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Lung cancer, recognized as one of the most prevalent malignancies with the

highest rates of incidence and mortality globally, presents a substantial challenge

on a worldwide scale. This challenge is exacerbated by the disease’s difficulty in

early detection, a pronounced rate of metastasis, and resistance to treatment, all of

which contribute to elevated mortality rates. The tumor microenvironment (TME)

plays a critical role in the sustenance and advancement of various solid tumors,

including lung cancer. The intricate composition of the TME facilitates tumor

proliferation, metastatic spread, and therapeutic resistance by supplyingmetabolic

resources, fostering angiogenesis, and enabling immune evasion. Nonetheless, the

regulatory frameworks operating within the TME remain poorly understood. An

increasing body of evidence suggests that epigenetic regulation—encompassing

mechanisms such as DNA methylation, histone modification, and the action of

non-coding RNAs—is pivotal in the initiation and progression of lung cancer.

Furthermore, epigenetic modifications significantly influence the functional

dynamics of the tumor microenvironment, thereby impacting intercellular

interactions and cellular behaviors within the TME, which in turn affects the

trajectory of disease progression. This article aims to present the most recent

advancements in research concerning the epigenetic regulation of tumor cell

interactions with the TME in the context of lung cancer biology. Additionally, it

examines the current implications of epigenetic regulation within the tumor

microenvironment and its influence on lung cancer behavior. We also

investigate the potential relevance and emerging therapeutic avenues presented

by epigenetic regulation in the clinical diagnosis and treatment of lung cancer,

aspiring to propose novel strategies to address existing treatment challenges.
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1 Introduction

Lung cancer, recognized as the malignant neoplasm with the

highest rates of incidence and mortality globally, poses a significant

threat to human health and well-being (1). According to the most

recent data on the global cancer burden published by the

International Agency for Research on Cancer (IARC), part of the

World Health Organization, in 2020, there were approximately 2.2

million newly diagnosed lung cancer cases, with a staggering 1.8

million resulting in death (2). These figures represent 11.4% of all

newly diagnosed cancer cases and 18.0% of cancer-related fatalities

worldwide. Lung cancer is primarily categorized into two types:

non-small cell lung cancer (NSCLC), which constitutes about 85%

of cases, and small cell lung cancer (SCLC), accounting for roughly

15% (3, 4). Despite noteworthy advancements in lung cancer

treatment modalities over recent years-including surgical

intervention, chemotherapy, radiotherapy, targeted therapy, and

immunotherapy-the overall five-year survival rate for patients

remains at a disappointing 18% (5, 6). This dismal statistic is

largely due to challenges associated with the early detection of the

disease, the tumors’ high metastatic capabilities, and resistance to

currently available therapies (7, 8). Therefore, a comprehensive

understanding of the pathophysiology of lung cancer, along with

the identification of novel therapeutic targets and strategies, is

crucial for enhancing the prognosis of lung cancer patients.

Research has indicated that the tumor microenvironment

(TME) is pivotal in tumor progression and maintenance (9, 10).

As the immediate environment that supports the survival and

development of tumor cells, the TME is a multifaceted structure

that includes tumor cells, immune cells, stromal cells, extracellular

matrix components, and an array of bioactive molecules (11).

Within the cellular constituents of the TME, cancer-associated

fibroblasts (CAFs) are notable for their ability to secrete various

growth factors and extracellular matrix components, which not

only provide essential nutritional support but also enhance the

proliferation and migration of tumor cells (12, 13). Macrophages
Abbreviations: TME, Tumor microenvironment; IARC, International Agency

for Research on Cancer; NSCLC, Non-small cell lung cancer; SCLC, Small cell

lung cancer; CAFs, Cancer-associated fibroblasts; DCs, Dendritic cells; EMT,

Epithelial-mesenchymal transition; TGF-b, Transforming growth factor-b;

TAMs, Tumor-associated macrophages; EGF, Epidermal growth factor; HGF,

Hepatocyte growth factor; IL, Interleukins; IFN, Interferons; TNF, Tumor

necrosis factor; CXCL12, CXC chemokine ligand 12; DNMTs, DNA

methyltransferases; HDACs, Histone deacetylases; miRNAs, microRNAs;

LncRNAs, long non-coding RNAs; CDK4/6, cyclin-dependent kinase 4/6;

MDR1, Multidrug resistance gene 1; EGFR, Epidermal growth factor receptor;

HATs, Histone acetyltransferases; HMTs, Histone methyltransferases; PDCD4,

Programmed cell death protein 4; PTEN, Phosphatase and tensin homolog; 5-

aza-Dc, 5-aza-2-deoxycytidine; 5-aza-CR, 5-aza-cytidine; EZH2i, EZH2

inhibitors; BETi, BET inhibitors; TAAs, Tumor-associated antigens; siRNA,

small interfering RNA; shRNA, short hairpin RNA; EMT, Epithelial-

Mesenchymal Transition; ICIs, Immune checkpoint inhibitors; CAFs, Cancer-

associated fibroblasts; TANs, Tumor-associated neutrophils; NETs, Neutrophil

Extracellular Traps.
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within the TME exhibit heterogeneity, with M2-type macrophages

capable of releasing pro-angiogenic factors, such as vascular

endothelial growth factor (VEGF), thereby promoting tumor

angiogenesis and aiding in the metastasis of tumor cells (14, 15).

Furthermore, immune cells present in the TME, including T cells

and natural killer (NK) cells, are critical for tumor immune

surveillance and the mechanisms of immune evasion. When

immune evasion transpires, tumor cells can successfully avoid the

host immune system’s attacks, subsequently leading to metastatic

spread (16, 17). Lung cancer cells interact with a variety of cells and

molecules within the TME, establishing a complex ecosystem. This

ecosystem not only creates favorable conditions for the growth and

survival of lung cancer cells but also significantly influences their

biological behaviors and responses to therapeutic interventions

(18, 19).

Epigenetic regulation denotes the mechanisms that modulate

gene expression without modifying the underlying DNA sequence.

The primary forms of epigenetic regulation encompass DNA

methylation, histone modifications, and the influence of non-

coding RNAs (ncRNAs) (20–22). Such epigenetic alterations play

pivotal roles in both physiological and pathological processes,

including organismal growth and development, cellular

differentiation, aging, as well as the initiation and advancement of

various diseases (23–25). Recent investigations have highlighted the

significant involvement of epigenetic mechanisms in the

development of lung cancer. These mechanisms can affect the

progression of lung cancer by altering cellular functions and

facilitating intercellular communication within the TME (26, 27)

(Figure 1). Nonetheless, a thorough comprehension of the

epigenetic mechanisms that contribute to TME modifications

remains elusive. This article aims to discuss the most recent

findings regarding epigenetic events that influence interactions

with the tumor microenvironment in the context of lung cancer

biology. Additionally, we will examine their potential clinical

implications, including the identification of epigenetic biomarkers

and therapeutic strategies.
2 Overview of the microenvironment
of lung cancer

The microenvironment of lung cancer is a complex ecosystem

composed of multiple cell types and extracellular components. It

plays a key role in the initiation, progression, metastasis, and

treatment response of lung cancer. This microenvironment

primarily consists of tumor cells, immune cells, stromal cells,

extracellular matrix, and various signaling molecules (Figure 2).
2.1 Cellular components

The cellular constituents within the lung cancer tumor

microenvironment exhibit a high degree of complexity and

variability, with the interactions between these cells collectively

influencing tumor initiation, progression, and metastatic spread
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(28). Tumor cells, which serve as pivotal elements within this

microenvironment, demonstrate significant capabilities for

proliferation, invasion, and extensive metastasis (29). By secreting

a range of cytokines and chemokines, including VEGF and platelet-

derived growth factor (PDGF), these cells modulate the tumor

microenvironment, thereby establishing conditions that favor

their own growth and survival (30, 31). Furthermore, tumor cells

can undergo an epithelial-mesenchymal transition (EMT), which

endows them with mesenchymal traits, ultimately enhancing their

migratory and invasive potential, thus facilitating the process of

metastasis (32, 33).

Immune cells are integral components of the tumor

microenvironment, encompassing a variety of cell types including

T cells, B cells, NK cells, macrophages, dendritic cells (DCs), and

myeloid-derived suppressor cells (MDSCs) (34). Among these, T

cells are pivotal in mediating anti-tumor immunity; specifically,

CD8+ cytotoxic T lymphocytes are capable of identifying and

eliminating tumor cells, thereby exerting significant anti-tumor

effects (35). Conversely, regulatory T cells (Tregs) facilitate tumor

progression and immune evasion by dampening the activity of

diverse immune cell populations and promoting immune tolerance

(36). B cells, while known for their role in antibody production and

humoral immune responses, exhibit a controversial function within

the tumor microenvironment. Some research indicates that B cells

can modulate the tumor immune response through cytokine

secretion or antigen presentation; however, the nature of these

effects—whether they are supportive of tumor growth or
Frontiers in Immunology 03
detrimental to it—remains a topic of ongoing investigation (37).

NK cells are capable of non-specifically targeting and destroying

tumor cells, thus playing a crucial role in tumor immune

surveillance (38). Nevertheless, the presence of inhibitory factors

within the tumor microenvironment, such as transforming growth

factor-b (TGF-b) produced by tumor cells, can significantly

diminish NK cell functionality and weaken their anti-tumor

responses (39, 40).

Macrophages undergo differentiation into tumor-associated

macrophages (TAMs) within the tumor microenvironment, which

can be categorized into two distinct types: M1 and M2, based on

their functional roles and phenotypic characteristics (41). M1-type

TAMs exhibit anti-tumor properties and are capable of releasing

pro-inflammatory cytokines such as TNF-a and IL-12, which serve

to activate immune cells to target and eliminate tumor cells (42). In

contrast, M2-type TAMs contribute to tumor progression by

secreting immunosuppressive factors, including IL-10 and TGF-b.
These factors facilitate tumor cell proliferation, migration, and

angiogenesis while concurrently suppressing the host’s anti-tumor

immune response (43, 44). Dendritic cells represent the most potent

antigen-presenting cells, adept at capturing, processing, and

presenting tumor antigens, which is essential for T cell activation

and the initiation of anti-tumor immune responses. Nevertheless,

various factors present in the tumor microenvironment, such as

indoleamine 2,3-dioxygenase (IDO), can hinder the maturation and

functional capabilities of DCs, thereby facilitating tumor immune

evasion (45, 46). MDSCs comprise a diverse range of cells that
FIGURE 1

The relationship between epigenetic regulation (DNA methylation, histone modification, non-coding RNA regulation) and the microenvironment
of lung cancer. (Left panel) Major epigenetic mechanisms—including chromatin remodeling, DNA methylation, and non-coding RNA regulation—
contribute to aberrant gene expression in lung cancer. In chromatin remodeling, loss of the repressive mark H4K20me3 and gain of the active mark
H4K16Ac through KDM6/4 and HAT activity enhance chromatin accessibility and transcription of oncogenic target genes. In DNA methylation,
reduced S-adenosylmethionine (SAM) levels and DNA hypomethylation lead to abnormal activation of tumor-promoting genes. In non-coding
RNA regulation, lncRNAs and miRNAs modulate gene expression by influencing Pol II–mediated transcription, mRNA stability, and translation of
oncogenic transcripts.(Right panel) These epigenetic alterations collectively reshape the lung tumor immune microenvironment (TIME). Aberrant
gene regulation affects key immune populations, including immature dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), regulatory
T cells (Tregs), cancer-associated fibroblasts (CAFs), CD4+/CD8+ T cells, NK cells, and neutrophils. Epigenetic reprogramming in tumor and stromal
cells impairs antigen presentation, promotes immunosuppression, and alters oxygen diffusion and vascular remodeling, ultimately leading to immune
escape and tumor progression.(activating (→) and inhibitory (⟞)).
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significantly accumulate within the tumor microenvironment.

