Formal Analysis. LT: Investigation, Writing - original draft. KZ:

References

1. Satish S, Athavale M, Kharkar PS. Targeted therapies for glioblastoma multiforme
(gbm): State-of-the-art and future prospects. Drug Dev Res. (2024) 85:e22261.
doi: 10.1002/ddr.22261

Frontiers in Immunology

10.3389/fimmu.2025.1699134

Writing - original draft, Software. YX: Writing - original draft,
Methodology. JsW: Formal Analysis, Writing - original draft. JpW:
Data curation, Writing - original draft. CW: Supervision, Writing -
review & editing. PG: Writing - review & editing, Project
administration, Supervision. YF: Writing - review & editing,
Project administration, Supervision.

Funding

The author(s) declare that no financial support was received for
the research, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2025.1699134/
full#supplementary-material

2. Verdugo E, Puerto I, Medina M. An update on the molecular biology of
glioblastoma, with clinical implications and progress in its treatment. Cancer
Commun (Lond). (2022) 42:1083-111. doi: 10.1002/cac2.12361

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2025.1699134/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1699134/full#supplementary-material
https://doi.org/10.1002/ddr.22261
https://doi.org/10.1002/cac2.12361
https://doi.org/10.3389/fimmu.2025.1699134
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zhang et al.

3. Bikfalvi A, da Costa CA, Avril T, Barnier JV, Bauchet L, Brisson L, et al.
Challenges in glioblastoma research: Focus on the tumor microenvironment. Trends
Cancer. (2023) 9:9-27. doi: 10.1016/j.trecan.2022.09.005

4. Yasinjan F, Xing Y, Geng H, Guo R, Yang L, Liu Z, et al. Inmunotherapy: A
promising approach for glioma treatment. Front Immunol. (2023) 14:1255611.
doi: 10.3389/fimmu.2023.1255611

5. DeCordova S, Shastri A, Tsolaki AG, Yasmin H, Klein L, Singh SK, et al.
Molecular heterogeneity and immunosuppressive microenvironment in glioblastoma.
Front Immunol. (2020) 11:1402. doi: 10.3389/fimmu.2020.01402

6. Hara T, Chanoch-Myers R, Mathewson ND, Myskiw C, Atta L, Bussema L, et al.
Interactions between cancer cells and immune cells drive transitions to mesenchymal-
like states in glioblastoma. Cancer Cell. (2021) 39:779-792.e711. doi: 10.1016/
j.ccell 2021.05.002

7. Xiao Y, Wang Z, Zhao M, Deng Y, Yang M, Su G, et al. Single-cell transcriptomics
revealed subtype-specific tumor immune microenvironments in human glioblastomas.
Front Immunol. (2022) 13:914236. doi: 10.3389/fimmu.2022.914236

8. Xiong Z, Liu H, He C, Li X. Hypoxia contributes to poor prognosis in primary
idh-wt gbm by inducing tumor cells mes-like transformation trend and inhibiting
immune cells activity. Front Oncol. (2021) 11:782043. doi: 10.3389/fonc.2021.782043

9. Fang Y, Chen J, Wang H, Wang S, Chang M, Chen Q, et al. Integrating large-scale
single-cell rna sequencing in central nervous system disease using self-supervised
contrastive learning. Commun Biol. (2024) 7:1107. doi: 10.1038/s42003-024-06813-2

10. Rao A, Barkley D, Franga GS, Yanai I. Exploring tissue architecture using spatial
transcriptomics. Nature. (2021) 596:211-20. doi: 10.1038/s41586-021-03634-9

11. Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively
parallel digital transcriptional profiling of single cells. Nat Commun. (2017) 8:14049.
doi: 10.1038/ncomms14049

12. Wolf FA, Angerer P, Theis FJ. Scanpy: Large-scale single-cell gene expression
data analysis. Genome Biol. (2018) 19:15. doi: 10.1186/s13059-017-1382-0

