:' frontiers ‘ Frontiers in Immunology

@ Check for updates

OPEN ACCESS

Xiaosheng Tan,
Rutgers, The State University of New Jersey,
United States

Zhen Zhang,

Maastro Clinic, Netherlands

Heli Li,

Huazhong University of Science and
Technology, China

Hongyan Guo
bysyghy@163.com

Chunliang Shang
shangchl@bjmu.edu.cn

"These authors have contributed equally to
this work

04 September 2025
03 November 2025
03 December 2025

Yang L, He T, Wang J, Zhang X, Zeng L,
Sun Q, Song Y, Nie Y, Gao X, Shang C and
Guo H (2025) Decoding ascitic
immunological niches with multi-modal
machine learning reveals prognostic and
chemoresistant determinants in ovarian
cancer.

Front. Immunol. 16:1698793.

doi: 10.3389/fimmu.2025.1698793

© 2025 Yang, He, Wang, Zhang, Zeng, Sun,
Song, Nie, Gao, Shang and Guo. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Immunology

Original Research
03 December 2025
10.3389/fimmu.2025.1698793

Decoding ascitic immunological
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Background: Malignant ascites in high-grade serous ovarian cancer (HGSOC)
represent a fluid extension of the tumor microenvironment, embedding immune
programs that may inform prognosis and treatment response. We investigated
whether ascitic T-cell phenotypes, integrated with clinical variables, improve
prediction of overall survival (OS), progression-free survival (PFS), progression-
free interval (PFl), and platinum-based drug chemotherapy resistance (P-DCR).
Methods: We retrospectively analyzed 87 patients with FIGO I1I/IV HGSOC with
treatment-naive ascites treated at Peking University Third Hospital (May 2019—
Mar 2024; median follow-up, 33 months). Ascites (>1,000 mL) underwent
standardized processing and multiparametric flow cytometry to quantify T-cell
subsets. To prevent information leakage, we used repeated nested cross-
validation with event-stratified folds: inner folds performed endpoint-specific
screening with Benjamini—Hochberg FDR control, redundancy reduction, and
multicollinearity checks; clinical covariates were added by incremental
contribution testing. Cox proportional hazards, Random Survival Forests (RSFs),
and DeepSurv modeled survival endpoints; a random-forest classifier modeled
P-DCR. Performance was summarized on outer folds [C-index for survival;
receiver operating characteristic—area under the curve (ROC-AUC) for P-DCR].
Model interpretability used Shapley Additive Explanations (SHAP).

Results: Across endpoints, combined clinical + ascites features outperformed
single-source features, with RSF consistently best. Outer-fold testing C-indices
for RSF with combined features were 0.72 (OS), 0.70 (PFS), and 0.74 (PFI). The P-
DCR classifier achieved a mean AUC of 0.69 with combined features (accuracy,
0.66; sensitivity, 0.70; specificity, 0.62). Feature-count sensitivity analyses
showed performance gains plateauing at modest k (=5-7). Kaplan—Meier
curves derived from combined-feature risk scores demonstrated clear
stratification. SHAP analyses indicated protective effects of poly(ADP-ribose)
polymerase (PARP) inhibitor maintenance across endpoints, while ascitic T-cell
subsets, including PD-1"CD57"CD4" and CCR7 CD45RA"CD4" populations,
were repeatedly associated with higher risk; age contributed strongly to PFI.
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Conclusions: Integrating ascitic immunophenotyping with clinical factors
improves risk prediction in HGSOC, with RSF offering robust performance
under rigorous, leakage-safe validation. Ascites-resident T-cell states provide
complementary, reproducible prognostic signals for survival and platinum
response, supporting their potential utility for patient stratification and
hypothesis generation for immunomodulatory strategies.

epithelial ovarian cancer, survival analysis, immunological niches, deep learning,
platinum-based drug chemotherapy resistance prediction

Introduction

Epithelial ovarian cancer (EOC) is recognized as the most lethal
gynecologic malignancy due to its frequent late-stage diagnosis (stages
III/IV), abundant ascitic fluid, and extensive pelvic and abdominal
metastases (1, 2). Cytoreductive surgery combined with chemotherapy
remains the first-line treatment (3, 4). However, most patients face
poor prognosis due to chemotherapy resistance. This underscores an
urgent need to explore the composition of the tumor
microenvironment (TME) to identify new strategies for
immunotherapy (5). We all agree that postoperative survival and
recurrence are closely associated with the diameter of residual tumor
after surgery; the larger the postoperative residual lesion, the shorter the
postoperative recurrence interval and the shorter the overall survival
(OS) (27, 28). Ascitic fluid is considered a diluted form of the TME (6),
containing tumor cell clusters, immune cells, and soluble cytokines.
Solid tumors establish dynamic immunological niches shaped by local
immune reprogramming, metabolic stress, and stromal remodeling. In
ovarian cancer, ascitic fluid provides a unique window into this niche,
reflecting immune subset shifts and their functional states. While
tumor-infiltrating lymphocytes have been extensively studied, the
niche-specific relevance of ascitic immune cells in shaping prognosis
and therapy resistance remains poorly characterized (7). Previous
studies have shown that the phenotype and frequency of T cells in
ovarian cancer ascitic fluid fall between those in tumors and peripheral
blood, reflecting the immune state of the TME (8-10). The immune
characteristics of ascites also influence patients” disease status, tumor
size, and postoperative residual tumor status (RO/R1/R2 classification).
Recent studies have demonstrated that immune cell subsets, including
CD8" T cells and Programmed Death 1 (PD-1)" T cells, are closely
associated with tumor progression and resistance to chemotherapy in
patients with high-grade serous ovarian cancer (HGSOC). Zhang et al.
(2023) (26) showed that high levels of CD8" T-cell infiltration in ascitic
fluid correlated with better survival outcomes in patients with HGSOC,
while elevated PD-1" T cells were linked to chemotherapy resistance.
Therefore, investigating the impact of T-cell subsets in the tumor and
ascitic fluid of patients with HGSOC on prognosis is of
significant value.
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The Cox proportional hazards (CPH) model is a classic method
for survival analysis. However, its linear and proportional hazard
assumptions limit its ability to handle complex, nonlinear, and
dynamic relationships (11), especially in multimodal, high-
dimensional data (12-15). In recent years, deep learning methods
and machine learning models [such as Random Survival Forests
(RSFs)] have provided new solutions for survival analysis. Through
neural network architectures, deep survival models can capture
complex nonlinear relationships, integrate multimodal data, and
improve predictive performance (16-18). Furthermore, machine
learning methods have been widely applied in related studies,
enabling the extraction of latent patterns and rules in data and
the effective selection and modeling of various features (19).