These cells suppress immune cell activity through various

mechanisms, including the depletion of amino acids, the

production of ROS, and the secretion of inhibitory cytokines, all

of which contribute to tumor growth and metastatic spread (47, 48).

In the tumor microenvironment, fibroblasts undergo activation

and subsequently differentiate into CAFs (49). CAFs modify the

tumor microenvironment’s structural integrity by producing

extracellular matrix constituents, including collagen and

fibronectin, which facilitate the growth and motility of neoplastic
Frontiers in Immunology 04
cells (50, 51). Furthermore, CAFs release a range of growth factors

and cytokines, such as EGF, HGF, and IL-6, thereby enhancing the

proliferation, survival, and invasive characteristics of tumor cells.

They play a crucial role in modulating the tumor immune

microenvironment and fostering angiogenesis within tumors (52,

53). Additionally, CAFs engage in bidirectional interactions with

tumor cells, whereby both entities can affect one another’s biological

functions through paracrine signaling mechanisms (54).

Vascular endothelial cells play a critical role in the development

of blood vessels within tumors. Tumor cells secrete pro-angiogenic
FIGURE 2

Cytokine–chemokine network and cellular crosstalk driving immune escape in the lung tumor microenvironment. Cytokines and chemokines within
the lung tumor microenvironment orchestrate a complex signaling network that promotes tumor progression and immune evasion. Key mediators
such as IL-6, IFN-g, CXCL12, TNF-a, TGF-b, and CCL2 regulate epithelial–mesenchymal transition (EMT), proliferation, migration, invasion, and
neoangiogenesis. Through activation of CXCL12/CXCR4 and NF-kB signaling, these factors induce PD-L1 expression, enhance monocyte
chemotaxis, and drive the recruitment of tumor-associated macrophages (TAMs), contributing to metastasis and treatment resistance. In parallel,
carcinoma-associated fibroblasts secrete EGF, HGF, and IL-6, which stimulate tumor and endothelial cells to initiate vascular remodeling and
immune suppression. Within the immune compartment, CD8+ T cells and NK cells mediate cytotoxic responses, while Tregs and M2 macrophages
promote immunosuppression via TNF-b and IL-10 secretion, collectively enabling immune escape and tumor dissemination.
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factors, including VEGF, which stimulate the proliferation,

migration, and formation of lumens in vascular endothelial cells.

This process ensures an adequate supply of nutrients and oxygen to

tumor tissues, thereby facilitating both tumor growth and metastasis

(55). Tumor-associated blood vessels exhibit distinct structural and

functional abnormalities, characterized by incomplete vessel walls,

heightened permeability, and disorganized blood flow. These

imperfections not only compromise blood perfusion in tumors but

also create an environment conducive to the dissemination of tumor

cells. Additionally, the atypical architecture of these blood vessels

plays a role in enabling tumor immune evasion (56, 57). Tumor

vascular endothelial cells are capable of expressing various

immunomodulatory molecules that further support tumor immune

evasion by suppressing the body’s anti-tumor immune response.

Within the tumor microenvironment, a complex ecosystem is

established through the interactions between vascular endothelial

cells and tumor cells (58, 59).
2.2 Non cellular components

The tumor microenvironment in lung cancer encompasses

various non-cellular elements, including the ECM, cytokines, and

chemokines, all of which exert considerable influence on tumor

development and the regulation of the microenvironment. The

ECM constitutes a sophisticated network comprising components

such as collagen, fibronectin, laminin and proteoglycans. This

matrix not only offers structural support to tumor cells but is also

instrumental in modulating their behavior, including proliferation,

migration, invasion, and differentiation (60, 61). Among these

components, collagen stands out as a predominant element of the

ECM. Alterations in its composition and structural integrity are

intricately linked to tumor invasion and metastasis (62, 63). In the

context of lung cancer, collagen produced by CAFs can establish a

dense fibrous framework that facilitates tumor cell migration.

Additionally, it interacts with surface receptors such as integrins

on tumor cells, initiating intracellular signaling cascades (for

instance, FAK/Src and PI3K/AKT pathways), which in turn

enhance tumor cell proliferation, invasion, and the epithelial-

EMT (64, 65). Furthermore, glycoproteins such as fibronectin and

laminin are crucial for tumor cell adhesion and migration. They

facilitate the interaction between tumor cells and the ECM, thereby

influencing motility and survival signaling pathways (66, 67).

Moreover, proteoglycans, including heparan sulfate proteoglycans,

within the ECM can interact with growth factors and cytokines,

establishing localized concentration gradients that regulate their

activity and distribution. This interaction significantly impacts the

signaling networks, angiogenesis, and immune modulation within

the tumor microenvironment (68, 69).

Cytokines represent a category of small protein molecules secreted

by both immune and tumor cells, playing crucial roles in the regulation

of immune responses and cellular growth within the tumor

microenvironment of lung cancer (70, 71). Notable cytokines

identified in this context include IL, IFN, TNF, and TGF-b. Among
Frontiers in Immunology 05
these, IL-6 is particularly significant due to its multifunctional nature

and high expression levels within the lung cancer tumor

microenvironment (72). It facilitates tumor cell proliferation, survival,

and migration through the activation of signaling pathways such as

signal transducer and activator of transcription 3 (STAT3), concurrently

impairing the body’s anti-tumor immune responses (73, 74).

Furthermore, IL-6 promotes the differentiation and expansion of

Tregs, thereby exacerbating the immunosuppressive conditions

present in the tumor microenvironment (75). Interferons, particularly

IFN-g, possess diverse functions including antiviral and anti-tumor

capabilities, as well as immune regulation. IFN-g serves to activate

immune cells such as macrophages and NK cells, thereby boosting their

anti-tumor efficacy (76, 77). Additionally, it prompts tumor cells to

express major histocompatibility complex (MHC) molecules, thereby

enhancing tumor immunogenicity and promoting immune surveillance

(78). Nevertheless, in a persistent tumor microenvironment, IFN-g
signaling may lead to the expression of immune checkpoint

molecules, such as PD-L1, or encourage the infiltration of

immunosuppressive cells, establishing a negative feedback loop that

hinders immune responses (79). TNF-a functions as a pro-

inflammatory cytokine capable of directly inducing tumor cell

apoptosis while also exerting indirect anti-tumor effects through the

activation of immune cells (80). However, within the tumor

microenvironment—especially in lung cancer—TNF-a can stimulate

tumor cells to produce anti-apoptotic proteins (e.g., c-FLIP and Bcl-2

family members), promote the release of inflammation-associated

factors, drive epithelial- EMT, and bolster the characteristics of tumor

stem cells via pathways such as NF-kB. Thesemechanisms contribute to

the survival, invasion, metastasis, and therapeutic resistance of

tumor cells (81, 82). TGF-b is a crucial pleiotropic cytokine that

typically serves as a potent immunosuppressive and metastasis-

facilitating agent in advanced lung cancer (83). TGF-b can directly

inhibit the activation and functionality of effector immune cells,

including CD8+ T cells, NK cells, and macrophages; promote the

differentiation, expansion, and functional stability of Treg cells; and

induce EMT in tumor cells, thereby enhancing their invasive properties,

metastatic potential, stem cell-like characteristics, and resistance to

therapy (84–86).

Chemokines represent a specific category of small protein

molecules that facilitate the directional movement of immune

cells and other cellular types. These proteins are integral to the

mobilization of immune cells as well as the metastasis of cancer cells

within the tumor microenvironment (87, 88). In the context of lung

cancer, the signaling pathway involving chemokines, notably CXC

chemokine ligand 12 (CXCL12) and its corresponding receptor,

CXC chemokine receptor 4 (CXCR4), is crucial for tumor

progression (89). Both tumor cells and tumor-associated

fibroblasts have the capacity to secrete CXCL12, which serves to

attract tumor cells, immune cells, and vascular endothelial cells that

express CXCR4, thereby facilitating their migration toward the

tumor site (90, 91). Following the binding of CXCL12 to CXCR4

on the tumor cell surface, the resultant CXCR4-CXCL12 complex

activates various intracellular signaling cascades, which in turn

enhance the proliferation, migration, and invasion of tumor cells,
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along with promoting tumor angiogenesis and metastatic spread to

distant sites (92, 93). Moreover, the chemokine CCL2 and its

receptor CCR2 are critically involved in the recruitment of TAMs

(94, 95). CCL2 has the ability to draw CCR2-positive monocytes

into the tumor microenvironment, prompting their differentiation

into TAMs, ultimately fostering tumor growth and metastatic

processes (96, 97) (Table 1).
3 Mechanisms of epigenetic
regulation

Epigenetic regulation pertains to the modulation of gene

expression without any modifications to the DNA sequence itself.
Frontiers in Immunology 06
The primary mechanisms involved in this process encompass DNA

methylation, histone modifications, and the regulation by non-

coding RNAs (ncRNAs) (101). These mechanisms work in concert

to sustain normal cellular operations. However, any disruption in

these mechanisms may precipitate the development of various

diseases, including lung cancer (Figure 3).

DNA methylation refers to the biochemical process whereby

methyl groups are added to specific regions of DNA, predominantly

within CpG islands, a reaction facilitated by the enzyme DNA

methyltransferases (DNMTs) (102). In healthy cells, DNA

methylation plays a crucial role in the regulation of gene

expression and the maintenance of regular cellular functions

(103). Conversely, in the context of lung cancer, the pattern of

DNA methylation experiences significant alterations (104).
TABLE 1 The main components of the tumor microenvironment of lung cancer.

Main
components

Mechanism Function References

Cellular components

T Cell Identify and kill tumor cells Anti-tumor effect (35)

Treg Cell
Inhibit the activity of immune cells and maintain immune
tolerance

Promote tumor growth and immune escape (36)

B Cell Secreting cytokines or antigen presentation Affects the immune response of tumors (37)

M1 macrophages
Secrete pro-inflammatory cytokines, such as TNF - a and IL-12,
etc.

Activate immune cells to kill tumor cells (98)

M2 macrophages Secrete immunosuppressive factors, such as IL-10 and TGF – b
Promote the proliferation, migration and angiogenesis of
tumor cells

(99, 100)

Fibroblast cells
Secrete extracellular matrix components (such as collagen and
fibronectin)

Promote the proliferation, survival and invasion of tumor
cells and facilitate tumor angiogenesis

(52, 53)

vascular
endothelial cell

Induce the proliferation, migration and lumen formation of
vascular endothelial cells

Promote the growth and metastasis of tumors (55)

Non cellular components

Collagen Provide scaffolds for the migration of tumor cells
Promote the proliferation, invasion and EMT of tumor
cells

(64, 65)

fibronectin
Mediate the interaction between tumor cells and extracellular
matrix

Regulate the motility and survival signals of tumor cells (66, 67)

proteoglycan
Combine growth factors and cytokines to form local
concentration gradients

Promote angiogenesis and inhibit immune regulation (68, 69)

IL-6
Activate Signal Transducer and activator of Transcription 3
(STAT3)

Promote the proliferation, survival and migration of tumor
cells, and provide immunosuppression

(73, 74)

IFN-g Activate immune cells such as macrophages and NK cells
Enhance anti-tumor activity and promote tumor immune
surveillance

(76, 77)

TNF-a
Induce tumor cells to produce anti-apoptotic proteins and
promote the release of inflammation-related factors

Support the survival, invasion, metastasis and treatment
resistance of tumor cells

(81, 82)

TGF-b
Inhibit the activation and function of effector immune cells such
as CD8+ T cells, NK cells and macrophages

Enhance the invasion, metastasis, stem cell characteristics
and therapeutic resistance of tumor cells

(84–86)

CXCL12
Promote the migration of tumor cells, immune cells, vascular
endothelial cells, etc. to the tumor site

Promote the proliferation, migration and invasion of tumor
cells

(90, 91)

CXCR4 Promote the proliferation, migration and invasion of tumor cells
Promote the proliferation, migration and invasion of tumor
cells

(92, 93)

CCL2
Attract CCR2-positive monocytes into the tumor
microenvironment

Promote the growth and metastasis of tumors (96, 97)
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Notably, the promoter regions of numerous tumor suppressor genes

are often found in a hypermethylated state, which obstructs the

normal transcription and expression of these genes. This disruption

results in tumor cells evading their typical growth inhibition

mechanisms, thereby acquiring advantages in terms of

proliferation and survival (105, 106). Investigations have

indicated that the p16 gene frequently undergoes silencing in lung

cancer tissues due to hypermethylation of its promoter region,

leading to the loss of its regulatory influence on the cell cycle, which

in turn fosters the proliferation of lung cancer cells (107, 108).

