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Lung cancer, recognized as one of the most prevalent malignancies with the
highest rates of incidence and mortality globally, presents a substantial challenge
on a worldwide scale. This challenge is exacerbated by the disease’s difficulty in
early detection, a pronounced rate of metastasis, and resistance to treatment, all of
which contribute to elevated mortality rates. The tumor microenvironment (TME)
plays a critical role in the sustenance and advancement of various solid tumors,
including lung cancer. The intricate composition of the TME facilitates tumor
proliferation, metastatic spread, and therapeutic resistance by supplying metabolic
resources, fostering angiogenesis, and enabling immune evasion. Nonetheless, the
regulatory frameworks operating within the TME remain poorly understood. An
increasing body of evidence suggests that epigenetic regulation—encompassing
mechanisms such as DNA methylation, histone modification, and the action of
non-coding RNAs—is pivotal in the initiation and progression of lung cancer.
Furthermore, epigenetic modifications significantly influence the functional
dynamics of the tumor microenvironment, thereby impacting intercellular
interactions and cellular behaviors within the TME, which in turn affects the
trajectory of disease progression. This article aims to present the most recent
advancements in research concerning the epigenetic regulation of tumor cell
interactions with the TME in the context of lung cancer biology. Additionally, it
examines the current implications of epigenetic regulation within the tumor
microenvironment and its influence on lung cancer behavior. We also
investigate the potential relevance and emerging therapeutic avenues presented
by epigenetic regulation in the clinical diagnosis and treatment of lung cancer,
aspiring to propose novel strategies to address existing treatment challenges.
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1 Introduction

Lung cancer, recognized as the malignant neoplasm with the
highest rates of incidence and mortality globally, poses a significant
threat to human health and well-being (1). According to the most
recent data on the global cancer burden published by the
International Agency for Research on Cancer (IARC), part of the
World Health Organization, in 2020, there were approximately 2.2
million newly diagnosed lung cancer cases, with a staggering 1.8
million resulting in death (2). These figures represent 11.4% of all
newly diagnosed cancer cases and 18.0% of cancer-related fatalities
worldwide. Lung cancer is primarily categorized into two types:
non-small cell lung cancer (NSCLC), which constitutes about 85%
of cases, and small cell lung cancer (SCLC), accounting for roughly
15% (3, 4). Despite noteworthy advancements in lung cancer
treatment modalities over recent years-including surgical
intervention, chemotherapy, radiotherapy, targeted therapy, and
immunotherapy-the overall five-year survival rate for patients
remains at a disappointing 18% (5, 6). This dismal statistic is
largely due to challenges associated with the early detection of the
disease, the tumors’” high metastatic capabilities, and resistance to
currently available therapies (7, 8). Therefore, a comprehensive
understanding of the pathophysiology of lung cancer, along with
the identification of novel therapeutic targets and strategies, is
crucial for enhancing the prognosis of lung cancer patients.

Research has indicated that the tumor microenvironment
(TME) is pivotal in tumor progression and maintenance (9, 10).
As the immediate environment that supports the survival and
development of tumor cells, the TME is a multifaceted structure
that includes tumor cells, immune cells, stromal cells, extracellular
matrix components, and an array of bioactive molecules (11).
Within the cellular constituents of the TME, cancer-associated
fibroblasts (CAFs) are notable for their ability to secrete various
growth factors and extracellular matrix components, which not
only provide essential nutritional support but also enhance the
proliferation and migration of tumor cells (12, 13). Macrophages

