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impairs Brucella abortus
intracellular survival and
virulence by modulating
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GntR transcription factors are emerging as critical regulators of bacterial
metabolism, stress responses, and pathogenicity, however, their roles in the
virulence mechanisms of Brucella abortus remain poorly understood. In this
study, we generated a gntR8 (BAB_RS24500) deletion strain (AgntR8) in B.
abortus 2308 and systematically investigated its role in virulence. The results
demonstrate that deletion of gntR8 markedly impairs intracellular survival of B.
abortus in RAW264.7 cells and significantly reduces virulence in a mouse
infection model. Moreover, the AgntR8 strain exhibited increased sensitivity to
oxidative stress, correlating with decreased expression of stress response genes.
Integrative Dap-seq and RNA-seq analyses revealed that GntR8 directly binds to
and positively regulates the clpP gene, a key component involved in oxidative
stress defense. Deletion of clpP similarly resulted in diminished antioxidant
capacity and intracellular survival, supporting a critical regulatory axis mediated
by GntR8. Collectively, these findings provide novel insights into the molecular
mechanisms by which GntR8 transcriptionally regulates oxidative stress
responses and pathogenicity in B. abortus. The identification of GntR8 as a key
virulence regulator highlights its potential as a therapeutic target, offering
promising avenues for novel intervention strategies against brucellosis.
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1 Introduction

Brucellosis is a zoonotic infectious disease caused by Brucella
spp.» which poses a significant threat to the health of both humans
and animals (1). Humans typically acquire infection through direct
contact with infected animals or ingestion of contaminated food
products (2). Clinically, human brucellosis manifests as fever,
malaise, arthralgia, sweating, and enlargement of the liver, spleen,
and lymph nodes (3, 4). In livestock, Brucella infection primarily
causes reproductive disorders such as abortion in females (5),
orchitis and infertility in males, leading to substantial economic
losses in livestock industry (6).

The pathogenicity of Brucella spp. is largely attributed to its
ability to replicate and survive within host cells, thereby evading
host immune responses (7). Transcription factors play crucial roles
in regulating Brucella virulence and metabolic processes (8).
For instance,

The BvrRS transcription factor, also known as a two-
component regulator, controls the expression of genes required
for multiple stages of Brucella infection. Studies have shown that
AbyrR and AbvrS mutant strains are highly attenuated (9-11).
BvrRS directly regulates the transcription of Brucella outer
membrane protein genes omp25, omp22, and genes involved in
lipopolysaccharide (LPS) modification (12, 13). It indirectly
activates T4SS and outer membrane protein-related gene
expression by inducing the expression of the gene encoding the
quorum sensing regulator VjbR (14). The transcription regulator
CtrA is the primary regulator of the Brucella cell cycle. Its activity is
modulated by the histidine kinase PdhS, the CckA-ChpT
phosphorylation cascade, and the protease adapter CpdR in
response to endogenous cell cycle signals (15-18). The zinc finger
protein MucR functions as a global regulator playing a crucial role
in Brucella virulence (19). In B. melitensis, MucR influences LPS and
correlates with oxidative stress tolerance. The MucR protein
inhibits its own transcription and affects flagellar gene expression
via the ftcR gene (20). In B. abortus 2308, MucR regulates genes
associated with cell-membrane integrity, polysaccharide synthesis,
and iron homeostasis (21).

The GntR family transcription factor represents another key
regulatory system involved in bacterial metabolism and virulence.
First described in 1987 (22), this family is subdivided into
subfamilies such as MocR, YtrR, FadR, AraR, HutC, PImA, DevA,
and DasR, based on differences in their C-terminal amino acid
sequences (23, 24). Previous studies have shown that deletion of the
gntR10 gene significantly affects Brucella growth and virulence in
mice, modulates the expression of LuxR-type transcriptional
activators (VjbR and BIxR), and influences the expression of type
IV secretion system (T4SS) effectors (BspE and BspF) (25, 26). The
reference strain B. melitensis 16M encodes 21 GntR transcription
factors, of which seven have been implicated in virulence regulation
(27, 28). Among them, GntR4(coded by BMEI0169), GntR12(coded
by BMEII0807) and GntR17(coded by BMEI0320) are known to
regulate the expression of the virB gene in Brucella spp (8, 27, 29).,
and GntR17 additionally influences the expression of omp25, vjbR
and babR genes in B. abortus (8, 29). Previous study has revealed
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that the transcription factor GntR10 (BAB_RS31770) from B.
abortus 2308 interacts with the target promoter of BAB1_1163
through sequence-specific DNA recognition, regulating the
expression of 88 genes, including those involved in molecular
functions, biological processes (BPs), and cellular components
(CCs). The GntR10 target-gene mutant BAB1_1163 exhibits
reduced expression in RAW 264.7 cells, affecting pro-
inflammatory cytokine expression levels (26).

