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model for MASLD and
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as the potential drug
using bioinformatics
analysis and experiments
Tao Wang1†, Hao Zhang2†, Kaixia Wang1†, Chunxue Liu1,
Nan Kong1, Luocheng Zhou1* and Lihong Qu1*

1Department of Infectious Diseases, Shanghai East Hospital, School of Medicine, Tongji University,
Shanghai, China, 2Department of Endocrinology, Shanghai East Hospital, School of Medicine, Tongji
University, Shanghai, China
Background:Metabolic dysfunction-associated steatotic liver disease (MASLD) is

now the predominant chronic liver disease globally, yet effective therapeutic

strategies remain elusive.

Methods:MASLD-related datasets were download fromGEO. Subsequently, genes

associated with MASLD were found through the intersection of differentially

expressed genes and WGCNA. Then, key candidate genes were further screened

using 113 machine learning algorithms and their diagnostic value was evaluated

using ROC curve analysis across multiple datasets. Genes are then screened by

Shapley Additive exPlanations (SHAP) analysis. Molecular docking (MD) and

molecular dynamics simulations (MDS) were employed to validate the interaction

between Daidzein and Enolase 3 (ENO3). Finally, an in vitro fatty liver cell model was

constructed to validate the “Enrichr” platform to identify poteitial drugs for MASLD.

Results: 62 MASLD-DEGs were finally identified. The optimal predictive model

for MASLDwas the 17-gene signature (IGFBP1, ENO3, SOCS2,GADD45G,NR4A2,

RTP4, RAB26, CRYAA, PPP1R3C,MCAM, IL6, IER3, RTP3, NR4A1, CCL5, FOS,

JUNB) selected through combined glmBoost+GBM algorithms, which was

demonstrated robust predictive performance. SHAP analysis suggested that

ENO3 may be the most prominent genes associated with MASLD severity.

More importantly, we measured the effect of daidzein on improving lipid

accumulation in vitro model.

Conclusion:We developed a predictive model for MASLD and identified ENO3 as

a key predictive gene. Furthermore, we discovered that daidzein may serve as a

potential therapeutic agent for MASLD. Through in vitro studies, we further

confirmed that daidzein alleviates lipid deposition and improves MASLD by

modulating the ENO3/PPAR signaling pathway.
KEYWORDS

metabolic dysfunction-associated steatotic liver disease, machine learning, SHAP,
ENO3, daidzein
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1 Introduction

Metabolic associated fatty liver disease (MAFLD) is an

enormously prevalent chronic hepatic condition that constitute a

significant portion of cases worldwide, seriously jeopardizing

human health and public health resources (1). Metabolic

dysfunction-associated steatotic liver disease (MASLD), which

replaces the term MAFLD, encompasses a clinical spectrum

progressing from simple fatty liver (MAFL) to steatohepatitis

(MASH), and may further advance to serious complications such

as fibrosis, cirrhosis, and hepatocellular carcinoma (2). A Meta

analysis (3) showed that the global prevalence of MASLD was

30.05%, and the prevalence of MASLD in China was even higher,

reaching 32.9%, and showing a rapid growth trend. According to

statistics, in 2020, the number of MASH patients in China is about

38.7 million, and it is expected to reach 46 million by 2025 and

increase to 55 million by 2030 (4).

Hepatic histologic assessment is often used as a surrogate

endpoint in MASLD clinical trials (5). However, liver biopsy is an

invasive procedure, costly, and associated with postoperative

adverse effects such as infection, bleeding, and pain, which are

generally difficult for MASLD patients to accept (6). More

importantly, liver biopsy can only assess very small liver samples,

while limited liver sampling may lead to significant errors in

determining diagnosis, disease staging and longitudinal evolution

given the known spatial heterogeneity of diffuse liver disease (7). So,

noninvasive research for diagnosis and assessment of response to

therapy is of particular importance.

Development of effective drugs to treat MASH is a major

concern for the general public. Thankfully, in March 2024, the

U.S. FDA approved Resmetirom for the treatment of adult MASH

patients with stage F2-3, but its adverse effects and high price have

limited the development of the drug (8).

Machine Learning (ML), as an important branch of Artificial

Intelligence, through the learning and analysis of massive data, can

automatically extract the features and patterns in the data (9),

realize the automated consultation and preciseness assessment of

imaging for diseases, and reveal the links between genes and

disorders, which not only raises the accuracy and efficiency of

diagnosis (10), but also provides a scientific basis for personalized

medicine (11).

Daidzein, also known as soy isoflavone, is derived from

soybeans and legumes and is a natural isoflavone compound (12).

Due to their ability to regulate lipid metabolism and their

antioxidant, anti-inflammatory, and anti-cancer effects, they are

widely used in the treatment of various diseases.