Abbreviations: TME, Tumor microenvironment; IARC, International Agency
for Research on Cancer; NSCLC, Non-small cell lung cancer; SCLC, Small cell
lung cancer; CAFs, Cancer-associated fibroblasts; DCs, Dendritic cells; EMT,
Epithelial-mesenchymal transition; TGF-B, Transforming growth factor-B;
TAMs, Tumor-associated macrophages; EGF, Epidermal growth factor; HGF,
Hepatocyte growth factor; IL, Interleukins; IFN, Interferons; TNF, Tumor
necrosis factor; CXCL12, CXC chemokine ligand 12; DNMTs, DNA
methyltransferases; HDACs, Histone deacetylases; miRNAs, microRNAs;
LncRNAs, long non-coding RNAs; CDK4/6, cyclin-dependent kinase 4/6;
MDRI, Multidrug resistance gene 1; EGFR, Epidermal growth factor receptor;
HATSs, Histone acetyltransferases; HMTs, Histone methyltransferases; PDCD4,
Programmed cell death protein 4; PTEN, Phosphatase and tensin homolog; 5-
aza-Dc, 5-aza-2-deoxycytidine; 5-aza-CR, 5-aza-cytidine; EZH2i, EZH2
inhibitors; BETi, BET inhibitors; TAAs, Tumor-associated antigens; siRNA,
small interfering RNA; shRNA, short hairpin RNA; EMT, Epithelial-
Mesenchymal Transition; ICIs, Immune checkpoint inhibitors; CAFs, Cancer-
associated fibroblasts; TANs, Tumor-associated neutrophils; NETs, Neutrophil
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within the TME exhibit heterogeneity, with M2-type macrophages
capable of releasing pro-angiogenic factors, such as vascular
endothelial growth factor (VEGEF), thereby promoting tumor
angiogenesis and aiding in the metastasis of tumor cells (14, 15).
Furthermore, immune cells present in the TME, including T cells
and natural killer (NK) cells, are critical for tumor immune
surveillance and the mechanisms of immune evasion. When
immune evasion transpires, tumor cells can successfully avoid the
host immune system’s attacks, subsequently leading to metastatic
spread (16, 17). Lung cancer cells interact with a variety of cells and
molecules within the TME, establishing a complex ecosystem. This
ecosystem not only creates favorable conditions for the growth and
survival of lung cancer cells but also significantly influences their
biological behaviors and responses to therapeutic interventions
(18, 19).

Epigenetic regulation denotes the mechanisms that modulate
gene expression without modifying the underlying DNA sequence.
The primary forms of epigenetic regulation encompass DNA
methylation, histone modifications, and the influence of non-
coding RNAs (ncRNAs) (20-22). Such epigenetic alterations play
pivotal roles in both physiological and pathological processes,
including organismal growth and development, cellular
differentiation, aging, as well as the initiation and advancement of
various diseases (23-25). Recent investigations have highlighted the
significant involvement of epigenetic mechanisms in the
development of lung cancer. These mechanisms can affect the
progression of lung cancer by altering cellular functions and
facilitating intercellular communication within the TME (26, 27)
(Figure 1). Nonetheless, a thorough comprehension of the
epigenetic mechanisms that contribute to TME modifications
remains elusive. This article aims to discuss the most recent
findings regarding epigenetic events that influence interactions
with the tumor microenvironment in the context of lung cancer
biology. Additionally, we will examine their potential clinical
implications, including the identification of epigenetic biomarkers
and therapeutic strategies.

2 Overview of the microenvironment
of lung cancer

The microenvironment of lung cancer is a complex ecosystem
composed of multiple cell types and extracellular components. It
plays a key role in the initiation, progression, metastasis, and
treatment response of lung cancer. This microenvironment
primarily consists of tumor cells, immune cells, stromal cells,
extracellular matrix, and various signaling molecules (Figure 2).

2.1 Cellular components

The cellular constituents within the lung cancer tumor
microenvironment exhibit a high degree of complexity and
variability, with the interactions between these cells collectively
influencing tumor initiation, progression, and metastatic spread
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FIGURE 1

The relationship between epigenetic regulation (DNA methylation, histone modification, non-coding RNA regulation) and the microenvironment

of lung cancer. (Left panel) Major epigenetic mechanisms—including chromatin remodeling, DNA methylation, and non-coding RNA regulation—
contribute to aberrant gene expression in lung cancer. In chromatin remodeling, loss of the repressive mark H4K20me3 and gain of the active mark
H4K16Ac through KDM6/4 and HAT activity enhance chromatin accessibility and transcription of oncogenic target genes. In DNA methylation,
reduced S-adenosylmethionine (SAM) levels and DNA hypomethylation lead to abnormal activation of tumor-promoting genes. In non-coding

RNA regulation, IncRNAs and miRNAs modulate gene expression by influencing Pol II-mediated transcription, mRNA stability, and translation of
oncogenic transcripts.(Right panel) These epigenetic alterations collectively reshape the lung tumor immune microenvironment (TIME). Aberrant
gene regulation affects key immune populations, including immature dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), regulatory

T cells (Tregs), cancer-associated fibroblasts (CAFs), CD4*/CD8" T cells, NK cells, and neutrophils. Epigenetic reprogramming in tumor and stromal
cells impairs antigen presentation, promotes immunosuppression, and alters oxygen diffusion and vascular remodeling, ultimately leading to immune

escape and tumor progression.(activating (—) and inhibitory (—)).