Despite these advances, relatively little is known about the
broader role of other GntR transcription factors in virulence
regulation of Brucella. Therefore, in this study, we constructed
GntR transcription factor deletion and complemented strains using
homologous recombination techniques, with B. abortus 2308 as the
parental strain. We systematically examined the impact of gntR8
(BAB_RS24500) deletion on virulence at the bacterial, cellular, and
animal levels. Additionally, using DNA affinity purification
sequencing (Dap-seq) and Electrophoretic mobility shift assay
(EMSA), we identified and verified downstream target genes
regulated by gntR8 gene and performed functional analyses of
these targets. This comprehensive analysis expands our
understanding of GntR-mediated transcriptional regulation in
Brucella and highlights GntR8 as a promising therapeutic target
to disrupt virulence pathways. Targeting GntR8-mediated
regulation could provide new approaches for reducing the
economic and health impacts associated with brucellosis,
suggesting future research should focus on therapeutic
interventions designed to impair these transcriptional networks
and mitigate disease transmission.

2 Materials and methods
2.1 Bacterial strains and cells

All Brucella strains were cultured in Tryptic Soy Agar (TSA,
BD) or Tryptic Soy Broth (TSB, BD) at 37°C with 5% CO,. All work
involving Brucella spp. strains was conducted in a biosafety Level 3
laboratory of China Institute of Veterinary Drug Control. The cells
used in the in vitro experiments of this study were the RAW264.7
cells. The cell-culture conditions were DMEM medium (Gibco,
USA) containing 10% fetal bovine serum, 100 U/mL penicillin, and
100 pug/mL streptomycin, cultured in a 37°C, 5% CO, incubator.

2.2 Construction of gntR8 deletion and
complementation strains

The gntR8 mutant strain was constructed following a previously
published protocol (30). Primer sequences for deletion and
complementation strains are listed in Supplementary Table SI.
PCR products were cloned using the ClonExpress MultiS One
Step Cloning Kit (Vazyme, China) and transformed into E. coli
DH50. competent cells (CWbio, China). Positive plasmids were
then electroporated into Brucella strains. Ampicillin-sensitive and
chloramphenicol-sensitive colonies were verified by PCR to ensure
successful genes deletion and complementation.
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2.3 Cell infection assay

Intracellular survival assays of wild-type (WT) B. abortus 2308
and its mutant strains was performed as previously described (31).
Briefly, RAW264.7 cells (2.5x10° cells/well) were cultured in 24-
well plates (Corning, USA) and infected with Brucella strains (100
MOI). Cells were then centrifuged at 1000 rpm for 10 minutes.
After 1 h incubation, cells were washed three times with phosphate-
buffered saline (PBS) and cultured in medium containing 50 pg/mL
gentamicin. Wash twice more with PBS, then add 1 mL of medium
containing 25 ug/mL gentamicin to each well. At 1, 24, and 48 hours
post-infection (hpi), cells were lysed, and intracellular bacterial
counts were determined by plating serial dilutions onto TSA plates.

2.4 Mice infection experiments

To evaluate the pathogenicity of gntR8 mutants in vivo, 80
female BALB/c mice (6-8 weeks) were randomly divided into four
groups: PBS group, WT group, AgntR8 group, and complemented
strain (CAgntR8) group (n=20). Each group was further subdivided
into four time points, with five mice per group at each time point
(n=5). Each mouse in the infection group received an
intraperitoneal injection of 1x10° CFU/0.1 mL of bacterial
solution diluted in PBS, while the PBS group received an injection
of 0.1 mL of PBS. Blood samples were collected from mice at weeks
1, 2, 3, and 4 post-infection. Mice were euthanized by asphyxiation
at weeks 1, 2, 3 and 4 post-infection. After collection, spleen was
weighed and divided into three portions. One portion was
homogenized in 1 mL of PBS and subsequently subjected to TSA
plate culture to determine bacterial load (n=5). Another portion was
reserved for histopathological evaluation, and the third portion was
used for RNA-seq analysis.

