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Decoding ascitic immunological
niches with multi-modal
machine learning reveals
prognostic and chemoresistant
determinants in ovarian cancer
Lin Yang1†, Tianhui He1†, Jing Wang2, Xiaolan Zhang1, Lin Zeng1,
Qinkun Sun1, Yuelin Song1, Yufei Nie1, Xinran Gao1,
Chunliang Shang1* and Hongyan Guo1*

1Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China, 2Mass
General Cancer Center, Massachusetts General Hospital, Harvard Medical School, MA, United States
Background: Malignant ascites in high-grade serous ovarian cancer (HGSOC)

represent a fluid extension of the tumor microenvironment, embedding immune

programs that may inform prognosis and treatment response. We investigated

whether ascitic T-cell phenotypes, integrated with clinical variables, improve

prediction of overall survival (OS), progression-free survival (PFS), progression-

free interval (PFI), and platinum-based drug chemotherapy resistance (P-DCR).

Methods: We retrospectively analyzed 87 patients with FIGO III/IV HGSOC with

treatment-naïve ascites treated at Peking University Third Hospital (May 2019–

Mar 2024; median follow-up, 33 months). Ascites (>1,000 mL) underwent

standardized processing and multiparametric flow cytometry to quantify T-cell

subsets. To prevent information leakage, we used repeated nested cross-

validation with event-stratified folds: inner folds performed endpoint-specific

screening with Benjamini–Hochberg FDR control, redundancy reduction, and

multicollinearity checks; clinical covariates were added by incremental

contribution testing. Cox proportional hazards, Random Survival Forests (RSFs),

and DeepSurv modeled survival endpoints; a random-forest classifier modeled

P-DCR. Performance was summarized on outer folds [C-index for survival;

receiver operating characteristic–area under the curve (ROC-AUC) for P-DCR].

Model interpretability used Shapley Additive Explanations (SHAP).

Results: Across endpoints, combined clinical + ascites features outperformed

single-source features, with RSF consistently best. Outer-fold testing C-indices

for RSF with combined features were 0.72 (OS), 0.70 (PFS), and 0.74 (PFI). The P-

DCR classifier achieved a mean AUC of 0.69 with combined features (accuracy,

0.66; sensitivity, 0.70; specificity, 0.62). Feature-count sensitivity analyses

showed performance gains plateauing at modest k (≈5–7). Kaplan–Meier

curves derived from combined-feature risk scores demonstrated clear

stratification. SHAP analyses indicated protective effects of poly(ADP-ribose)

polymerase (PARP) inhibitor maintenance across endpoints, while ascitic T-cell

subsets, including PD-1+CD57+CD4+ and CCR7-CD45RA+CD4+ populations,

were repeatedly associated with higher risk; age contributed strongly to PFI.
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Conclusions: Integrating ascitic immunophenotyping with clinical factors

improves risk prediction in HGSOC, with RSF offering robust performance

under rigorous, leakage-safe validation. Ascites-resident T-cell states provide

complementary, reproducible prognostic signals for survival and platinum

response, supporting their potential utility for patient stratification and

hypothesis generation for immunomodulatory strategies.
KEYWORDS

epithelial ovarian cancer, survival analysis, immunological niches, deep learning,
platinum-based drug chemotherapy resistance prediction
Introduction

Epithelial ovarian cancer (EOC) is recognized as the most lethal

gynecologic malignancy due to its frequent late-stage diagnosis (stages

III/IV), abundant ascitic fluid, and extensive pelvic and abdominal

metastases (1, 2). Cytoreductive surgery combined with chemotherapy

remains the first-line treatment (3, 4). However, most patients face

poor prognosis due to chemotherapy resistance. This underscores an

urgent need to explore the composition of the tumor

microenvironment (TME) to identify new strategies for

immunotherapy (5). We all agree that postoperative survival and

recurrence are closely associated with the diameter of residual tumor

after surgery; the larger the postoperative residual lesion, the shorter the

postoperative recurrence interval and the shorter the overall survival

(OS) (27, 28). Ascitic fluid is considered a diluted form of the TME (6),

containing tumor cell clusters, immune cells, and soluble cytokines.

Solid tumors establish dynamic immunological niches shaped by local

immune reprogramming, metabolic stress, and stromal remodeling. In

ovarian cancer, ascitic fluid provides a unique window into this niche,

reflecting immune subset shifts and their functional states. While

tumor-infiltrating lymphocytes have been extensively studied, the

niche-specific relevance of ascitic immune cells in shaping prognosis

and therapy resistance remains poorly characterized (7). Previous

studies have shown that the phenotype and frequency of T cells in

ovarian cancer ascitic fluid fall between those in tumors and peripheral

blood, reflecting the immune state of the TME (8–10). The immune

characteristics of ascites also influence patients’ disease status, tumor

size, and postoperative residual tumor status (R0/R1/R2 classification).

Recent studies have demonstrated that immune cell subsets, including

CD8+ T cells and Programmed Death 1 (PD-1)+ T cells, are closely

associated with tumor progression and resistance to chemotherapy in

patients with high-grade serous ovarian cancer (HGSOC). Zhang et al.

(2023) (26) showed that high levels of CD8+ T-cell infiltration in ascitic

fluid correlated with better survival outcomes in patients with HGSOC,

while elevated PD-1+ T cells were linked to chemotherapy resistance.

