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Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is
now the predominant chronic liver disease globally, yet effective therapeutic
strategies remain elusive.

Methods: MASLD-related datasets were download from GEO. Subsequently, genes
associated with MASLD were found through the intersection of differentially
expressed genes and WGCNA. Then, key candidate genes were further screened
using 113 machine learning algorithms and their diagnostic value was evaluated
using ROC curve analysis across multiple datasets. Genes are then screened by
Shapley Additive exPlanations (SHAP) analysis. Molecular docking (MD) and
molecular dynamics simulations (MDS) were employed to validate the interaction
between Daidzein and Enolase 3 (ENO3). Finally, an in vitro fatty liver cell model was
constructed to validate the “Enrichr” platform to identify poteitial drugs for MASLD.
Results: 62 MASLD-DEGs were finally identified. The optimal predictive model
for MASLD was the 17-gene signature (IGFBP1, ENO3, SOCS2, GADD45G, NR4A2,
RTP4, RAB26, CRYAA, PPPIR3C.MCAM, IL6, IER3, RTP3, NR4A1, CCL5, FOS,
JUNB) selected through combined glmBoost+GBM algorithms, which was
demonstrated robust predictive performance. SHAP analysis suggested that
ENO3 may be the most prominent genes associated with MASLD severity.
More importantly, we measured the effect of daidzein on improving lipid
accumulation in vitro model.

Conclusion: We developed a predictive model for MASLD and identified ENOS3 as
a key predictive gene. Furthermore, we discovered that daidzein may serve as a
potential therapeutic agent for MASLD. Through in vitro studies, we further
confirmed that daidzein alleviates lipid deposition and improves MASLD by
modulating the ENO3/PPAR signaling pathway.

metabolic dysfunction-associated steatotic liver disease, machine learning, SHAP,
ENO3, daidzein
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1 Introduction

Metabolic associated fatty liver disease (MAFLD) is an
enormously prevalent chronic hepatic condition that constitute a
significant portion of cases worldwide, seriously jeopardizing
human health and public health resources (1). Metabolic
dysfunction-associated steatotic liver disease (MASLD), which
replaces the term MAFLD, encompasses a clinical spectrum
progressing from simple fatty liver (MAFL) to steatohepatitis
(MASH), and may further advance to serious complications such
as fibrosis, cirrhosis, and hepatocellular carcinoma (2). A Meta
analysis (3) showed that the global prevalence of MASLD was
30.05%, and the prevalence of MASLD in China was even higher,
reaching 32.9%, and showing a rapid growth trend. According to
statistics, in 2020, the number of MASH patients in China is about
38.7 million, and it is expected to reach 46 million by 2025 and
increase to 55 million by 2030 (4).

Hepatic histologic assessment is often used as a surrogate
endpoint in MASLD clinical trials (5). However, liver biopsy is an
invasive procedure, costly, and associated with postoperative
adverse effects such as infection, bleeding, and pain, which are
generally difficult for MASLD patients to accept (6). More
importantly, liver biopsy can only assess very small liver samples,
while limited liver sampling may lead to significant errors in
determining diagnosis, disease staging and longitudinal evolution
given the known spatial heterogeneity of diffuse liver disease (7). So,
noninvasive research for diagnosis and assessment of response to
therapy is of particular importance.

Development of effective drugs to treat MASH is a major
concern for the general public. Thankfully, in March 2024, the
U.S. FDA approved Resmetirom for the treatment of adult MASH
patients with stage F2-3, but its adverse effects and high price have
limited the development of the drug (8).

Machine Learning (ML), as an important branch of Artificial
Intelligence, through the learning and analysis of massive data, can
automatically extract the features and patterns in the data (9),
realize the automated consultation and preciseness assessment of
imaging for diseases, and reveal the links between genes and
disorders, which not only raises the accuracy and efficiency of
diagnosis (10), but also provides a scientific basis for personalized
medicine (11).

Daidzein, also known as soy isoflavone, is derived from
soybeans and legumes and is a natural isoflavone compound (12).
Due to their ability to regulate lipid metabolism and their
antioxidant, anti-inflammatory, and anti-cancer effects, they are
widely used in the treatment of various diseases.

In our study, we pressed in multiple MASLD cohorts from the
Gene Expression Omnibus (GEO) database, constructed MASLD
prediction models by 113 machine learning combinations, screened
for the best predicted genes using Shapley Additive exPlanations
(SHAP) analysis, and most importantly, identified daidzein, an
effective drug for MASLD, and validated it at the cellular level.
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2 Methods and materials
2.1 Data collection and preparation

We analyzed transcriptomic data from 434 patients with
MASLD and 132 healthy controls, sourced from 8 independent
datasets in the Gene Expression Omnibus (GEO) database,
including GSE24807,GSE33814, GSE63067, GSE89632, GSE48452,
GSE66676, GSE126848, GSE130970 and GSE135251. The “combat”
algorithm in the R package “sva” (13) was used to normalize and
merge GSE24807,GSE63067, GSE89632 and GSE33814 into a
training set and “normalizeBetweenArrays” algorithm from the
“limma” package was utilized for data correction (14). GSE12684,
GSE130970, GSE135251 and GSE48452 were 4 independent
validation cohorts. GSE61260 and GSE66676 were used as
external validation cohorts. Principal component analysis (PCA)
and boxplots were further validated for quality control. Detailed
information such as platform, samples and GSE series on these
datasets is shown in Table 1.