2.5 Histopathological evaluation

Histological examination was performed on spleen tissues as
previously described (31). Briefly, spleen tissues were fixed in 10%
formalin solution, embedded in paraffin, and sectioned into 4 pm
slices using a microtome (Leica, Germany). Sections were stained
with hematoxylin and eosin (HE) and examined under a light
microscope (Leica, Germany).

2.6 Stress assays

Bacterial sensitivity under oxidative and acidic stress conditions
was evaluated using a modified protocol (31-33).

Oxidative stress. WT, AgntR8 and CAgntR8 strains were treated
with H,O, at final concentrations of 1 mM, 2.5 mM and 5 mM,
respectively. After 1 h of treatment at 37°C, surviving bacteria were
enumerated by plating serial dilutions on TSA.

Acid stress. Bacterial cultures were pelleted by centrifugation,
resuspended in TSB adjusted to pH 4.5 or 5.5, and incubated at
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37°C for 1 h. Surviving bacteria were quantified by plating serial
dilutions onto TSA plates.

2.7 GSSG and GSH assay

Intracellular concentrations of reduced glutathione (GSH) and
oxidized glutathione (GSSG) in bacterial cells were determined
using a GSH and GSSG Assay Kit (Beyotime, China), following
the manufacturer’s instructions with minor modifications (34). A
standard curve was established using the standards in the kit.
Absorbance at 412 nm was measured after 25 min incubation at
room temperature using a microplate reader. Intracellular GSH was
calculated using the equation: GSH = total glutathione - GSSG x 2.

2.8 Quantitative real-time PCR analysis and
RNA-sequencing

Total RNA from infected RAW264.7 cells and mice spleen
tissues were isolated using TRIzol (Thermo Scientific, USA)
according to the manufacturer’s instructions, followed by DNase I
treatment to eliminate genomic DNA contamination. RNA
concentration and purity were assessed using an ND 1000
spectrophotometer (Thermo Scientific, USA). Reverse
transcription into cDNAs were synthesized using the PrimeScript
RT Reagent Kit (TaKaRa Bio, Japan) according to the
manufacturer’s instructions. Quantitative real-time PCR (qPCR)
was performed with the primers shown in Supplementary Table S2.
Relative gene expression was calculated using the comparative cycle
threshold method (2744°"), and each sample was analyzed
in triplicate.

Sequencing libraries for each RNA sample were prepared using
the NEB Next Ultra Directional RNA Library Prep Kit for Illumina
according to the manufacturer’s protocol (35). RNA fragments were
reverse-transcribed, amplified to double-stranded ¢cDNA, adaptor-
ligated, purified with magnetic bead and quantified. Sequencing was
performed on the HiSeq 4000 platform at the Majorbio platform
(Shanghai, China) with three biological replicates per group.
Differential expression thresholds are fold change > 2 and p < 0.05.

2.9 Expression and purification of
recombinant GntR8 protein

The coding region of the gntR8 gene was amplified using
primers pCold-G8-F and pCold-G8-R (Supplementary Table S3),
digested with BamH I and Hind III and cloned into the plasmid
pCold II. The resulting plasmid (pCold-gntR8) was transformed
into E. coli strain BL21. Protein expression was induced with 0.1
mM IPTG at 16 °C for 24 h. Cells were harvested, lysed by
sonication, and centrifuged (12,000 x g, 20 min, 4 °C). The
supernatant containing recombinant GntR8 protein was purified
using Ni-Sepharose affinity chromatography.
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2.10 DNA affinity purification sequencing

Purified GntR8 protein was flash-frozen into liquid nitrogen
and stored at -80°C until use. Dap-seq analysis was performed by
Yung Biotechnology Co., Ltd. (Beijing, China). Fastp (v0.20.1)
software was used for quality control analysis of target proteins
and negative controls, including removal of splices, repeats and low-
quality sequences. Peak Calling was performed using MACS2
(v2.2.7.1) software (Fold change > 2 and p-value < 0.05) and the
ChIPseeker (R package) was used to annotate peak. Motif analysis
was conducted using HOMER software (v4.11.1).

2.11 Electrophoretic mobility shift assay

Biotin-labeled DNA probes were incubated in EMSA buffers
(750 mM NaCl, 0.5 mM dithiothreitol (DTT), 0.5 mM EDTA, 50
mM Tris, pH 7.4) at 37°C for 30 min. For competitive assays, 100
nM unlabeled DNA probes were added to labeled probes. GntR8
protein (0-200 ng) was incubated with the probes at 37°C for 30
minutes. The samples were separated on a 6% Native-PAGE - gel
(30% acrylamide, 5XTBE, TEMED, 10% APS, 5% Glycerol) and run
in a 0.5 x Tris-Borate buffer (89mM Tris-Borate, 2mM EDTA, pH
7.4) at 200 V and 4 °C. Imaging was captured using a Typhoon FLA
9500 multifunctional scanner (GE Healthcare, USA).