In our study, we pressed in multiple MASLD cohorts from the

Gene Expression Omnibus (GEO) database, constructed MASLD

prediction models by 113 machine learning combinations, screened

for the best predicted genes using Shapley Additive exPlanations

(SHAP) analysis, and most importantly, identified daidzein, an

effective drug for MASLD, and validated it at the cellular level.
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2 Methods and materials

2.1 Data collection and preparation

We analyzed transcriptomic data from 434 patients with

MASLD and 132 healthy controls, sourced from 8 independent

datasets in the Gene Expression Omnibus (GEO) database,

including GSE24807,GSE33814, GSE63067, GSE89632, GSE48452,

GSE66676, GSE126848, GSE130970 and GSE135251. The “combat”

algorithm in the R package “sva” (13) was used to normalize and

merge GSE24807,GSE63067, GSE89632 and GSE33814 into a

training set and “normalizeBetweenArrays” algorithm from the

“limma” package was utilized for data correction (14). GSE12684,

GSE130970, GSE135251 and GSE48452 were 4 independent

validation cohorts. GSE61260 and GSE66676 were used as

external validation cohorts. Principal component analysis (PCA)

and boxplots were further validated for quality control. Detailed

information such as platform, samples and GSE series on these

datasets is shown in Table 1.
2.2 Identification of MASLD related
differentially expressed genes

The “limma” package (14) in R software was used to identify the

DEGs in the training set, with standards of |log2 FC| > 0.585 and adj

P-value <0.05. Next, we constructed a co-expression network for

MASLD using Weighted Gene Co-expression Network Analysis

(WGCNA) (15) to find the most relevant modules for MASLD for

subsequent analysis. Finally, genes in the module that intersect with

DEGs are then considered MASLD-DEGs.
TABLE 1 Basic information of GEO datasets used in the study.

GSE
series

Samples Platform Group

GSE24807 12 MASLD and 5 controls GPL2895 Training cohort

GSE33814 31 MASLD and 13 controls GPL6884 Training cohort

GSE63067 11 MASLD and 7 controls GPL570 Training cohort

GSE89632 39 MASLD and 24 controls GPL14951 Training cohort

GSE48452 32 MASLD and 41 controls GPL11532 Validation cohort

GSE126848 31 MASLD and 26 controls GPL18573 Validation cohort

GSE135251 206 MASLD and 10 controls GPL18573 Validation cohort

GSE130970 72 MASLD and 6 controls GPL16971 Validation cohort

GSE61260 47 MASLD and 38 controls GPL11532
External
validation cohort

GSE66676 34 MASLD and 33 controls GPL6244
External
validation cohort
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2.3 Enrichment analysis of MASLD-DEGs

We used the clusterProfiler (16) software package for Gene

Ontology(GO) analysis to reveal MASLD-DEGs in biological

processes(BP), cellular components(CC) and molecular functions

(MF). In addition, GO, Kyoto Encyclopedia of Genes and Genomes

(KEGG) and Disease Ontology (DO) analysis were performed to

find the molecular mechanism behind MASLD-DEGs.
2.4 Machine learning algorithms

To construct the best model, we use a combination of 113

permutations of 12 machine learning algorithms including LASSO,

Ridge, Stepglm, XGBoost, Linear Discriminant Analysis (LDA),

Generalized Linear Model Boost (glmBoost), Elasticity Networks

(Enet), Partial Least Squares Regression for Generalized Linear

Models (plsRglm), Generalized Boosted Regression Modeling

(GBM), Random Forest (RF), Simple Bayes, and Support Vector

Machines (SVM). As mentioned above, we combine GSE24807,

GSE63067, GSE89632 and GSE33814 as training set while using

GSE126848, GSE130970, GSE135251 and GSE48452 as validation set

respectively. To obtain the optimal model, we employ an ensemble

learning strategy that performs weighted averaging of predictions

from various algorithms. This approach enhances model robustness

and reduces the risk of overfitting. Concurrently, k-fold cross-

validation is utilized to ensure the model demonstrates consistent

performance across different validation sets.We used the AUC value

of the validation and training sets and the number of genes included

in the model as selection criteria for the best model.
2.5 SHAP model for the diagnosis of
MASLD

SHAP is a method for interpreting the prediction results of

machine learning models, and its goal is to compute, for each

prediction made by the model, a value for the contribution of each

input feature to the prediction result (i.e., the SHAP value) (17). The

study employed repeated five-fold cross-validation, dividing the

training dataset into five equally sized subsets. In each cross-

validation cycle, four folds served as the training set, while the fifth

fold functioned as the validation set to assess model performance.This

value provides a clear indication of which features are most critical for a

particular prediction outcome and whether they have a positive or

negative impact on the prediction outcome. The core strength of the

SHAP method is its ability to provide both local interpretability for

individual prediction outcomes and global interpretability for the

overall decision-making mechanism of the model (18, 19).
2.6 Characterization of potential anti-
MASLD drugs

We used the Drug Signature Database (DSigDB) in the Enrichr

web platform (https://amp.pharm.mssm.edu/enrichr/) based on the

expression of 8 genes.
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2.7 Molecular docking analysis

The 2D structure of the small-molecule ligand was obtained

from the PubChem database (http://pubchem.ncbi.nlm.nih.gov/)

and converted into a 3D structure using Chem Office software,

followed by saving in MOL2 format. For the protein target, a high-

resolution crystal structure was selected from the RCSB PDB

database (http://www.rcsb.org/), then processed in PyMOL to

remove water molecules and phosphate groups, yielding a refined

PDB file. Then, use Autodock preprocessing to process the

structures of proteins and small molecules, ultimately obtaining

the optimal conformation for molecular simulation. Finally,

PyMOL and Discovery Studio 2019 were employed to visualize

and analyze the 2D/3D interactions between the ligand and key

protein residues (20).
2.8 Molecular dynamics simulation

This study employed Gromacs 2022 (21) for molecular dynamics

simulations. The protein force field was set to AMBER14SB, while the

ligand force field utilized GAFF2, with parameters generated by the

pdb2gmx tool and the AutoFF web server. The system was solvated in

a cubic TIP3P water box with a dimension of 1 nm and neutralized by

adding ions. Long-range electrostatic interactions were treated using

the Particle Mesh Ewald (PME) method with a cutoff radius of 1 nm.