Moreover, with the incorporation of interpretability tools (20)
such as Shapley Additive Explanations (SHAP), deep learning can
not only reveal the impact of key features but also enhance the
clinical applicability of the models. RSF, in particular, naturally
inherits interpretability from its tree-based structure, allowing
researchers to assess how individual features (e.g., ascitic immune
cell characteristics) influence survival outcomes and treatment
resistance through aggregated tree predictions.

In this study, we developed a deep survival model for predicting
OS and progression-free survival (PFS) while utilizing a machine
learning model to evaluate platinum-based drug chemotherapy
resistance (P-DCR). By incorporating interpretability tools such
as SHAP (21-23), we analyzed the associations between ascitic
immune cell characteristics and HGSOC patient survival and P-
DCR. This provides theoretical support and practical guidance for
optimizing individualized treatment strategies.

Methods
Data source
This study included patients with HGSOC at FIGO stage ITI/IV

with ascites. These patients were newly diagnosed and completed
first-line treatment at Peking University Third Hospital from May
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2019 to March 2024. Patients with other ovarian diseases,
infectious/blood/kidney/liver diseases, other tumors, prior anti-
tumor treatments (surgery, chemotherapy, radiotherapy, and
immunotherapy) within 5 years, or lost to follow-up were
excluded. Patients who had received anti-tumor treatments such
as surgery, chemotherapy, radiotherapy, and immunotherapy
within 5 years before enrollment, as well as those who were lost
to follow-up during the follow-up process, were also excluded.
Finally, 87 patients met the criteria and were enrolled. The basic
characteristics of all patients with HGSOC were collected, including
age, stage, lymph node metastasis (LNM), surgical method, surgical
satisfaction, treatment regimen, treatment efficacy, chemotherapy
sensitivity, and maintenance treatment. OS refers to the time from
diagnosis to death from any cause, with patients remaining alive at
the end of follow-up censored; PFS is the time from diagnosis to the
first occurrence of disease progression or death, with patients
having no such events censored at the end of follow-up; and PFI
(post-chemotherapy progression-free interval) denotes the time
from the end of initial treatment to the occurrence of tumor
progression. The results of resection surgery were defined as no
grossly visible residual tumor (R0), residual tumor lesions < 1 cm
(R1), or residual tumor lesions > 1 cm (R2). R1 and R2 were
collectively referred to as NRO. The best efficacy of first-line
treatment, complete remission (CR), was defined as normal
serum CA125 level, normal physical examination, and no signs of
recurrence on computed tomography (CT) scan. Patients who did
not achieve CR, including those with partial remission, stable
disease, and progressive disease, were generally referred to as
non-CR (NCR). PFI (in months) referred to the time from the
end of first-line treatment to the determination of cancer
progression (including CA125 elevation and imaging evidence) by
clinicians. Patients with PFI < 6 months were called platinum-
resistant to chemotherapy, and patients with PFI > 6 months were
called platinum-sensitive to chemotherapy. PES referred to the time
from diagnosis to recurrence (in months). OS referred to the time
from diagnosis to death (in months). The follow-up ended on
March 2024. The median follow-up time was 33.00 (6.00-
56.00) months.

Sample collection, processing, and flow
cytometry detection

To ensure flow cytometry accuracy, immune cell detection was
only performed on ascites with a volume > 1,000 mL. Ascites
samples were collected during the surgical procedure. All samples
were processed within 1 h after collection. The ascites was
centrifuged at 2,000 g for 10 min at 4°C. Density gradient
centrifugation was performed using Ficoll (1.077, GE Healthcare,
USA) and phosphate-buffered saline (PBS) in a ratio of 1:1.5 to
obtain mononuclear cells. The cells were collected and washed twice
with PBS, followed by centrifugation at 500 g for 5 min. Then, the
cells were manually counted and temporarily stored at 0°C to
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complete staining as soon as possible. At room temperature, the
cells (1 x 10° were stained with specific monoclonal antibodies
(mAbs) in the dark for 15 min. Then, the cells were fixed with 1%
paraformaldehyde. Flow cytometry analysis was performed using a
CytoFLEX S (Beckman Coulter). The data were analyzed using
Cytoexpert v. 2.3 software.