13. Biittner M, Miao Z, Wolf FA, Teichmann SA, Theis FJ. A test metric for
assessing single-cell rna-seq batch correction. Nat Methods. (2019) 16:43-9.
doi: 10.1038/s41592-018-0254-1

14. Ruiz-Moreno C, Stunnenberg H, Nilsson M, Brandner S, Kranendonk M,
Samuelsson E, et al. Harmonized single-cell landscape, intercellular crosstalk and
tumor architecture of glioblastoma. Neuro Oncol. (2022) 24:vii287. doi: 10.1093/
neuonc/noac209.1113

15. Badia IMP, Vélez Santiago J, Braunger ], Geiss C, Dimitrov D, Miiller-Dott S,
et al. Decoupler: Ensemble of computational methods to infer biological activities from
omics data. Bioinform Adv. (2022) 2:vbac016. doi: 10.1093/bioadv/vbac016

16. Zhang P, Wang D, Zhou G, Jiang S, Zhang G, Zhang L, et al. Novel post-
translational modification learning signature reveals b4galt2 as an immune exclusion
regulator in lung adenocarcinoma. J Immunother Cancer. (2025) 13:e010787.
doi: 10.1136/jitc-2024-010787

17. Virshup I, Bredikhin D, Heumos L, Palla G, Sturm G, Gayoso A, et al. The
scverse project provides a computational ecosystem for single-cell omics data analysis.
Nat Biotechnol. (2023) 41:604-6. doi: 10.1038/s41587-023-01733-8

18. Gulati GS, Sikandar SS, Wesche DJ, Manjunath A, Bharadwaj A, Berger MJ, et al.
Single-cell transcriptional diversity is a hallmark of developmental potential. Science.
(2020) 367:405-11. doi: 10.1126/science.aax0249

19. Moon KR, van Dijk D, Wang Z, Gigante S, Burkhardt DB, Chen WS, et al.
Author correction: Visualizing structure and transitions in high-dimensional biological
data. Nat Biotechnol. (2020) 38:108. doi: 10.1038/s41587-019-0395-5

20. Zhang Y, Parmigiani G, Johnson WE. Combat-seq: Batch effect adjustment for
rna-seq count data. NAR Genom Bioinform. (2020) 2:1qaa078. doi: 10.1093/nargab/
1qaa078

21. Chu T, Wang Z, Pe’er D, Danko CG. Cell type and gene expression
deconvolution with bayesprism enables bayesian integrative analysis across bulk and
single-cell rna sequencing in oncology. Nat Cancer. (2022) 3:505-17. doi: 10.1038/
543018-022-00356-3

22. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for rna-seq data with deseq2. Genome Biol. (2014) 15:550. doi: 10.1186/
513059-014-0550-8

23. Morabito S, Reese F, Rahimzadeh N, Miyoshi E, Swarup V. Hdwgcna identifies
co-expression networks in high-dimensional transcriptomics data. Cell Rep Methods.
(2023) 3:100498. doi: 10.1016/j.crmeth.2023.100498

24. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers

differential expression analyses for rna-sequencing and microarray studies. Nucleic
Acids Res. (2015) 43:e47. doi: 10.1093/nar/gkv007

25. Van de Sande B, Flerin C, Davie K, De Waegeneer M, Hulselmans G, Aibar S,
et al. A scalable scenic workflow for single-cell gene regulatory network analysis. Nat
Protoc. (2020) 15:2247-76. doi: 10.1038/s41596-020-0336-2

26. Dimitrov D, Schifer PSL, Farr E, Rodriguez-Mier P, Lobentanzer S, Badia IMP,
et al. Liana+ provides an all-in-one framework for cell-cell communication inference.
Nat Cell Biol. (2024) 26:1613-22. doi: 10.1038/s41556-024-01469-w

27. Liu A, Trairatphisan P, Gjerga E, Didangelos A, Barratt J, Saez-Rodriguez J.
From expression footprints to causal pathways: Contextualizing large signaling