Bond constraints were applied via the SHAKE algorithm with an

integration time step of 1 fs. Prior to simulation, the system

underwent energy minimization involving 3000 steps of steepest

descent followed by 2000 steps of conjugate gradient minimization.

A molecular dynamics simulation was performed under the NPT

ensemble at 310 K and constant pressure for a duration of 100 ns.

During the simulation, the following properties were calculated: root

mean square deviation (RMSD), root mean square fluctuation

(RMSF), number of hydrogen bonds (HBonds), radius of gyration

(Rg), and solvent accessible surface area (SASA) (22).
2.9 Primary hepatocyte isolation

Primary hepatocytes were isolated from the livers of 6- to 8-week-

old male mice. After perfusing the mouse liver with buffer solution via

the portal vein and dissecting it, liver was placed in collagenase for

digestion, filtered through a 70 mm filter to remove incompletely

digested tissue fragments, and the resulting cell suspension was

centrifuged at 4°C, 50 g, for 5 min. The supernatant was discarded,

and the cell pellet was collected. The cell suspension was further purified

by gradient centrifugation to isolate primary mouse hepatocytes, which

were then counted and seeded for further culture (23).
2.10 In vitro model of MASLD

Primary hepatocytes were cultured in in high-glucose

Dulbecco’s Modified Eagle Medium (DMEM) supplemented with
frontiersin.org
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10% fetal bovine serum (FBS) and 1%mixed antibiotics, maintained

in a constant temperature incubator at 37°C with a 5% CO2

atmosphere. To construct the MASLD model in vivo, primary

hepatocytes were treated with complete culture medium

containing the indicated concentrations of 0.33 mM palmitic acid

(PA) and 0.66 mM oleic acid (OA) (LRB-X3, Kunchuang, Xian,

China) for 24 h (24).
2.11 Cell counting Kit-8 assay

Cells were seeded at a density of 5.0×10³ cells per well in a 96-

well plate. Cell viability was determined using the CCK-8 assay kit

(Meilunbio, MA0218-1, China). Add 100 mL of culture medium and

10 mL of CCK-8 reagent to each well, and incubate for no more than

4 h. Subsequently, measure the absorbance of each well at a

wavelength of 450 nm.
2.12 Cellular oil Red O staining

Primary hepatocytes were plated inoculated in 24-well plates

and treated with 1 mM PO (0.66 mM OA + 0.33 mM PA) for 24 h

in the presence or absence of low-dose Daidzein (50 mM) and high-

dose Daidzein (100 mM). Cells were harvested and washed twice

with phosphate buffered saline (PBS), followed by fixation with 4%

neutral paraformaldehyde for 10 min. At the end of fixation, it was

then washed 3 times with PBS, followed by immersion in 60%

isopropanol for 15 s, and then stained for 10 min using Oil Red O

working solution (60 % oil red O dye and 40 % distilled water). At

the end of staining the cells were washed well using distilled water

and then the nuclei were stained with hematoxylin, followed by

observation of the cells under a light microscope.
2.13 Bodipy 493/503 staining

Cells were taken out of the incubator, washed twice with PBS,

fixed by adding 4% paraformaldehyde for 10–30 min, and washed
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again 3 times with PBS. Bodipy 493/503 lipid dye (GLPBIO,

GC42959, California, USA) was prepared at a final concentration

of 2 mM in PBS. The 2 mM Bodipy 493/503 working solution was

co-incubated with the cells at room temperature and protected from

light for 15–30 min and then washed 3 times with PBS, followed by

the addition of 4’,6-diamidino-2-phenylindole (DAPI) staining

solution and then incubated for 5 min and protected from light

and then washed 3 times with PBS before being imaged in a

fluorescence microscope (25).
2.14 Cellular lipid content measurement

Primary hepatocytes were inoculated in 6-well plates (2×106

cells per well). Then, the cells were co-cultured with daidzein

(50, 100 mM) and PO for 24 h. Finally, triglyceride (TG) and total

cholesterol (TC) levels were measured according to the instructions

in the APPLYGEN test kit.
2.15 Quantitative real-time PCR analysis

A total mRNA of cultured cells was isolated using TRIzol

reagent (Bioteke Corporation, RP40002), and synthesized into

cDNA with a Reverse Transcription Master kit (Vazyme, R222-

01). QRT-PCR was performed by using ChamQ SYBR qPCR

Master Mix (Vazyme, Q311-02). The expression in control

normalized the mRNA levels. The sequences of primer used in

this study are displayed in Table 2.
2.16 Western blot analysis

Samples were treated with RIPA buffer containing phosphatase

and protease inhibitors, homogenized, and centrifuged, followed

by a 15 min resting period. Protein concentration was then

determined using the Bicinchoninic Acid (BCA) assay. Following

electrophoresis, proteins were transferred onto a polyvinylidene

difluoride (PVDF) membrane. The membranes were blocked for
TABLE 2 The sequences of primer used in this study.