(28). Tumor cells, which serve as pivotal elements within this
microenvironment, demonstrate significant capabilities for
proliferation, invasion, and extensive metastasis (29). By secreting
a range of cytokines and chemokines, including VEGF and platelet-
derived growth factor (PDGF), these cells modulate the tumor
microenvironment, thereby establishing conditions that favor
their own growth and survival (30, 31). Furthermore, tumor cells
can undergo an epithelial-mesenchymal transition (EMT), which
endows them with mesenchymal traits, ultimately enhancing their
migratory and invasive potential, thus facilitating the process of
metastasis (32, 33).

Immune cells are integral components of the tumor
microenvironment, encompassing a variety of cell types including
T cells, B cells, NK cells, macrophages, dendritic cells (DCs), and
myeloid-derived suppressor cells (MDSCs) (34). Among these, T
cells are pivotal in mediating anti-tumor immunity; specifically,
CD8" cytotoxic T lymphocytes are capable of identifying and
eliminating tumor cells, thereby exerting significant anti-tumor
effects (35). Conversely, regulatory T cells (Tregs) facilitate tumor
progression and immune evasion by dampening the activity of
diverse immune cell populations and promoting immune tolerance
(36). B cells, while known for their role in antibody production and
humoral immune responses, exhibit a controversial function within
the tumor microenvironment. Some research indicates that B cells
can modulate the tumor immune response through cytokine
secretion or antigen presentation; however, the nature of these
effects—whether they are supportive of tumor growth or
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detrimental to it—remains a topic of ongoing investigation (37).
NK cells are capable of non-specifically targeting and destroying
tumor cells, thus playing a crucial role in tumor immune
surveillance (38). Nevertheless, the presence of inhibitory factors
within the tumor microenvironment, such as transforming growth
factor-B (TGF-B) produced by tumor cells, can significantly
diminish NK cell functionality and weaken their anti-tumor
responses (39, 40).

Macrophages undergo differentiation into tumor-associated
macrophages (TAMs) within the tumor microenvironment, which
can be categorized into two distinct types: M1 and M2, based on
their functional roles and phenotypic characteristics (41). M1-type
TAMs exhibit anti-tumor properties and are capable of releasing
pro-inflammatory cytokines such as TNF-o and IL-12, which serve
to activate immune cells to target and eliminate tumor cells (42). In
contrast, M2-type TAMs contribute to tumor progression by
secreting immunosuppressive factors, including IL-10 and TGF-f.
These factors facilitate tumor cell proliferation, migration, and
angiogenesis while concurrently suppressing the host’s anti-tumor
immune response (43, 44). Dendritic cells represent the most potent
antigen-presenting cells, adept at capturing, processing, and
presenting tumor antigens, which is essential for T cell activation
and the initiation of anti-tumor immune responses. Nevertheless,
various factors present in the tumor microenvironment, such as
indoleamine 2,3-dioxygenase (IDO), can hinder the maturation and
functional capabilities of DCs, thereby facilitating tumor immune
evasion (45, 46). MDSCs comprise a diverse range of cells that
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Cytokine—chemokine network and cellular crosstalk driving immune escape in the lung tumor microenvironment. Cytokines and chemokines within
the lung tumor microenvironment orchestrate a complex signaling network that promotes tumor progression and immune evasion. Key mediators

such as IL-6, IFN-y, CXCL12, TNF-o, TGF-, and CCL2 regulate epithelial—
neoangiogenesis. Through activation of CXCL12/CXCR4 and NF-«B signali
chemotaxis, and drive the recruitment of tumor-associated macrophages
carcinoma-associated fibroblasts secrete EGF, HGF, and IL-6, which stimu
immune suppression. Within the immune compartment, CD8" T cells and

mesenchymal transition (EMT), proliferation, migration, invasion, and

ng, these factors induce PD-L1 expression, enhance monocyte

(TAMs), contributing to metastasis and treatment resistance. In parallel,
late tumor and endothelial cells to initiate vascular remodeling and

NK cells mediate cytotoxic responses, while Tregs and M2 macrophages

promote immunosuppression via TNF- and IL-10 secretion, collectively enabling immune escape and tumor dissemination.

significantly accumulate within the tumor microenvironment.
These cells suppress immune cell activity through various
mechanisms, including the depletion of amino acids, the
production of ROS, and the secretion of inhibitory cytokines, all
of which contribute to tumor growth and metastatic spread (47, 48).

In the tumor microenvironment, fibroblasts undergo activation
and subsequently differentiate into CAFs (49). CAFs modify the
tumor microenvironment’s structural integrity by producing
extracellular matrix constituents, including collagen and
fibronectin, which facilitate the growth and motility of neoplastic
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cells (50, 51). Furthermore, CAFs release a range of growth factors
and cytokines, such as EGF, HGF, and IL-6, thereby enhancing the
proliferation, survival, and invasive characteristics of tumor cells.
They play a crucial role in modulating the tumor immune
microenvironment and fostering angiogenesis within tumors (52,
53). Additionally, CAFs engage in bidirectional interactions with
tumor cells, whereby both entities can affect one another’s biological
functions through paracrine signaling mechanisms (54).