Frontiers in Immunology

10.3389/fimmu.2025.1699134

networks with carnival. NPJ Syst Biol Appl. (2019) 5:40. doi: 10.1038/s41540-019-
0118-z

28. Lachmann A, Giorgi FM, Lopez G, Califano A. Aracne-ap: Gene network reverse
engineering through adaptive partitioning inference of mutual information.
Bioinformatics. (2016) 32:2233-5. doi: 10.1093/bioinformatics/btw216

29. Grant CE, Bailey TL, Noble WS. Fimo: Scanning for occurrences of a given
motif. Bioinformatics. (2011) 27:1017-8. doi: 10.1093/bioinformatics/btr064

30. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. Star:
Ultrafast universal rna-seq aligner. Bioinformatics. (2013) 29:15-21. doi: 10.1093/
bioinformatics/bts635

31. Gao R, Bai S, Henderson YC, Lin Y, Schalck A, Yan Y, et al. Delineating copy
number and clonal substructure in human tumors from single-cell transcriptomes. Nat
Biotechnol. (2021) 39:599-608. doi: 10.1038/s41587-020-00795-2

32. Long Y, Ang KS, Li M, Chong KLK, Sethi R, Zhong C, et al. Spatially informed
clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nat
Commun. (2023) 14:1155. doi: 10.1038/s41467-023-36796-3

33. Goenka A, Tiek D, Song X, Huang T, Hu B, Cheng SY. The many facets of
therapy resistance and tumor recurrence in glioblastoma. Cells. (2021) 10:484.
doi: 10.3390/cells10030484

34. Ismailov A, Spallone A, Belogurov A Jr., Herbert A, Poptsova M. Molecular
biology of the deadliest cancer - glioblastoma: What do we know? Front Immunol.
(2025) 16:1530305. doi: 10.3389/fimmu.2025.1530305

35. Alejo S, Palacios BE, Venkata PP, He Y, Li W, Johnson JD, et al. Lysine-specific
histone demethylase 1a (kdm1la/lsd1) inhibition attenuates DNA double-strand break
repair and augments the efficacy of temozolomide in glioblastoma. Neuro Oncol. (2023)
25:1249-61. doi: 10.1093/neuonc/noad018

36. Buonfiglioli A, Hambardzumyan D. Macrophages and microglia: The cerberus
of glioblastoma. Acta Neuropathol Commun. (2021) 9:54. doi: 10.1186/s40478-021-
01156-z

37. Yu MW, Quail DF. Immunotherapy for glioblastoma: Current progress and
challenges. Front Immunol. (2021) 12:676301. doi: 10.3389/fimmu.2021.676301

38. Greenwald AC, Darnell NG, Hoefflin R, Simkin D, Mount CW, Gonzalez Castro
LN, et al. Integrative spatial analysis reveals a multi-layered organization of
glioblastoma. Cell. (2024) 187:2485-2501.€2426. doi: 10.1016/j.cell.2024.03.029

39. Wedegaertner H, Pan WA, Gonzalez CC, Gonzalez DJ, Trejo J. The o-arrestin
arrde3 is an emerging multifunctional adaptor protein in cancer. Antioxid Redox
Signal. (2022) 36:1066-79. doi: 10.1089/ars.2021.0193

40. LiN, Shi H, Hou P, Gao L, Shi Y, Mi W, et al. Arrdc3 polymorphisms may affect
the risk of glioma in chinese han. Funct Integr Genomics. (2022) 22:27-33. doi: 10.1007/
s10142-021-00807-7

41. Mao XG, Xue XY, Lv R, Ji A, Shi TY, Chen XY, et al. Cebpd is a master
transcriptional factor for hypoxia regulated proteins in glioblastoma and augments
hypoxia induced invasion through extracellular matrix-integrin mediated egfr/pi3k
pathway. Cell Death Dis. (2023) 14:269. doi: 10.1038/s41419-023-05788-y