Additionally, DNA methylation has the potential to influence

various processes related to metabolism, invasion, and metastasis

in tumor cells (109). Studies utilizing lung cancer cell lines have

revealed that alterations in the methylation status of specific genes

associated with tumor metastasis can significantly impact the

migratory and invasive capabilities of tumor cells (110).

Histone modification encompasses the chemical alterations of

the amino acid residues within histones, which include processes

such as acetylation, methylation, phosphorylation, and

ubiquitination (111, 112). These modifications have the capacity

to transform the structural and functional properties of chromatin,

thereby impacting gene expression (113). Histone acetylation is

facilitated by histone acetyltransferases (HATs), which relax the

chromatin architecture, enhance the accessibility of genes, and

stimulate transcriptional activity (114). Conversely, histone

deacetylation is mediated by histone deacetylases (HDACs),

resulting in a more compact chromatin structure that suppresses

gene transcription (115). In the context of lung cancer, the

equilibrium between histone acetylation and deacetylation is

perturbed, resulting in the dysregulation of gene expression (116,

117). Research has indicated that the heightened activity of HDACs

in lung cancer cells correlates with increased levels of histone
Frontiers in Immunology 07
deacetylation, leading to the repression of certain tumor

suppressor genes and consequently facilitating the onset and

progression of lung cancer (118). The modification of histone

methylation is characterized by its complexity, as varying

locations and extents of methylation can elicit diverse biological

outcomes that may either promote or inhibit gene expression.

Moreover, its specific implications in lung cancer are contingent

upon the location and extent of modification, along with the

associated regulatory elements (119, 120).

Non-coding RNAs (ncRNAs) represent a category of RNA

molecules that lack protein-coding capabilities, encompassing

microRNAs (miRNAs) and long non-coding RNAs (lncRNAs).

These molecules are integral to epigenetic regulation (121).

miRNAs are characterized as small RNA entities, approximately

22 nucleotides in length, that modulate gene expression through

complementary binding to the mRNA of specific target genes. This

interaction can suppress the translation of mRNA or facilitate its

degradation (122, 123). In the context of lung cancer, numerous

miRNAs exhibit aberrant expression patterns that are implicated in

various cellular processes, including proliferation, apoptosis,

invasion, and metastasis of lung cancer cells (124). Notably, miR-

21 is found to be overexpressed in lung cancer tissues, where it can

target and downregulate multiple tumor suppressor genes, thereby

enhancing the proliferation and invasiveness of lung cancer cells

(125). lncRNA is a ncRNAs with a length of more than 200

nucleotides. lncRNA’s mechanism of action is more complex. It

can regulate gene expression at multiple levels, including the

transcriptional and post-transcriptional levels, by interacting with

DNA, RNA, or proteins (126, 127). Within lung cancer pathology,

certain lncRNAs, such as MALAT1 and HOTAIR, are significantly

associated with the onset and progression of the disease (128).

MALAT1 has been shown to facilitate the proliferation, migration,
FIGURE 3

The main epigenetic regulation mechanisms in lung cancer, including DNA methylation, histone modification, and NcRNAs regulation, etc.
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and invasion of lung cancer cells by modulating the expression of

associated genes (129). Conversely, HOTAIR interacts with

chromatin modification complexes to modify chromatin states,

which subsequently affects gene expression and promotes

metastasis in lung cancer (130).
4 Epigenetic regulatory mechanisms
in the microenvironment of lung
cancer

4.1 The regulatory role of DNA methylation
in the microenvironment of lung cancer

DNA methylation is an epigenetic modification catalyzed by

DNA methyltransferases (DNMTs). This modification regulates

gene expression by adding methyl groups to CpG islands and

serves as an important mechanism for maintaining genomic

stability and influencing cell differentiation and survival (103).

Specifically, in the lung cancer microenvironment, abnormal

changes in DNA methylation have a profound impact on gene

expression and cell function. These alterations play a key role in the

occurrence, development, metastasis, and response to treatment of

lung cancer.

In the process of lung cancer development, abnormal DNA

methylation is manifested not only as hypermethylation of

individual tumor suppressor gene promoters but also as

epigenetic reprogramming driven by a systemic imbalance in the

expression or activity of enzymes regulating DNA methylation

(131). DNA methyltransferases (DNMTs) are the main writers,

including DNMT1, DNMT3A, and DNMT3B, which achieve gene

silencing by catalyzing the transfer of a methyl group to cytosine,

resulting in the formation of 5-methylcytosine (5mC) (132). Studies

have shown that overexpression of DNMT1 leads to methylation-

mediated silencing of promoter regions of multiple tumor

suppressor genes (such as p16, RASSF1A, and CDH1), thereby

inhibiting apoptosis and promoting tumor cell proliferation and

invasion (133). The p16 tumor suppressor gene is pivotal in the

regulation of the cell cycle. The protein encoded by this gene serves

to inhibit the activity of cyclin-dependent kinases 4 and 6 (CDK4/

6), thereby obstructing the transition of cells from the G1 phase to

the S phase and consequently suppressing cellular proliferation

(134). Within lung cancer cells, the promoter region of the p16 gene

frequently experiences hypermethylation, which leads to

transcriptional silencing of the gene. As a result, the inhibition of

CDK4/6 is lost, causing the cell cycle to become dysregulated. This

allows lung cancer cells to continuously proliferate, facilitating

tumor initiation and progression (135). Research indicates that in

cases of non-small cell lung cancer, the prevalence of

hypermethylation at the p16 gene promoter can range from 50%

to 70%, correlating closely with the tumor’s stage, grade, and patient

prognosis (104, 136). Another frequently silenced tumor suppressor

gene, RASSF1A, also undergoes promoter hypermethylation. The

protein produced by RASSF1A is integral to various cellular

processes, including apoptosis, regulation of the cell cycle, and the
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inhibition of tumor cell migration and invasion (137). In lung

cancer, hypermethylation of the RASSF1A promoter results in the

loss of its expression, allowing cancer cells to evade apoptosis while

enhancing their proliferative and metastatic potential (138). A

comprehensive study involving a large cohort of lung cancer

patients revealed that those exhibiting hypermethylation of the

RASSF1A promoter had significantly poorer 5-year survival rates

compared to their counterparts without such hypermethylation

(139). In addition, epigenetic silencing of the CDH1 gene by

methylation is of significant importance in lung cancer. The

adhesion molecule E-cadherin, encoded by CDH1, maintains

intercellular connections and tissue structural integrity of

epithelial cells. Methylation of its promoter can lead to loss of

protein expression, thereby weakening intercellular adhesion and

promoting EMT (140). This process not only enhances the

migration and invasion capabilities of lung cancer cells but also

promotes tumor immune evasion by regulating immune-related

signals. For example, loss of E-cadherin can upregulate PD-L1

expression and reshape the tumor immune microenvironment,

enabling tumor cells to evade immune surveillance (141).

Therefore, CDH1 methylation is not only a hallmark event of

tumor invasion and metastasis but also reflects the functional

cross-talk between epigenetic regulation and immune evasion.

Furthermore, abnormal activation of DNMT3A and DNMT3B is

closely related to the early occurrence of lung cancer, and their

inhibitors (such as azacitidine and decitabine) have been approved

for use in hematological tumors and are being explored for

epigenetic therapy in lung cancer (142). In contrast, members of

the demethylase (erasers) family, such as TET1, TET2, and TET3,

promote the demethylation process by oxidizing 5-methylcytosine

(5mC) to 5-hydroxymethylcytosine (5hmC). Loss of their function

often leads to global reduction of 5hmC and hypermethylation at

specific loci (143). For example, TET2 mutations or downregulation

can promote the maintenance of cancer stemness and tumor

immune evasion in lung cancer cells. Additionally, loss of TET1

enhances tumor adaptive metabolism by upregulating hypoxia-

inducible factor 1-alpha (HIF-1a) signaling (144).

Beyond its effects on tumor cells directly, DNA methylation is

also integral to intercellular signaling and immunemodulation within

the tumor microenvironment of lung cancer (145). TAMs represent a

significant subset of immune cells present in this environment, and

their functional characteristics are pivotal for tumor progression

(146). Studies have demonstrated that the DNA methylation

patterns of specific genes within TAMs can influence their

polarization and operational capacities. For example, the

hypomethylation observed in the promoter region of the Arg1 gene

leads to an upregulation of this gene’s expression, thereby steering

TAMs toward an M2 polarization. M2-type TAMs are characterized

by their immunosuppressive roles and their ability to secrete a variety

of cytokines, including IL-10 and TGF-b, which can inhibit the

functions of immune cells such as T cells and NK cells, thus

promoting tumor immune evasion (147). In contrast, the

restoration of TET enzyme activity can enhance T cell infiltration

by remodeling the chemokine network, thereby improving the

response rate to immune checkpoint therapy (148). Conversely,
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DNMT1-mediated methylation silences chemokines such as CXCL9

and CXCL10, leading to reduced anti-tumor immune cell infiltration;

the restoration of TET1 and TET2 can reverse this effect and improve

the efficacy of immune checkpoint inhibitors (ICIs) (149). In

addition, abnormal DNA methylation in cancer-associated

fibroblasts (CAFs) promotes extracellular matrix stiffening and

tumor angiogenesis by upregulating extracellular matrix

remodeling-related genes, such as COL1A1 and LOXL2, and

increasing growth factor secretion. This creates a more invasive

niche for cancer cells (150, 151). Beyond TAMs and CAFs,

remodeling of DNA methylation in other immune cells also

contributes to reprogramming the immune microenvironment in

lung cancer (152). In T cells, epigenetic remodeling induced by

chronic antigen stimulation fixes the exhausted phenotype.

DNMT3A-mediated methylation of the promoters of PDCD1 (PD-

1), LAG3, and HAVCR2 (TIM-3) leads to sustained high expression

of inhibitory receptors, resulting in functional exhaustion of CD8+T

cells; in contrast, activation of TET2 and TET3 can restore the

memory phenotype and enhance the response to immune

checkpoint therapy (153). In dendritic cells (DCs), overactivation of

DNMT1 and DNMT3B causes hypermethylation of genes such as

MHC-II, CD80/CD86, and IFN-b, inhibiting antigen presentation

and T cell activation. Restoration of TET2 can reconstruct the

inflammatory transcription program and enhance anti-tumor

immunity (154). In tumor-associated neutrophils (TANs),

abnormal methylation of IL-8, CXCR2, and PAD4 mediated by

DNMT1 and DNMT3A drives N2 polarization, promoting

angiogenesis and immune suppression; activation of TET3 can

revert this phenotype to N1, enhancing reactive oxygen species-

dependent tumor-killing effects (155).