2.12 Cytokine measurement by the
multiplex cytokine assay system

Measure cytokine concentrations in mouse serum using the
Luminex Flex MAP 3D system according to the manufacturer’s
instructions (36). In brief, mix chemically labeled antibody-
conjugated beads with standard solutions or samples, incubate
overnight at 4°C, wash, and then incubate with biotinylated
detection antibodies. After washing the beads, incubate them with
streptavidin-phycoerythrin complexes. The sample is then washed
using a handheld magnet and resuspended in sheath fluid. Finally,
the sample is run on the Luminex FLEXMAP 3p® (Austin, Texas,
USA), and data is collected and analyzed using MILLIPLEX Analyst
5.1 (Luminex). Three biological replicates were performed for each
experimental group.

2.13 Statistical analysis

Basic statistical analyses were performed using GraphPad Prism
9.0 (USA). Unpaired Student’s t-tests were employed in cellular and
mouse infection models, growth curve measurements of gntR8
deletion strains, and bacterial virulence assays. For stress analyses,
data were analyzed using analysis of variance (ANOVA). Data are
expressed as mean + standard deviation. P values < 0.05 were
considered statistically significant.
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3 Results

3.1 Deletion of gntR8 significantly reduces
B. abortus virulence in RAW264.7 cells and
mice

Previous studies identified 21 GntR family transcription factors
in the B. melitensis 16M strain (27). In this study, we analyzed the
genome of B. abortus 2308 and identified 23 GntR family
transcription factors through KEGG homologous gene analysis
combined with NCBI database searches. As shown in
Supplementary Figure S1 A and B and Supplementary Table $4,
these factors include 7 located on chromosome I and 17 on
chromosome II. To investigate the role of gntR8, we constructed a
deletion strain (AgntR8) by replacing the gntR8 gene with a
kanamycin resistance gene via homologous recombination, and a
complemented strain (CAgntR8) using the pPBBRMCS-1 plasmid.
Growth curves showed no significant difference between WT and
AgntR8 strain under normal culture conditions (Figure 1A).
However, RAW264.7 cells infection assay indicated significant
decrease in intracellular viability following infection with AgntR8
strain compared to WT strain (p < 0.001) (Figure 1B). In addition,
we quantified colocalization of intracellular Brucella with LAMP-1-
positive compartments using laser confocal microscopy. At 4 h
post-infection, the AgntR8 mutant displayed a significantly higher
LAMP-1 colocalization rates rather than the wild-type (WT) (p =
0.003) (Supplementary Figure S2), indicating impaired lysosomal
evasion. To further investigate the effect of the gntR8 gene deletion
on Brucella virulence, we conducted mouse infection over 4 weeks
to assess the survival of AgntR8, CAgntR8, and WT strains. As
shown in Figure 1C, AgntR8-infected mice exhibited significantly
lower bacterial loads in the spleen at 1, 3, and 4 weeks post-infection
compared to the WT and CAgntR8 groups (p < 0.001). Additionally,
the spleen indices of WT-infected and CAgntR8-infected mice were
significantly higher than those of the AgntR8-infected group at 2
weeks post-infection (p < 0.001) (Figure 1D). Histopathological
analysis revealed no significant lesions in spleens at week 1 post-
infection for both WT and AgntR8 strains. However, spleens of the
AgntR8-infected mice exhibited a marked reduction in lymphocytes
and an increase in connective tissue proliferation (Figure 1E). At
week 4 post-infection, spleens of mice infected with WT showed
extensive connective tissue proliferation (red arrowheads) and focal
neutrophil infiltration (black arrowheads). In contrast, no
significant abnormalities were observed in the spleens AgntR8-
infected groups (Figure 1F). These results indicate that the
deletion of the gntR8 gene significantly reduces the virulence of B.
abortus both in vivo and in vitro.