Data preprocessing

To prevent information leakage, feature screening was
conducted exclusively within training folds of a nested cross-
validation framework, with held-out folds used only for
evaluation. Clinically plausible covariates were pre-specified and,
where alternatives existed, adjudicated by incremental contribution
testing within the inner folds; variables showing consistent
improvement in discrimination were retained. Immune-cell
candidates were screened per inner fold using the following: (i)
endpoint-appropriate univariate tests—CPH for OS/PFS/PFI and
Mann-Whitney U test for PDCR—with Benjamini-Hochberg false
discovery rate (FDR) adjustment [reporting hazard ratios (HRs)
with 95% confidence intervals (CIs)]; (ii) redundancy reduction by
pairwise correlation; and (iii) multicollinearity assessment via
variance inflation factors (VIFs). Correlation heatmaps and VIF
summaries are provided in the Supplementary Materials.

Feature group selection for survival
outcomes

After the first-stage nested screening, an endpoint-specific
immune feature subset was fixed as the baseline model. Clinical
covariates were then evaluated by incremental contribution testing
under the same nested cross-validation framework: within inner
folds, each clinical variable was added one at a time to the baseline
immune set and then cumulatively in a pre-specified order, with
models refit at each step and performance compared on held-out
data. A covariate was retained if it produced a consistent
improvement in discrimination (C-index) across inner folds; the
minimal clinical augmentation achieving the highest mean
performance defined the final feature group for that endpoint.
Outer-fold results were summarized as mean C-index.

Construction and training of the deep
survival model and random forest P-DCR
prediction model

CPH, RSF, and DeepSurv were evaluated for survival outcomes,
and a random-forest classifier was used for PDCR. All models were
trained under a repeated nested cross-validation scheme with
stratified sampling based on survival outcomes (event vs. non-
event) to mitigate overfitting in a small, high-dimensional setting
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and balance the event ratio across folds. Feature screening and
hyperparameter tuning were confined to inner folds, and outer folds
were reserved for evaluation. The CPH model was fitted by ridge-
penalized partial likelihood (A = 0.10) under proportional-hazards
assumptions, with multicollinearity addressed during inner-fold
screening. The RSF configuration (Figure 1B) employed log-rank
splitting with 200 trees, max_depth = 8, and min_samples_leaf = 5
after inner-loop optimization. The DeepSurv architecture
(Figure 1A) consisted of a compact multilayer perceptron with
two hidden layers (64, 32; ReLU) producing a single linear log-risk
output and trained by the negative Cox partial likelihood (i.e., not
direct survival-time prediction); optimization used Adam with
Reduce-on-Plateau scheduling (initial learning rate 1 x 107),
batch size = 16, and
early stopping based on inner-fold validation loss. For PDCR, a

dropout = 0.20, weight decay = 1 x 107,

random-forest classifier (Figure 1C) with 300 trees, max_depth = 8,
min_samples_leaf = 3, and class_weight = “balanced” was adopted
to address class imbalance. Performance across outer folds is
summarized as mean + SD of C-index (survival) and area under
the curve (AUC) (PDCR) with bootstrap 95% ClIs; precision-recall
curves, confusion matrices, and paired between-model comparisons
are reported in Results. To characterize model behavior and
potential overfitting, training-versus-validation learning curves
were recorded (partial-likelihood/C-index trajectories for CPH
and DeepSurv; out-of-bag plus inner-fold validation curves for
RSF and the PDCR classifier) and used to verify optimization
convergence and quantify the train-validation generalization gap.
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Interpretability analysis

Continuous variables were summarized as mean + SD; 95% Cls
were obtained via percentile bootstrap. Distributional assumptions
were assessed with the Shapiro-Wilk test. Two-group comparisons
used the Wilcoxon rank-sum test. For survival endpoints, univariate
associations were estimated with CPH models (robust variance),
reporting HRs with 95% ClIs; multiplicity across immune markers
was controlled using the Benjamini-Hochberg FDR, with adjusted
g-values tabulated. Redundancy and multicollinearity were
examined using Spearman pairwise correlation matrices/heatmaps
and VIFs, with details provided in the Supplementary Materials.
Predictive performance was estimated using repeated nested cross-
validation with event-stratified folds to preclude information
leakage; survival models were evaluated by Harrell’s concordance
index and classification models by ROC AUC and average
precision. Outer-fold metrics are presented as mean + SD with
bootstrap 95% Cls.

Results

We enrolled 87 patients, of whom 45 (51.72%) were in stage ITT and
42 (48.28%) were in stage IV. The average preoperative serum CA125 of
the above patients was 1,136 U/mL. The median age of the patients was
56 years. A total of 41 patients received primary debulking surgery
(PDS), and 46 patients received ascites biopsy/biopsy surgery and two
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Feature screening diagrams (Display mode 1). (A) Overall survival (OS) related to ascites indicators. (B) Progression-free survival (PFS) of ascites

indicators. (C) Progression-free interval (PFI) related to ascites indicators.
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to four cycles of NACT, followed by IDS. RO was achieved in 48
patients, and NRO was achieved in 39 patients. All patients received
chemotherapy after debulking surgery, and CR was achieved in 78
patients (89.66%). After first-line treatment, 51 (58.62%) patients were
treated with poly(ADP-ribose polymerase) inhibitors (PARPi). By the
end of the follow-up, 46 (52.87%) patients had relapsed, of which 17
were chemotherapy-resistant relapses and 29 were chemotherapy-
sensitive relapses. A total of 23 patients died after relapse. The clinical
characteristics of the included patients are summarized in Table 1.