Vascular endothelial cells play a critical role in the development
of blood vessels within tumors. Tumor cells secrete pro-angiogenic
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factors, including VEGF, which stimulate the proliferation,
migration, and formation of lumens in vascular endothelial cells.
This process ensures an adequate supply of nutrients and oxygen to
tumor tissues, thereby facilitating both tumor growth and metastasis
(55). Tumor-associated blood vessels exhibit distinct structural and
functional abnormalities, characterized by incomplete vessel walls,
heightened permeability, and disorganized blood flow. These
imperfections not only compromise blood perfusion in tumors but
also create an environment conducive to the dissemination of tumor
cells. Additionally, the atypical architecture of these blood vessels
plays a role in enabling tumor immune evasion (56, 57). Tumor
vascular endothelial cells are capable of expressing various
immunomodulatory molecules that further support tumor immune
evasion by suppressing the body’s anti-tumor immune response.
Within the tumor microenvironment, a complex ecosystem is
established through the interactions between vascular endothelial
cells and tumor cells (58, 59).

2.2 Non cellular components

The tumor microenvironment in lung cancer encompasses
various non-cellular elements, including the ECM, cytokines, and
chemokines, all of which exert considerable influence on tumor
development and the regulation of the microenvironment. The
ECM constitutes a sophisticated network comprising components
such as collagen, fibronectin, laminin and proteoglycans. This
matrix not only offers structural support to tumor cells but is also
instrumental in modulating their behavior, including proliferation,
migration, invasion, and differentiation (60, 61). Among these
components, collagen stands out as a predominant element of the
ECM. Alterations in its composition and structural integrity are
intricately linked to tumor invasion and metastasis (62, 63). In the
context of lung cancer, collagen produced by CAFs can establish a
dense fibrous framework that facilitates tumor cell migration.
Additionally, it interacts with surface receptors such as integrins
on tumor cells, initiating intracellular signaling cascades (for
instance, FAK/Src and PI3K/AKT pathways), which in turn
enhance tumor cell proliferation, invasion, and the epithelial-
EMT (64, 65). Furthermore, glycoproteins such as fibronectin and
laminin are crucial for tumor cell adhesion and migration. They
facilitate the interaction between tumor cells and the ECM, thereby
influencing motility and survival signaling pathways (66, 67).
Moreover, proteoglycans, including heparan sulfate proteoglycans,
within the ECM can interact with growth factors and cytokines,
establishing localized concentration gradients that regulate their
activity and distribution. This interaction significantly impacts the
signaling networks, angiogenesis, and immune modulation within
the tumor microenvironment (68, 69).

Cytokines represent a category of small protein molecules secreted
by both immune and tumor cells, playing crucial roles in the regulation
of immune responses and cellular growth within the tumor
microenvironment of lung cancer (70, 71). Notable cytokines
identified in this context include IL, IFN, TNF, and TGF-B. Among
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these, IL-6 is particularly significant due to its multifunctional nature
and high expression levels within the lung cancer tumor
microenvironment (72). It facilitates tumor cell proliferation, survival,
and migration through the activation of signaling pathways such as
signal transducer and activator of transcription 3 (STAT3), concurrently
impairing the body’s anti-tumor immune responses (73, 74).
Furthermore, IL-6 promotes the differentiation and expansion of
Tregs, thereby exacerbating the immunosuppressive conditions
present in the tumor microenvironment (75). Interferons, particularly
IFN-y, possess diverse functions including antiviral and anti-tumor
capabilities, as well as immune regulation. IFN-y serves to activate
immune cells such as macrophages and NK cells, thereby boosting their
anti-tumor efficacy (76, 77). Additionally, it prompts tumor cells to
express major histocompatibility complex (MHC) molecules, thereby
enhancing tumor immunogenicity and promoting immune surveillance
(78). Nevertheless, in a persistent tumor microenvironment, IFN-y
signaling may lead to the expression of immune checkpoint
molecules, such as PD-L1, or encourage the infiltration of
immunosuppressive cells, establishing a negative feedback loop that
hinders immune responses (79). TNF-o functions as a pro-
inflammatory cytokine capable of directly inducing tumor cell
apoptosis while also exerting indirect anti-tumor effects through the
activation of immune cells (80). However, within the tumor
microenvironment—especially in lung cancer—TNF-o. can stimulate
tumor cells to produce anti-apoptotic proteins (e.g., c-FLIP and Bcl-2
family members), promote the release of inflammation-associated
factors, drive epithelial- EMT, and bolster the characteristics of tumor
stem cells via pathways such as NF-kB. These mechanisms contribute to
the survival, invasion, metastasis, and therapeutic resistance of
tumor cells (81, 82). TGF-P is a crucial pleiotropic cytokine that
typically serves as a potent immunosuppressive and metastasis-
facilitating agent in advanced lung cancer (83). TGF-B can directly
inhibit the activation and functionality of effector immune cells,
including CD8" T cells, NK cells, and macrophages; promote the
differentiation, expansion, and functional stability of Treg cells; and
induce EMT in tumor cells, thereby enhancing their invasive properties,
metastatic potential, stem cell-like characteristics, and resistance to
therapy (84-86).