2.2 ldentification of MASLD related
differentially expressed genes

The “limma” package (14) in R software was used to identify the
DEGs in the training set, with standards of |log2 FC| > 0.585 and adj
P-value <0.05. Next, we constructed a co-expression network for
MASLD using Weighted Gene Co-expression Network Analysis
(WGCNA) (15) to find the most relevant modules for MASLD for
subsequent analysis. Finally, genes in the module that intersect with
DEGs are then considered MASLD-DEGs.

TABLE 1 Basic information of GEO datasets used in the study.

GSE
series Samples Platform = Group
GSE24807 12 MASLD and 5 controls GPL2895 Training cohort
GSE33814 31 MASLD and 13 controls GPL6884 Training cohort
GSE63067 11 MASLD and 7 controls GPL570 Training cohort
GSE89632 39 MASLD and 24 controls GPL14951 Training cohort
GSE48452 32 MASLD and 41 controls GPL11532 Validation cohort
GSE126848 = 31 MASLD and 26 controls GPL18573 Validation cohort
GSE135251 = 206 MASLD and 10 controls = GPL18573 Validation cohort
GSE130970 72 MASLD and 6 controls GPL16971 Validation cohort
GSE61260 47 MASLD and 38 controls  GPLI1s32 | —oermdl
validation cohort
GSE66676 | 34 MASLD and 33 controls | GPLe244 | ool

validation cohort
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2.3 Enrichment analysis of MASLD-DEGs

We used the clusterProfiler (16) software package for Gene
Ontology(GO) analysis to reveal MASLD-DEGs in biological
processes(BP), cellular components(CC) and molecular functions
(MEF). In addition, GO, Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Disease Ontology (DO) analysis were performed to
find the molecular mechanism behind MASLD-DEGs.

2.4 Machine learning algorithms

To construct the best model, we use a combination of 113
permutations of 12 machine learning algorithms including LASSO,
Ridge, Stepglm, XGBoost, Linear Discriminant Analysis (LDA),
Generalized Linear Model Boost (glmBoost), Elasticity Networks
(Enet), Partial Least Squares Regression for Generalized Linear
Models (plsRglm), Generalized Boosted Regression Modeling
(GBM), Random Forest (RF), Simple Bayes, and Support Vector
Machines (SVM). As mentioned above, we combine GSE24807,
GSE63067, GSE89632 and GSE33814 as training set while using
GSE126848, GSE130970, GSE135251 and GSE48452 as validation set
respectively. To obtain the optimal model, we employ an ensemble
learning strategy that performs weighted averaging of predictions
from various algorithms. This approach enhances model robustness
and reduces the risk of overfitting. Concurrently, k-fold cross-
validation is utilized to ensure the model demonstrates consistent
performance across different validation sets.We used the AUC value
of the validation and training sets and the number of genes included
in the model as selection criteria for the best model.

2.5 SHAP model for the diagnosis of
MASLD

SHAP is a method for interpreting the prediction results of
machine learning models, and its goal is to compute, for each
prediction made by the model, a value for the contribution of each
input feature to the prediction result (i.e., the SHAP value) (17). The
study employed repeated five-fold cross-validation, dividing the
training dataset into five equally sized subsets. In each cross-
validation cycle, four folds served as the training set, while the fifth
fold functioned as the validation set to assess model performance.This
value provides a clear indication of which features are most critical for a
particular prediction outcome and whether they have a positive or
negative impact on the prediction outcome. The core strength of the
SHAP method is its ability to provide both local interpretability for
individual prediction outcomes and global interpretability for the
overall decision-making mechanism of the model (18, 19).

2.6 Characterization of potential anti-
MASLD drugs

We used the Drug Signature Database (DSigDB) in the Enrichr
web platform (https://amp.pharm.mssm.edu/enrichr/) based on the
expression of 8 genes.
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2.7 Molecular docking analysis

The 2D structure of the small-molecule ligand was obtained
from the PubChem database (http://pubchem.ncbi.nlm.nih.gov/)
and converted into a 3D structure using Chem Office software,
followed by saving in MOL2 format. For the protein target, a high-
resolution crystal structure was selected from the RCSB PDB
database (http://www.rcsb.org/), then processed in PyMOL to
remove water molecules and phosphate groups, yielding a refined
PDB file. Then, use Autodock preprocessing to process the
structures of proteins and small molecules, ultimately obtaining
the optimal conformation for molecular simulation. Finally,
PyMOL and Discovery Studio 2019 were employed to visualize
and analyze the 2D/3D interactions between the ligand and key
protein residues (20).