Therefore, investigating the impact of T-cell subsets in the tumor and

ascitic fluid of patients with HGSOC on prognosis is of

significant value.
02
The Cox proportional hazards (CPH) model is a classic method

for survival analysis. However, its linear and proportional hazard

assumptions limit its ability to handle complex, nonlinear, and

dynamic relationships (11), especially in multimodal, high-

dimensional data (12–15). In recent years, deep learning methods

and machine learning models [such as Random Survival Forests

(RSFs)] have provided new solutions for survival analysis. Through

neural network architectures, deep survival models can capture

complex nonlinear relationships, integrate multimodal data, and

improve predictive performance (16–18). Furthermore, machine

learning methods have been widely applied in related studies,

enabling the extraction of latent patterns and rules in data and

the effective selection and modeling of various features (19).

Moreover, with the incorporation of interpretability tools (20)

such as Shapley Additive Explanations (SHAP), deep learning can

not only reveal the impact of key features but also enhance the

clinical applicability of the models. RSF, in particular, naturally

inherits interpretability from its tree-based structure, allowing

researchers to assess how individual features (e.g., ascitic immune

cell characteristics) influence survival outcomes and treatment

resistance through aggregated tree predictions.

In this study, we developed a deep survival model for predicting

OS and progression-free survival (PFS) while utilizing a machine

learning model to evaluate platinum-based drug chemotherapy

resistance (P-DCR). By incorporating interpretability tools such

as SHAP (21–23), we analyzed the associations between ascitic

immune cell characteristics and HGSOC patient survival and P-

DCR. This provides theoretical support and practical guidance for

optimizing individualized treatment strategies.
Methods

Data source

This study included patients with HGSOC at FIGO stage III/IV

with ascites. These patients were newly diagnosed and completed

first-line treatment at Peking University Third Hospital from May
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2019 to March 2024. Patients with other ovarian diseases,

infectious/blood/kidney/liver diseases, other tumors, prior anti-

tumor treatments (surgery, chemotherapy, radiotherapy, and

immunotherapy) within 5 years, or lost to follow-up were

excluded. Patients who had received anti-tumor treatments such

as surgery, chemotherapy, radiotherapy, and immunotherapy

within 5 years before enrollment, as well as those who were lost

to follow-up during the follow-up process, were also excluded.

Finally, 87 patients met the criteria and were enrolled. The basic

characteristics of all patients with HGSOC were collected, including

age, stage, lymph node metastasis (LNM), surgical method, surgical

satisfaction, treatment regimen, treatment efficacy, chemotherapy

sensitivity, and maintenance treatment. OS refers to the time from

diagnosis to death from any cause, with patients remaining alive at

the end of follow-up censored; PFS is the time from diagnosis to the

first occurrence of disease progression or death, with patients

having no such events censored at the end of follow-up; and PFI

(post-chemotherapy progression-free interval) denotes the time

from the end of initial treatment to the occurrence of tumor

progression. The results of resection surgery were defined as no

grossly visible residual tumor (R0), residual tumor lesions ≤ 1 cm

(R1), or residual tumor lesions > 1 cm (R2). R1 and R2 were

collectively referred to as NR0. The best efficacy of first-line

treatment, complete remission (CR), was defined as normal

serum CA125 level, normal physical examination, and no signs of

recurrence on computed tomography (CT) scan. Patients who did

not achieve CR, including those with partial remission, stable

disease, and progressive disease, were generally referred to as

non-CR (NCR). PFI (in months) referred to the time from the

end of first-line treatment to the determination of cancer

progression (including CA125 elevation and imaging evidence) by

clinicians. Patients with PFI < 6 months were called platinum-

resistant to chemotherapy, and patients with PFI > 6 months were

called platinum-sensitive to chemotherapy. PFS referred to the time

from diagnosis to recurrence (in months). OS referred to the time

from diagnosis to death (in months). The follow-up ended on

March 2024. The median follow-up time was 33.00 (6.00–

56.00) months.
Sample collection, processing, and flow
cytometry detection

To ensure flow cytometry accuracy, immune cell detection was

only performed on ascites with a volume > 1,000 mL. Ascites

samples were collected during the surgical procedure. All samples

were processed within 1 h after collection. The ascites was

centrifuged at 2,000 g for 10 min at 4°C. Density gradient

centrifugation was performed using Ficoll (1.077, GE Healthcare,

USA) and phosphate-buffered saline (PBS) in a ratio of 1:1.5 to

obtain mononuclear cells. The cells were collected and washed twice

with PBS, followed by centrifugation at 500 g for 5 min. Then, the

cells were manually counted and temporarily stored at 0°C to
Frontiers in Immunology 03
complete staining as soon as possible. At room temperature, the

cells (1 × 106) were stained with specific monoclonal antibodies

(mAbs) in the dark for 15 min. Then, the cells were fixed with 1%

paraformaldehyde. Flow cytometry analysis was performed using a

CytoFLEX S (Beckman Coulter). The data were analyzed using

Cytoexpert v. 2.3 software.
Data preprocessing

To prevent information leakage, feature screening was

conducted exclusively within training folds of a nested cross-

validation framework, with held-out folds used only for

evaluation. Clinically plausible covariates were pre-specified and,

where alternatives existed, adjudicated by incremental contribution

testing within the inner folds; variables showing consistent

improvement in discrimination were retained. Immune-cell

candidates were screened per inner fold using the following: (i)

endpoint-appropriate univariate tests—CPH for OS/PFS/PFI and

Mann–Whitney U test for PDCR—with Benjamini–Hochberg false

discovery rate (FDR) adjustment [reporting hazard ratios (HRs)

with 95% confidence intervals (CIs)]; (ii) redundancy reduction by

pairwise correlation; and (iii) multicollinearity assessment via

variance inflation factors (VIFs). Correlation heatmaps and VIF

summaries are provided in the Supplementary Materials.
Feature group selection for survival
outcomes