Chemokines represent a specific category of small protein
molecules that facilitate the directional movement of immune
cells and other cellular types. These proteins are integral to the
mobilization of immune cells as well as the metastasis of cancer cells
within the tumor microenvironment (87, 88). In the context of lung
cancer, the signaling pathway involving chemokines, notably CXC
chemokine ligand 12 (CXCL12) and its corresponding receptor,
CXC chemokine receptor 4 (CXCR4), is crucial for tumor
progression (89). Both tumor cells and tumor-associated
fibroblasts have the capacity to secrete CXCL12, which serves to
attract tumor cells, immune cells, and vascular endothelial cells that
express CXCR4, thereby facilitating their migration toward the
tumor site (90, 91). Following the binding of CXCL12 to CXCR4
on the tumor cell surface, the resultant CXCR4-CXCL12 complex
activates various intracellular signaling cascades, which in turn
enhance the proliferation, migration, and invasion of tumor cells,
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along with promoting tumor angiogenesis and metastatic spread to
distant sites (92, 93). Moreover, the chemokine CCL2 and its
receptor CCR2 are critically involved in the recruitment of TAMs
(94, 95). CCL2 has the ability to draw CCR2-positive monocytes
into the tumor microenvironment, prompting their differentiation
into TAMs, ultimately fostering tumor growth and metastatic
processes (96, 97) (Table 1).

3 Mechanisms of epigenetic
regulation

Epigenetic regulation pertains to the modulation of gene
expression without any modifications to the DNA sequence itself.

10.3389/fimmu.2025.1697428

The primary mechanisms involved in this process encompass DNA
methylation, histone modifications, and the regulation by non-
coding RNAs (ncRNAs) (101). These mechanisms work in concert
to sustain normal cellular operations. However, any disruption in
these mechanisms may precipitate the development of various
diseases, including lung cancer (Figure 3).

DNA methylation refers to the biochemical process whereby
methyl groups are added to specific regions of DNA, predominantly
within CpG islands, a reaction facilitated by the enzyme DNA
methyltransferases (DNMTs) (102). In healthy cells, DNA
methylation plays a crucial role in the regulation of gene
expression and the maintenance of regular cellular functions
(103). Conversely, in the context of lung cancer, the pattern of
DNA methylation experiences significant alterations (104).

TABLE 1 The main components of the tumor microenvironment of lung cancer.