During the metastasis of lung cancer, DNA methylation also

plays an important role. EMT is a key process for tumor cells to

acquire invasive and metastatic capabilities (156). Studies have

shown that DNA methylation can influence the metastatic ability

of lung cancer cells by regulating the expression levels of EMT-

related genes (157). Transcription factors such as Snail and Slug are

key regulatory factors in the EMT process. During the metastasis of

lung cancer cells, the methylation status of the promoter regions of

their genes undergoes hypomethylation, which leads to the

upregulation of these transcription factors (158). Low methylation

of the Snail gene promoter increases its expression. The Snail

protein can bind to the promoter region of the E-cadherin gene

and inhibit its expression, which decreases cell-cell adhesion among

lung cancer cells. Additionally, Snail promotes the expression of

mesenchymal markers such as N-cadherin and vimentin. This

allows lung cancer cells to acquire mesenchymal characteristics,

making them more prone to invasion and metastasis (159).

Furthermore, studies have found that the methylation state

of certain miRNA genes related to tumor metastasis is closely

associated with lung cancer metastasis (160). The miR-34a gene is

often downregulated in lung cancer due to high methylation of its

promoter. miR-34a targets and inhibits several genes associated

with tumor metastasis. Following miR-34a downregulation, its
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inhibitory effect on target genes weakens, leading to enhanced

invasion and metastatic ability of lung cancer cells (161–163).

DNA methylation is closely related to the treatment resistance of

lung cancer. During chemotherapy for lung cancer, tumor cells can

alter the expression of resistance-related genes through DNA

methylation, leading to resistance (164, 165). Multidrug resistance

gene 1 (MDR1) encodes P-glycoprotein (P-gp), a drug efflux pump

that can expel chemotherapy drugs that enter the cell, resulting in

tumor cells developing resistance to chemotherapy drugs (166).

Studies have found that after long-term stimulation with

chemotherapy drugs, the methylation level of the MDR1 gene

promoter region decreases, leading to upregulation of gene

expression and overexpression of P-gp protein, causing lung cancer

cells to develop resistance to various chemotherapy drugs, such as

paclitaxel and cisplatin (167, 168). O6-methylguanine-DNA

methyltransferase (MGMT) is a DNA repair enzyme, and its

promoter methylation status is closely related to the sensitivity of

tumor cells to alkylating agent chemotherapy drugs (169). When the

MGMT promoter is highly methylated, gene expression is

suppressed, and tumor cells become more sensitive to alkylating

agents such as temozolomide. Conversely, when the MGMT

promoter is lowly methylated, gene expression is upregulated,

allowing tumor cells to repair DNA damage caused by alkylating

agents, leading to resistance to these drugs (170, 171). In targeted

therapy for lung cancer, DNA methylation can also affect treatment

outcomes. For example, during treatment of non-small cell lung

cancer with epidermal growth factor receptor (EGFR) tyrosine kinase

inhibitors (TKI), some patients may develop resistance (172). Studies

have found that the methylation status of some genes related to the

EGFR signaling pathway changes in resistant cells, leading to

sustained activation of the EGFR signaling pathway, causing tumor

cells to develop resistance to TKI (173, 174) (Figure 4).
4.2 The regulatory role of histone
modifications in the microenvironment of
lung cancer

Histone modifications, as an important mechanism of regulation

at the chromatin level, play a key role in the remodeling of chromatin

structure and the activation or silencing of gene transcription in the

lung cancer microenvironment. Chromatin is formed by DNA

wrapping around histone octamers to create nucleosomes, which are

further assembled into higher-order structures (175). Within these

nucleosomes, the N-terminal tails of histones extend out from

the surface, and the amino acid residues on them can undergo

various post-translational modifications, including acetylation,

methylation, phosphorylation, and ubiquitination. These

modifications can alter the compactness and accessibility of

chromatin, thereby affecting gene transcription activity (176).

Although histone modifications are post-translational modifications

of proteins at the molecular level, they are often regarded as core

components of epigenetic mechanisms. This is because these
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modifications can regulate gene expression in a heritable and

reversible manner without changing the DNA sequence, and they

have long-term regulatory effects in cell differentiation, stress response,

and tumor microenvironment remodeling (177) (Figure 5).

Histone acetylation and deacetylation represent dynamic and

regulated modifications that are orchestrated by HATs and histone

deacetylases (HDACs), respectively (178). In healthy cellular

contexts, this equilibrium plays a crucial role in sustaining

appropriate gene expression. However, within the lung cancer

microenvironment, this delicate balance is frequently disturbed.

Research indicates that lung cancer cells often exhibit elevated levels

of both the expression and activity of HDACs. These enzymes

facilitate the removal of acetyl groups from histones, which

subsequently results in chromatin condensation and the

repression of gene transcription (179, 180). For instance, the

upregulation of HDACs leads to histone deacetylation at the

promoter regions of critical tumor suppressor genes, including

p53 and Rb, thereby contributing to a tighter chromatin

configuration. As a result, the transcriptional activity of these

tumor suppressor genes is inhibited, undermining their essential

roles in curbing tumor cell proliferation and fostering apoptosis,

which ultimately promotes the progression of lung cancer (181).

Conversely, a reduction in HAT activity or expression leads to

diminished levels of histone acetylation, further disrupting normal

gene expression (182). In light of these observations, various studies

have investigated the therapeutic efficacy of histone deacetylase

inhibitors (HDACi) in the treatment of lung cancer. These

inhibitors function by obstructing HDAC activity, enhancing

histone acetylation, and reactivating silenced tumor suppressor
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genes, consequently thwarting the growth and proliferation of

lung cancer cells (183). In both lung cancer cell lines and animal

models, HDACi have been shown to induce apoptosis, halt cell

cycle progression, and partially inhibit tumor growth and

metastasis (184).

Histone methylation modifications are relatively complex and

can occur on different amino acid residues of histones, with varying

degrees of methylation (monomethylation, dimethylation, and

trimethylation). The different modification sites and degrees have

varying effects on gene transcription (185). In the lung cancer

microenvironment, abnormal changes in histone methylation

contribute significantly to the occurrence and progression of lung

cancer (186). For example, trimethylation at lysine 4 of histone H3

(H3K4me3) is usually associated with gene activation. In lung

cancer, certain genes that promote tumor growth and metastasis

have increased H3K4me3 marks in their promoter regions,

enhancing the transcriptional activity of these genes (187). Studies

have found that in NSCLC, some angiogenesis-related genes, such

as the VEGF gene, exhibit elevated H3K4me3 modification in their

promoter regions, promoting VEGF gene transcription. This

facilitates tumor angiogenesis, providing sufficient nutrients and

oxygen for tumor cells, thereby supporting tumor growth and

metastasis (188). Conversely, trimethylation at lysine 27 of

histone H3 (H3K27me3) is usually associated with gene silencing

(189). Moreover, in lung cancer, some tumor suppressor genes

show enhanced H3K27me3 levels in their promoter regions. This

leads to the silencing of these genes. For instance, the increased

H3K27me3 modification in the promoter region of the p16 gene

prevents its normal expression. This results in the loss of its
FIGURE 4

The regulatory role of DNA methylation in the microenvironment of lung cancer.
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regulatory effect on the cell cycle, giving lung cancer cells a

proliferative advantage (190). Histone methylation is catalyzed by

histone methyltransferases (HMTs), with different HMTs

responsible for methylation modifications at various sites and

degrees (191). In lung cancer, abnormal expression of multiple

HMTs leads to disrupted methylation patterns, among which EZH2

and SETD2 are the most representative key regulators. EZH2, the

core methyltransferase of the polycomb repressive complex PRC2,

is capable of catalyzing the H3K27me3 modification (192). EZH2 is

commonly upregulated in lung cancer. Excessive H3K27me3

silences tumor suppressor genes including p16, CDH1, and

PTEN, promoting cell proliferation, EMT, and invasive metastasis

(193). Additionally, EZH2 has multiple immunoregulatory effects in

the TME. On one hand, EZH2 promotes immune evasion by

silencing the expression of MHC-I and T cell chemokines (such

as CXCL9 and CXCL10), reducing antigen presentation and CD8+T

cell infiltration (194). On the other hand, EZH2 can maintain the

immunosuppressive phenotype of Treg cells by silencing cytotoxic

factor gene expression via methylation, such as IFNG and GZMB,
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weakening the effector function of CD8+T cells (195, 196).

Meanwhile, in DCs, overactivation of EZH2 can inhibit the

expression of co-stimulatory molecules (CD80/CD86) and antigen

presentation molecules, limiting the activation of naïve T cells. Its

inhibition can restore DC-mediated immunogenic responses (197).

In TANs, EZH2-mediated H3K27me3 enrichment is associated

with the silencing of pro-inflammatory factors (such as IL-12 and

TNF-a), promoting N2 polarization and angiogenesis. EZH2

inhibitors can reverse this phenotype, enhancing N1 cytotoxic

function and immune response (198). Furthermore, EZH2

collaborates with histone demethylase LSD1 to co-regulate the

chromatin accessibility of T cell exhaustion markers. An

imbalance in their activities can lead to stabilization of T cell

exhaustion and reduced response to anti-PD-1 therapy (199). In

mouse lung cancer models, EZH2 inhibitors (such as Tazemetostat)

can significantly reduce H3K27me3 levels, relieve the epigenetic

silencing of antigen presentation genes, and synergize with PD-1/

PD-L1 immune checkpoint inhibitors, suggesting the potential of

combining epigenetic therapy with immunotherapy (200). In
FIGURE 5

Epigenetic regulation of epithelial-to-mesenchymal transition (EMT) via histone modification. EMT is a dynamic process in which epithelial cells
acquire mesenchymal features through intermediate E/M hybrid states, balancing differentiation and stemness. Histone modifications play a key role
in this transition: KDM6A mediates E-cadherin (E-cad) acetylation and demethylation to maintain epithelial identity, whereas EMT inducers (ZEB1,
SNAI1/2, SOX4) recruit histone deacetylases (HDACs) and histone methyltransferases (HMTs) to repress E-cad transcription, promoting mesenchymal
conversion and enhanced cellular plasticity.AC (Acetylation).
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contrast, SETD2 is the only H3K36me3 methyltransferase in

mammals, and its function is crucial for maintaining genomic

stability, RNA splicing accuracy, and DNA repair (201). In lung

cancer, mutations or deletions of SETD2 lead to decreased

H3K36me3 levels, triggering replication stress, DNA mismatch

repair defects, and genomic instability, thereby promoting tumor

heterogeneity and drug resistance (202). More importantly,

downregulation of SETD2 weakens the transcriptional

activation of immune-related genes and reduces neoantigen

presentation and interferon signaling. It also inhibits CD8+T cell

infiltration and enhances the accumulation of immunosuppressive

cells, such as Tregs and M2 TAMs (203). However, impaired

SETD2 function can activate the cGAS-STING pathway and type

I interferon signaling, triggering a “double-edged sword” effect

characterized by both chronic inflammation and immune

exhaustion. Clinically, SETD2 mutations are considered

associated with unstable efficacy of immune checkpoint inhibitors

and are potential targets for immune profiling combined with

epigenetic therapy (204, 205).

Histone phosphorylation is the addition of phosphate groups to

specific amino acid residues of histones under the action of protein

kinase. This modification can alter the interaction between histones

and DNA, affecting the structure and function of chromatin,

thereby regulating gene transcription (206). Such phosphorylation
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events play important roles in the lung cancer microenvironment,

being involved in the initiation and progression of lung cancer.

Studies have found that lung cancer cells, when stimulated by

external factors such as growth factors and cytokines, exhibit

phosphorylation of histones H2A, H2B, H3, and H4 (207).