After the first-stage nested screening, an endpoint-specific

immune feature subset was fixed as the baseline model. Clinical

covariates were then evaluated by incremental contribution testing

under the same nested cross-validation framework: within inner

folds, each clinical variable was added one at a time to the baseline

immune set and then cumulatively in a pre-specified order, with

models refit at each step and performance compared on held-out

data. A covariate was retained if it produced a consistent

improvement in discrimination (C-index) across inner folds; the

minimal clinical augmentation achieving the highest mean

performance defined the final feature group for that endpoint.

Outer-fold results were summarized as mean C-index.
Construction and training of the deep
survival model and random forest P-DCR
prediction model

CPH, RSF, and DeepSurv were evaluated for survival outcomes,

and a random-forest classifier was used for PDCR. All models were

trained under a repeated nested cross-validation scheme with

stratified sampling based on survival outcomes (event vs. non-

event) to mitigate overfitting in a small, high-dimensional setting
frontiersin.org
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and balance the event ratio across folds. Feature screening and

hyperparameter tuning were confined to inner folds, and outer folds

were reserved for evaluation. The CPH model was fitted by ridge-

penalized partial likelihood (l = 0.10) under proportional-hazards

assumptions, with multicollinearity addressed during inner-fold

screening. The RSF configuration (Figure 1B) employed log-rank

splitting with 200 trees, max_depth = 8, and min_samples_leaf = 5

after inner-loop optimization. The DeepSurv architecture

(Figure 1A) consisted of a compact multilayer perceptron with

two hidden layers (64, 32; ReLU) producing a single linear log-risk

output and trained by the negative Cox partial likelihood (i.e., not

direct survival-time prediction); optimization used Adam with

Reduce-on-Plateau scheduling (initial learning rate 1 × 10-³),

dropout = 0.20, weight decay = 1 × 10-4, batch size = 16, and

early stopping based on inner-fold validation loss. For PDCR, a

random-forest classifier (Figure 1C) with 300 trees, max_depth = 8,

min_samples_leaf = 3, and class_weight = “balanced” was adopted

to address class imbalance. Performance across outer folds is

summarized as mean ± SD of C-index (survival) and area under

the curve (AUC) (PDCR) with bootstrap 95% CIs; precision–recall

curves, confusion matrices, and paired between-model comparisons

are reported in Results. To characterize model behavior and

potential overfitting, training-versus-validation learning curves

were recorded (partial-likelihood/C-index trajectories for CPH

and DeepSurv; out-of-bag plus inner-fold validation curves for

RSF and the PDCR classifier) and used to verify optimization

convergence and quantify the train–validation generalization gap.
Frontiers in Immunology 04
Interpretability analysis

Continuous variables were summarized as mean ± SD; 95% CIs

were obtained via percentile bootstrap. Distributional assumptions

were assessed with the Shapiro–Wilk test. Two-group comparisons

used theWilcoxon rank-sum test. For survival endpoints, univariate

associations were estimated with CPH models (robust variance),

reporting HRs with 95% CIs; multiplicity across immune markers

was controlled using the Benjamini–Hochberg FDR, with adjusted

q-values tabulated. Redundancy and multicollinearity were

examined using Spearman pairwise correlation matrices/heatmaps

and VIFs, with details provided in the Supplementary Materials.

Predictive performance was estimated using repeated nested cross-

validation with event-stratified folds to preclude information

leakage; survival models were evaluated by Harrell’s concordance

index and classification models by ROC AUC and average

precision. Outer-fold metrics are presented as mean ± SD with

bootstrap 95% CIs.
Results

We enrolled 87 patients, of whom 45 (51.72%) were in stage III and

42 (48.28%) were in stage IV. The average preoperative serumCA125 of

the above patients was 1,136 U/mL. The median age of the patients was

56 years. A total of 41 patients received primary debulking surgery

(PDS), and 46 patients received ascites biopsy/biopsy surgery and two
FIGURE 1

Feature screening diagrams (Display mode 1). (A) Overall survival (OS) related to ascites indicators. (B) Progression-free survival (PFS) of ascites
indicators. (C) Progression-free interval (PFI) related to ascites indicators.
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to four cycles of NACT, followed by IDS. R0 was achieved in 48

patients, and NR0 was achieved in 39 patients. All patients received

chemotherapy after debulking surgery, and CR was achieved in 78

patients (89.66%). After first-line treatment, 51 (58.62%) patients were

treated with poly(ADP-ribose polymerase) inhibitors (PARPi). By the

end of the follow-up, 46 (52.87%) patients had relapsed, of which 17

were chemotherapy-resistant relapses and 29 were chemotherapy-

sensitive relapses. A total of 23 patients died after relapse. The clinical

characteristics of the included patients are summarized in Table 1.
Statistical analysis results of ascites
characteristics

Within the nested, within-fold screening framework, several ascites-

derived immune phenotypes showed reproducible associations with

survival endpoints after Benjamini–Hochberg FDR control. Screening
Frontiers in Immunology 05
stability across outer folds is summarized by selection frequency

(Figures 2A–D; A = OS, B = PFS, C = PFI, and D = PDCR), and

evidence–stability concordance is visualized as selection frequency vs.