2.8 Molecular dynamics simulation

This study employed Gromacs 2022 (21) for molecular dynamics
simulations. The protein force field was set to AMBER14SB, while the
ligand force field utilized GAFF2, with parameters generated by the
pdb2gmx tool and the AutoFF web server. The system was solvated in
a cubic TIP3P water box with a dimension of 1 nm and neutralized by
adding ions. Long-range electrostatic interactions were treated using
the Particle Mesh Ewald (PME) method with a cutoff radius of 1 nm.
Bond constraints were applied via the SHAKE algorithm with an
integration time step of 1 fs. Prior to simulation, the system
underwent energy minimization involving 3000 steps of steepest
descent followed by 2000 steps of conjugate gradient minimization.
A molecular dynamics simulation was performed under the NPT
ensemble at 310 K and constant pressure for a duration of 100 ns.
During the simulation, the following properties were calculated: root
mean square deviation (RMSD), root mean square fluctuation
(RMSF), number of hydrogen bonds (HBonds), radius of gyration
(Rg), and solvent accessible surface area (SASA) (22).

2.9 Primary hepatocyte isolation

Primary hepatocytes were isolated from the livers of 6- to 8-week-
old male mice. After perfusing the mouse liver with buffer solution via
the portal vein and dissecting it, liver was placed in collagenase for
digestion, filtered through a 70 um filter to remove incompletely
digested tissue fragments, and the resulting cell suspension was
centrifuged at 4°C, 50 g, for 5 min. The supernatant was discarded,
and the cell pellet was collected. The cell suspension was further purified
by gradient centrifugation to isolate primary mouse hepatocytes, which
were then counted and seeded for further culture (23).

2.10 In vitro model of MASLD

Primary hepatocytes were cultured in in high-glucose
Dulbecco’s Modified Eagle Medium (DMEM) supplemented with
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10% fetal bovine serum (FBS) and 1% mixed antibiotics, maintained
in a constant temperature incubator at 37°C with a 5% CO,
atmosphere. To construct the MASLD model in vivo, primary
hepatocytes were treated with complete culture medium
containing the indicated concentrations of 0.33 mM palmitic acid
(PA) and 0.66 mM oleic acid (OA) (LRB-X3, Kunchuang, Xian,
China) for 24 h (24).

2.11 Cell counting Kit-8 assay

Cells were seeded at a density of 5.0x10° cells per well in a 96-
well plate. Cell viability was determined using the CCK-8 assay kit
(Meilunbio, MA0218-1, China). Add 100 uL of culture medium and
10 UL of CCK-8 reagent to each well, and incubate for no more than
4 h. Subsequently, measure the absorbance of each well at a
wavelength of 450 nm.

2.12 Cellular oil Red O staining

Primary hepatocytes were plated inoculated in 24-well plates
and treated with 1 mM PO (0.66 mM OA + 0.33 mM PA) for 24 h
in the presence or absence of low-dose Daidzein (50 uM) and high-
dose Daidzein (100 uM). Cells were harvested and washed twice
with phosphate buffered saline (PBS), followed by fixation with 4%
neutral paraformaldehyde for 10 min. At the end of fixation, it was
then washed 3 times with PBS, followed by immersion in 60%
isopropanol for 15 s, and then stained for 10 min using Oil Red O
working solution (60 % oil red O dye and 40 % distilled water). At
the end of staining the cells were washed well using distilled water
and then the nuclei were stained with hematoxylin, followed by
observation of the cells under a light microscope.

2.13 Bodipy 493/503 staining

Cells were taken out of the incubator, washed twice with PBS,
fixed by adding 4% paraformaldehyde for 10-30 min, and washed

TABLE 2 The sequences of primer used in this study.

sequence 5’ to 3’ forward

10.3389/fimmu.2025.1698740

again 3 times with PBS. Bodipy 493/503 lipid dye (GLPBIO,
GC42959, California, USA) was prepared at a final concentration
of 2 uM in PBS. The 2 uM Bodipy 493/503 working solution was
co-incubated with the cells at room temperature and protected from
light for 15-30 min and then washed 3 times with PBS, followed by
the addition of 4,6-diamidino-2-phenylindole (DAPI) staining
solution and then incubated for 5 min and protected from light
and then washed 3 times with PBS before being imaged in a
fluorescence microscope (25).

2.14 Cellular lipid content measurement

Primary hepatocytes were inoculated in 6-well plates (2x10°
cells per well). Then, the cells were co-cultured with daidzein
(50, 100 uM) and PO for 24 h. Finally, triglyceride (TG) and total
cholesterol (TC) levels were measured according to the instructions
in the APPLYGEN test Kkit.

2.15 Quantitative real-time PCR analysis

A total mRNA of cultured cells was isolated using TRIzol
reagent (Bioteke Corporation, RP40002), and synthesized into
cDNA with a Reverse Transcription Master kit (Vazyme, R222-
01). QRT-PCR was performed by using ChamQ SYBR qPCR
Master Mix (Vazyme, Q311-02). The expression in control
normalized the mRNA levels. The sequences of primer used in
this study are displayed in Table 2.