Gene sequence 5’ to 3’ forward sequence 5’ to 3’ reverse

ENO3 ACAAAGCACGATACCTGGGG GCGATGTGTCGGTAGAGAGG

IGFBP1 GCTGGATAGCTTCCACCTCATG TCCATTTCTTGAGGTCAGTGATCTC

SOCS2 AGTTCGCATTCAGACTACCTACT TGGTACTCAATCCGCAGGTTAG

GADD45G AGAAGTTCGCGGCCAGGATA GGACTTTGGCGGACTCGTAG

NR4A2 AAACTGCCCAGTGGACAAGCGT GCTCTTCGGTTTCGAGGGCAAA

RAB26 GTCTGCTGGTGCGATTCAAG GCATGGGTAACACTGCGGA

RTP4 ACATGGACGCTGAAGTTGGAT TACGTGTGGCACAGAATCTGC

CRYAA GGTGCTGGACTCTGGAATCT ACTCACGGGAAATGTAGCCA

b-actin GACAGGATGCAGAAGGAGAT GAGGCCAGGATGGAGC
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one hour using 5% skimmed milk powder and then incubated with

primary antibodies at 4°C overnight. After washing with Tris-

buffered saline with Tween 20 (TBST) the next day, the

membranes were incubated with horseradish peroxidase (HRP)-

conjugated secondary antibodies for one hour at room temperature.

Protein detection was performed using equal volumes of enhanced

chemiluminescence (ECL) solutions A and B (catalog number:

U10012). Primary antibodies were shown in Table 3.
2.17 Statistical analysis

All graphical analyses were conducted using R software (version

4.2.3). Normality of the data was assessed using the Student’s t-test,

and correlation analyses were performed using Spearman’s

correlation test. All statistical results were considered significant

at P-values < 0.05, unless otherwise specified.
3 Results

3.1 Identification of MASLD-DEGs

The study design flow chart is shown in Figure 1. A total of 49

normal and 93 MASLD patients from GSE24807, GSE33814,

GSE89632,GSE63067 and GSE89632 were combined into the

training set. Organizations from different platforms showed

different patterns of aggregation before the batch effect was

removed. Box and PCA plots showed the characteristics of the

data distribution before and after the elimination of the batch effect

(Figures 2A, B). The DEGs between the normal and MASLD groups

were then determined using the R package “limma”, based on a p-

value < 0.05 and |logFC| ≥ 0.585 as filters. Subsequently, a total of 95

DEGs were identified, of which 55 were down-regulated and 40

were up-regulated (Figure 2C). WGCNA was used to screen for

modular genes most associated with disease progression. The

modules with the dissimilarity < 0.2 were subsequently merged

(Figure 2D), resulting in a total of 3 modules in this study. A soft-

thresholding power (b) of 15 was selected to achieve a scale-free
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topology fit (R² = 0.9), ensuring the network captured gene

expression relationships consistent with scale-free properties

(Figure 2E). Consequently, these genes were divided into different

modules, with the grey color module being positively correlated

with MASLD(correlation = 0.29, P < 0.001, Figures 2F, G). Finally,

62 intersecting genes were generated from two independent

methods (Figure 3A).
3.2 Functional enrichment analysis of
MASLD-DEGs

GO enrichment analysis revealed overrepresentation of

biological processes including response to steroid hormone, fat

cell differentiation, regulation of miRNA metabolic process.

Enriched cellular components included RNA polymerase II

transcription regulator complex, vesicle lumen and secretory

granule lumen. Overrepresented molecular functions comprised

cytokine receptor binding, cytokine activity and growth factor

receptor binding (Figure 3B). KEGG profiling further revealed

significant enrichment for TNF signaling pathway, Lipid and

atherosclerosis, Non−alcoholic fatty liver disease (Figure 3C). DO

analysis showed MASLD-DEGs were significantly associated with

gastrointestinal system diseases (Figure 3D).
3.3 Developing a diagnostic model for
MASLD-DEGs via machine learning

The diagnostic performance of 12 machine learning algorithms

was systematically compared using 10-fold cross-validation,

ultimately identifying the most robust model based on 62 MASLD-

DEGs. This study constructs predictive models in one training set

merged by GSE24807,GSE63067, GSE89632 and GSE33814 and 4

independent validation sets. The best performance was selected by

cross-combination of 113 species, and finally the model table

constructed by the algorithm of glmBoost+GBM including 17

genes (IGFBP1, ENO3, SOCS2, GADD45G, NR4A2, RTP4, RAB26,

CRYAA, PPP1R3C, MCAM, IL6, IER3, RTP3, NR4A1, CCL5, FOS,

JUNB) with average AUC = 0.877 was selected (Figure 4A).In the

training set, the model showed excellent predictive performance with

an AUC of 1.000 and 95% Cl (1.000-1.000). The performance in the

four validation sets was as follows: the GSE126848 was 0.790, 95%Cl

(0.651-0.901), GSE130970 was 0.922, 95%Cl (0.801-1.000),

GSE135251 was 0.994, 95%Cl (0.984-1.000) and GSE48452 was

0.677, 95%Cl (0.535-0.795) (Figure 4B). In addition, confusion

matrix results showed the difference in model performance on

different datasets (Figure 4C).
3.4 Validation of hub gene expression and
their diagnostic value

To identify key genes, we then take the intersection of the top 3

algorithms identified by machine learning based on their average
TABLE 3 Antibodies used for western blot.