Among these, phosphorylation at serine 10 of histone H3

(H3S10ph) is closely associated with gene activation. Specifically,

in lung cancer cells stimulated by EGF, intracellular signaling

pathways are activated, leading to increased protein kinase

activities and resulting in H3S10 phosphorylation (208). H3S10ph

can alter the structure of chromatin and promote the transcription

of genes related to cell proliferation and survival, such as c-Myc and

Cyclin D1, thereby facilitating the proliferation and survival of lung

cancer cells (209, 210). Histone phosphorylation is also linked to the

invasion and metastasis capabilities of lung cancer cells. During the

EMT process in lung cancer cells, specific histone phosphorylation

modifications change (211). Research shows that under the

stimulation of EMT-inducing factors, such as TGF-b, the

phosphorylation level of serine 14 on histone H2B (H2BS14ph)

increases (212). H2BS14ph can regulate the expression of EMT-

related genes by affecting the recruitment of chromatin remodeling

complexes, promoting the expression of mesenchymal markers like

N-cadherin and vimentin, while inhibiting the expression of

epithelial markers like E-cadherin. This allows lung cancer cells to
FIGURE 6

The regulatory role of histone modification in the microenvironment of lung cancer.
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acquire mesenchymal characteristics and enhances their invasion

and metastasis capabilities (213) (Figure 6).
4.3 Regulatory role of Non-coding RNA in
lung cancer microenvironment

Non-coding RNA refers to a category of RNAmolecules that do

not translate into proteins, yet they serve an essential regulatory

function within the microenvironment of lung cancer. This

category predominantly encompasses miRNA and lncRNA. These

molecular entities modulate gene expression at both transcriptional

and post-transcriptional stages through their interactions with

specific target genes. Consequently, they impact the biological

activit ies of lung cancer cells as well as the cellular

communication and interactions occurring within the lung

cancer microenvironment.

miRNAs are small RNA molecules approximately 22

nucleotides in length. They bind to the 3’-untranslated region (3’-

UTR) of target gene mRNA through complementary pairing,

inhibiting mRNA translation or promoting its degradation,

thereby achieving negative regulation of gene expression (214). In

the lung cancer microenvironment, the expression levels of many

miRNAs are abnormally altered. These miRNAs participate in the

processes of lung cancer occurrence, development, metastasis, and

immune escape (215). miR-21 is highly expressed in lung cancer

tissues and cell lines. It can target and inhibit the expression of

tumor suppressor genes such as programmed cell death protein 4

(PDCD4), and phosphatase and tensin homolog (PTEN) (216).

After the expression of PDCD4 is suppressed, PDCD4 cannot

effectively inhibit the activity of the protein translation initiation

factor eIF4A, which promotes the proliferation and invasion of lung

cancer cells (217). The downregulation of PTEN expression

weakens its inhibitory effect on the phosphoinositide 3-kinase

(PI3K)/protein kinase B (AKT) signaling pathway. This activates

the signaling pathway and enables lung cancer cells to acquire

stronger survival and proliferation capabilities (218). miR-155 is

also highly expressed in the lung cancer microenvironment. It can

affect the function of immune cells by targeting and regulating some

immune-related genes (219). miR-155 can target and inhibit the

expression of the SHIP1 gene, which is a negative regulator involved

in immune cell signaling. Its suppression leads to excessive

activation of immune cells and enhanced inflammatory responses,

facilitating immune escape of lung cancer cells (220, 221). miR-155

can also promote the polarization of TAMs towards the M2 type,

enhancing the immunosuppressive function of TAMs and further

inhibiting the body’s anti-tumor immune response (222). In

addition to TAMs, miRNAs also mediate epigenetic regulation

and immune exhaustion in various immune populations. For

example, in T cells, miR-31, miR-146a, and miR-155 can target

molecules such as T-bet, SOCS1, and DNMT1, reshaping

exhaustion-related epigenetic programs (223). Upregulation of

miR-31 promotes the expression of TOX and PD-1, locking

CD8+T cells into an exhausted phenotype. Upregulation of miR-
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146a inhibits IFN-g production, weakening cytotoxic responses,

while miR-34a targets PD-L1 mRNA, partially restoring the killing

activity of T cells and enhancing sensitivity to immune checkpoint

therapy (224, 225). In DCs, the miR-148/152 family enhances

antigen presentation by inhibiting CaMKIIa and DNMT1,

upregulating CD80/CD86 and type I interferons; conversely, high

expression of miR-22 and miR-146a inhibits IRF5, RelB, and IL-12,

inducing DCs to transition to a tolerant phenotype, weakening T

cell activation (226). In TANs, miR-223 and miR-142-3p regulate

the STAT3 and HIF-1a pathways, balancing pro-inflammatory and

immunosuppressive responses. Downregulation of miR-223 drives

N2 polarization and enhances VEGF expression, promoting

angiogenesis and immune evasion, while upregulation of miR-

142-3p can inhibit Neutrophil Extracellular Traps (NETs)

formation and restore pro-inflammatory responses (227, 228).

Furthermore, an increasing number of studies have found that

miRNAs can directly regulate epigenetic mechanisms. They become

key nodes connecting metabolism and immune remodeling. For

example, the miR-29 family can target DNA methyltransferases

DNMT3A/3B, downregulating their expression, thereby relieving

the methylation silencing of tumor suppressor genes, such as p15

and RASSF1A. miR-148a and miR-152 directly target DNMT1,

restoring gene demethylation and inhibiting the EMT process in

lung cancer cells. miR-101 and miR-26a can downregulate histone

methyltransferase EZH2, reducing H3K27me3 levels and

reactivating the transcription of tumor suppressor genes, thereby

enhancing T cell activation and anti-tumor immune responses (229,

230). Additionally, miR-34a targets deacetylase SIRT1, increasing

p53 acetylation levels, promoting cell cycle arrest and apoptosis

(231). miR-137 inhibits histone demethylase LSD1 (KDM1A),

blocking the EMT process in lung cancer cells (232). These

miRNAs reshape chromat in s ta tes and the immune

microenvironment through the “miRNA–epigenetic enzyme” axis,

revealing the molecular intersection of immune evasion and

metabolic abnormalities in lung cancer.

LncRNAs are classified as non-coding RNAs that exceed 200

nucleotides in length. The mechanisms by which they exert their

effects are intricate, allowing them to modulate gene expression

through a variety of pathways (233). Within the lung cancer

microenvironment, lncRNAs engage with DNA, RNA, and

proteins, fulfilling regulatory functions at several tiers,

encompassing both transcriptional and post-transcriptional levels

(234). One notable lncRNA, MALAT1, has been closely associated

with the metastasis of lung cancer and exhibits elevated expression

levels in lung cancer tissues and cellular models (235). MALAT1

regulates the expression of genes associated with tumor metastasis

by recruiting chromatin modification complexes and altering the

structure and accessibility of chromatin (236). MALAT1 can

interact with the histone methyltransferase EZH2, leading to the

enrichment of EZH2 in certain tumor suppressor gene promoter

regions and catalyzing the trimethylation of H3K27me3. This

results in the silencing of these tumor suppressor genes and

promotes the invasion and metastasis of lung cancer cells.

Moreover, MALAT1 affects the stability and transport of specific
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mRNAs related to cell migration and invasion, enhancing their

stability and thereby regulating the biological behavior of lung

cancer cells (237, 238). Similarly, HOTAIR is also a LncRNA that

plays an important role in lung cancer; it regulates gene expression

by interacting with various proteins and RNAs (239). HOTAIR

binds to the PRC2 complex, recruiting PRC2 to specific gene loci

and promoting gene silencing (240). In lung cancer, HOTAIR

promotes tumor occurrence and development by regulating the

expression of genes related to cell proliferation, apoptosis, and

metastasis (241). Research shows that HOTAIR can inhibit the

expression of the E-cadherin gene, promoting the EMT process of

lung cancer cells and enabling them to acquire stronger invasion

and metastasis capabilities (238). Further research indicates that

some lncRNAs directly affect the stability or recruitment of

epigenetic enzymes, thereby altering the chromatin accessibility in

lung cancer cells and immune cells. For example, the XIST–EZH2

axis involves XIST recruiting EZH2 to mediate H3K27me3-

dependent silencing of CDH1 and KLF2, which promotes the

proliferation and migration of lung cancer cells (242). The

NEAT1-EZH2/DNMT1 axis functions through NEAT1 binding

to EZH2 or DNMT1, leading to silencing of p21 and DUSP4 by

H3K27me3 or DNA methylation, facilitating tumor immune

evasion and chemotherapy resistance (243). In the PVT1-EZH2

axis, PVT1 stabilizes EZH2 protein levels and suppresses the

expression of the miR-200 family of microRNAs and tumor

suppressor genes, inducing an immunosuppressive phenotype

(244). The LINC01138-PRMT5 axis involves LINC01138 binding

to and stabilizing the arginine methyltransferase PRMT5, thereby

potentiating gene silencing and immunosuppressive transcriptional

programs (245). Lastly, the SNHG16–HDAC1 axis recruits HDAC1

to deacetylate the p53 promoter, reducing its transcriptional activity

and promoting cell survival and immune tolerance (246).

Non-coding RNAs play a key role in intercellular

communication within the lung cancer microenvironment.

Tumor cells can transfer their ncRNAs to surrounding cells

through the secretion of exosomes, thereby affecting their

functions (247). Lung cancer exosomes contain a large amount of

miRNAs and lncRNAs, which can be taken up by CAFs and

immune cells (248). Exosomal miR-21 can be taken up by CAFs,

activating the PI3K/Akt pathway, leading CAFs to secrete more

extracellular matrix and pro-tumor factors (such as TGF-b, PDGF),
providing a more favorable growth environment for tumor cells

(249). Meanwhile, ncRNAs carried by exosomes, such as miR-29,

miR-101, MALAT1, and HOTAIR, can directly regulate epigenetic

modifications in recipient cells. For example, in T cells, exosomal

miR-214 and miR-24-3p inhibit signaling transduction and

methylation regulation by targeting PTEN/DNMT1, inducing the

expression of exhaustion genes (PDCD1, TOX); while miR-34a and

miR-101 downregulate EZH2 and reduce H3K27me3, partially

restoring cytotoxic activity (250). In DCs, exosomal HOTAIR

recruits DNMT1 to inhibit CD80/CD86 and IL-12, inducing

immune tolerance; while miR-148a/152 inhibits DNMT1 to

promote antigen presentation and type I interferon secretion

(251). In TANs, exosomal miR-223 and LINC00665 activate the
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STAT3/NF-kB pathway, driving N2 polarization and enhancing

VEGF and IL-10 expression; conversely , miR-142-3p

downregulates PAD4 to inhibit NETs formation, improving the

pro-inflammatory immune environment (252) (Table 2, Figure 7).
4.4 Interaction network of epigenetic
regulation in lung cancer
microenvironment

Epigenetic regulation in the microenvironment of lung cancer is a

highly complex and delicate process. DNA methylation, histone

modification, and ncRNAs do not act in isolation but interweave to

form a tight regulatory network, jointly influencing the biological

behavior of lung cancer cells as well as the communication and

interaction between cells in the tumor microenvironment (Figure 8).

DNA methylation is closely related to histone modifications.

DNA methylation can recruit protein complexes associated with

histone modifications, thereby affecting the modification state of

histones (253). In lung cancer cells, the DNA methylation binding

protein MeCP2 can interact with HDACs and recruit them to

DNA-methylated regions (254). HDACs remove acetyl groups from

histones, which compacts the chromatin structure and inhibits gene

transcription (255). Studies have found that in lung cancer, while

certain tumor suppressor gene promoter regions are highly

methylated, the acetylation levels of nearby histones decrease,

leading to suppressed gene expression (256). This synergistic

effect of DNA methylation and histone deacetylation silences

tumor suppressor genes and promotes the initiation and

progression of lung cancer (257). Conversely, histone

modifications can also affect DNA methylation. Trimethylation of

H3K9me3 can recruit DNMTs, promoting DNA methylation at

target sites (258). In lung cancer, the H3K9me3 modification in

some oncogene promoter regions increases, leading to elevated

DNA methylation levels in those regions, upregulating oncogene

expression, and driving the progression of lung cancer (259).