Statistical analysis results of ascites
characteristics

Within the nested, within-fold screening framework, several ascites-
derived immune phenotypes showed reproducible associations with
survival endpoints after Benjamini-Hochberg FDR control. Screening

TABLE 1 Characteristics of the enrolled patients.

Characteristics Ascites (n = 87)

Age (years) 55.94 + 9.71
FIGO stage
Phase III 45 (51.72%)
Phase IV 42 (48.28%)

Serum CA125 (U/mL) 1136 (585.05, 2,310.00)
Surgical procedure
PDS 41 (47.13%)
NACT+IDS 46 (52.87%)
Surgical satisfaction
RO 48 (55.17%)
NRO 39 (44.83%)

Treatment efficacy

CR 78 (89.66%)
NCR 9 (10.34%)
PARPi maintenance treatment

PARPi 51 (58.62%)

None 36 (41.38%)

Chemosensitivity

Sensitive 66 (75.86%)
Resistant 17 (19.54%)
Under assessment 4 (4.60%)

Vital status at last follow-up

Alive 64 (73.56%)
Deceased 23 (26.44%)
Relapse 46 (52.87%)

Non-relapse 41 (47.13%)
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stability across outer folds is summarized by selection frequency
(Figures 2A-D; A = OS, B = PFS, C = PF], and D = PDCR), and
evidence-stability concordance is visualized as selection frequency vs.
—loglO(median q) (Figures 3A-D), with dashed lines denoting the a
priori consensus thresholds (frequency > 0.50; median g < 0.25).
Features in the upper-right quadrant and explicitly labeled in Figure 4
constitute the consensus set carried forward to multivariable modeling.
Consistent patterns emerged across endpoints and are enumerated
in Table 2. For OS, PD-1"CD57'CD4" T cells were stably retained
(frequency = 0.64) with a univariate Cox estimate HR = 2.12 (95% CI,
1.34-3.36); CD28"CD57"'CD4" T cells also showed stability (0.58) with
HR = 1.83 (1.16-2.88), while CD28'CD57"CD8" T cells appeared less
frequently [0.20; HR = 1.61 (1.05-2.46)]. For PFS and PFI, CCR7
CD45RAYCD4" T cells led the rankings (both frequency = 0.80) with
HR = 1.96 (1.28-3.00) for PFS and HR = 2.24 (1.50-3.34) for PFT; PD-
1"CD57"CD4" T cells showed intermediate stability (PFS, 0.48; PFIL,
0.40) with effect sizes consistent with risk increase (Table 2). For the
PDCR endpoint (platinum resistance vs. sensitivity), discriminatory
phenotypes are summarized by selection frequency and median g (no
HR is reported because PDCR is binary); PD-1"CD57°CD4" T cells
(0.62), CD28'CD57'CD4" T cells (0.56), and CD28 CD57"CD8" T
cells (0.34) ranked highest (Figure 2D, Table 2). Diagnostic assessments
addressing redundancy and multicollinearity are provided in the
Supplementary Materials (Supplementary Figures S1-S3).

Results of the feature group selection for
survival outcomes

Shown in Figure 4; Table 3, across OS, PFS, and PFI, test C-
index rose from smaller sets (k =3-4) and then plateaued; the
optimal k varied by endpoint. For OS, RSF peaked at k = 6 (0.73),
DeepSurv at k = 6 (0.72), and CPH at k = 5 (0.66). For PFI, RSF and
DeepSurv co-peaked at k = 6 (0.74), while CPH peaked at k = 7
(0.69). For PFS, all models peaked at k = 5 (RSF 0.70; DeepSurv 0.69;
CPH 0.65). Final clinical features: OS—age, stage, and PARPi; PFI—
age, stage, serum CA125, and PARPi; PFS—stage and PARPi.

Results of the survival models

After feature selection, three survival models—CPH, RSF, and
DeepSurv—were established to predict OS, PES, and PFI using three
feature groups: Clinical features (clinical-only), Ascites_features
(ascites-only), and Combined_features (clinical-ascites combined);
model performance was quantified by the concordance index, with
detailed results in Table 4. For OS prediction, the Combined_features
group outperformed the two single-feature groups across all models,
and RSF exhibited the best performance: its training and testing C-
indexes for Combined_features were 0.74 + 0.04 and 0.72 + 0.05,
respectively, surpassing CPH (training: 0.68 + 0.05; testing: 0.66 +
0.06) and DeepSurv (training: 0.75 + 0.03; testing: 0.70 + 0.06), while
in single-feature groups, RSF also led (Clinical_features: testing C-
index 0.64 + 0.10; Ascites_features: 0.69 * 0.09) over CPH and
DeepSurv. A similar trend was observed for PFS: the

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1698793
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
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(A-C) Feature count sensitivity for survival outcomes (A: OS, B: PFS, C: PFl). Lines show test C-index means for CPH, RSF, and DeepSurv across k =

3-7.