3.2 Deletion of the gntR8 reduces oxidative
stress resistance in B. abortus

The Dose-response curve showed that the survival rate of the
strains gradually decreased with increasing H,O, concentration
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FIGURE 1

Deletion of the gntR8 gene reduces (B) abortus survival within cells and its pathogenicity in mice. (A) Growth curves in TSB of Brucella strains at 37°C
with continuous shaking for 72 (H) (B) Intracellular survival of RAW264.7 cells (100 MOI), values represent the means of three experiments performed in
duplicate, and error bars indicate the SD; (C) Splenic bacterial load post-infection (n=5); (D) Splenic index post-infection (n=5);

(E-F) Histopathological analysis of spleen at 1 week (E) and 4 week (F) post-infection with WT and AgntR8. Connective tissue hyperplasia is shown by red
arrows, and inflammatory cell infiltration is shown by black arrows. Data are presented as the mean + standard deviation (error bars) of standardized
data, based on experimental results from five mice. The significance is shown as *p < 0.05; **p < 0.01; ***p < 0.001; and ns indicates non-significance.

(Supplementary Figure S3), compared to WT, the survival rate of ~ WT, the survival rate of AgntR8 significantly decreased when
AgntR8 significantly decreased (p < 0.001) when treated with 5 mM  treated with 5 mM H,0, (p = 0.0049). In contrast, the survival
H,0,. Under acidic conditions, the survival rates of the three strains  rate of the CAgntR8 strain recovered to the WT level (Figure 2B).
(WT, AgntR8, and CAgntR8) were comparable at pH 4.5 and 5.5  RNA-seq analysis was used to identify genes regulated by the gntR8
(Figure 2A). Oxidative stress experiments showed that, comparedto ~ gene under oxidative conditions. A total of 290 differentially
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Deletion of the gntR8 reduces oxidative stress resistance in (B) abortus. (A) Survival rate of Brucella strains under acidic (pH 4.5 and 5.5) stress.

(B) Survival rate of Brucella strains under H,O, (1 mM, 2.5 mM, and 5 mM) at 37°C for 1 (H) (C) Treat the counted bacterial suspension with H,O,
(final concentration 5 mM) for 1 hour. Add RNA protection reagent at twice the volume, vortex, and incubate at room temperature for 5 minutes to
extract RNA. Proceed with sequencing processing. Volcano plot of RNA-seq screen for differentially expressed genes. Horizontal coordinates
indicate fold difference and vertical coordinates indicate negative Logio values for p-adjust; (D-E) KEGG pathway enrichment analysis of up-
regulated (D) and down-regulated (E) genes. Data are presented as the means of normalized data + standard deviations (error bars) based on three
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independent experiments. The significance is shown as **p < 0.01; ***p < 0.001; and ns indicates non-significance.

expressed genes (DEGs) (Fold change > 2 and p-value < 0.05) were
identified between the WT and AgntR8, with 141 genes up-
regulated and 149 genes down-regulated (Figure 2C). KEGG
pathway enrichment analysis sugggested that up-regulated genes
may play a variety of biological functions through interaction with

Frontiers in Immunology

quorum sensing system and ABC transporter-related proteins

(Figure 2D). Down-regulated genes primarily mostly associated

with the sulfur relay system and the two-component system
(Figure 2E). RT-qPCR validated the RNA-seq findings
(Supplementary Figure S4).
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3.3 GntR8 protein specifically binds to
promoters of ALDH, gst and clpP genes

To further analyze the mechanism by which GntR8 participates
in Brucella virulence and antioxidant stress, this study utilized Dap-
seq technology to analyze the sequences directly bound by GntRS,
revealing that the binding fragments are all located in the gene
promoter regulatory region, potentially indicating self-regulatory
functions (Figure 3A). Therefore, To analyze whether the GntR8
protein can bind to its own promoter DNA sequence, this study
performed co-incubation using the GntR8 protein and the
promoter DNA sequence of the gntR8 gene (BAB_RS24500), and
found that the GntR8 protein can bind to its own promoter DNA
sequence in a dose-dependent manner, indicating that the EMSA
system used in this study can be employed to identify the regulatory
genes of the GntR8 transcription factor(Figure 3B). Further
screening of genes regulated by the GntR8 transcription factor
was conducted by amplifying the promoter DNA sequences of
potential target genes. The results indicated that the GntR8 protein
can bind to the promoter DNA sequences of ALDH
(BAB_RS16905), gst (BAB_RS27470), and clpP (BAB_RS21345)
(Figure 3C). Competitive EMSA assays confirmed specificity,
showing progressive inhibition of labeled probe binding upon
increasing unlabeled competitor DNA (Figures 3D-F). This
indicates that GntR8 specifically binds to the ALDH, gst, and clpP
gene promoters.