2.16 Western blot analysis

Samples were treated with RIPA buffer containing phosphatase
and protease inhibitors, homogenized, and centrifuged, followed
by a 15 min resting period. Protein concentration was then
determined using the Bicinchoninic Acid (BCA) assay. Following
electrophoresis, proteins were transferred onto a polyvinylidene
difluoride (PVDF) membrane. The membranes were blocked for

sequence 5' to 3’ reverse

ENO3 ACAAAGCACGATACCTGGGG
IGFBP1 GCTGGATAGCTTCCACCTCATG
SOCS2 AGTTCGCATTCAGACTACCTACT
GADD45G AGAAGTTCGCGGCCAGGATA
NR4A2 AAACTGCCCAGTGGACAAGCGT
RAB26 GTCTGCTGGTGCGATTCAAG
RTP4 ACATGGACGCTGAAGTTGGAT
CRYAA GGTGCTGGACTCTGGAATCT
B-actin GACAGGATGCAGAAGGAGAT
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GCGATGTGTCGGTAGAGAGG
TCCATTTCTTGAGGTCAGTGATCTC
TGGTACTCAATCCGCAGGTTAG
GGACTTTGGCGGACTCGTAG
GCTCTTCGGTTTCGAGGGCAAA
GCATGGGTAACACTGCGGA
TACGTGTGGCACAGAATCTGC
ACTCACGGGAAATGTAGCCA

GAGGCCAGGATGGAGC
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one hour using 5% skimmed milk powder and then incubated with
primary antibodies at 4°C overnight. After washing with Tris-
buffered saline with Tween 20 (TBST) the next day, the
membranes were incubated with horseradish peroxidase (HRP)-
conjugated secondary antibodies for one hour at room temperature.
Protein detection was performed using equal volumes of enhanced
chemiluminescence (ECL) solutions A and B (catalog number:
U10012). Primary antibodies were shown in Table 3.

2.17 Statistical analysis

All graphical analyses were conducted using R software (version
4.2.3). Normality of the data was assessed using the Student’s t-test,
and correlation analyses were performed using Spearman’s
correlation test. All statistical results were considered significant
at P-values < 0.05, unless otherwise specified.

3 Results
3.1 Identification of MASLD-DEGs

The study design flow chart is shown in Figure 1. A total of 49
normal and 93 MASLD patients from GSE24807, GSE33814,
GSE89632,GSE63067 and GSE89632 were combined into the
training set. Organizations from different platforms showed
different patterns of aggregation before the batch effect was
removed. Box and PCA plots showed the characteristics of the
data distribution before and after the elimination of the batch effect
(Figures 2A, B). The DEGs between the normal and MASLD groups
were then determined using the R package “limma”, based on a p-
value < 0.05 and |logFC| = 0.585 as filters. Subsequently, a total of 95
DEGs were identified, of which 55 were down-regulated and 40
were up-regulated (Figure 2C). WGCNA was used to screen for
modular genes most associated with disease progression. The
modules with the dissimilarity < 0.2 were subsequently merged
(Figure 2D), resulting in a total of 3 modules in this study. A soft-
thresholding power () of 15 was selected to achieve a scale-free

TABLE 3 Antibodies used for western blot.

Antibody Source Manufacturer

ENO3 Rabbit Proteintech; 55234-1-AP

PPARa Rabbit Abcam; ab126285

PPARy Rabbit Cell Signaling Technology; 2443S
PPARD Rabbit Proteintech; 28053-1-AP

FASN Rabbit Cell Signaling Technology; 3180S
SCD1 Rabbit Cell Signaling Technology; 2794
CPT1A Rabbit Cell Signaling Technology; 12252
CD36 Rabbit Cell Signaling Technology; 28109S
B-actin Rabbit ABGENT; AP14779b
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topology fit (R*> = 0.9), ensuring the network captured gene
expression relationships consistent with scale-free properties
(Figure 2E). Consequently, these genes were divided into different
modules, with the grey color module being positively correlated
with MASLD(correlation = 0.29, P < 0.001, Figures 2F, G). Finally,
62 intersecting genes were generated from two independent
methods (Figure 3A).

3.2 Functional enrichment analysis of
MASLD-DEGs

GO enrichment analysis revealed overrepresentation of
biological processes including response to steroid hormone, fat
cell differentiation, regulation of miRNA metabolic process.
Enriched cellular components included RNA polymerase II
transcription regulator complex, vesicle lumen and secretory
granule lumen. Overrepresented molecular functions comprised
cytokine receptor binding, cytokine activity and growth factor
receptor binding (Figure 3B). KEGG profiling further revealed
significant enrichment for TNF signaling pathway, Lipid and
atherosclerosis, Non—alcoholic fatty liver disease (Figure 3C). DO
analysis showed MASLD-DEGs were significantly associated with
gastrointestinal system diseases (Figure 3D).

3.3 Developing a diagnostic model for
MASLD-DEGs via machine learning

The diagnostic performance of 12 machine learning algorithms
was systematically compared using 10-fold cross-validation,
ultimately identifying the most robust model based on 62 MASLD-
DEGs. This study constructs predictive models in one training set
merged by GSE24807,GSE63067, GSE89632 and GSE33814 and 4
independent validation sets. The best performance was selected by
cross-combination of 113 species, and finally the model table
constructed by the algorithm of glmBoost+GBM including 17
genes (IGFBP1, ENO3, SOCS2, GADD45G, NR4A2, RTP4, RAB26,
CRYAA, PPPIR3C, MCAM, IL6, IER3, RTP3, NR4A1, CCL5, FOS,
JUNB) with average AUC = 0.877 was selected (Figure 4A).In the
training set, the model showed excellent predictive performance with
an AUC of 1.000 and 95% CI (1.000-1.000). The performance in the
four validation sets was as follows: the GSE126848 was 0.790, 95%Cl
(0.651-0.901), GSE130970 was 0.922, 95%Cl (0.801-1.000),
GSE135251 was 0.994, 95%Cl (0.984-1.000) and GSE48452 was
0.677, 95%Cl (0.535-0.795) (Figure 4B). In addition, confusion
matrix results showed the difference in model performance on
different datasets (Figure 4C).