−log10(median q) (Figures 3A–D), with dashed lines denoting the a

priori consensus thresholds (frequency ≥ 0.50; median q ≤ 0.25).

Features in the upper-right quadrant and explicitly labeled in Figure 4

constitute the consensus set carried forward to multivariable modeling.

Consistent patterns emerged across endpoints and are enumerated

in Table 2. For OS, PD-1+CD57+CD4+ T cells were stably retained

(frequency = 0.64) with a univariate Cox estimate HR = 2.12 (95% CI,

1.34–3.36); CD28+CD57+CD4+ T cells also showed stability (0.58) with

HR = 1.83 (1.16–2.88), while CD28-CD57+CD8+ T cells appeared less

frequently [0.20; HR = 1.61 (1.05–2.46)]. For PFS and PFI, CCR7-

CD45RA+CD4+ T cells led the rankings (both frequency = 0.80) with

HR = 1.96 (1.28–3.00) for PFS and HR = 2.24 (1.50–3.34) for PFI; PD-

1+CD57+CD4+ T cells showed intermediate stability (PFS, 0.48; PFI,

0.40) with effect sizes consistent with risk increase (Table 2). For the

PDCR endpoint (platinum resistance vs. sensitivity), discriminatory

phenotypes are summarized by selection frequency and median q (no

HR is reported because PDCR is binary); PD-1+CD57+CD4+ T cells

(0.62), CD28-CD57+CD4+ T cells (0.56), and CD28-CD57+CD8+ T

cells (0.34) ranked highest (Figure 2D, Table 2). Diagnostic assessments

addressing redundancy and multicollinearity are provided in the

Supplementary Materials (Supplementary Figures S1–S3).
Results of the feature group selection for
survival outcomes

Shown in Figure 4; Table 3, across OS, PFS, and PFI, test C-

index rose from smaller sets (k ≈3–4) and then plateaued; the

optimal k varied by endpoint. For OS, RSF peaked at k = 6 (0.73),

DeepSurv at k = 6 (0.72), and CPH at k = 5 (0.66). For PFI, RSF and

DeepSurv co-peaked at k = 6 (0.74), while CPH peaked at k = 7

(0.69). For PFS, all models peaked at k = 5 (RSF 0.70; DeepSurv 0.69;

CPH 0.65). Final clinical features: OS—age, stage, and PARPi; PFI—

age, stage, serum CA125, and PARPi; PFS—stage and PARPi.
Results of the survival models

After feature selection, three survival models—CPH, RSF, and

DeepSurv—were established to predict OS, PFS, and PFI using three

feature groups: Clinical_features (clinical-only), Ascites_features

(ascites-only), and Combined_features (clinical-ascites combined);

model performance was quantified by the concordance index, with

detailed results in Table 4. For OS prediction, the Combined_features

group outperformed the two single-feature groups across all models,

and RSF exhibited the best performance: its training and testing C-

indexes for Combined_features were 0.74 ± 0.04 and 0.72 ± 0.05,

respectively, surpassing CPH (training: 0.68 ± 0.05; testing: 0.66 ±

0.06) and DeepSurv (training: 0.75 ± 0.03; testing: 0.70 ± 0.06), while

in single-feature groups, RSF also led (Clinical_features: testing C-

index 0.64 ± 0.10; Ascites_features: 0.69 ± 0.09) over CPH and

DeepSurv. A similar trend was observed for PFS: the
TABLE 1 Characteristics of the enrolled patients.

Characteristics Ascites (n = 87)

Age (years) 55.94 ± 9.71

FIGO stage

Phase III 45 (51.72%)

Phase IV 42 (48.28%)

Serum CA125 (U/mL) 1136 (585.05, 2,310.00)

Surgical procedure

PDS 41 (47.13%)

NACT+IDS 46 (52.87%)

Surgical satisfaction

R0 48 (55.17%)

NR0 39 (44.83%)

Treatment efficacy

CR 78 (89.66%)

NCR 9 (10.34%)

PARPi maintenance treatment

PARPi 51 (58.62%)

None 36 (41.38%)

Chemosensitivity

Sensitive 66 (75.86%)

Resistant 17 (19.54%)

Under assessment 4 (4.60%)

Vital status at last follow-up

Alive 64 (73.56%)

Deceased 23 (26.44%)

Relapse 46 (52.87%)

Non-relapse 41 (47.13%)
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FIGURE 2

(A–D) Selection frequency of ascites immune features across outer folds: selection frequency bar plots for immune features associated with A: OS, B: PFS, C:
PFI, and D: PDCR.
FIGURE 3

(A–D) Evidence–stability plots for ascites immune features: frequency vs. −log10(median q) scatter plots for each endpoint (A: OS, B: PFS, C: PFI,
and D: PDCR).
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Combined_features group improved performance for all models,

with RSF achieving the highest testing C-index (0.70 ± 0.04) in this

group (training: 0.73 ± 0.04), outperforming CPH (testing: 0.65 ±

0.05) and DeepSurv (testing: 0.69 ± 0.06), and RSF also maintained

advantages in single-feature groups (Clinical_features: testing 0.64 ±

0.11; Ascites_features: 0.67 ± 0.08). For PFI prediction, the

Combined_features group remained superior, and RSF again

delivered the highest testing C-index (0.74 ± 0.06) among all

model-feature combinations (training: 0.76 ± 0.05), exceeding CPH

(testing: 0.69 ± 0.06) and DeepSurv (testing: 0.72 ± 0.05); in single-

feature groups, RSF’s testing C-indexes were 0.69 ± 0.09

(Clinical_features) and 0.72 ± 0.09 (Ascites_features), which were

higher than those of CPH and DeepSurv. Collectively, the

Combined_features group significantly enhanced predictive

performance across all three endpoints compared to single-feature

groups, and RSF consistently outperformed CPH and DeepSurv in

the testing set. The training and validation loss curve are shown in the

Supplementary Materials (Supplementary Figure S4).