sl Mechanism

Function References

components

Cellular components

T Cell Identify and kill tumor cells Anti-tumor effect (35)
Inhibit the activity of immune cells and maintain immune
Treg Cell v Promote tumor growth and immune escape (36)
tolerance
B Cell Secreting cytokines or antigen presentation Aftects the immune response of tumors (37)
Secrete pro-inflammatory cytokines, such as TNF - o and IL-12, . X
M1 macrophages ) P Ty eyt Activate immune cells to kill tumor cells (98)
etc.
Promote the proliferation, migration and angiogenesis of
M2 macrophages Secrete immunosuppressive factors, such as IL-10 and TGF - P & 8108 (99, 100)
tumor cells
Secrete extracellular matrix components (such as collagen and Promote the proliferation, survival and invasion of tumor
Fibroblast cells i P ( 8 P K i (52, 53)
fibronectin) cells and facilitate tumor angiogenesis
vascular Induce the proliferation, migration and lumen formation of i
. R Promote the growth and metastasis of tumors (55)
endothelial cell vascular endothelial cells
Non cellular components
Promote the proliferation, invasion and EMT of tumor
Collagen Provide scaffolds for the migration of tumor cells I P (64, 65)
cells
i Mediate the interaction between tumor cells and extracellular - . X
fibronectin tri Regulate the motility and survival signals of tumor cells (66, 67)
matrix
Combine growth factors and cytokines to form local . . . .
proteoglycan ) . Promote angiogenesis and inhibit immune regulation (68, 69)
concentration gradlents
L6 Activate Signal Transducer and activator of Transcription 3 Promote the proliferation, survival and migration of tumor (73, 74)
(STAT3) cells, and provide immunosuppression ’
Enhance anti-tumor activity and promote tumor immune
IFN-y Activate immune cells such as macrophages and NK cells i ty P (76, 77)
surveillance
Induce tumor cells to produce anti-apoptotic proteins and Support the survival, invasion, metastasis and treatment
TNF-ou . . . (81, 82)
promote the release of inflammation-related factors resistance of tumor cells
TGE-B Inhibit the activation and function of effector immune cells such Enhance the invasion, metastasis, stem cell characteristics (84-86)
as CD8" T cells, NK cells and macrophages and therapeutic resistance of tumor cells
Promote the migration of tumor cells, immune cells, vascular Promote the proliferation, migration and invasion of tumor
CXCL12 ) ) (90, 91)
endothelial cells, etc. to the tumor site cells
Promote the proliferation, migration and invasion of tumor
CXCR4 Promote the proliferation, migration and invasion of tumor cells I P 8 (92, 93)
cells
Attract CCR2-positive monocytes into the tumor
CCL2 P eyt Promote the growth and metastasis of tumors (96, 97)

microenvironment
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The main epigenetic regulation mechanisms in lung cancer, including DNA methylation, histone modification, and NcRNAs regulation, etc.

Notably, the promoter regions of numerous tumor suppressor genes
are often found in a hypermethylated state, which obstructs the
normal transcription and expression of these genes. This disruption
results in tumor cells evading their typical growth inhibition
mechanisms, thereby acquiring advantages in terms of
proliferation and survival (105, 106). Investigations have
indicated that the p16 gene frequently undergoes silencing in lung
cancer tissues due to hypermethylation of its promoter region,
leading to the loss of its regulatory influence on the cell cycle, which
in turn fosters the proliferation of lung cancer cells (107, 108).
Additionally, DNA methylation has the potential to influence
various processes related to metabolism, invasion, and metastasis
in tumor cells (109). Studies utilizing lung cancer cell lines have
revealed that alterations in the methylation status of specific genes
associated with tumor metastasis can significantly impact the
migratory and invasive capabilities of tumor cells (110).

Histone modification encompasses the chemical alterations of
the amino acid residues within histones, which include processes
such as acetylation, methylation, phosphorylation, and
ubiquitination (111, 112). These modifications have the capacity
to transform the structural and functional properties of chromatin,
thereby impacting gene expression (113). Histone acetylation is
facilitated by histone acetyltransferases (HATSs), which relax the
chromatin architecture, enhance the accessibility of genes, and
stimulate transcriptional activity (114). Conversely, histone
deacetylation is mediated by histone deacetylases (HDACs),
resulting in a more compact chromatin structure that suppresses
gene transcription (115). In the context of lung cancer, the
equilibrium between histone acetylation and deacetylation is
perturbed, resulting in the dysregulation of gene expression (116,
117). Research has indicated that the heightened activity of HDACs
in lung cancer cells correlates with increased levels of histone
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deacetylation, leading to the repression of certain tumor
suppressor genes and consequently facilitating the onset and
progression of lung cancer (118). The modification of histone
methylation is characterized by its complexity, as varying
locations and extents of methylation can elicit diverse biological
outcomes that may either promote or inhibit gene expression.
Moreover, its specific implications in lung cancer are contingent
upon the location and extent of modification, along with the
associated regulatory elements (119, 120).

Non-coding RNAs (ncRNAs) represent a category of RNA
molecules that lack protein-coding capabilities, encompassing
microRNAs (miRNAs) and long non-coding RNAs (IncRNAs).
These molecules are integral to epigenetic regulation (121).
miRNAs are characterized as small RNA entities, approximately
22 nucleotides in length, that modulate gene expression through
complementary binding to the mRNA of specific target genes. This
interaction can suppress the translation of mRNA or facilitate its
degradation (122, 123). In the context of lung cancer, numerous
miRNAs exhibit aberrant expression patterns that are implicated in
various cellular processes, including proliferation, apoptosis,
invasion, and metastasis of lung cancer cells (124). Notably, miR-
21 is found to be overexpressed in lung cancer tissues, where it can
target and downregulate multiple tumor suppressor genes, thereby
enhancing the proliferation and invasiveness of lung cancer cells
(125). IncRNA is a ncRNAs with a length of more than 200
nucleotides. IncRNA’s mechanism of action is more complex. It
can regulate gene expression at multiple levels, including the
transcriptional and post-transcriptional levels, by interacting with
DNA, RNA, or proteins (126, 127). Within lung cancer pathology,
certain IncRNAs, such as MALAT1 and HOTAIR, are significantly
associated with the onset and progression of the disease (128).
MALATTI has been shown to facilitate the proliferation, migration,
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and invasion of lung cancer cells by modulating the expression of
associated genes (129). Conversely, HOTAIR interacts with
chromatin modification complexes to modify chromatin states,
which subsequently affects gene expression and promotes
metastasis in lung cancer (130).