3.4 Validation of hub gene expression and
their diagnostic value

To identify key genes, we then take the intersection of the top 3
algorithms identified by machine learning based on their average
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FIGURE 1
The flowchart of the manuscript.

AUC rankings and finally, 8 intersection genes were identified
(SOCS2, IGFBP1, GADD45G, NR4A2, RAB26, ENO3, RTP4 and
CRYAA) (Figure 5A). The volcano and boxplots demonstrate the
expression of the eight cores. Among them, compared to normal
controls, the expression of SOCS2, IGFBP1, GADD45G and NR4A2
was down-regulated in MASLD, whereas the expression of RAB26,
ENO3, RTP4 and CRYAA was up-regulated in the MASLD
(Figures 5B, C). QRT-PCR analysis revealed that compared to the
control group, mRNA expression of ENO3 and CRYAA was
upregulated in the FFAs group, while IGFBPI and SOSC2 were
downregulated. GADD45G, NR4A2, RAB26, and RTP4 showed no
statistically significant differences (Supplementary Figure 1A). By
performing AUC analysis and calculating the ROC value, it was
found that IGFBPI had the highest diagnostic value in the training

Frontiers in Immunology

set at 0.893, followed by SOCS2 at 0.877 and ENO3 at 0.864
(Figure 5D). Then, we validated again in the four validation sets
and found that only one gene, ENO3, was up-regulated in the
MASLD group compared to the normal control group and all of
them showed higher AUC values (Figures 5E, F). It is noteworthy
that there are inconsistencies between the QRT-PCR results of this
study and the bioinformatics analysis. Possible reasons for these
discrepancies include: in the FFAs-induced primary hepatocyte
model, the primary manifestation is lipid accumulation, while
inflammatory injury is not yet significant and does not meet the
criteria for MASH. Additionally, the experiments were conducted
using mouse primary hepatocytes, whereas the bioinformatics
analysis was based on human liver tissue data. Therefore,
differences in sample sources and model systems may be the
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Recognition of MASLD related differentially expressed genes(MASLD-DEGs). (A, B) Box plots (A) and PCA plots (B) before and after normalization.
(C) The Volcano plot shows differentially expressed genes (DEGs) in normal and MASLD samples. (D) Gene dendrogram and module colors. (E) The
determination of soft-thresholding power. (F) Relationship between gene modules and traits. (G) Identification of the modules most relevant to

MASLD progression.

main reasons for the inconsistencies observed in this study. Based
on the expression of the 8 hub genes, we plotted a nomogram
(Figure 5G). In the nomogram, 8 genes correspond to different
scores, and their scores are summed to obtain a total score for the
different diagnoses of MASLD. The calibration curves
demonstrated robust diagnostic reliability of the nomogram for
MASLD (Figure 5H). Decision curve analysis (DCA) revealed that
both the 8 individual genes and their combination provided net
benefit (NB) in assessing outcomes of MASLD patients. Notably,
the combined nomogram model showed potential to significantly
enhance NB compared to individual gene assessments (Figure 5I).
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3.5 SHAP analysis for selecting the optimal
predictive gene

To explain how machine learning works in predicting MASLD, we
use SHAP analysis to elucidate 8 genes. The SHAP summary plot
ranking the importance of the feature variables showed that IGFBPI,
ENO3, SOCS2 were the top three genes with the highest multi-model
contribution (Figure 6A). The swarm plot is used to show the
distribution and direction of the contribution of each characterized
gene to the model prediction, from which we can find that higher
IGFBPI expression is associated with lower MASLD incidence, in
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contrast to higher ENO3 eigenvalues and positive SHAP values, which
have a stronger impact on the prediction of MASLD incidence
(Figure 6B). Figure 6C illustrate the relationship between SHAP
values 2 genes, including IGFBP1, ENO3, SOCS2, GADD45G,
NR4A2, RTP4, RAB26, CRYAA. The predictive analysis, as shown in
Figures 6D, E, reveals that the model’s performance is primarily
influenced by 8 key features. The analysis revealed IGFBPI as the
most influential factor (0.0843), ahead of ENO3 (0.0617) and SOCS2
(0.0497). The strong agreement between the predicted value (f(x) =
0.655) and expected prediction (E[f(x)] = 0.993) indicates excellent
model performance. Notably, our analysis pinpoints IGFBP1, ENO3
and SOCS?2 as crucial factors enhancing the model’s predictive power,
while providing novel understanding of their biological functions.
Numerous literature on IGFBPI in MASLD with the limited reports
linking ENO3 to MASLD, suggesting that ENO3 is a potential
therapeutic target. This premise has prompted our focused
investigation into the role of ENO3 in MASLD.