3.4 GntR8-mediated regulation of oxidative
stress in B. abortus via clpP gene

Intracellular survival assay of RAW264.7 cells with AALDH, Agst,
AclpP and WT strains showed that the ability of AclpP to survive in
the RAW264.7 cell was significantly decreased (p < 0.001)(Figure 4A).
Oxidative stress assays with AALDH, Agst, AclpP and WT strains
revealed no significant difference in survival for AALDH and Agst
compared to WT. However, after the deletion of clpP gene, the
antioxidant capacity of Brucella decreased significantly (p < 0.001)
(Figure 4B). GSH is an important antioxidant that scavenges free
radicals and helps cells maintain normal immune function (37). In
this study, the GSSG content of AgntR8 and AclpP were significantly
higher than that of WT (p < 0.001) (Figure 4C). Consistently, GSH
levels were significantly reduced (p < 0.001) (Figure 4D). The results
showed that the antioxidant capacity of Brucella decreased after clpP
gene deletion. These results indicate that GntR8 regulates GSH levels
by controlling the expression of the cIpP gene, thereby modulating the
oxidative stress resistance of B. abortus.

3.5 Deletion of the gntR8 down-regulates
immune-related gene in infected hosts

Transcriptome analysis of the spleen of WT and AgntR8-infected

mice revealed that, at week 1 post-infection, 505 genes were up-
regulated, while 1852 genes (Fold change > 2 and p-value < 0.05)

Frontiers in Immunology

10.3389/fimmu.2025.1698057

were down-regulated in the spleens of the AgntR8-infected mice
(Figure 5A). KEGG enrichment analysis of up-regulated genes
showed that these differential genes were mainly enriched in Th17
cell differentiation and T cell receptor signaling pathway (Figure 5B),
while down-regulated genes were mainly concentrated in NOD-like
receptor signaling pathway and TNF signaling pathway (Figure 5C).
Similar trends were observed in cell transcriptome results
(Supplementary Figure S5). At week 4 post-infection, 2614 genes
were up-regulated, and 3448 genes were down-regulated in the
spleens of AgntR8-infected mice (Figure 5D). KEGG enrichment
analysis of up-regulated genes showed that these differential genes
were mainly enriched in cell cycle, DNA replication, P53 signaling
pathway (Figure 5E). Down-regulated genes were mainly
concentrated in Primary immunodeficiency, Thl and Th2 cell
differentiation and NF-kappa B signaling pathway (Figure 5F). RT-
qPCR confirmed RNA-seq results (Supplementary Figure S6).
Previous studies have shown that immunizing mice with the B.
abortus 2308 mutant AgntR can induce classic Thl and Th2
responses (29). The above analysis showed that the deletion of
gntR8 gene caused the down-regulation of the expression of
immune-related genes in infected hosts.

3.6 Deletion of GntR8 reduces cytokine
production in B. abortus-infected mice

Brucella, as intracellular pathogens, mainly relies on cellular
immunity for clearance in the early stage of infection (38). Th1 cells
participate in the host’s defense against intracellular pathogens by
producing IFN-y, TNF-o,, and IL-2, while Th2 cells are responsible
for coordinating humoral immunity and participate in the host’s
defense against extracellular parasites by secreting IL-4, IL-5, and
IL-10 (39-41). Given the RNA-seq findings on immune-related
pathways (Figure 5), we detected IL-2, IL-6, IL-8, IL-10, IFN-v,
TNF-o and other immune-related cytokines. The results are shown
in Figure 6, after 1 week, there were no significant differences in
cytokine levels between the AgntR8 group and the PBS group.
However, compared to the PBS group, the WT group and CAgntR8
group showed significant upregulation of IL-8, IL-10, IFN-vy, and
TNF-o.. After 4 weeks, compared to the PBS group, all infected
groups showed significant upregulation of IL-6, IL-8, and TNF-o.
expression (p < 0.001). This finding indicates that at this time point,
AgntR8 induced a Thl-type immune response, consistent with the
transcriptomic results. Therefore, we performed additional analyses
focusing on MHC-I and MHC-II pathway-related genes.
Integrating mouse spleen transcriptome data, we employed real-
time quantitative polymerase chain reaction (QRT-PCR) for MHC-I
pathway genes (including H-2K° , B2m, TAPI, TAP2, Statl, and
NLRC5) and MHC II pathway genes (CIITA and RFX5) in mice
infected with WT, AgntR8 and CAgntR8 strains at weeks 1 and 4.
Results showed that compared to WT, AgntR8-infected mice
exhibited significantly reduced mRNA expression levels for all
genes at both time points; CAgntR8 partially or fully restored
expression (TAP1/TAP2 approached WT by week 4) There were
no significant changes in the expression of MHC class II-associated
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genes (CIITA and RFX5). Notably, transient elevations of H-2K”
and Statl at week 1 likely reflect early innate/adaptive activation.
These results are provided in Supplementary Figure S7.