A reciprocal regulatory interaction exists between DNA

methylation and ncRNAs. NcRNAs can influence DNA

methylation through various mechanisms (260). MmiRNAs have

the capacity to target and modulate the expression of DNMTs,

thereby impacting the overall levels of DNA methylation (261).

Studies indicate that miR-148a specifically targets DNMT1, leading

to a suppression of its expression and a corresponding decrease in

DNA methylation levels. In lung cancer cells, a reduction in miR-

148a expression corresponds with an increase in DNMT1 levels,

r e su l t ing in abnorma l DNA methy l a t i on pa t t e rn s ,

hypermethylation of specific tumor suppressor gene promoters,

and subsequent gene silencing, which contributes to lung cancer

progression (262). LncRNAs also play a significant role in the

regulation of DNA methylation. Certain lncRNAs can interact

with DNMTs, facilitating their recruitment to designated gene

loci and enhancing DNA methylation processes (263). For

instance, lncRNA HOTAIR has been shown to associate with

DNMT1, DNMT3A, and DNMT3B, which are concentrated in
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TABLE 2 Regulatory network of ncRNA-mediated epigenetic and immune modulation in lung cancer TME.

Type Represents ncRNA
Main target/
pathway

Epigenetic mechanism Target cell
Function and

immune effects

miRNA
miR-21 PTEN, PDCD4

Inhibit the PI3K/Akt inhibitory factor
→sustained signaling activation

Lung cancer cells/CAFs
Promote tumor growth and
invasion; CAFs secrete ECM,
TGF-b, PDGF

miR-155 SHIP1, SOCS1
Regulating negative feedback of
immune signals and affecting
polarization

TAMs/T cells

Promote M2 polarization and
immune suppression;
Inducing
T cell exhaustion

miR-31, miR-146a T-b, IFNG
Alter the methylation of genes related
to T cell exhaustion

T cells
Promote the expression of
PD-1 and TOX, and weaken
cytotoxic responses

miR-34a PD-L1, SIRT1
Deacetylation regulation Enhance p53
activity

Tumor cells/T cells
Restore anti-tumor immunity
and cell cycle arrest

miR-29 family DNMT3A/3B
Remove the methylation silencing of
tumor suppressor genes

Lung cancer cells
Inhibit proliferation and
promote the recovery of gene
expression

miR-101/miR-26a EZH2 Reduce H3K27me3 level Tumour cells/T cells
Restart tumor suppressor
genes to enhance immune
activation

miR-148a/miR-152 DNMT1
Demethylated antigen-presenting
genes

DCs
Enhance type I interferon
and T cell activation

miR-223/miR-142-3p
STAT3, HIF-1a,

PAD4
Regulate the methylation of pro-
inflammatory/anti-inflammatory genes

TANs

MiR-223 ↓ → N2
polarization; MiR-142-3p
↑→ inhibits NETs and
improves pro-inflammatory
environment

lncRNA

MALAT1 EZH2 Recruit PRC2 to mediate H3K27me3 Tumour cells/DCs

Silencing of tumor
suppressor genes promotes
metastasis and
immunosuppression

HOTAIR DNMT1/PRC2
Dual regulation of DNA methylation
and H3K27me3

Tumour cells/DCs
Inhibit CD80/CD86 and
induce immune tolerance

NEAT1 EZH2/DNMT1 Stabilize the methylation complex Tumour cells/T cells
Inhibit Th1 polarization and
promote Treg amplification

XIST
EZH2 →

H3K27me3
Silence CDH1/KLF2 Tumour cells Promote EMT and migration

LINC01138 PRMT5
Enhance arginine methylation
silencing

Tumour cells/TME
Induce an
immunosuppressive
phenotype

SNHG16 HDAC1 Deacetylated p53 promoter Tumour cells
Inhibit apoptosis and
enhance immune tolerance

Exosome
ncRNA miR-21(from tumor → CAFs) PI3K/Akt

Activate matrix remodeling and the
secretion of growth factors

CAFs
Promote ECM generation,
angiogenesis and tumor
growth

miR-101, miR-34a(→ T cells) EZH2
Reduce H3K27me3 and relieve gene
silencing

T cells
Restore antigen presentation
and cytotoxic response

HOTAIR(→ DCs) DNMT1
Inhibit the expression of co-
stimulatory factors

DCs Induce immune tolerance

NEAT1(→ T cells) EZH2 Stabilize the methylation network Treg/Th1
Inhibit Th1 polarization and
promote Treg amplification

miR-223/LINC00665(→ TANs) STAT3/NF-kB Activate immunosuppressive pathways TANs
Promote N2 polarization and
VEGF expression
F
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the promoter regions of genes associated with tumor metastasis,

resulting in hypermethylation of these genes and promoting the

metastatic potential of lung cancer cells (264). On the other hand,

DNA methylation can also affect the expression of non-coding

RNA. Methylation of the promoter regions of some non-coding

RNA genes can lead to their expression being suppressed (265). In

lung cancer, hypermethylation of certain miRNA and lncRNA gene

promoters results in downregulation of their expression, losing their

normal regulatory effects on lung cancer cells, and affecting the

progression of lung cancer (266).

Histone modifications also have complex interactions with non-

coding RNAs. Histone modifications can alter the structure and

accessibility of chromatin, affecting the transcription of non-coding

RNA genes (267). For example, histone H3K4me3 modification is

often associated with gene activation. In the promoter regions of

some non-coding RNA genes, elevated levels of H3K4me3

modification can promote the transcription of these ncRNAs

(268, 269). In lung cancer, some lncRNAs associated with tumor

growth and metastasis show increased H3K4me3 modification in

their gene promoter regions, leading to upregulation of lncRNA

expression and contributing to tumor progression (270).

Conversely, non-coding RNAs can also affect histone

modifications. lncRNAs can interact with histone modification

complexes to regulate histone modification patterns (271).

MALAT1 can interact with the histone methyltransferase EZH2,

promoting the methylation of histone H3K27 in the promoter

regions of certain tumor suppressor genes, inhibiting the
Frontiers in Immunology 16
expression of these genes and promoting the invasion and

metastasis of lung cancer cells (272). miRNAs can also indirectly

influence histone modifications by regulating the expression of

proteins involved in histone modification regulation. Specifically,

miRNAs can target and inhibit some proteins involved in the

regulation of histone modifications, thereby altering histone

modification patterns. This affects gene expression and the

biological behavior of lung cancer cells (273) (Figure 8).
5 Clinical perspective: challenges and
opportunities

5.1 Challenges faced by epigenetic
regulation of lung cancer
microenvironment

From a clinical standpoint, the epigenetic modulation of the

lung cancer microenvironment presents not only a myriad of

challenges but also significant opportunities. These factors are

intricately linked to the diagnosis, treatment, and prognostic

evaluation of lung cancer patients, thereby exerting a considerable

influence on the advancement of clinical interventions for this

malignancy. Regarding clinical diagnosis, while epigenetic

alterations within the lung cancer microenvironment have

demonstrated potential as innovative biomarkers, several hurdles

remain unaddressed. A predominant concern involves the
FIGURE 7

Regulatory role of ncRNAs in the microenvironment of lung cancer.
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constraints associated with existing detection methodologies.

Current technologies for identifying DNA methylation, histone

modifications, and ncRNAs exhibit limitations in sensitivity,

specificity, operational simplicity, and affordability. For example,

methylation-specific PCR (MSP) used in DNA methylation

detection is susceptible to yielding both false positive and false

negative results, and is capable of identifying only known

methylation sites. Although bisulfite sequencing can offer

comprehensive methylation insights across the entire genome, it

comes with high costs, operational complexities, and necessitates

substantial quantities of sample DNA. In the context of histone

modification detection, the chromatin immunoprecipitation

sequencing (ChIP-seq) method entails a cumbersome

experimental protocol, demands high-quality antibodies, and

involves sophisticated data analysis. The examination of ncRNAs

also encounters challenges, particularly due to the brevity of

miRNAs; standard RNA sequencing techniques struggle to

accurately quantify their expression levels, and real-time

quantitative PCR (qPCR) is also vulnerable to cross-reactivity

when assessing miRNAs. Beyond these technical obstacles, there

are additional complexities associated with the acquisition and

processing of clinical samples. The cellular composition within

the lung cancer microenvironment is highly intricate, with

variations in the proportion and functional states of diverse cell
Frontiers in Immunology 17
types across patients, which may influence the detection outcomes

of epigenetic markers. Furthermore, stringent conditions must be

maintained throughout the collection, transportation, and storage

of clinical specimens to preserve their quality and stability; any lapse

in this process could lead to alterations in epigenetic modifications,

ultimately compromising the accuracy of the tests.

In terms of treatment, the epigenetic regulation of the lung

cancer microenvironment faces severe challenges as well.

Developing drugs targeting epigenetic sites is an important

direction, but there are still multiple challenges at various levels.

The specificity and selectivity of epigenetic modification enzymes as

drug targets remain core issues. For example, while DNA

methyltransferase inhibitors (DNMT inhibitors) can reverse

abnormal methylation states, they often also act on normal cells,

leading to non-specific hypomethylation and off-target toxicity

(274). Similarly, histone deacetylase inhibitors (HDAC

inhibitors), while inhibiting tumor cell proliferation, can also

disrupt the transcription balance of normal tissues, resulting in

cardiovascular, hematopoietic, and nervous system side effects

(275). Furthermore, epigenetic regulation has dynamic

reversibility and complex feedback loops, allowing tumor cells to

rapidly restore abnormal phenotypes through compensatory

pathways (such as TET–DNMT balance, HAT-HDAC

interaction, and ncRNA feedback loops), leading to acquired
FIGURE 8

The interaction among DNA methylation, histone modification, and ncRNAs in the microenvironment of lung cancer jointly affects the biological
behavior of lung cancer cells.
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resistance (276, 277). Moreover, some epigenetic drugs (such as

EZH2 inhibitors and BET inhibitors) have also shown an “early

response—late rebound” phenomenon in clinical trials, indicating

that the long-term efficacy and resistance control mechanisms

remain unclear. In addition, the functional overlap of enzymatic

activities among different epigenetic targets increases the

complexity of combination therapy, making drug optimization

and dosage control more challenging. On this basis, the efficacy

evaluation of epigenetic drugs also faces bottlenecks. Due to their

mechanism of action focusing on reshaping gene expression and

immune status rather than directly inducing tumor shrinkage,

traditional radiographic indices (such as the RECIST criteria)

often fail to accurately reflect efficacy. The optimal assessment

indicators for epigenetic regulatory drugs need to combine

comprehensive parameters such as molecular-level methylation

profiles, histone modification profiles, and immune cell functional

outcomes, which poses higher requirements for clinical

monitoring systems.

From the perspective of clinical translation, converting research

findings on the epigenetic regulation of the lung cancer

microenvironment into effective therapeutic methods remains a

major challenge. Currently, most studies are at the basic and

preclinical stages, and although positive results have been

achieved in cell lines and animal models, efficacy in clinical trials

is often inconsistent. For instance, DNMT inhibitors can restore

tumor suppressor gene expression and inhibit tumor growth in

vitro, but in clinical settings, they often show limited efficacy and

serious toxic side effects, such as bone marrow suppression (278).