3.6 Identification of potential drugs
genes were analyzed using the DSigDB drug database on

Enrichr to identify potential targeting agents. The bar plot
displays the top 30 candidate drugs (Figure 7A).
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Among these compounds, we primarily focused on those related
to ENO3 and identified daidzein as the sole drug candidate
(Supplementary File 1), which led us to believe that daidzein may
be a potential natural compound for treating MASLD. More
importantly, daidzein is also a dietary supplement with significant
commercial value. According to literature, a binding energy below
-4.25 kcal/mol indicates observable interactions, values below -5.0
kcal/mol signify favorable binding, while scores below -7.0 kcal/mol
demonstrate strong ligand-receptor binding activity (26). The
binding energy score between daidzein and ENO3 is -7.5 kcal/mol,
indicating a strong affinity between the ligand and receptor
(Figure 7B). Molecular dynamics (MD) simulations were
performed to investigate the stability and convergence of the
Daidzein + ENO3 complex. As shown in Supplementary Figure 1B,
the RMSD analysis indicated that the complex system reached
equilibrium within 5 ns and subsequently maintained stable
fluctuations around 1.4 A, demonstrating strong binding stability
between the small molecule and the target protein. Rg analysis
revealed that the complex exhibited relatively stable fluctuations
during the simulation, suggesting no significant expansion or
contraction occurred in the small molecule-target protein complex
throughout the dynamic process (Supplementary Figure 1C). The
negligible change in SASA further supported that the protein-small
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FIGURE 4

Model Construction. (A) ROC curves for 113 algorithms in machine learning. (B) ROC curve of the optimal model. (C) Confusion matrices for each

dataset under the best model.

molecule complex achieved relatively stable binding (Supplementary
Figure 1D). Hydrogen bonding plays a critical role in the binding
between ligands and proteins. As shown in the Supplementary
Figure 1E, the number of hydrogen bonds formed between
Daidzein and ENO3 ranges from 0 to 5, with approximately 3
bonds being the most frequent, indicating favorable hydrogen-bond
interactions. Additionally, the RMSF values of Daidzein are generally
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below 2 A, further suggesting its low conformational flexibility and

high stability in the bound state (Supplementary Figure 1F). In

conclusion, Daidzein exhibits strong binding affinity with ENO3.

The chemical structure of daidzein is shown in Figure 7C. More

importantly, we conducted in vitro experiments on the
pharmacological effects of daidzein. Through the CCKS8

experiment, we found that even at a concentration of 100 UM,
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FIGURE 5

Diagnostic value of eight genes in the optimal model. (A) The intersection of the top three machine learning algorithms ranked by average AUC.
(B) Volcano plot showing the upregulation and downregulation of eight genes. (C) The box plot shows the expression of eight genes in the normal
group and the MASLD group. (D) ROC curves for eight genes. (E) Expression levels of 8 genes in different MASLD datasets. (F) ROC curves for eight
genes in different MASLD datasets. (G) Nomogram based on 8 genes. (H) Decision curve analysis (DCA) curve. (I) Diagnostic models and 8 genes in
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50 and 100 pM. Oil red and Bodipy 493/503 staining showed that
1mM FFAs stimulation caused lipid droplet accumulation in primary
hepatocytes, while daidzein concentration-dependently alleviated

daidzein had no toxicity to primary hepatocytes (Figure 7D). Kim
et al. found that 20 or 100 UM daidzein increased insulin-stimulated
glucose uptake, while only 100 uM daidzein significantly enhanced
basal glucose uptake. Additionally, Liang et al. (27) found that 100
UM daidzein more effectively improved the levels of ALT, AST, IL-1j3,
IL-6, and TNF-o: in LPS-induced primary hepatocytes. Therefore, we
subsequently conducted in vitro experiments using concentrations of

lipid accumulation(Figures 7E-G). By measuring intracellular TC
and TG levels, we further demonstrated that daidzein improved fat
deposition in a dose-dependent manner, thereby alleviating MASLD
(Figures 7H, I).
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FIGURE 6

SHAP analysis. (A, B) Contribution distribution and direction of 8 genes (C) SHAP dependence of 8 genes. (D, E) Probability map of 8 genes

predicting MASLD.

3.7 Daidzein improves MASLD by inhibiting
lipid deposition through the ENO3/PPAR
signaling pathway

Western blot analysis revealed that the protein expression of
ENO3 was significantly up-regulated in primary hepatocytes
stimulated by FFAs compared to the normal group, while
daidzein treatment attenuated the expression of ENO3 in a
concentration-dependent manner (Figures 8A, E). The Gene Set
Enrichment Analysis (GSEA) result indicated that pathways such as
fatty acid metabolism and the PPAR signaling pathway were
significantly enriched in the ENO3 high-expression group,
suggesting that elevated ENO3 expression may be involved in the
regulation of metabolic pathways in MASLD (Figure 8B). WB
experiments revealed that Daidzein up-regulated PPARo. protein
expression and down-regulated PPARY protein expression in
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FFAs-induced primary hepatocytes, while it had no effect on
PPARD protein expression (Figures 8C, E). We further validated
the expression downstream of the PPAR signaling pathway and
found that Daidzein decreased lipid deposition (SCD1, FASN,
CD36) protein expression and upregulated fatty acid B-oxidation
protein (CPT1A) protein expression (Figures 8D, F). In summary,
our findings suggest that the ENO3/PPAR signaling pathway maybe
a potential mechanism by which daidzein improves fatty
degeneration in MASLD.