4 Discussion

Brucella spp., the causative agent of brucellosis, poses a
significant threat to both human and animal health (42). Due to
its tendency to present clinically as a latent or chronic infection,
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brucellosis is difficult to diagnose and treat in a timely manner,
contributing to its widespread distribution globally (43). Previous
studies have highlighted the crucial role of GntR transcription
factors in regulating bacterial metabolism and pathogenesis (27).
In this study, we demonstrated that deletion of the transcription
factor gene gntR8 in B. abortus significantly reduced intracellular
survival in RAW264.7 cells and markedly decreased bacterial
virulence in mice. However, although RAW264.7 cells possess
core macrophage functions (such as phagocytosis and
antibacterial activity), as an immortalized cell line, their
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phenotype may differ from that of macrophages derived from
primary monocytes and requires further validation. Splenomegaly
and connective tissue proliferation induced by Brucella infection in
mice represent characteristic pathological features of the
intracellular parasitic pathogenesis of this bacterium, as
extensively documented in numerous domestic and international
studies (31, 44). In this study, pathological analysis revealed that, in
mice infected with B. abortus, the spleens exhibited varying degrees
of enlargement. Histological examination showed connective tissue
proliferation in the spleens of WT-infected mice at 4 weeks post-
infection, contributing to the spleen enlargement. However,
although the complementary strain restored the regulatory
pathway required for bacterial colonization by replenishing gntRS,
it failed to fully reinstate GntR8’s control over “immunopathology-
related genes”. This may stem from differences in promoter strength
and expression timing between the plasmid vector and the wild-
type strain. Consequently, even when bacterial levels reached the
target threshold, the spleen’s immune hyperplasia response
remained below wild-type levels.

As an intracellular pathogen, Brucella spp. invades host
macrophages, where it survives and replicates within Brucella-
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containing vesicles (BCV) (45, 46). After phagocytosis by
macrophages, the bacteria must adapt to various stressors,
including acidic environments, hypoxia, nutrient deprivation,
reactive oxygen and nitrogen species (47, 48). Studies on the
Brucella LysR-type transcription factor BvtR indicate that ABvtR
strains exhibit increased sensitivity to sodium nitroprusside and
sodium dodecyl sulfate, but show no altered sensitivity to hydrogen
peroxide, isopropyl benzene peroxide, polymyxin B, or natural
serum. Deletion of the OtfpR gene in the B. melitensis 16M
resulted in reduced tolerance to acidic stress (49, 50). The
flagellar transcription regulator FtcR participates in the formation
of B. melitensis 16M biofilms, which enhance tolerance to
hyperosmotic stress (51). Brucella enter host cells via interactions
between liposomes and macrophage cell membranes, forming
Brucella-containing vacuoles (BCVs) surrounded by phagocytic
vesicles (52). The acidic environment within BCVs facilitates
expression of the VirB operon in Brucella and regulates T4SS-
associated gene expression. Brucella utilizes the T4SS to transport
effectors from the membrane space into the host cell cytoplasm,
thereby modulating host cell signaling pathways to promote its
survival within the host (53-55). Thus, in vitro models that simulate
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Deletion of the gntR8 down-regulates immune-related gene in infected hosts. (A) DEGs at 1 week post-infection; KEGG pathway enrichment
analysis of up-regulated (B) and down-regulated (C)genes at 1 week post-infection; (D) DEGs at 4 weeks post-infection; KEGG pathway enrichment

analysis of up-regulated (E) and down-regulated (F) genes at 4 weeks post-

infection. The data is based on experimental results from three mice.

these stresses are critical for studying the pathogenic mechanism of
B. abortus. Our findings revealed that deletion of the gntR8 gene
significantly impaired resistance to oxidative stress induced
by H,0..