4 Epigenetic regulatory mechanisms
in the microenvironment of lung
cancer

4.1 The regulatory role of DNA methylation
in the microenvironment of lung cancer

DNA methylation is an epigenetic modification catalyzed by
DNA methyltransferases (DNMTs). This modification regulates
gene expression by adding methyl groups to CpG islands and
serves as an important mechanism for maintaining genomic
stability and influencing cell differentiation and survival (103).
Specifically, in the lung cancer microenvironment, abnormal
changes in DNA methylation have a profound impact on gene
expression and cell function. These alterations play a key role in the
occurrence, development, metastasis, and response to treatment of
lung cancer.

In the process of lung cancer development, abnormal DNA
methylation is manifested not only as hypermethylation of
individual tumor suppressor gene promoters but also as
epigenetic reprogramming driven by a systemic imbalance in the
expression or activity of enzymes regulating DNA methylation
(131). DNA methyltransferases (DNMTs) are the main writers,
including DNMT1, DNMT3A, and DNMT3B, which achieve gene
silencing by catalyzing the transfer of a methyl group to cytosine,
resulting in the formation of 5-methylcytosine (5mC) (132). Studies
have shown that overexpression of DNMT1 leads to methylation-
mediated silencing of promoter regions of multiple tumor
suppressor genes (such as pl6, RASSF1A, and CDHI1), thereby
inhibiting apoptosis and promoting tumor cell proliferation and
invasion (133). The pl6 tumor suppressor gene is pivotal in the
regulation of the cell cycle. The protein encoded by this gene serves
to inhibit the activity of cyclin-dependent kinases 4 and 6 (CDK4/
6), thereby obstructing the transition of cells from the G1 phase to
the S phase and consequently suppressing cellular proliferation
(134). Within lung cancer cells, the promoter region of the p16 gene
frequently experiences hypermethylation, which leads to
transcriptional silencing of the gene. As a result, the inhibition of
CDK4/6 is lost, causing the cell cycle to become dysregulated. This
allows lung cancer cells to continuously proliferate, facilitating
tumor initiation and progression (135). Research indicates that in
cases of non-small cell lung cancer, the prevalence of
hypermethylation at the pl6 gene promoter can range from 50%
to 70%, correlating closely with the tumor’s stage, grade, and patient
prognosis (104, 136). Another frequently silenced tumor suppressor
gene, RASSF1A, also undergoes promoter hypermethylation. The
protein produced by RASSFIA is integral to various cellular
processes, including apoptosis, regulation of the cell cycle, and the
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inhibition of tumor cell migration and invasion (137). In lung
cancer, hypermethylation of the RASSF1A promoter results in the
loss of its expression, allowing cancer cells to evade apoptosis while
enhancing their proliferative and metastatic potential (138). A
comprehensive study involving a large cohort of lung cancer
patients revealed that those exhibiting hypermethylation of the
RASSF1A promoter had significantly poorer 5-year survival rates
compared to their counterparts without such hypermethylation
(139). In addition, epigenetic silencing of the CDHI gene by
methylation is of significant importance in lung cancer. The
adhesion molecule E-cadherin, encoded by CDHI, maintains
intercellular connections and tissue structural integrity of
epithelial cells. Methylation of its promoter can lead to loss of
protein expression, thereby weakening intercellular adhesion and
promoting EMT (140). This process not only enhances the
migration and invasion capabilities of lung cancer cells but also
promotes tumor immune evasion by regulating immune-related
signals. For example, loss of E-cadherin can upregulate PD-L1
expression and reshape the tumor immune microenvironment,
enabling tumor cells to evade immune surveillance (141).
Therefore, CDH1 methylation is not only a hallmark event of
tumor invasion and metastasis but also reflects the functional
cross-talk between epigenetic regulation and immune evasion.
Furthermore, abnormal activation of DNMT3A and DNMT3B is
closely related to the early occurrence of lung cancer, and their
inhibitors (such as azacitidine and decitabine) have been approved
for use in hematological tumors and are being explored for
epigenetic therapy in lung cancer (142). In contrast, members of
the demethylase (erasers) family, such as TET1, TET2, and TET3,
promote the demethylation process by oxidizing 5-methylcytosine
(5mC) to 5-hydroxymethylcytosine (5hmC). Loss of their function
often leads to global reduction of 5hmC and hypermethylation at
specific loci (143). For example, TET2 mutations or downregulation
can promote the maintenance of cancer stemness and tumor
immune evasion in lung cancer cells. Additionally, loss of TET1
enhances tumor adaptive metabolism by upregulating hypoxia-
inducible factor 1-alpha (HIF-1a) signaling (144).