Kaplan–Meier curves (Figure 5) visually validated these

findings, showing distinct survival stratification by risk groups

derived from the combined feature models. Despite these
Frontiers in Immunology 07
improvements, DeepSurv consistently underperformed compared

to RSF across all endpoints (Table 4), highlighting the latter’s

superior ability to handle complex feature interactions.
P-DCR prediction results

In P-DCR prediction (Table 5), models were constructed based

on the selected feature set. Classification performance metrics were

compared using ROC curves (Figure 6). Table 5 shows the

performance metrics for different feature groups. The

Ascites_features group had a mean AUC of 0.64 (± 0.05), a mean

accuracy of 0.63 (± 0.07), a mean sensitivity of 0.54 (± 0.09), and a

mean specificity of 0.71 (± 0.11). The Clinical_features group had a

mean AUC of 0.60 (± 0.06), a mean accuracy of 0.62 (± 0.08), a

mean sensitivity of 0.52 (± 0.10), and a mean specificity of 0.69 (±

0.12). The Combined_features group outperformed the others, with

a mean AUC of 0.69 (± 0.04), a mean accuracy of 0.66 (± 0.09), a

mean sensitivity of 0.70 (± 0.13), and a mean specificity of 0.62 (±

0.14). Training and validation loss are presented in the

Supplementary Materials (Supplementary Figure S5).
E 4FIGUR

(A–C) Feature count sensitivity for survival outcomes (A: OS, B: PFS, C: PFI). Lines show test C-index means for CPH, RSF, and DeepSurv across k =
3–7.
TABLE 2 Ascites immune phenotypes prioritized by nested, within-fold screening.

Endpoint Feature Frequency
Median

q
Score HR HR_CI_low HR_CI_high

OS

PD-1+CD57+CD4+ T cell 0.64 0.007 0.748 2.12 1.34 3.36

CD28+CD57+CD4+ T cell 0.58 0.016 0.653 1.83 1.16 2.88

CD28−CD57+CD8+ T cell 0.20 0.023 0.366 1.61 1.05 2.46

PFS

CCR7−CD45RA+CD4+ T cell 0.80 0.009 0.860 1.96 1.28 3

PD-1+CD57+CD4+ T cell 0.48 0.070 0.501 1.44 0.98 2.12

PD-1+CD57+CD8+ T cell 0.26 0.151 0.298 1.31 0.9 1.9

PFI

CCR7−CD45RA+CD4+ T cell 0.80 0.001 0.860 2.24 1.5 3.34

PD-1+CD57+CD4+ T cell 0.40 0.088 0.385 1.37 0.95 1.98

CD57−CD8+ T cell 0.20 0.133 0.226 1.26 0.87 1.82

PDCR

PD-1+CD57+CD4+ T cell 0.62 0.151 0.730

CD28−CD57+CD4+ T cell 0.56 0.149 0.692

CD28−CD57+CD8+ T cell 0.34 0.151 0.534
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Feature interpretability results

Figure 7; Tables 6–9 showcase the feature contributions and

their respective importance rankings within diverse models, as

determined by SHAP analysis. A positive SHAP value indicates a

higher likelihood of poor prognosis and platinum resistance to

chemotherapy, while a negative SHAP value indicates a better

prognosis and platinum sensitivity to chemotherapy. The

influence of key features on predictive outcomes was not uniform

across all models.

In the SHAP analysis of the deep survival model, the feature

with the most significant impact on OS risk scores was

CD28+CD57+CD4+ T cell, with the highest total absolute SHAP

value (32.56) in Table 6. For PFS prediction, PARPi showed the

most prominent influence, with the highest total absolute SHAP

value (52.79) in Table 7. In PFI prediction, age emerged as the most

impactful feature, with a total absolute SHAP value of 82.42

(Table 8). For platinum-based drug chemotherapy disease control

rate (P-DCR) prediction, PARPi had the highest total absolute

SHAP value (4.56) in Table 9.

Additionally, PARPi exerted a consistent negative effect on OS,

PFS, PFI, and P-DCR, as indicated by negative direction values in

Tables 6–9. Other notable features included CD28−CD57+CD8+ T

cell (positive direction, total absolute SHAP value = 29.4) in OS
Frontiers in Immunology 08
prediction, CCR7−CD45RA+CD4+ T cell (positive direction, 32.56)

in PFS prediction, CD57−CD8+ T cell (negative direction, 67.3) in

PFI prediction, and CD28−CD57+CD8+ T cell (positive direction,

3.84) in P-DCR prediction.
Discussion

Recent advances in spatial immunology and machine learning

enable high-resolution decoding of immune microenvironments.

By combining flow cytometric profiling of ascitic T-cell subsets with

interpretable ensemble modeling, we aimed to explore the potential

relationships between survival, recurrence, and P-DCR in patients

with ovarian cancer and to construct deep learning models to

improve the predictive performance of survival analysis. By

integrating multi-omics and machine and deep learning methods,

we sought to enhance the current prognosis evaluation for ovarian

cancer, thereby supporting individualized treatment strategies.