Antibody Source Manufacturer

ENO3 Rabbit Proteintech; 55234-1-AP

PPARa Rabbit Abcam; ab126285

PPARg Rabbit Cell Signaling Technology; 2443S

PPARD Rabbit Proteintech; 28053-1-AP

FASN Rabbit Cell Signaling Technology; 3180S

SCD1 Rabbit Cell Signaling Technology; 2794

CPT1A Rabbit Cell Signaling Technology; 12252

CD36 Rabbit Cell Signaling Technology; 28109S

b-actin Rabbit ABGENT; AP14779b
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AUC rankings and finally, 8 intersection genes were identified

(SOCS2, IGFBP1, GADD45G, NR4A2, RAB26, ENO3, RTP4 and

CRYAA) (Figure 5A). The volcano and boxplots demonstrate the

expression of the eight cores. Among them, compared to normal

controls, the expression of SOCS2, IGFBP1, GADD45G and NR4A2

was down-regulated in MASLD, whereas the expression of RAB26,

ENO3, RTP4 and CRYAA was up-regulated in the MASLD

(Figures 5B, C). QRT-PCR analysis revealed that compared to the

control group, mRNA expression of ENO3 and CRYAA was

upregulated in the FFAs group, while IGFBP1 and SOSC2 were

downregulated. GADD45G, NR4A2, RAB26, and RTP4 showed no

statistically significant differences (Supplementary Figure 1A). By

performing AUC analysis and calculating the ROC value, it was

found that IGFBP1 had the highest diagnostic value in the training
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set at 0.893, followed by SOCS2 at 0.877 and ENO3 at 0.864

(Figure 5D). Then, we validated again in the four validation sets

and found that only one gene, ENO3, was up-regulated in the

MASLD group compared to the normal control group and all of

them showed higher AUC values (Figures 5E, F). It is noteworthy

that there are inconsistencies between the QRT-PCR results of this

study and the bioinformatics analysis. Possible reasons for these

discrepancies include: in the FFAs-induced primary hepatocyte

model, the primary manifestation is lipid accumulation, while

inflammatory injury is not yet significant and does not meet the

criteria for MASH. Additionally, the experiments were conducted

using mouse primary hepatocytes, whereas the bioinformatics

analysis was based on human liver tissue data. Therefore,

differences in sample sources and model systems may be the
FIGURE 1

The flowchart of the manuscript.
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main reasons for the inconsistencies observed in this study. Based

on the expression of the 8 hub genes, we plotted a nomogram

(Figure 5G). In the nomogram, 8 genes correspond to different

scores, and their scores are summed to obtain a total score for the

different diagnoses of MASLD. The calibration curves

demonstrated robust diagnostic reliability of the nomogram for

MASLD (Figure 5H). Decision curve analysis (DCA) revealed that

both the 8 individual genes and their combination provided net

benefit (NB) in assessing outcomes of MASLD patients. Notably,

the combined nomogram model showed potential to significantly

enhance NB compared to individual gene assessments (Figure 5I).
Frontiers in Immunology 07
3.5 SHAP analysis for selecting the optimal
predictive gene

To explain howmachine learning works in predicting MASLD, we

use SHAP analysis to elucidate 8 genes. The SHAP summary plot

ranking the importance of the feature variables showed that IGFBP1,

ENO3, SOCS2 were the top three genes with the highest multi-model

contribution (Figure 6A). The swarm plot is used to show the

distribution and direction of the contribution of each characterized

gene to the model prediction, from which we can find that higher

IGFBP1 expression is associated with lower MASLD incidence, in
FIGURE 2

Recognition of MASLD related differentially expressed genes(MASLD-DEGs). (A, B) Box plots (A) and PCA plots (B) before and after normalization.
(C) The Volcano plot shows differentially expressed genes (DEGs) in normal and MASLD samples. (D) Gene dendrogram and module colors. (E) The
determination of soft-thresholding power. (F) Relationship between gene modules and traits. (G) Identification of the modules most relevant to
MASLD progression.
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contrast to higher ENO3 eigenvalues and positive SHAP values, which

have a stronger impact on the prediction of MASLD incidence

(Figure 6B). Figure 6C illustrate the relationship between SHAP

values 2 genes, including IGFBP1, ENO3, SOCS2, GADD45G,

NR4A2, RTP4, RAB26, CRYAA. The predictive analysis, as shown in

Figures 6D, E, reveals that the model’s performance is primarily

influenced by 8 key features. The analysis revealed IGFBP1 as the

most influential factor (0.0843), ahead of ENO3 (0.0617) and SOCS2

(0.0497). The strong agreement between the predicted value (f(x) =

0.655) and expected prediction (E[f(x)] = 0.993) indicates excellent

model performance. Notably, our analysis pinpoints IGFBP1, ENO3

and SOCS2 as crucial factors enhancing the model’s predictive power,

while providing novel understanding of their biological functions.

Numerous literature on IGFBP1 in MASLD with the limited reports

linking ENO3 to MASLD, suggesting that ENO3 is a potential

therapeutic target. This premise has prompted our focused

investigation into the role of ENO3 in MASLD.