Combined_features group improved performance for all models,
with RSF achieving the highest testing C-index (0.70 + 0.04) in this
group (training: 0.73 + 0.04), outperforming CPH (testing: 0.65 +
0.05) and DeepSurv (testing: 0.69 + 0.06), and RSF also maintained
advantages in single-feature groups (Clinical_features: testing 0.64 +
0.11; Ascites_features: 0.67 + 0.08). For PFI prediction, the
Combined_features group remained superior, and RSF again
delivered the highest testing C-index (0.74 + 0.06) among all
model-feature combinations (training: 0.76 + 0.05), exceeding CPH
(testing: 0.69 + 0.06) and DeepSurv (testing: 0.72 + 0.05); in single-
feature groups, RSF’s testing C-indexes were 0.69 + 0.09
(Clinical_features) and 0.72 + 0.09 (Ascites_features), which were
higher than those of CPH and DeepSurv. Collectively, the
Combined_features group significantly enhanced predictive
performance across all three endpoints compared to single-feature
groups, and RSF consistently outperformed CPH and DeepSurv in
the testing set. The training and validation loss curve are shown in the
Supplementary Materials (Supplementary Figure S4).
Kaplan-Meier curves (Figure 5) visually validated these
findings, showing distinct survival stratification by risk groups
derived from the combined feature models. Despite these

improvements, DeepSurv consistently underperformed compared
to RSF across all endpoints (Table 4), highlighting the latter’s
superior ability to handle complex feature interactions.

P-DCR prediction results

In P-DCR prediction (Table 5), models were constructed based
on the selected feature set. Classification performance metrics were
compared using ROC curves (Figure 6). Table 5 shows the
performance metrics for different feature groups. The
Ascites_features group had a mean AUC of 0.64 (+ 0.05), a mean
accuracy of 0.63 (+ 0.07), a mean sensitivity of 0.54 (+ 0.09), and a
mean specificity of 0.71 (£ 0.11). The Clinical_features group had a
mean AUC of 0.60 (+ 0.06), a mean accuracy of 0.62 (+ 0.08), a
mean sensitivity of 0.52 (+ 0.10), and a mean specificity of 0.69 (+
0.12). The Combined_features group outperformed the others, with
a mean AUC of 0.69 (£ 0.04), a mean accuracy of 0.66 (+ 0.09), a
mean sensitivity of 0.70 (+ 0.13), and a mean specificity of 0.62 (+
0.14). Training and validation loss are presented in the
Supplementary Materials (Supplementary Figure S5).

TABLE 2 Ascites immune phenotypes prioritized by nested, within-fold screening.

Median

Endpoint Feature Frequency q Score HR HR_CI_low HR_CI_high
PD-17CD57°CD4" T cell 0.64 0.007 0.748 2.12 1.34 3.36
0s CD28*CD57°CD4" T cell 0.58 0.016 0.653 1.83 1.16 2.88
CD28°CD57°CD8" T cell 0.20 0.023 0.366 1.61 1.05 2.46
CCR7 CD45RA*CD4" T cell 0.80 0.009 0.860 1.96 1.28 3
PES PD-1'CD57°CD4" T cell 0.48 0.070 0.501 1.44 0.98 2.12
PD-1*CD57°CD8" T cell 0.26 0.151 0.298 131 0.9 1.9
CCR7"CD45RAYCD4" T cell 0.80 0.001 0.860 2.24 15 334
PFI PD-1"CD57°CD4" T cell 0.40 0.088 0.385 137 0.95 1.98
CD57°CD8" T cell 0.20 0.133 0.226 1.26 0.87 1.82
PD-1"CD57°CD4" T cell 0.62 0.151 0.730
PDCR CD28"CD57°CD4" T cell 0.56 0.149 0.692
CD28"CD57°CD8" T cell 0.34 0.151 0.534
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Kaplan—Meier (KM) curves for three models. (A) KM curves depicting overall survival (OS). (B) KM curves representing progression-free survival (PFS).

(C) KM curves illustrating progression-free interval (PFI).

Feature interpretability results

Figure 7; Tables 6-9 showcase the feature contributions and
their respective importance rankings within diverse models, as
determined by SHAP analysis. A positive SHAP value indicates a
higher likelihood of poor prognosis and platinum resistance to
chemotherapy, while a negative SHAP value indicates a better
prognosis and platinum sensitivity to chemotherapy. The
influence of key features on predictive outcomes was not uniform
across all models.

In the SHAP analysis of the deep survival model, the feature
with the most significant impact on OS risk scores was
CD28'CD57"CD4" T cell, with the highest total absolute SHAP
value (32.56) in Table 6. For PES prediction, PARPi showed the
most prominent influence, with the highest total absolute SHAP
value (52.79) in Table 7. In PFI prediction, age emerged as the most
impactful feature, with a total absolute SHAP value of 82.42
(Table 8). For platinum-based drug chemotherapy disease control
rate (P-DCR) prediction, PARPi had the highest total absolute
SHAP value (4.56) in Table 9.

Additionally, PARPi exerted a consistent negative effect on OS,
PES, PFI, and P-DCR, as indicated by negative direction values in
Tables 6-9. Other notable features included CD28"CD57"CD8" T
cell (positive direction, total absolute SHAP value = 29.4) in OS

TABLE 3 Best k by model and endpoint with final clinical features.

prediction, CCR7"CD45RACD4" T cell (positive direction, 32.56)
in PFS prediction, CD57 CD8" T cell (negative direction, 67.3) in
PFI prediction, and CD28 CD57'CD8" T cell (positive direction,
3.84) in P-DCR prediction.