42. Wang SM, Lin WC, Lin HY, Chen YL, Ko CY, Wang JM. Ccaat/enhancer-
binding protein delta mediates glioma stem-like cell enrichment and atp-binding
cassette transporter abcal activation for temozolomide resistance in glioblastoma. Cell
Death Discov. (2021) 7:8. doi: 10.1038/s41420-020-00399-4

43. Kloosterman DJ, Erbani J, Boon M, Farber M, Handgraaf SM, Ando-Kuri M,
et al. Macrophage-mediated myelin recycling fuels brain cancer Malignancy. Cell.
(2024) 187:5336-5356.€5330. doi: 10.1016/j.cell.2024.07.030

44. Moffet JJD, Fatunla OE, Freytag L, Kriel J, Jones JJ, Roberts-Thomson S, et al.
Spatial architecture of high-grade glioma reveals tumor heterogeneity within distinct
domains. Neurooncol Adv. (2023) 5:vdad142. doi: 10.1093/noajnl/vdad142

45. Zheng Y, Carrillo-Perez F, Pizurica M, Heiland DH, Gevaert O. Spatial cellular
architecture predicts prognosis in glioblastoma. Nat Commun. (2023) 14:4122.
doi: 10.1038/s41467-023-39933-0

46. Chang PD, Chow DS, Yang PH, Filippi CG, Lignelli A. Predicting glioblastoma
recurrence by early changes in the apparent diffusion coefficient value and signal intensity
on flair images. AJR Am ] Roentgenol. (2017) 208:57-65. doi: 10.2214/AJR.16.16234

47. Ou A, Ott M, Fang D, Heimberger AB. The role and therapeutic targeting of jak/
stat signaling in glioblastoma. Cancers (Basel). (2021) 13:437. doi: 10.3390/
cancers13030437

48. Latour M, Her NG, Kesari S, Nurmemmedov E. Wnt signaling as a therapeutic
target for glioblastoma. Int ] Mol Sci. (2021) 22:8428. doi: 10.3390/ijms22168428

49. Monteiro AR, Hill R, Pilkington GJ, Madureira PA. The role of hypoxia in
glioblastoma invasion. Cells. (2017) 6:45. doi: 10.3390/cells6040045

50. Gonzalez-Mora AM, Garcia-Lopez P. Estrogen receptors as molecular targets of
endocrine therapy for glioblastoma. Int | Mol Sci. (2021) 22:12404. doi: 10.3390/
1jms222212404

51. QuC, Wang C, Li H, Li Y, Han C, Tao X, et al. Estrogen receptor variant er-a.36
facilitates estrogen signaling via egfr in glioblastoma. Cell Biol Int. (2022) 46:1759-74.
doi: 10.1002/cbin.11877

52. Xu P, Du Z, Xie X, Yang L, Zhang J. Cancer marker tnfrsfla: From single—cell
heterogeneity of renal cell carcinoma to functional validation. Oncol Lett. (2024)
28:425. doi: 10.3892/01.2024.14559