4 Discussion

The prevalence of MASLD is increasing annually and affects
30% of the world’s population. MASLD is also characterized by a
progression from early hepatic steatosis-inflammation-fibrosis-
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cirrhosis-cancer. The launch of Resmetirom fills the gap of nearly
40 years of druglessness in the field of MASH, however, its efficacy
still needs to be further improved.

In recent years, advances in high-throughput sequencing,
multi-omics integration, and artificial intelligence algorithms have
driven a paradigm shift in prognostic research—moving from
macroscopic pathological features to molecular mechanisms, from
single-omics approaches to multimodal data integration, and from
static prediction toward dynamic monitoring (28). Within this
context, genome-wide expression profiling offers detailed insights
into disease heterogeneity, proving highly valuable for diagnosis,
treatment response prediction, and prognosis assessment.

In this study, we conducted biological analysis on
transcriptomic data from four MASLD datasets to identify
differentially expressed genes (DEGs) between MASLD and
control groups. Weighted gene co-expression network analysis
(WGCNA) was subsequently applied to pinpoint genes most
strongly associated with MASLD progression. By taking the
intersection of these gene sets, we ultimately identified 62
MASLD-DEGs. Among 62 MASLD-DEGs, functional enrichment
was observed in pathways such as TNF signaling way, Lipid and
atherosclerosis and Non-alcoholic fatty liver disease. Subsequently,
we used 113 combinations of 12 machine learning algorithms to
screen and identify key genes associated with MASLD.
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The advantage of the integration process lies in the fact that the
MASLD model, which is based on multiple machine learning
algorithms and their combinations, can achieve stable and
consistent performance, thereby significantly improving the
specificity and sensitivity of key gene detection. Ultimately,
glmBoost combined GBM was identified as the optimal model,
and the specificity and sensitivity of the model were further
validated using the validation set. However, we found that the
model performed poorly on the GSE48452 dataset (AUC = 0.677),
which may be related to database sources, platform differences, and
sample processing.

SHAP analysis, a tool considered the “gold standard” in the field
of machine learning interpretability, further helps us identify the
genes most closely associated with the progression of MASLD.
Through SHAP analysis, we found that 3 genes:Insulin Like
Growth Factor Binding Protein 1 (IGFBPI), Enolase 3 (ENO3), and
Suppressor of cytokine signaling 2 (SOCS2) contributed the most to
the model. Numerous studies have shown that IGFBPI is negatively
correlated with the progression of MASLD (29, 30). The protein
encoded by ENO3, the beta () enolase subunit, has a broad tissue
distribution and is found in the liver, lungs, bones, and heart, among
others (31). There are few studies on the correlation between ENO3
and MASLD. Liu et al. (32) found that the expression of ENO3 was
positively correlated with the severity of MASLD and validated this
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FIGURE 8

Daidzein alleviates MASLD through the ENO3/PPAR signaling pathway. (A) Daidzein reduced the protein expression of ENO3 in primary hepatocytes.
(B) GSEA analysis shows the top 10 pathways with high ENO3 expression. (C) Daidzein affects the expression of 3 proteins, PPARa, PPARY, and
PPARD, in primary hepatocytes. (D) Daidzein affects the protein expression of downstream proteins (SCD1,FASN, CD36 and CPT1A) in the PPAR
pathway. (E, F) Perform protein quantification analysis of ENO3, PPAR, PPARy PPARD, CPT-1A, CD36, FASN and SCD1. The experiment was repeated

three times. * P < 0.05, ** P < 0.01, *** P < 0.001.

finding in mice with MASLD induced by a high-fat diet. In addition,
Lu et al. (33) found that ENO3 inhibits ferroptosis by upregulating
GPX4 expression and enhancing lipid accumulation, thereby
mediating the progression of MASH. The above evidence
demonstrates the potential of ENO3 as a novel biomarker for
MASLD. Further research is needed to understand how ENO3
drives the progression of MASLD. SOCS2 is one of the classic
molecules of cytokine signaling and has recently been found to
have anti-inflammatory effects (34). The “multiple hit” theory is the
mainstream pathogenesis of MASH, in which inflammation plays an
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important role in the progression of MASH. Inflammation is not only
a hallmark that distinguishes MASH from simple fatty liver disease,
but also a key driver of disease progression to cirrhosis and
Li et al (34). found that
overexpression of SOCS2 in macrophages inhibited the
development of MASH in vivo. Yu et al. (36) also found that
SOSC2 may be a key gene for predicting the progression of
MASLD. Given the heterogeneity of MASLD, there are currently
few drugs available for its treatment. Diet and exercise control remain

hepatocellular carcinoma (35).