3.6 Identification of potential drugs

genes were analyzed using the DSigDB drug database on

Enrichr to identify potential targeting agents. The bar plot

displays the top 30 candidate drugs (Figure 7A).
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Among these compounds, we primarily focused on those related

to ENO3 and identified daidzein as the sole drug candidate

(Supplementary File 1), which led us to believe that daidzein may

be a potential natural compound for treating MASLD. More

importantly, daidzein is also a dietary supplement with significant

commercial value. According to literature, a binding energy below

-4.25 kcal/mol indicates observable interactions, values below -5.0

kcal/mol signify favorable binding, while scores below -7.0 kcal/mol

demonstrate strong ligand-receptor binding activity (26). The

binding energy score between daidzein and ENO3 is -7.5 kcal/mol,

indicating a strong affinity between the ligand and receptor

(Figure 7B). Molecular dynamics (MD) simulations were

performed to investigate the stability and convergence of the

Daidzein + ENO3 complex. As shown in Supplementary Figure 1B,

the RMSD analysis indicated that the complex system reached

equilibrium within 5 ns and subsequently maintained stable

fluctuations around 1.4 Å, demonstrating strong binding stability

between the small molecule and the target protein. Rg analysis

revealed that the complex exhibited relatively stable fluctuations

during the simulation, suggesting no significant expansion or

contraction occurred in the small molecule-target protein complex

throughout the dynamic process (Supplementary Figure 1C). The

negligible change in SASA further supported that the protein-small
FIGURE 3

Biological analysis of MASLD-DEGs. (A) The Venn diagram shows 62 MASLD-DEGs. (B–D) The (B) GO, (C) KEGG, and (D) DO analysis of MASLD-DEGs.
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molecule complex achieved relatively stable binding (Supplementary

Figure 1D). Hydrogen bonding plays a critical role in the binding

between ligands and proteins. As shown in the Supplementary

Figure 1E, the number of hydrogen bonds formed between

Daidzein and ENO3 ranges from 0 to 5, with approximately 3

bonds being the most frequent, indicating favorable hydrogen-bond

interactions. Additionally, the RMSF values of Daidzein are generally
Frontiers in Immunology 09
below 2 Å, further suggesting its low conformational flexibility and

high stability in the bound state (Supplementary Figure 1F). In

conclusion, Daidzein exhibits strong binding affinity with ENO3.

The chemical structure of daidzein is shown in Figure 7C. More

importantly, we conducted in vitro experiments on the

pharmacological effects of daidzein. Through the CCK8

experiment, we found that even at a concentration of 100 mM,
FIGURE 4

Model Construction. (A) ROC curves for 113 algorithms in machine learning. (B) ROC curve of the optimal model. (C) Confusion matrices for each
dataset under the best model.
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daidzein had no toxicity to primary hepatocytes (Figure 7D). Kim

et al. found that 20 or 100 mM daidzein increased insulin-stimulated

glucose uptake, while only 100 mM daidzein significantly enhanced

basal glucose uptake. Additionally, Liang et al. (27) found that 100

mMdaidzeinmore effectively improved the levels of ALT, AST, IL-1b,
IL-6, and TNF-a in LPS-induced primary hepatocytes. Therefore, we

subsequently conducted in vitro experiments using concentrations of
Frontiers in Immunology 10
50 and 100 mM. Oil red and Bodipy 493/503 staining showed that

1mM FFAs stimulation caused lipid droplet accumulation in primary

hepatocytes, while daidzein concentration-dependently alleviated

lipid accumulation(Figures 7E–G). By measuring intracellular TC

and TG levels, we further demonstrated that daidzein improved fat

deposition in a dose-dependent manner, thereby alleviating MASLD

(Figures 7H, I).
FIGURE 5

Diagnostic value of eight genes in the optimal model. (A) The intersection of the top three machine learning algorithms ranked by average AUC.
(B) Volcano plot showing the upregulation and downregulation of eight genes. (C) The box plot shows the expression of eight genes in the normal
group and the MASLD group. (D) ROC curves for eight genes. (E) Expression levels of 8 genes in different MASLD datasets. (F) ROC curves for eight
genes in different MASLD datasets. (G) Nomogram based on 8 genes. (H) Decision curve analysis (DCA) curve. (I) Diagnostic models and 8 genes in
clinical decision-making (Net Benefit).
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3.7 Daidzein improves MASLD by inhibiting
lipid deposition through the ENO3/PPAR
signaling pathway

Western blot analysis revealed that the protein expression of

ENO3 was significantly up-regulated in primary hepatocytes

stimulated by FFAs compared to the normal group, while

daidzein treatment attenuated the expression of ENO3 in a

concentration-dependent manner (Figures 8A, E). The Gene Set

Enrichment Analysis (GSEA) result indicated that pathways such as

fatty acid metabolism and the PPAR signaling pathway were

significantly enriched in the ENO3 high-expression group,

suggesting that elevated ENO3 expression may be involved in the

regulation of metabolic pathways in MASLD (Figure 8B). WB

experiments revealed that Daidzein up-regulated PPARa protein

expression and down-regulated PPARg protein expression in
Frontiers in Immunology 11
FFAs-induced primary hepatocytes, while it had no effect on

PPARD protein expression (Figures 8C, E). We further validated

the expression downstream of the PPAR signaling pathway and

found that Daidzein decreased lipid deposition (SCD1, FASN,

CD36) protein expression and upregulated fatty acid b-oxidation
protein (CPT1A) protein expression (Figures 8D, F). In summary,

our findings suggest that the ENO3/PPAR signaling pathway maybe

a potential mechanism by which daidzein improves fatty

degeneration in MASLD.
4 Discussion

The prevalence of MASLD is increasing annually and affects

30% of the world’s population. MASLD is also characterized by a

progression from early hepatic steatosis-inflammation-fibrosis-
FIGURE 6

SHAP analysis. (A, B) Contribution distribution and direction of 8 genes (C) SHAP dependence of 8 genes. (D, E) Probability map of 8 genes
predicting MASLD.
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cirrhosis-cancer. The launch of Resmetirom fills the gap of nearly

40 years of druglessness in the field of MASH, however, its efficacy

still needs to be further improved.