In this study, a comprehensive comparative analysis was carried

out to assess the influence of different feature sets on model

performance in predicting OS, PFS, PFI, and P-DCR.

In survival predictions, the RSF model with combined clinical-

ascites features outperformed single feature sets across all endpoints:

OS (C-index = 0.72 ± 0.05), PFS (C-index = 0.70 ± 0.04), and PFI (C-
TABLE 3 Best k by model and endpoint with final clinical features.

Endpoint Model Best k Best test mean Final k Final clinical features

OS

CPH 5 0.66

6 Age, stage, PARPiDeepSurv 6 0.72

RSF 6 0.73

PFI

CPH 7 0.69

7
Age, stage, serum CA125,

PARPi
DeepSurv 6 0.74

RSF 6 0.74

PFS

CPH 5 0.65

5 Stage, PARPiDeepSurv 5 0.69

RSF 5 0.70
FIGURE 5

Kaplan–Meier (KM) curves for three models. (A) KM curves depicting overall survival (OS). (B) KM curves representing progression-free survival (PFS).
(C) KM curves illustrating progression-free interval (PFI).
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index = 0.74 ± 0.06)—significantly higher than clinical-only (OS: 0.66

± 0.06, PFS: 0.64 ± 0.10, PFI: 0.69 ± 0.06) or ascites-only (OS: 0.69 ±

0.09, PFS: 0.67 ± 0.08, PFI: 0.72 ± 0.09) subsets. This highlights the

critical role of integrating multi-dimensional data to capture complex

feature interactions influencing survival outcomes.

RSF consistently outperformed DeepSurv, leveraging its tree-

based architecture to model non-linear relationships effectively.

Single feature sets, particularly ascites-only, showed limited

discriminatory power, underscoring their inability to fully

characterize disease dynamics alone. These findings emphasize

the value of combined features and algorithm selection in robust

survival modeling, with RSF offering a superior approach for

identifying heterogeneous risk subgroups in translational research.

The observed superiority of combined clinical-ascites features

across all survival endpoints underscores the importance of

integrative feature selection in capturing multi-dimensional

prognostic signals. While single feature groups provided moderate

predictive value (e.g., ascites features for OS and clinical features for

PFI), their limitations were evident in failing to achieve top

performance in any endpoint. This suggests that survival

outcomes are influenced by complex interactions between clinical

phenotypes and immune microenvironments, which require

integrated analysis to fully resolve. Prior work (24, 25) used

clinical or imaging data alone and missed immune determinants

of survival and therapy resistance. Unlike the NLP model of Laios

et al., which relies on operative-report text and cannot reflect pre-

operative immune dynamics, our inclusion of markers (e.g.,

PD-1+CD8+ T cells) flags immune-exhausted patients prone to R2

residual disease. Compared with the ultrasound model of Moro

et al., which is operator-dependent and largely morphologic, our

approach links pre-operative immune status to residual tumor

diameter, thereby improving survival prediction.

Model comparisons further highlighted the robustness of RSF

over parametric CPH and neural network DeepSurv approaches.

RSF’s ability to handle non-linear relationships and automatically

select informative features contributed to its dominance,

particularly in combined feature sets where interactions were
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most pronounced. In contrast, CPH’s reliance on proportional

hazards assumptions and linearity likely constrained its

performance, especially in high-dimensional immune features.

DeepSurv, despite showing promise in ascites-only models,

struggled with overfitting in combined groups, possibly due to

insufficient regularization or limited training data. These findings

align with recent studies demonstrating ensemble methods’

superiority in survival analysis with heterogeneous data.

For P-DCR, the main message is that fusing information beats

any single source. The combined feature set consistently delivered

better discrimination (highest mean AUC of 0.69) and a distinct

performance profile, suggesting complementary signals between

clinical factors and ascites-derived markers. Practically, this favors

a combined-features classifier when the goal is to enrich responders

while keeping false positives in check. Thresholds should be tuned

to the intended use (screening vs. confirmatory), and calibration

plus external validation is needed to ensure transportability and

avoid optimism from internal resampling. However, similar to the

situation in survival prediction, the average sensitivity across all

feature sets varied, with the Combined_features group showing the

highest mean sensitivity (0.70) while the other groups remained

relatively low (0.52–0.54), indicating that even the best-performing

model may still miss some resistant samples. This could be due to

the heterogeneity of P-DCR features and the model’s limitations in

handling complex relationships. In terms of average specificity, the

Ascites_features group had a mean specificity of 0.71,

outperforming the Combined_features group (0.62) and

Clinical_features group (0.69), showing that ascites-derived

markers alone have a relatively stronger ability to identify non-

resistant samples and reduce false-positive rates.