frontiersin.org


https://doi.org/10.1016/j.trecan.2022.09.005
https://doi.org/10.3389/fimmu.2023.1255611
https://doi.org/10.3389/fimmu.2020.01402
https://doi.org/10.1016/j.ccell.2021.05.002
https://doi.org/10.1016/j.ccell.2021.05.002
https://doi.org/10.3389/fimmu.2022.914236
https://doi.org/10.3389/fonc.2021.782043
https://doi.org/10.1038/s42003-024-06813-2
https://doi.org/10.1038/s41586-021-03634-9
https://doi.org/10.1038/ncomms14049
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1038/s41592-018-0254-1
https://doi.org/10.1093/neuonc/noac209.1113
https://doi.org/10.1093/neuonc/noac209.1113
https://doi.org/10.1093/bioadv/vbac016
https://doi.org/10.1136/jitc-2024-010787
https://doi.org/10.1038/s41587-023-01733-8
https://doi.org/10.1126/science.aax0249
https://doi.org/10.1038/s41587-019-0395-5
https://doi.org/10.1093/nargab/lqaa078
https://doi.org/10.1093/nargab/lqaa078
https://doi.org/10.1038/s43018-022-00356-3
https://doi.org/10.1038/s43018-022-00356-3
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1016/j.crmeth.2023.100498
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1038/s41596-020-0336-2
https://doi.org/10.1038/s41556-024-01469-w
https://doi.org/10.1038/s41540-019-0118-z
https://doi.org/10.1038/s41540-019-0118-z
https://doi.org/10.1093/bioinformatics/btw216
https://doi.org/10.1093/bioinformatics/btr064
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1038/s41587-020-00795-2
https://doi.org/10.1038/s41467-023-36796-3
https://doi.org/10.3390/cells10030484
https://doi.org/10.3389/fimmu.2025.1530305
https://doi.org/10.1093/neuonc/noad018
https://doi.org/10.1186/s40478-021-01156-z
https://doi.org/10.1186/s40478-021-01156-z
https://doi.org/10.3389/fimmu.2021.676301
https://doi.org/10.1016/j.cell.2024.03.029
https://doi.org/10.1089/ars.2021.0193
https://doi.org/10.1007/s10142-021-00807-7
https://doi.org/10.1007/s10142-021-00807-7
https://doi.org/10.1038/s41419-023-05788-y
https://doi.org/10.1038/s41420-020-00399-4
https://doi.org/10.1016/j.cell.2024.07.030
https://doi.org/10.1093/noajnl/vdad142
https://doi.org/10.1038/s41467-023-39933-0
https://doi.org/10.2214/AJR.16.16234
https://doi.org/10.3390/cancers13030437
https://doi.org/10.3390/cancers13030437
https://doi.org/10.3390/ijms22168428
https://doi.org/10.3390/cells6040045
https://doi.org/10.3390/ijms222212404
https://doi.org/10.3390/ijms222212404
https://doi.org/10.1002/cbin.11877
https://doi.org/10.3892/ol.2024.14559
https://doi.org/10.3389/fimmu.2025.1699134
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Single-cell/spatial integration reveals an MES2-like glioblastoma program orchestrated by immune communication and regulatory networks
	1 Introduction
	2 Methods
	2.1 Data sources
	2.2 Single cell processing
	2.3 Tumor cell recognition
	2.4 Differentiation potential inference
	2.5 scRNA deconvolution, survival and functional analysis
	2.6 MES2-like module definition based on bulk level
	2.7 Graph construction and transformer-based survival modeling
	2.8 MES2-like module definition based on scRNA level
	2.9 Integrative identification of MES2 hub genes
	2.10 Regulatory network inference and transcription factor analysis
	2.11 Cell-cell communication analysis
	2.12 Causal signaling inference with CORNETO/CARNIVAL
	2.13 Inference of CEBPD-MES2 regulons
	2.14 Graph-based integration and spatial domain characterization
	2.15 Spatial LR inference
	2.16 Clinical sample collection
	2.17 Quantitative real-time PCR
	2.18 Western blot
	2.19 Immunohistochemistry
	2.20 Cell culture and lentivirus transfection.
	2.21 Cell counting kit&minus;8 assay
	2.22 EdU incorporation experiments
	2.23 Transwell migration assay
	2.24 Statistical analysis

	3 Results
	3.1 Single-cell integration and annotation
	3.2 CNV-based tumor delineation and developmental gradients across GBM states
	3.3 Cell type-aware GNN stratifies survival and interpretable risk genes
	3.4 MES2-like abundance marks an aggressive program linked to poor outcome
	3.5 Network convergence pinpoints a robust MES2-like core program
	3.6 TAM–MES2 signaling axis converges on a CEBPD-centered transcriptional program
	3.7 Spatial integration, clustering, and malignant-spot calling across four GBM sections
	3.8 Spatially localized immuno-mesenchymal signaling coincides with MES2 niches
	3.9 ARRDC3 affects the proliferation and migration ability of U251 cells

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