In recent years, advances in high-throughput sequencing,

multi-omics integration, and artificial intelligence algorithms have

driven a paradigm shift in prognostic research—moving from

macroscopic pathological features to molecular mechanisms, from

single-omics approaches to multimodal data integration, and from

static prediction toward dynamic monitoring (28). Within this

context, genome-wide expression profiling offers detailed insights

into disease heterogeneity, proving highly valuable for diagnosis,

treatment response prediction, and prognosis assessment.

In this study, we conducted biological analysis on

transcriptomic data from four MASLD datasets to identify

differentially expressed genes (DEGs) between MASLD and

control groups. Weighted gene co-expression network analysis

(WGCNA) was subsequently applied to pinpoint genes most

strongly associated with MASLD progression. By taking the

intersection of these gene sets, we ultimately identified 62

MASLD-DEGs. Among 62 MASLD-DEGs, functional enrichment

was observed in pathways such as TNF signaling way, Lipid and

atherosclerosis and Non-alcoholic fatty liver disease. Subsequently,

we used 113 combinations of 12 machine learning algorithms to

screen and identify key genes associated with MASLD.
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The advantage of the integration process lies in the fact that the

MASLD model, which is based on multiple machine learning

algorithms and their combinations, can achieve stable and

consistent performance, thereby significantly improving the

specificity and sensitivity of key gene detection. Ultimately,

glmBoost combined GBM was identified as the optimal model,

and the specificity and sensitivity of the model were further

validated using the validation set. However, we found that the

model performed poorly on the GSE48452 dataset (AUC = 0.677),

which may be related to database sources, platform differences, and

sample processing.

SHAP analysis, a tool considered the “gold standard” in the field

of machine learning interpretability, further helps us identify the

genes most closely associated with the progression of MASLD.

Through SHAP analysis, we found that 3 genes:Insulin Like

Growth Factor Binding Protein 1 (IGFBP1), Enolase 3 (ENO3), and

Suppressor of cytokine signaling 2 (SOCS2) contributed the most to

the model. Numerous studies have shown that IGFBP1 is negatively

correlated with the progression of MASLD (29, 30). The protein

encoded by ENO3, the beta (b) enolase subunit, has a broad tissue

distribution and is found in the liver, lungs, bones, and heart, among

others (31). There are few studies on the correlation between ENO3

and MASLD. Liu et al. (32) found that the expression of ENO3 was

positively correlated with the severity of MASLD and validated this
FIGURE 7

Identification of potential drugs for MASLD. (A) The bar plot displays the top 30 candidate drugs. (B) Molecular docking analysis of daidzein
and ENO3. (C) Chemical structure of daidzein. (D) CCK8 experiment. (E) Oil Red O and Bodipy 493/503 staining of primary hepatocytes.
(F, G) Quantitative analysis by calculating the area of lipid droplets within cells. (H, I) Determination of (H) intracellular TG and (I) TC content.
The experiment was repeated three times. * P < 0.05, ** P < 0.01, *** P < 0.001.
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finding in mice with MASLD induced by a high-fat diet. In addition,

Lu et al. (33) found that ENO3 inhibits ferroptosis by upregulating

GPX4 expression and enhancing lipid accumulation, thereby

mediating the progression of MASH. The above evidence

demonstrates the potential of ENO3 as a novel biomarker for

MASLD. Further research is needed to understand how ENO3

drives the progression of MASLD. SOCS2 is one of the classic

molecules of cytokine signaling and has recently been found to

have anti-inflammatory effects (34). The “multiple hit” theory is the

mainstream pathogenesis of MASH, in which inflammation plays an
Frontiers in Immunology 13
important role in the progression of MASH. Inflammation is not only

a hallmark that distinguishes MASH from simple fatty liver disease,

but also a key driver of disease progression to cirrhosis and

hepatocellular carcinoma (35). Li et al (34). found that

overexpression of SOCS2 in macrophages inhibited the

development of MASH in vivo. Yu et al. (36) also found that

SOSC2 may be a key gene for predicting the progression of

MASLD. Given the heterogeneity of MASLD, there are currently

few drugs available for its treatment. Diet and exercise control remain

the preferred treatment options recommended by many guidelines
FIGURE 8

Daidzein alleviates MASLD through the ENO3/PPAR signaling pathway. (A) Daidzein reduced the protein expression of ENO3 in primary hepatocytes.
(B) GSEA analysis shows the top 10 pathways with high ENO3 expression. (C) Daidzein affects the expression of 3 proteins, PPARa, PPARg, and
PPARD, in primary hepatocytes. (D) Daidzein affects the protein expression of downstream proteins (SCD1,FASN, CD36 and CPT1A) in the PPAR
pathway. (E, F) Perform protein quantification analysis of ENO3, PPAR, PPARg PPARD, CPT-1A, CD36, FASN and SCD1. The experiment was repeated
three times. * P < 0.05, ** P < 0.01, *** P < 0.001.
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and clinicians (37). Therefore, researching and exploring MASH

intervention drugs and targets to prevent the occurrence of cirrhosis

and liver cancer is a major scientific issue that needs to be addressed

in the field of life sciences. Therefore, targeting essential genes using

bioinformatics methods is expected to significantly improve drug

discovery efficiency and reduce costs. Using the DSigDB database,

this study identified anti-MASLD drugs by connecting the eight genes

that construct the MASLD model. Here, we focused on drugs

targeting the ENO3 and ultimately discovered the drug Daidzein.