the preferred treatment options recommended by many guidelines
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and clinicians (37). Therefore, researching and exploring MASH
intervention drugs and targets to prevent the occurrence of cirrhosis
and liver cancer is a major scientific issue that needs to be addressed
in the field of life sciences. Therefore, targeting essential genes using
bioinformatics methods is expected to significantly improve drug
discovery efficiency and reduce costs. Using the DSigDB database,
this study identified anti-MASLD drugs by connecting the eight genes
that construct the MASLD model. Here, we focused on drugs
targeting the ENO3 and ultimately discovered the drug Daidzein.
Traditional Chinese medicine has a history of thousands of years in
the treatment of chronic liver disease. Through dialectical treatment
and a holistic approach, clinical and basic research on the use of
traditional Chinese medicine to treat MASLD continues to emerge,
demonstrating promising prospects for application. Daidzein is a
major isoflavone compound found primarily in legumes such as
soybeans and kudzu, as well as in grasses and grains (38). Research
has found that daidzein has protective effects against a variety of
diseases, including breast cancer, prostate cancer, diabetes (39), and
cardiovascular disease (40). A cross-sectional study from NHANES
2017-2018 showed that daidzein intake was negatively associated
with the incidence of MASLD (41). Kim et al. (42) found that dietary
supplements containing > 0.5 g/kg of daidzein improved MASLD by
promoting fatty acid -oxidation and mRNA levels of adiponectin
and leptin-related genes. In vitro studies revealed that daidzein dose-
dependently ameliorated hepatic steatosis in primary hepatocytes.
These findings provide a novel therapeutic strategy for the treatment
of MASLD. GSEA analysis revealed that high expression of ENO3
correlates with the PPAR signaling pathway. Therefore, we examined
the protein expression of PPAR and its downstream molecules.
PPARs are a class of nuclear receptors that can bind to various
endogenous or exogenous lipophilic ligands, such as fatty acids, fatty
acid derivatives, and anti-diabetic drugs. This binding regulates gene
expression and transcription, influencing a variety of physiological
and pathological processes including lipid metabolism, glucose
metabolism, inflammatory responses, cell differentiation,
proliferation, and apoptosis (43). PPAR comprises three subtypes—
PPARc, PPARS, and PPARYy—each with distinct tissue distribution
and functions (44). PPARo: is predominantly expressed in the liver,
heart, and skeletal muscle, where it regulates fatty acid oxidation,
ketogenesis, energy homeostasis, and lipid metabolism, offering
protection against cardiovascular diseases and hyperlipidemia (45).
Carnitine palmitoyltransferase-1a(CPT-1A) catalyzes the conjugation
of long-chain fatty acyl coenzymes with L-carnitine to form fatty
acylcarnitine, enabling its transport across the inner mitochondrial
membrane into mitochondria for B-oxidation. This process
represents a critical regulatory point in the fatty acid B-oxidation
pathway. Research indicates that PPARx can enhance CPT-IA
expression and activity, thereby increasing the capacity for fatty
acids to enter mitochondria for oxidative metabolism and
improving overall fatty acid oxidation (46). In contrast, PPARY is
mainly found in adipose tissue, intestine, and immune cells. It
promotes fatty acid synthesis and storage, enhances insulin
sensitivity, and modulates inflammatory responses, making it a key
target in the treatment of diabetes and metabolic syndrome (47).
Cluster of differentiation 36 (CD36) is a fatty acid transporter and a
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target gene of PPARy (48). CD36 promotes the uptake of free fatty
acids (FFAs) by hepatocytes, increasing intracellular lipid
accumulation and leading to hepatic steatosis. Stearyl-coenzyme A
desaturase 1 (SCD-1) and fatty acid synthase (FASN) are key enzymes
for de novo fatty acid synthesis in the liver, while also functioning as
downstream molecules of PPARY (49). Research indicates that
hepatic SCDI deficiency reduces hepatic TG accumulation,
increases fatty acid oxidation, and decreases de novo TG synthesis
(50). Activation of hepatic PPARY expression can upregulate the
expression of lipid synthesis genes such as FASN, thereby accelerating
the progression of MASLD (51). This study found that Daidzein
ameliorates MASLD by promoting PPARo. and CPT-1A expression
to enhance fatty acid 3-oxidation on one hand, and by suppressing
PPARY, FASN, SCD1 and CD36 expression to inhibit lipid synthesis
on the other hand, independently of PPARS.

However, this study also has several limitations. First, although
multiple GEO datasets were included, the sample size remains
limited and the constructed model lacks validation with large-
sample real-world data. Second, the mechanism by which ENO3
influences MASLD lipid metabolism processes requires further
investigation. Third, the efficacy of Daidzein requires further
validation through in vivo experiments, and its mechanisms of
action have only been preliminarily explored.

5 Conclusion

8 genes (IGFBPI, ENO3, SOCS2, GADD45G, NR4A2, RTP4,
RAB26, CRYAA) were identified based on biological information
from machine learning. SHAP analysis further focused on 3 key
genes, IGFBPI, ENO3 and SOSC2. Importantly, we also identified
Daidzein, a potential natural drug against MASLD. Molecular docking
and molecular dynamics mimetics showed that Daidzein docked well
with ENO3, and further in vitro experiments indicated that Daidzein
may ameliorate MASLD through the PPAR/ENO3 signaling pathway.
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