The SHAP analysis has yielded valuable insights into the

significance of diverse features for predicting clinical outcomes in

HGSOC. Mechanistically, the presence of PD-1+CD57+CD8+ T cells

in ascites indicates terminal differentiation/senescence with features

of exhaustion; studies have linked expansion of this lineage to adverse

outcomes in HGSOC, consistent with its unfavorable contribution in

our models. Moreover, datasets that distinguish PD-1 single-positive
FIGURE 6

(A) ROC curves for comparison of multiple P-DCR prediction models. ROC curves illustrating the discriminative performance of diverse models in
predicting P-DCR. (B) Confusion matrix derived from 3,000 bootstrap iterations, showing the trade-off between true positive rate and false positive
rate for model evaluation.
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CD8 T cells (which may include activated states) from PD-1 and

CD57 double-positive cells (more senescent/terminal) show

divergent prognostic directions, supporting our interpretation of

PD-1+CD57+ as the more risk-oriented phenotype (29, 30). CCR7-

CD45RA+CD4+ (CD4 TEMRA) denotes terminal effector

differentiation, generally accompanied by reduced proliferative

reserve and immunosenescence; the biological meaning of the
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CCR7/CD45RA stratification is well established and aligns with the

risk direction we observed (31). Tregs (CD25+CD127-) are recruited

to ovarian tumors/ascites via CCL22 and are associated with inferior

survival, suggesting an immunologic barrier to chemotherapy

response (32). Although CD56dim NK cells are the principal

cytotoxic subset, they are often functionally impaired in ascites by

soluble factors such as TGF-b1; such dysfunction correlates with
TABLE 4 Performance comparison between models and feature groups.

Feature group Model Training C-index (mean ± SD) Testing C-index (mean ± SD)

OS_Clinical

CPH 0.63 (± 0.08) 0.60 (± 0.08)

RSF 0.70 (± 0.06) 0.64 (± 0.10)

DeepSurv 0.74 (± 0.07) 0.62 (± 0.11)

OS_Ascites

CPH 0.67 (± 0.05) 0.64 (± 0.12)

RSF 0.73 (± 0.09) 0.69 (± 0.09)

DeepSurv 0.75 (± 0.09) 0.67 (± 0.10)

OS_Combined

CPH 0.68 (± 0.05) 0.66 (± 0.06)

RSF 0.74 (± 0.04) 0.72 (± 0.05)

DeepSurv 0.75 (± 0.03) 0.70 (± 0.06)

PFS_Clinical

CPH 0.64 (± 0.06) 0.61 (± 0.10)

RSF 0.68 (± 0.05) 0.64 (± 0.11)

DeepSurv 0.71 (± 0.05) 0.63 (± 0.12)

PFS_Ascites

CPH 0.66 (± 0.07) 0.63 (± 0.12)

RSF 0.71 (± 0.06) 0.67 (± 0.08)

DeepSurv 0.73 (± 0.09) 0.66 (± 0.09)

PFS_Combined

CPH 0.67 (± 0.04) 0.65 (± 0.05)

RSF 0.73 (± 0.04) 0.70 (± 0.04)

DeepSurv 0.74 (± 0.06) 0.69 (± 0.06)

PFI_Clinical

CPH 0.70 (± 0.09) 0.66 (± 0.09)

RSF 0.74 (± 0.07) 0.69 (± 0.09)

DeepSurv 0.76 (± 0.09) 0.68 (± 0.10)

PFI_Ascites

CPH 0.72 (± 0.09) 0.68 (± 0.13)

RSF 0.76 (± 0.08) 0.72 (± 0.09)

DeepSurv 0.78 (± 0.06) 0.70 (± 0.12)

PFI_Combined

CPH 0.71 (± 0.06) 0.69 (± 0.06)

RSF 0.76 (± 0.05) 0.74 (± 0.06)

DeepSurv 0.78 (± 0.05) 0.72 (± 0.05)
TABLE 5 The performance for P-DCR prediction with different feature groups.

Feature group AUC Accuracy Sensitivity Specificity

Ascites_features 0.64 (± 0.05) 0.63 (± 0.07) 0.54 (± 0.09) 0.71 (± 0.11)

Clinical_features 0.60 (± 0.06) 0.62 (± 0.08) 0.52 (± 0.10) 0.69 (± 0.12)

Combined_features 0.69 (± 0.04) 0.66 (± 0.09) 0.70 (± 0.13) 0.62 (± 0.14)
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1698793
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2025.1698793
poorer outcomes and further supports including NK phenotypes in

prediction (33). Among clinical covariates, CA125 reflects tumor

burden and is used for relapse monitoring, but initiating

chemotherapy solely on the basis of rising CA125 does not

improve overall survival, indicating that it functions better as a

disease-activity marker than as a stand-alone treatment trigger (34).

FIGO stage and residual disease have long been among the most

important prognostic factors, in accordance with their directions in

our models (35). PARPi exposure was treated as a treatment covariate

rather than an outcome; its association with reduced risk is

biologically plausible—PARPi can remodel the tumor immune

microenvironment, upregulate PD-L1, and activate innate immune

pathways—yet confounding must be considered in nonrandomized

analyses (30). Disruptions in these cells could impact prognosis,

pointing to potential immunomodulatory therapies. PARPi shows a
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negative influence onOS, PFS, PFI, and P-DCR, implying a protective

effect. Understanding its mechanisms could optimize its use and lead

to better combination therapies. Biomarkers like “serum CA125” and

“Stage” are relevant for PFS. Their positive associations highlight their

importance inmonitoring and guiding treatment. Regular assessment

can help detect progression early.