Traditional Chinese medicine has a history of thousands of years in

the treatment of chronic liver disease. Through dialectical treatment

and a holistic approach, clinical and basic research on the use of

traditional Chinese medicine to treat MASLD continues to emerge,

demonstrating promising prospects for application. Daidzein is a

major isoflavone compound found primarily in legumes such as

soybeans and kudzu, as well as in grasses and grains (38). Research

has found that daidzein has protective effects against a variety of

diseases, including breast cancer, prostate cancer, diabetes (39), and

cardiovascular disease (40). A cross-sectional study from NHANES

2017–2018 showed that daidzein intake was negatively associated

with the incidence of MASLD (41). Kim et al. (42) found that dietary

supplements containing ≥ 0.5 g/kg of daidzein improved MASLD by

promoting fatty acid b-oxidation and mRNA levels of adiponectin

and leptin-related genes. In vitro studies revealed that daidzein dose-

dependently ameliorated hepatic steatosis in primary hepatocytes.

These findings provide a novel therapeutic strategy for the treatment

of MASLD. GSEA analysis revealed that high expression of ENO3

correlates with the PPAR signaling pathway. Therefore, we examined

the protein expression of PPAR and its downstream molecules.

PPARs are a class of nuclear receptors that can bind to various

endogenous or exogenous lipophilic ligands, such as fatty acids, fatty

acid derivatives, and anti-diabetic drugs. This binding regulates gene

expression and transcription, influencing a variety of physiological

and pathological processes including lipid metabolism, glucose

metabolism, inflammatory responses, cell differentiation,

proliferation, and apoptosis (43). PPAR comprises three subtypes—

PPARa, PPARd, and PPARg—each with distinct tissue distribution

and functions (44). PPARa is predominantly expressed in the liver,

heart, and skeletal muscle, where it regulates fatty acid oxidation,

ketogenesis, energy homeostasis, and lipid metabolism, offering

protection against cardiovascular diseases and hyperlipidemia (45).

Carnitine palmitoyltransferase-1a(CPT-1A) catalyzes the conjugation

of long-chain fatty acyl coenzymes with L-carnitine to form fatty

acylcarnitine, enabling its transport across the inner mitochondrial

membrane into mitochondria for b-oxidation. This process

represents a critical regulatory point in the fatty acid b-oxidation
pathway. Research indicates that PPARa can enhance CPT-1A

expression and activity, thereby increasing the capacity for fatty

acids to enter mitochondria for oxidative metabolism and

improving overall fatty acid oxidation (46). In contrast, PPARg is

mainly found in adipose tissue, intestine, and immune cells. It

promotes fatty acid synthesis and storage, enhances insulin

sensitivity, and modulates inflammatory responses, making it a key

target in the treatment of diabetes and metabolic syndrome (47).

Cluster of differentiation 36 (CD36) is a fatty acid transporter and a
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target gene of PPARg (48). CD36 promotes the uptake of free fatty

acids (FFAs) by hepatocytes, increasing intracellular lipid

accumulation and leading to hepatic steatosis. Stearyl‐coenzyme A

desaturase 1 (SCD-1) and fatty acid synthase (FASN) are key enzymes

for de novo fatty acid synthesis in the liver, while also functioning as

downstream molecules of PPARg (49). Research indicates that

hepatic SCD1 deficiency reduces hepatic TG accumulation,

increases fatty acid oxidation, and decreases de novo TG synthesis

(50). Activation of hepatic PPARg expression can upregulate the

expression of lipid synthesis genes such as FASN, thereby accelerating

the progression of MASLD (51). This study found that Daidzein

ameliorates MASLD by promoting PPARa and CPT-1A expression

to enhance fatty acid b-oxidation on one hand, and by suppressing

PPARg, FASN, SCD1 and CD36 expression to inhibit lipid synthesis

on the other hand, independently of PPARd.
However, this study also has several limitations. First, although

multiple GEO datasets were included, the sample size remains

limited and the constructed model lacks validation with large-

sample real-world data. Second, the mechanism by which ENO3

influences MASLD lipid metabolism processes requires further

investigation. Third, the efficacy of Daidzein requires further

validation through in vivo experiments, and its mechanisms of

action have only been preliminarily explored.
5 Conclusion

8 genes (IGFBP1, ENO3, SOCS2, GADD45G, NR4A2, RTP4,

RAB26, CRYAA) were identified based on biological information

from machine learning. SHAP analysis further focused on 3 key

genes, IGFBP1, ENO3 and SOSC2. Importantly, we also identified

Daidzein, a potential natural drug against MASLD. Molecular docking

and molecular dynamics mimetics showed that Daidzein docked well

with ENO3, and further in vitro experiments indicated that Daidzein

may ameliorate MASLD through the PPAR/ENO3 signaling pathway.
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Molecular dynamics simulation analysis. (A–E) (A) The mRNA expression
levels of 8 genes. (B) RMSD, (C) Rg, (D) SASA, (E) HydrogenBond number,

and (F) RMSF analysis of soybean glycoside and ENO3.
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