Discussion

Recent advances in spatial immunology and machine learning
enable high-resolution decoding of immune microenvironments.
By combining flow cytometric profiling of ascitic T-cell subsets with
interpretable ensemble modeling, we aimed to explore the potential
relationships between survival, recurrence, and P-DCR in patients
with ovarian cancer and to construct deep learning models to
improve the predictive performance of survival analysis. By
integrating multi-omics and machine and deep learning methods,
we sought to enhance the current prognosis evaluation for ovarian
cancer, thereby supporting individualized treatment strategies.

In this study, a comprehensive comparative analysis was carried
out to assess the influence of different feature sets on model
performance in predicting OS, PES, PFI, and P-DCR.

In survival predictions, the RSF model with combined clinical-
ascites features outperformed single feature sets across all endpoints:
OS (C-index = 0.72 + 0.05), PFS (C-index = 0.70 + 0.04), and PFI (C-

Endpoint Model Best k Best test mean Final k Final clinical features

CPH 5 0.66

(&N DeepSurv 6 0.72 6 Age, stage, PARPi
RSF 6 0.73
CPH 7 0.69

PHI DeepSurv 6 0.74 7 Age Stage};x{;'in CALZS,
RSF 6 0.74
CPH 5 0.65

PES DeepSurv 5 0.69 5 Stage, PARPi
RSF 5 0.70
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(A) ROC curves for comparison of multiple P-DCR prediction models. ROC curves illustrating the discriminative performance of diverse models in
predicting P-DCR. (B) Confusion matrix derived from 3,000 bootstrap iterations, showing the trade-off between true positive rate and false positive

rate for model evaluation.

index = 0.74 + 0.06)—significantly higher than clinical-only (OS: 0.66
+ 0.06, PFS: 0.64 + 0.10, PFL: 0.69 + 0.06) or ascites-only (OS: 0.69 +
0.09, PES: 0.67 + 0.08, PFI: 0.72 + 0.09) subsets. This highlights the
critical role of integrating multi-dimensional data to capture complex
feature interactions influencing survival outcomes.

RSF consistently outperformed DeepSurv, leveraging its tree-
based architecture to model non-linear relationships eftectively.
Single feature sets, particularly ascites-only, showed limited
discriminatory power, underscoring their inability to fully
characterize disease dynamics alone. These findings emphasize
the value of combined features and algorithm selection in robust
survival modeling, with RSF offering a superior approach for
identifying heterogeneous risk subgroups in translational research.

The observed superiority of combined clinical-ascites features
across all survival endpoints underscores the importance of
integrative feature selection in capturing multi-dimensional
prognostic signals. While single feature groups provided moderate
predictive value (e.g., ascites features for OS and clinical features for
PFI), their limitations were evident in failing to achieve top
performance in any endpoint. This suggests that survival
outcomes are influenced by complex interactions between clinical
phenotypes and immune microenvironments, which require
integrated analysis to fully resolve. Prior work (24, 25) used
clinical or imaging data alone and missed immune determinants
of survival and therapy resistance. Unlike the NLP model of Laios
et al., which relies on operative-report text and cannot reflect pre-
operative immune dynamics, our inclusion of markers (e.g.,
PD-1"CD8" T cells) flags immune-exhausted patients prone to R2
residual disease. Compared with the ultrasound model of Moro
et al., which is operator-dependent and largely morphologic, our
approach links pre-operative immune status to residual tumor
diameter, thereby improving survival prediction.

Model comparisons further highlighted the robustness of RSF
over parametric CPH and neural network DeepSurv approaches.
RSF’s ability to handle non-linear relationships and automatically
select informative features contributed to its dominance,
particularly in combined feature sets where interactions were
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most pronounced. In contrast, CPH’s reliance on proportional
hazards assumptions and linearity likely constrained its
performance, especially in high-dimensional immune features.
DeepSurv, despite showing promise in ascites-only models,
struggled with overfitting in combined groups, possibly due to
insufficient regularization or limited training data. These findings
align with recent studies demonstrating ensemble methods’
superiority in survival analysis with heterogeneous data.

For P-DCR, the main message is that fusing information beats
any single source. The combined feature set consistently delivered
better discrimination (highest mean AUC of 0.69) and a distinct
performance profile, suggesting complementary signals between
clinical factors and ascites-derived markers. Practically, this favors
a combined-features classifier when the goal is to enrich responders
while keeping false positives in check. Thresholds should be tuned
to the intended use (screening vs. confirmatory), and calibration
plus external validation is needed to ensure transportability and
avoid optimism from internal resampling. However, similar to the
situation in survival prediction, the average sensitivity across all
feature sets varied, with the Combined_features group showing the
highest mean sensitivity (0.70) while the other groups remained
relatively low (0.52-0.54), indicating that even the best-performing
model may still miss some resistant samples. This could be due to
the heterogeneity of P-DCR features and the model’s limitations in
handling complex relationships. In terms of average specificity, the
Ascites_features group had a mean specificity of 0.71,
outperforming the Combined_features group (0.62) and
Clinical_features group (0.69), showing that ascites-derived
markers alone have a relatively stronger ability to identify non-
resistant samples and reduce false-positive rates.

The SHAP analysis has yielded valuable insights into the
significance of diverse features for predicting clinical outcomes in
HGSOC. Mechanistically, the presence of PD-1"CD57"CD8" T cells
in ascites indicates terminal differentiation/senescence with features
of exhaustion; studies have linked expansion of this lineage to adverse
outcomes in HGSOC, consistent with its unfavorable contribution in
our models. Moreover, datasets that distinguish PD-1 single-positive
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TABLE 4 Performance comparison between models and feature groups.