Dap-seq is a powerful method used to identify transcription
factor binding sites without the need for specific antibody. This
technique has been previously utilized in B. melitensis to
successfully identify the target genes of transcriptional regulators,
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such as the iron-responsive regulator Irr (56). In our study,
integrated Dap-seq and RNA-seq analyses identified 44 potential
GntR8-regulated target genes. EMSA further confirmed that GntR8
specifically binds to the promoter of the clpP gene, which has
previously been implicated in bacterial stress response. c/pP gene
has been confirmed by other studies related functions, the deletion
of clpP gene can cause Brucella to increase the sensitivity to H,O,,
and found that the survival ability of AclpP in macrophages
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significantly decreased (31). GSH, a critical intracellular
antioxidant, maintains protein thiol groups in reduced states its
sulfhydryl moiety. The glutathione peroxidase (GSH-Px)-catalyzed
oxidation of GSH to GSSG concomitantly reduces to H,O (57, 58).
In physiological conditions, reduced GSH constitutes >90% of total
cellular glutathione (59). Oxidative stress triggers GSSG
accumulation, consequently lowering the GSH/GSSG ratio - a key
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indicator of cellular redox status maintained through coordinated
actions of GSH-Px and glutathione reductase (GR) (60). Our study
showed that compared to the WT group, both AgntR8 and AclpP
exhibit compromised H,O, tolerance and diminished GSH levels,
correlating with impaired intracellular survival. Therefore, it is
speculated that GntR8 transcription factor may mediate the
antioxidant stress of B. abortus through the regulation of clpP.
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Brucella spp. has evolved multiple immune escape mechanisms,
with its virulence factors modulating autophagy, inflammation, and
apoptosis to suppress the host immune response
(61).Transcriptome analysis of B. melitensis 16M infected
macrophages revealed differential regulation of endoplasmic
reticulum-associated pathway, immune-associated pathway, and
p53 pathway (62). Notably, infection-induced dysregulation of
immune-related genes (e.g., TXNIP, HO-1 and Prdx5) has been
reported (63, 64), while deletion of the gntR10 gene elevates levels of
TNF-o, IL-6 and IL-8 transcripts in infected cells (65). Our dual
transcriptome analyses (host cells and mouse spleen) identified
Th17, Thl, and Th2 differentiation pathways as significantly
enriched among differentially expressed genes. It has previously
been shown that Brucella infection triggers innate and adaptive
immunity to Thl and activation of CD8" T cells, reducing MHC-I
and MHC-II IFN-y-induced surface expression and thereby
impairing antigen presentation to T cells (66-69). Our cytokine
data showed that IL-2 levels were upregulated in the WT group,
suggesting that B. abortus 2308 stimulates specific cellular
immunity, whereas deletion of the gntR8 gene resulted in reduced
levels of serum cytokine IL-2, IL-6, IL-10, IFN-y, and TNF-o

10.3389/fimmu.2025.1698057

production in Brucella-infected mice. IFN-y stimulation rapidly
activates the transcription factor STATI, which subsequently
induces IRF1 to upregulate the expression of genes essential for
the MHC-I pathway. NLRCS5 serves as the primary co-activator for
MHC- I genes, playing a critical role not only in their expression but
also in maintaining key components of the MHC-I pathway (70-
72). H-2K® is a core functional protein in the mouse MHC-I
antigen-presentation pathway; its function is to mediate antigen
recognition by CD8'T cells (73, 74). In AgntR8-infected mice,
reduced interferon-y levels led to significant downregulation of H-

b gene transcription, increased protein degradation, and
impaired antigen presentation. This ultimately weakened the
adaptive immune capacity for clearing intracellular targets.
Concurrently, this study revealed markedly reduced expression
levels of 82m, TAP1, TAP2, Statl, and NLRC5 genes in the
spleens of AgntR8-infected mice. In conclusion, IFN-y-STAT1-
IRF1 signaling and NLRC5 co-activation are attenuated in AgntR8
infection, leading to reduced H-2K’ expression and compromised
antigen presentation to CD8™T cells.

Collectively, our study establishes the GntR8 transcription
factor as a critical regulator of B. abortus virulence, intracellular
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survival, and host immune response modulation. Through
combined transcriptomic and binding-site analyses (RNA-seq and
Dap-seq), we provide clear evidence that GntR8 directly targets the
clpP gene, thereby enhancing oxidative stress resistance and
intracellular survival. Additionally, we suggest a potential role for
GntR8 in immune modulation via MHC-I pathways (Figure 7).
These findings significantly enhance our understanding of the
molecular mechanisms underlying Brucella pathogenicity and
identify GntR8 as a promising therapeutic target for future
strategies aimed at controlling brucellosis.
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