As part of ongoing research, deep learning has also been explored

for predicting post-operative residual tumor status in patients with

ovarian cancer. Preliminary findings suggest that deep learning

models can be applied effectively to predict the status of residual

tumors, with early results indicating an accuracy of 70.83%, a

precision of 71.21%, a recall of 70.83%, and an F1 score of 70.89%

on the test set. While these findings are still under investigation, they

may provide valuable insights into the potential for integrating tumor

status prediction into clinical prognosis of tumors, further supporting

personalized treatment approaches.
Limitations and future directions

Despite achieving meaningful results, this study has certain

limitations. First, the small dataset size may affect the generalizability

of the models, especially for deep learning approaches that require

larger datasets for reliable performance. Despite the promising findings

in this study, several limitations must be considered. The most

significant limitation is the small sample size (n = 87), which can

affect the generalizability and robustness of themodels. A dataset of this

size, while adequate for the proof of concept, may not capture the full
FIGURE 7

SHAP value for interpretability value visualization. (A) Overall survival (OS). (B) Progression-free survival (PFS). (C) Progression-free interval (PFI).
(D) P-DCR.
TABLE 6 The SHAP value for OS prediction.

Feature
Total absolute SHAP

value
Direction

CD28+CD57+CD4+ T cell 30.32 Positive

CD28−CD57+CD8+ T cell 29.4 Positive

PD-1+CD57+CD4+ T cell 25.54 Positive

Age 19.19 Positive

PARPi 13.17 Negative

Stage 4.08 Positive
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heterogeneity of patient populations, particularly in HGSOC, where

immune microenvironment features may vary across ethnicities and

clinical settings. The lack of external validation is a critical concern, as

the generalizability of machine learningmodels is heavily dependent on

the diversity and size of the datasets used for testing. We acknowledge

that external validation using multi-center datasets is essential to

improve the reliability and applicability of the models to broader

populations. Furthermore, multi-center validation would address

potential biases due to center-specific variations in clinical

procedures and pathological assessments.

To mitigate this limitation, we employed a repeated nested

cross-validation approach, which helps reduce overfitting and

ensures that the feature selection and model training processes

are rigorously tested within the available data. This approach,

despite the limited sample size, maximized the utility of the data

by ensuring that models were trained and evaluated using different

subsets, thus improving the stability of the findings.

While external validation is clearly a priority for future work, our

use of advanced techniques such as feature screening, multivariable

modeling, and SHAP analyses has ensured that the findings are

interpretable and robust within the context of this study. These

methods allowed us to capture meaningful relationships between

clinical features and ascitic immune cell subsets, which will form a

valuable foundation for future investigations with larger and more

diverse cohorts. Additionally, the data used in this study mainly

originated from a single center, lacking diversity in patient

populations from different ethnicities or regions, which may limit the

applicability of the model. There is also a lack of targeted analysis

regarding center-specific variations in surgical procedures and
Frontiers in Immunology 12
pathological assessment criteria. This introduces potential bias and

variability, further limiting the generalizability of the results. Therefore,

future studies should explore multi-center validation to address these

concerns and improve the external validity of the models. Moreover, a

key limitation not previously discussed is the “timeliness of immune

indicator detection”. Ascites samples need to be collected during

surgery and processed within 1 h to ensure accurate immune

profiling. In clinical practice, particularly in primary hospitals,

meeting this tight timeframe may not always be feasible, limiting the

model’s applicability in these settings. Future studies could explore the

impact of refrigerated sample storage or other methods to preserve the

samples during transport, allowing for a more flexible detection

timeline and broader model application in clinical practice. Future

studies could incorporate additional multimodal features, such as

genomic or imaging data, to further enhance model prediction

performance and generalizability. In particular, with advancements in

deep learning and multimodal integration techniques, combining

different data types may provide more comprehensive support for

the diagnosis and treatment of ovarian cancer. In terms of model

interpretability, future efforts could explore other interpretability

techniques, such as attention mechanism-based models, to better

uncover the complex relationships and interactions among features.

This would deepen our understanding of the mechanisms underlying

ovarian cancer and provide new insights for developing individualized

treatment strategies.
Conclusion

This study developed a deep survival model and a random

forest-based platinum resistance prediction model for ovarian

cancer, integrating clinical and immune features. Key findings

include the following: (1) The RSF model outperformed deep

learning and traditional methods across all survival endpoints; (2)

combined clinical-ascites features improved predictive accuracy,

validating multi-dimensional data integration; and (3) signature

biomarkers were identified for survival and drug resistance. These

results provide a novel framework for personalized treatment

strategies. Future work includes external validation and multi-

omics integration to enhance prognostic precision.
TABLE 7 The SHAP value for PFS prediction.

Feature
Total absolute SHAP

value
Direction

PARPi 52.79 Negative

CCR7−CD45RA+CD4+ T cell 32.56 Positive

PD-1+CD57+CD8+ T cell 20 Positive

PD-1+CD57+CD4+ T cell 18 Positive

Stage 12.68 Positive
TABLE 8 The SHAP value for PFI prediction.

Feature
Total absolute SHAP

value
Direction

Age 82.42 Positive

CD57−CD8+ T cell 67.3 Negative

PD-1+CD57+CD4+ T cell 50.17 Positive

CCR7−CD45RA+CD4+ T cell 44.03 Positive

Serum CA125 34.04 Positive

PARPi 17.83 Negative

Stage 12.47 Positive
TABLE 9 The SHAP value for P-DCR prediction.

Feature
Total absolute SHAP

value
Direction

PARPi 4.56 Negative

CD28−CD57+CD8+ T cell 3.84 Positive

CD28−CD57+CD4+ T cell 3.60 Positive

PD-1+CD57+CD4+ T cell 3.36 Positive

Age 2.28 Positive

Serum CA125 1.92 Positive

Stage 0.72 Positive
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