This discrepancy partly arises from the complex immune-

metabolic-epigenetic interaction network within the tumor

microenvironment. This network causes drug effects to be

influenced by individual differences and microenvironmental

plasticity, which refers to the dynamic and adaptable nature of

the tumor microenvironment. Additionally, the high heterogeneity

of epigenetic characteristics among lung cancer patients leads to

significant differences in individual responses to the same epigenetic

drugs. Therefore, establishing precision medicine strategies based

on epigenetic profiling and developing individualized drug

sensitivity prediction models will be key directions for the

successful translation of epigenetic therapies for lung cancer in

the future.
5.2 Opportunities brought by epigenetic
regulation of lung cancer
microenvironment

Epigenetic regulation of the microenvironment in lung cancer

has also brought unprecedented opportunities for clinical

treatment. These opportunities mainly lie in the epigenetic

modifications in the tumor microenvironment, which act as novel

biomarkers. They provide new approaches for the early diagnosis

and prognostic assessment of the disease, thereby offering strong

support for new targets and strategies in its treatment.
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5.2.1 Provide new markers for the diagnosis and
prognosis assessment of lung cancer

The timely identification and precise prognostic evaluation of

lung cancer are essential for enhancing treatment efficacy and

improving patient survival rates. Conventional diagnostic

approaches primarily depend on imaging techniques—such as

chest radiographs and computed tomography scans—alongside

histopathological assessments and tumor marker analysis.

However, these techniques exhibit several limitations. For

example, imaging modalities often demonstrate insufficient

sensitivity for the early detection of lung cancer, while

histopathological evaluations are invasive and may be prone to

sampling inaccuracies. Furthermore, the specificity and sensitivity

of standard tumor markers, including carcinoembryonic antigen

(CEA) and cytokeratin 19 fragment (CYFRA21-1), require further

refinement for effective diagnosis and prognostic evaluation of lung

cancer. Recently, epigenetic alterations within the lung cancer

microenvironment have emerged as promising novel biomarkers,

offering innovative strategies for the diagnosis and prognostic

evaluation of this malignancy.

DNA methylation, as an important epigenetic modification,

exhibits characteristic changes during the occurrence and

development of lung cancer, making it a potential biomarker for

lung cancer diagnosis and prognosis assessment (279). Studies have

found that abnormal methylation of various genes is closely related

to the occurrence of lung cancer. These genes include tumor

suppressor genes, oncogenes, and those involved in tumor

metabolism, invasion, and metastasis. The RASSF1A gene is an

important tumor suppressor gene whose promoter region

frequently undergoes hypermethylation in lung cancer tissues,

leading to gene silencing. Detecting the methylation status of the

RASSF1A gene promoter can serve as a potential biomarker for

lung cancer diagnosis (280). Similarly, methylation of the APC gene

is also associated with lung cancer occurrence, with

hypermethylation of the APC gene promoter detectable in both

lung cancer tissues and patient plasma. Monitoring the methylation

status of the APC gene aids in the early diagnosis of lung cancer,

especially for early lesions, which are difficult to detect through

imaging examinations (281). In addition to diagnosis, DNA

methylation markers can also be used for prognosis assessment in

lung cancer. Hypermethylation of the DAPK1 gene promoter is

associated with poor prognosis in lung cancer patients, with

methylation-positive patients-defined as those exhibiting

promoter hypermethylation-having significantly shorter

progression-free survival and overall survival compared to

methylation-negative patients (282, 283). By detecting the

methylation status of the DAPK1 gene, a better assessment of

patient prognosis can be achieved, providing a basis for

developing personalized treatment plans. In addition, the DNA

methylation profile not only reflects the molecular typing

characteristics of tumors but also provides important evidence for

patient stratification. By integrating the methylation status of

multiple genes (such as RASSF1A, p16, CDH1, and TMEFF2),

researchers can distinguish between the “highly methylated
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phenotype” (CIMP) and the “low methylation phenotype”

subgroups (284). The CIMP-positive subtype is usually associated

with an immunosuppressive microenvironment, high expression of

PD-L1, and sensitivity to epigenetic drugs, while CIMP-negative

patients often exhibit immune inflammatory characteristics and

respond better to immunotherapy. Therefore, detection of

methylation characteristics can be used not only for early

diagnosis and prognosis evaluation but also to lay a molecular

foundation for personalized therapy and stratified management of

lung cancer patients.

Histone modifications also undergo abnormal changes in the

lung cancer microenvironment, which are closely related to the

biological behaviors and prognosis of lung cancer, and can serve as

potential biomarkers for the diagnosis and prognosis assessment of

lung cancer. The trimethylation of H3K9me3 is associated with

gene silencing. In lung cancer cells, the levels of H3K9me3 in the

promoter regions of certain tumor suppressor genes are elevated,

leading to gene silencing (285). Studies have found that the overall

level of H3K9me3 in lung cancer tissues is related to the staging and

grading of tumors, as well as the prognosis of patients (286). In

early-stage lung cancer patients, the levels of H3K9me3 in tumor

tissues are lower, while in late-stage lung cancer patients, the levels

of H3K9me3 are significantly elevated. Detection of H3K9me3

levels in lung cancer tissues aids in assessing tumor progression

and patient prognosis (287). Trimethylation of H3K4me3, is usually

associated with gene activation. In lung cancer, the levels of

H3K4me3 in the promoter regions of some genes related to

tumor growth and metastasis are elevated. By detecting the levels

of H3K4me3 in these gene promoter regions, the proliferation and

metastatic ability of lung cancer cells can be assessed, providing a

reference for the prognosis evaluation of lung cancer (288).

Furthermore, different combinations of histone modifications

constitute the “epigenetic subtypes” of lung cancer. For example,

high levels of H3K27me3 caused by EZH2 overactivation often

indicate an immunologically cold subtype, which is less responsive

to ICIs but sensitive to EZH2 inhibitors; the loss of H3K36me3

caused by SETD2 mutations is associated with an immunologically

hot phenotype (289). In the future, a multidimensional stratification

model combining histone modification characteristics is expected to

achieve precise matching of immune therapies and epigenetic drug

combination predictions for lung cancer patients.

NcRNAs, especially miRNAs and lncRNAs, are abnormally

expressed in the lung cancer microenvironment and are closely

related to the occurrence, development, metastasis, and prognosis of

lung cancer, showing great potential as biomarkers for lung cancer

diagnosis and prognosis assessment (290). miR-21 is highly

expressed in lung cancer tissues and cell lines, and its expression

level is associated with the staging, grading, and prognosis of lung

cancer. Studies have found that the level of miR-21 in the serum of

lung cancer patients is significantly higher than that of healthy

controls, and lung cancer patients with high expression of miR-21

have a poorer prognosis. Detecting the level of miR-21 in serum can

assist in the diagnosis of lung cancer and assess the prognosis of

patients (291, 292). miR-155 is also highly expressed in the lung

cancer microenvironment, and it is involved in regulating the
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proliferation, invasion, and metastasis of lung cancer cells.

Clinical studies have shown that the expression level of miR-155

is closely related to the survival of lung cancer patients, with

patients expressing high levels of miR-155 having significantly

shorter survival times (293). Furthermore, detecting the

expression level of miR-155 can serve as an important indicator

for lung cancer prognosis assessment. Research on lncRNAs in lung

cancer is also receiving increasing attention, with many lncRNAs

such as MALAT1 and HOTAIR being abnormally expressed in lung

cancer tissues. The high expression of MALAT1 is associated with

metastasis and poor prognosis in lung cancer. By detecting the

expression level of MALAT1 in lung cancer tissues or patient

plasma, the metastatic potential of lung cancer and the prognosis

of patients can be assessed (294). NcRNAs, especially circulating

miRNAs and exosomal lncRNAs, provide new avenues for dynamic

stratification of patients during treatment. The expression profiles

of different ncRNA combinations can reflect tumor immune status

and treatment sensitivity; for example, the high expression subtype

of miR-21/miR-155 usually corresponds to immunosuppressive

lung cancer, while low expression of miR-126 and the miR-200

family suggests immune-active characteristics (295). In addition,

exosomal ncRNAs as liquid biopsy epigenetic biomarkers can be

used for dynamic monitoring of treatment response and resistance

evolution. By integrating miRNA, lncRNA, and DNA methylation

signals to construct the “Epigenetic–Immune Signature Score,” a

comprehensive and precise assessment from diagnosis and

stratification to efficacy prediction can be achieved (296, 297).

5.2.2 Provide new targets and strategies for the
treatment of lung cancer

Comprehensive investigations into the epigenetic regulatory

mechanisms within the lung cancer microenvironment have

unveiled novel therapeutic targets and strategies, potentially

enhancing treatment efficacy and prognostic outcomes for lung

cancer patients. Among these, the therapeutic approaches related to

DNA methylation have emerged as significant focal points in

research. DNMTs represent critical enzymes that facilitate the

process of DNA methylation. In the context of lung cancer, the

aberrant expression of DNMTs results in altered DNA methylation

patterns, characterized by hypermethylation occurring in the

promoter regions of numerous tumor suppressor genes, which

ultimately leads to the silencing of gene expression. Consequently,

DNMTs have been identified as promising therapeutic targets,

prompting the development of DNMTis aimed at lung

cancer treatment.

The earliest DNMTis investigated include 5-aza-2-

deoxycytidine (5-aza-dC) and 5-aza-cytidine (5-aza-CR). These

agents can be incorporated into DNA, forming covalent bonds

with DNMTs, thereby inhibiting their enzymatic activity and

leading to a reduction in DNA methylation levels. This

mechanism facilitates the reactivation of tumor suppressor gene

expression (298, 299). Experimental studies conducted on lung

cancer cell lines and animal models have demonstrated that both 5-

aza-dC and 5-aza-CR effectively inhibit lung cancer cell

proliferation, induce apoptosis, and suppress tumor growth and
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metastatic spread (300). Nevertheless, it is important to note that

despite these beneficial effects, these drugs exhibit certain

limitations, including high cytotoxicity and a lack of specificity.

Recently, novel DNMTis such as decitabine and zebularine have

been developed. Decitabine is a modified DNMTi that possesses

enhanced activity and reduced toxicity, showing promising

therapeutic potential for lung cancer in clinical trials (301).

Zebularine has better cell permeability and stability and can more

effectively inhibit the activity of DNMTs (302). In addition to

directly inhibiting the activity of DNMTs, zebularine can also

affect the DNA methylation status by regulating the signaling

pathways related to DNA methylation (303). Research has

identified several signaling pathways, including the Wnt/b-catenin
and PI3K/Akt pathways, as being intimately linked to DNA

methylation processes. By targeting and inhibiting these

pathways, it is possible to indirectly regulate DNMT activity and

DNA methylation levels, presenting a novel therapeutic strategy for

lung cancer management (304).

Therapeutic targets and strategies related to histone

modifications have also made significant progress. HDACs are key

enzymes that regulate histone acetylation levels. In lung cancer, the

activity of HDACs is elevated, leading to enhanced histone

deacetylation and suppression of tumor suppressor gene expression

(305). Therefore, HDAC inhibitors (HDACi) have become potential

drugs for lung cancer treatment. Vorinostat, Romidepsin, and

Belinostat are commonly used HDAC inhibitors in clinical practice.

These drugs inhibit the activity of HDACs, increase histone

acetylation levels, and reactivate the expression of tumor

suppressor genes, thereby inhibiting the growth and proliferation of

lung cancer cells (306). In lung cancer cell lines and animal models,

HDACi can induce apoptosis of lung cancer cells, inhibit cell cycle

progression, and suppress tumor metastasis to some extent. Some

HDACi have entered clinical trials, bringing new hope to lung cancer

patients (307, 308). In addition to HDAC inhibitors, inhibitors

targeting HMTs are also under investigation. EZH2 is an important

HMT that catalyzes the trimethylation of H3K27me3. In lung cancer,

the expression of EZH2 is often upregulated, leading to elevated levels

of H3K27me3 and silencing of many tumor suppressor genes (309).