Feature group

Training C-index (mean + SD)

10.3389/fimmu.2025.1698793

Testing C-index (mean + SD)

CPH 0.63 (+ 0.08) 0.60 (+ 0.08)

OS_Clinical RSF 0.70 (+ 0.06) 0.64 (+ 0.10)
DeepSurv 0.74 (+ 0.07) 0.62 (+ 0.11)

CPH 0.67 (+ 0.05) 0.64 (+ 0.12)

OS_Ascites RSF 0.73 (+ 0.09) 0.69 (+ 0.09)
DeepSurv 0.75 (£ 0.09) 0.67 (+ 0.10)

CPH 0.68 (+ 0.05) 0.66 (+ 0.06)

OS_Combined RSF 0.74 (+ 0.04) 0.72 (+ 0.05)
DeepSurv 0.75 (+ 0.03) 0.70 (+ 0.06)

CPH 0.64 (+ 0.06) 0.61 (+ 0.10)

PFS_Clinical RSF 0.68 (+ 0.05) 0.64 (+ 0.11)
DeepSurv 0.71 (+ 0.05) 0.63 (+0.12)

CPH 0.66 (+ 0.07) 0.63 (+ 0.12)

PFS_Ascites RSF 0.71 (+ 0.06) 0.67 (+ 0.08)
DeepSurv 0.73 (+ 0.09) 0.66 (+ 0.09)

CPH 0.67 (+ 0.04) 0.65 (+ 0.05)

PFS_Combined RSF 0.73 (& 0.04) 0.70 (+ 0.04)
DeepSurv 0.74 (+ 0.06) 0.69 (+ 0.06)

CPH 0.70 (+ 0.09) 0.66 (+ 0.09)

PFI_Clinical RSF 0.74 (+ 0.07) 0.69 (+ 0.09)
DeepSurv 0.76 (+ 0.09) 0.68 (+ 0.10)

CPH 0.72 (+ 0.09) 0.68 (+ 0.13)

PFI_Ascites RSF 0.76 (+ 0.08) 0.72 (+ 0.09)
DeepSurv 0.78 (+ 0.06) 0.70 (+ 0.12)

CPH 0.71 (+ 0.06) 0.69 (+ 0.06)

PFL_Combined RSF 0.76 (+ 0.05) 0.74 (+ 0.06)
DeepSurv 0.78 (+ 0.05) 0.72 (+ 0.05)

CD8 T cells (which may include activated states) from PD-1 and
CD57 double-positive cells (more senescent/terminal) show
divergent prognostic directions, supporting our interpretation of
PD-1"CD57" as the more risk-oriented phenotype (29, 30). CCR7°
CD45RA"CD4" (CD4 TEMRA) denotes terminal effector
differentiation, generally accompanied by reduced proliferative
reserve and immunosenescence; the biological meaning of the

CCR7/CDA45RA stratification is well established and aligns with the
risk direction we observed (31). Tregs (CD25"CD127") are recruited
to ovarian tumors/ascites via CCL22 and are associated with inferior
survival, suggesting an immunologic barrier to chemotherapy
response (32). Although CD56%™ NK cells are the principal
cytotoxic subset, they are often functionally impaired in ascites by
soluble factors such as TGF-B1; such dysfunction correlates with

TABLE 5 The performance for P-DCR prediction with different feature groups.

Feature group Accuracy Sensitivity Specificity
Ascites_features 0.64 (+ 0.05) 0.63 ( 0.07) 0.54 (+ 0.09) ‘ 0.71 (+ 0.11)
Clinical_features ‘ 0.60 (+ 0.06) 0.62 (+ 0.08) 0.52 (+ 0.10) ‘ 0.69 (+0.12)

Combined_features ‘ 0.69 (+ 0.04) 0.66 (+ 0.09) 0.70 (+ 0.13) ‘ 0.62 (+ 0.14)
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FIGURE 7
SHAP value for interpretability value visualization. (A) Overall survival (OS). (B) Progression-free survival (PFS). (C) Progression-free interval (PFI).
(D) P-DCR.

poorer outcomes and further supports including NK phenotypes in ~ negative influence on OS, PFS, PFI, and P-DCR, implying a protective
prediction (33). Among clinical covariates, CA125 reflects tumor  effect. Understanding its mechanisms could optimize its use and lead
burden and is used for relapse monitoring, but initiating  to better combination therapies. Biomarkers like “serum CA125” and
chemotherapy solely on the basis of rising CA125 does not  “Stage” are relevant for PFS. Their positive associations highlight their
improve overall survival, indicating that it functions better as a  importance in monitoring and guiding treatment. Regular assessment
disease-activity marker than as a stand-alone treatment trigger (34).  can help detect progression early.

FIGO stage and residual disease have long been among the most As part of ongoing research, deep learning has also been explored
important prognostic factors, in accordance with their directions in  for predicting post-operative residual tumor status in patients with
our models (35). PARPi exposure was treated as a treatment covariate ~ ovarian cancer. Preliminary findings suggest that deep learning
rather than an outcome; its association with reduced risk is  models can be applied effectively to predict the status of residual
biologically plausible—PARPi can remodel the tumor immune  tumors, with early results indicating an accuracy of 70.83%, a
microenvironment, upregulate PD-L1, and activate innate immune  precision of 71.21%, a recall of 70.83%, and an F1 score of 70.89%
pathways—yet confounding must be considered in nonrandomized  on the test set. While these findings are still under investigation, they
analyses (30). Disruptions in these cells could impact prognosis,  may provide valuable insights into the potential for integrating tumor
pointing to potential immunomodulatory therapies. PARPi shows a  status prediction into clinical prognosis of tumors, further supporting

personalized treatment approaches.

TABLE 6 The SHAP value for OS prediction.

Feature LRI CEL LU | Limitations and future directions
value
CD28CD57°CD4" T cell 30.32 Positive Despite achieving meaningful results, this study has certain
CD28-CD57°CD8" T cell 294 Positive limitations. First, the small dataset size may affect the generalizability
of the models, especially for deep learning approaches that require
PD-1"CD57"CD4" T cell 25.54 Positive . . .. .
larger datasets for reliable performance. Despite the promising findings
Age 19.19 Positive in this study, several limitations must be considered. The most
PARPi 1317 Negative significant limitation is the small sample size (n = 87), which can
affect the generalizability and robustness of the models. A dataset of this
Stage 4.08 Positive

size, while adequate for the proof of concept, may not capture the full
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TABLE 7 The SHAP value for PFS prediction.

Total absolute SHAP

Feature Direction
value
PARPi 52.79 Negative
CCR7 CD45RA™CD4" T cell 32.56 Positive
PD-17CD57"CD8" T cell 20 Positive
PD-1"CD57'CD4" T cell 18 Positive
Stage 12.68 Positive

heterogeneity of patient populations, particularly in HGSOC, where
immune microenvironment features may vary across ethnicities and
clinical settings. The lack of external validation is a critical concern, as
the generalizability of machine learning models is heavily dependent on
the diversity and size of the datasets used for testing. We acknowledge
that external validation using multi-center datasets is essential to
improve the reliability and applicability of the models to broader
populations. Furthermore, multi-center validation would address
potential biases due to center-specific variations in clinical
procedures and pathological assessments.

To mitigate this limitation, we employed a repeated nested
cross-validation approach, which helps reduce overfitting and
ensures that the feature selection and model training processes
are rigorously tested within the available data. This approach,
despite the limited sample size, maximized the utility of the data
by ensuring that models were trained and evaluated using different
subsets, thus improving the stability of the findings.

While external validation is clearly a priority for future work, our
use of advanced techniques such as feature screening, multivariable
modeling, and SHAP analyses has ensured that the findings are
interpretable and robust within the context of this study. These
methods allowed us to capture meaningful relationships between
clinical features and ascitic immune cell subsets, which will form a
valuable foundation for future investigations with larger and more
diverse cohorts. Additionally, the data used in this study mainly
originated from a single center, lacking diversity in patient
populations from different ethnicities or regions, which may limit the
applicability of the model. There is also a lack of targeted analysis
regarding center-specific variations in surgical procedures and

TABLE 8 The SHAP value for PFI prediction.

Total absolute SHAP

10.3389/fimmu.2025.1698793

pathological assessment criteria. This introduces potential bias and
variability, further limiting the generalizability of the results. Therefore,
future studies should explore multi-center validation to address these
concerns and improve the external validity of the models. Moreover, a
key limitation not previously discussed is the “timeliness of immune
indicator detection”. Ascites samples need to be collected during
surgery and processed within 1 h to ensure accurate immune
profiling. In clinical practice, particularly in primary hospitals,
meeting this tight timeframe may not always be feasible, limiting the
model’s applicability in these settings. Future studies could explore the
impact of refrigerated sample storage or other methods to preserve the
samples during transport, allowing for a more flexible detection
timeline and broader model application in clinical practice. Future
studies could incorporate additional multimodal features, such as
genomic or imaging data, to further enhance model prediction
performance and generalizability. In particular, with advancements in
deep learning and multimodal integration techniques, combining
different data types may provide more comprehensive support for
the diagnosis and treatment of ovarian cancer. In terms of model
interpretability, future efforts could explore other interpretability
techniques, such as attention mechanism-based models, to better
uncover the complex relationships and interactions among features.
This would deepen our understanding of the mechanisms underlying
ovarian cancer and provide new insights for developing individualized
treatment strategies.

Conclusion

This study developed a deep survival model and a random
forest-based platinum resistance prediction model for ovarian
cancer, integrating clinical and immune features. Key findings
include the following: (1) The RSF model outperformed deep
learning and traditional methods across all survival endpoints; (2)
combined clinical-ascites features improved predictive accuracy,
validating multi-dimensional data integration; and (3) signature
biomarkers were identified for survival and drug resistance. These
results provide a novel framework for personalized treatment
strategies. Future work includes external validation and multi-
omics integration to enhance prognostic precision.

TABLE 9 The SHAP value for P-DCR prediction.

Total absolute SHAP

Feature Direction Feature Direction
value value
Age 82.42 Positive PARPi 4.56 Negative
CD57"CD8" T cell 67.3 Negative CD28°CD57*CD8" T cell 3.84 Positive
PD-1"CD57'CD4" T cell 50.17 Positive CD28 CD57'CD4" T cell 3.60 Positive
CCR7 CD45RA"CD4" T cell 44,03 Positive PD-1"CD57*CD4" T cell 3.36 Positive
Serum CA125 34.04 Positive Age 2.28 Positive
PARPi 17.83 Negative Serum CA125 1.92 Positive
Stage 12.47 Positive Stage 0.72 Positive
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