Inhibitors targeting EZH2, such as EPZ-6438, and GSK126, can

reduce H3K27me3 levels, reactivate tumor suppressor genes, and

inhibit the growth and metastasis of lung cancer cells. These

inhibitors have shown good efficacy in preclinical studies and are

expected to become new drugs for lung cancer treatment (310).

Therapeutic targets and strategies related to non-coding RNA

have opened new directions for lung cancer treatment. As a type of

ncRNA, miRNAs are abnormally expressed in lung cancer and are

closely related to its occurrence and development (311). Regulating

the expression or activity of miRNAs can influence the biological

behavior of lung cancer cells, thereby offering new approaches for

lung cancer therapy. Antisense oligonucleotides, including

chemically modified antagomiRs, can be designed to inhibit the

function of oncogenic miRNAs that are highly expressed (312). For

oncogenic miRNAs such as miR-21, which is highly expressed in

lung cancer, antagomiR-21 can specifically bind to miR-21 and

inhibit its regulatory effect on target genes; this suppresses the
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proliferation, invasion, and metastasis of lung cancer cells (313).

Research has also found that some miRNAs can act as tumor

suppressors, and restoring their expression can contribute to lung

cancer treatment. For example, miR-34a is downregulated in lung

cancer, and introducing miR-34a mimics into lung cancer cells via

gene delivery technology can inhibit tumor growth and metastasis

while inducing apoptosis (314, 315). The role of lncRNA in lung

cancer is also receiving increasing attention. For certain lncRNAs

closely related to lung cancer progression, such as MALAT1 and

HOTAIR, small interfering RNA (siRNA) or short hairpin RNA

(shRNA) can be designed to inhibit their expression, thereby

affecting the biological behavior of cancer cells (316). Specifically,

inhibiting MALAT1 expression reduces the migration and invasion

abilities of lung cancer cells, suppressing tumor metastasis (317).

Furthermore, developing small molecule inhibitors or antibodies

that target the interactions between lncRNAs and other molecules

represents another promising research direction for lung cancer

treatment (318).

Combining epigenetic therapy with traditional treatment

methods, to achieve combination therapy, is an important strategy

to improve the efficacy of lung cancer treatment. Epigenetic therapy

can enhance the sensitivity of tumor cells to traditional treatment

methods such as chemotherapy, radiotherapy, targeted therapy, and

immunotherapy by altering the epigenetic modifications of tumor

cells (319). In chemotherapy, DNMTi and HDACi can increase the

sensitivity of lung cancer cells to chemotherapeutic agents by

reactivating tumor suppressor genes. Studies have found that in

lung cancer cell lines, treatment with 5-aza-2’-deoxycytidine (5-aza-

dC) in combination with cisplatin is more effective than cisplatin

alone. This results in more significant inhibition of lung cancer cell

proliferation and increased apoptosis (320). Similarly, in

radiotherapy, epigenetic therapy can improve the effectiveness of

radiotherapy by regulating the DNA damage repair mechanisms and

the immune microenvironment of tumor cells. HDACi can increase

the sensitivity of tumor cells to radiotherapy. Additionally, they

modulate the function of immune cells in the tumor

microenvironment, enhancing the body’s anti-tumor immune

response (321). In targeted therapy, epigenetic therapy can

overcome the drug resistance of tumor cells. For lung cancer cells

resistant to epidermal growth factor receptor (EGFR) tyrosine kinase

inhibitors (TKI), the use of DNMTi or HDACi can alter the

epigenetic modifications of drug resistance-related genes, partially

restoring the sensitivity of lung cancer cells to TKI (306, 322). In

immunotherapy, epigenetic therapy can enhance the efficacy of

immunotherapy by regulating the function of immune cells and the

immune signaling pathways in the tumor microenvironment (323).

In recent years, the widespread application of immune checkpoint

inhibitors (such as PD-1/PD-L1 and CTLA-4 antibodies) has made

the synergistic potential of epigenetic therapy and immunotherapy a

research hotspot. Tumor immune evasion is often accompanied by

multi-layered epigenetic reprogramming, including DNA

methylation, histone deacetylation, and abnormal expression of

non-coding RNAs. These changes lead to defects in antigen

presentation and increased infiltration of immunosuppressive cells

(324). Epigenetic therapy can reverse these changes and activate
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previously silenced immune pathways, thereby enhancing

immunotherapy. Specifically, DNMTi and HDACi can relieve the

methylation silencing of tumor-associated antigens (TAAs) and

genes of antigen processing complexes (MHC-I, TAP1/2). This

restoration improves antigen presentation capability (324). At the

same time, DNMTi can induce a viral mimicry response by activating

the transcription of endogenous retroviruses and upregulating

interferon signaling, which enhances immunogenicity (325).

Epigenetic drugs can also improve the function of immune effector

cells. For example, HDACi promotes the memory differentiation of

CD8+T cells and inhibits the expression of exhaustion markers. BET

inhibitors (BETi) suppress the M2 polarization of TAMs. EZH2

inhibitors (EZH2i) weaken the immunosuppressive effects of Tregs

(325). Moreover, in “cold-type” lung cancer, epigenetic regulators can

activate chemokines such as CXCL9 and CXCL10, transforming it

into a “hot-type” tumor and significantly enhancing the response rate

to PD-1/PD-L1 inhibitors. Preclinical studies have demonstrated

significant synergistic effects when combining DNMTi with PD-1

inhibitors, HDACi with PD-L1 inhibitors, and EZH2i with CTLA-4

inhibitors. A stratified treatment strategy based on epigenomic

characteristics (such as CIMP status, EZH2 expression levels, and

Treg enrichment) is expected to enhance the precision and clinical

translation of epigenetic-immunotherapy combination therapies

(326, 327).
6 Future research directions and
prospects

The investigation into the epigenetic regulation of the tumor

microenvironment in lung cancer presents extensive potential and

considerable significance. In the realm of technological

advancements, the imperative lies in creating more sophisticated

and sensitive methodologies that facilitate single-cell and real-time

dynamic detection. Additionally, enhancing single-cell sequencing

techniques to improve their throughput and precision will permit a

more thorough examination of the epigenetic traits exhibited by

various cell types within the tumor microenvironment. The

innovation of new detection platforms leveraging nanotechnology,

microfluidics, and other methodologies is vital to achieve highly

sensitive identification of low-abundance epigenetic markers in the

lung cancer microenvironment while also enabling real-time

observation of the temporal dynamics of epigenetic alterations.

Technologies that amalgamate nanosensors with microfluidic

devices are capable of detecting, in real time, fluctuations in DNA

methylation markers released by tumor cells into the bloodstream

of lung cancer patients throughout treatment. This capability serves

as a foundation for timely modifications of treatment strategies.

Regarding mechanistic exploration, it is essential to thoroughly

investigate the intricate network of epigenetic regulation within the

lung cancer microenvironment and its dynamic alteration patterns.

By employing systems biology and bioinformatics methodologies

and integrating multi-omics data, a more comprehensive model of

the epigenetic regulatory network pertaining to the lung cancer

microenvironment can be established. This model will facilitate a
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holistic analysis of interactions between distinct cell types, diverse

epigenetic modifications, and the interplay of epigenetic regulation

with signaling pathways and cellular components. Furthermore, it is

crucial to conduct a detailed examination of the temporal dynamics

of epigenetic regulatory mechanisms within the tumor

microenvironment across various developmental stages and

treatment phases, thus providing a theoretical framework for the

comprehensive management of lung cancer. As lung cancer

progresses from early to advanced stages, analyzing the temporal

dynamics of epigenetic changes in tumor cells and immune cells at

various time intervals, along with assessing the influence of these

changes on tumor immune evasion and metastasis, is essential. Such

investigations lay the groundwork for the formulation of targeted

treatment strategies.

The primary objective of research concerning epigenetic

regulation in the lung cancer microenvironment is its clinical

translation. Moving forward, it is imperative to enhance the synergy

between fundamental research and clinical application. Researchers

ought to undertake extensive, multi-center clinical trials to validate the

effectiveness and safety of diagnostic biomarkers and therapeutic

targets influenced by epigenetic mechanisms. It is essential to

establish a comprehensive epigenetic database for lung cancer

patients, which should encompass their clinical data and treatment

responses. This database will facilitate the development of precise,

individualized treatment prediction models aimed at achieving

accurate diagnosis and management of lung cancer. Additionally,

there is a need to further refine the integrative treatment approaches

that combine epigenetic therapies with conventional treatment

modalities, investigate novel combinatorial treatment frameworks,

and enhance the therapeutic outcomes for lung cancer patients.

Furthermore, it is crucial to examine the optimal dosing regimens

and administration sequences of DNMTi in conjunction with

immune checkpoint inhibitors for lung cancer treatment. This

should be complemented by preclinical and clinical trials to assess

the safety and efficacy of such combination therapies, ultimately

offering more effective treatment alternatives for lung cancer patients.

Despite the numerous challenges associated with investigating

the epigenetic regulation of the lung cancer microenvironment,

there are significant opportunities for advancement. Through

ongoing technological innovations, comprehensive mechanistic

studies, and efforts toward clinical translation, it is anticipated

that novel breakthroughs will emerge in the prevention and

treatment of lung cancer, thereby substantially enhancing the

prognosis and quality of life for individuals affected by this disease.
7 Conclusion

Lung cancer represents a malignant neoplasm that poses a

significant threat to global health and exhibits a multifaceted

etiology. Nonetheless, there remains a critical need to enhance

both the therapeutic effectiveness and prognostic outcomes for

affected individuals. While investigations into the epigenetic

modulation of the lung cancer microenvironment encounter

considerable obstacles, they simultaneously present promising
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avenues for progress. Several novel biomarkers have been

discovered for the diagnosis and prognosis of lung cancer, which

encompass DNA methylation indicators, histone modification

markers, and ncRNA signatures. These biomarkers aid in

facilitating earlier detection and more precise prognostic

evaluations. Additionally, innovative therapeutic targets and

strategies have emerged, including interventions that focus on

DNA methylation, histone modifications, and ncRNA pathways.

The implementation of combination treatment regimens that merge

epigenetic therapies with conventional approaches is anticipated to

improve therapeutic outcomes and patient prognoses. Furthermore,

investigations into epigenetic regulation have catalyzed

advancements in precision medicine for lung cancer. By assessing

the unique epigenetic profiles of patients, tailored treatment plans

can be formulated, thereby enhancing both the safety and efficacy of

therapeutic interventions. In summary, research focused on

epigenetic regulation within the lung cancer microenvironment

offers a crucial pathway for elucidating the disease’s underlying

mechanisms and pioneering innovative treatment methodologies.
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77. Castro F, Cardoso AP, Gonçalves RM, Serre K, Oliveira MJ. Interferon-gamma
at the crossroads of tumor immune surveillance or evasion. Front Immunol. (2018)
9:847. doi: 10.3389/fimmu.2018.00847

78. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Sci
(New York NY). (2018) 359:1350–5. doi: 10.1126/science.aar4060

79. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, et al.
IFN-g-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest.
(2017) 127:2930–40. doi: 10.1172/JCI91190

80. Balkwill F. Tumour necrosis factor and cancer. Nat Rev Cancer. (2009) 9:361–71.
doi: 10.1038/nrc2628

81. Montfort A, Colacios C, Levade T, Andrieu-Abadie N, Meyer N, Ségui B. The
TNF paradox in cancer progression and immunotherapy. Front Immunol. (2019)
10:1818. doi: 10.3389/fimmu.2019.01818

82. Karin M. NF-kappaB as a critical link between inflammation and cancer. Cold
Spring Harbor Perspect Biol. (2009) 1:a000141. doi: 10.1101/cshperspect.a000141
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