Beyond its effects on tumor cells directly, DNA methylation is
also integral to intercellular signaling and immune modulation within
the tumor microenvironment of lung cancer (145). TAMs represent a
significant subset of immune cells present in this environment, and
their functional characteristics are pivotal for tumor progression
(146). Studies have demonstrated that the DNA methylation
patterns of specific genes within TAMs can influence their
polarization and operational capacities. For example, the
hypomethylation observed in the promoter region of the Argl gene
leads to an upregulation of this gene’s expression, thereby steering
TAMs toward an M2 polarization. M2-type TAMs are characterized
by their immunosuppressive roles and their ability to secrete a variety
of cytokines, including IL-10 and TGEF-B, which can inhibit the
functions of immune cells such as T cells and NK cells, thus
promoting tumor immune evasion (147). In contrast, the
restoration of TET enzyme activity can enhance T cell infiltration
by remodeling the chemokine network, thereby improving the
response rate to immune checkpoint therapy (148). Conversely,
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DNMT1-mediated methylation silences chemokines such as CXCL9
and CXCL10, leading to reduced anti-tumor immune cell infiltration;
the restoration of TET1 and TET?2 can reverse this effect and improve
the efficacy of immune checkpoint inhibitors (ICIs) (149). In
addition, abnormal DNA methylation in cancer-associated
fibroblasts (CAFs) promotes extracellular matrix stiffening and
tumor angiogenesis by upregulating extracellular matrix
remodeling-related genes, such as COL1A1 and LOXL2, and
increasing growth factor secretion. This creates a more invasive
niche for cancer cells (150, 151). Beyond TAMs and CAFs,
remodeling of DNA methylation in other immune cells also
contributes to reprogramming the immune microenvironment in
lung cancer (152). In T cells, epigenetic remodeling induced by
chronic antigen stimulation fixes the exhausted phenotype.
DNMT3A-mediated methylation of the promoters of PDCD1 (PD-
1), LAG3, and HAVCR2 (TIM-3) leads to sustained high expression
of inhibitory receptors, resulting in functional exhaustion of CD8"T
cells; in contrast, activation of TET2 and TET3 can restore the
memory phenotype and enhance the response to immune
checkpoint therapy (153). In dendritic cells (DCs), overactivation of
DNMT1 and DNMT3B causes hypermethylation of genes such as
MHC-II, CD80/CD86, and IEN-f, inhibiting antigen presentation
and T cell activation. Restoration of TET2 can reconstruct the
inflammatory transcription program and enhance anti-tumor
immunity (154). In tumor-associated neutrophils (TANs),
abnormal methylation of IL-8, CXCR2, and PAD4 mediated by
DNMT1 and DNMT3A drives N2 polarization, promoting
angiogenesis and immune suppression; activation of TET3 can
revert this phenotype to N1, enhancing reactive oxygen species-
dependent tumor-killing effects (155).

During the metastasis of lung cancer, DNA methylation also
plays an important role. EMT is a key process for tumor cells to
acquire invasive and metastatic capabilities (156). Studies have
shown that DNA methylation can influence the metastatic ability
of lung cancer cells by regulating the expression levels of EMT-
related genes (157). Transcription factors such as Snail and Slug are
key regulatory factors in the EMT process. During the metastasis of
lung cancer cells, the methylation status of the promoter regions of
their genes undergoes hypomethylation, which leads to the
upregulation of these transcription factors (158). Low methylation
of the Snail gene promoter increases its expression. The Snail
protein can bind to the promoter region of the E-cadherin gene
and inhibit its expression, which decreases cell-cell adhesion among
lung cancer cells. Additionally, Snail promotes the expression of
mesenchymal markers such as N-cadherin and vimentin. This
allows lung cancer cells to acquire mesenchymal characteristics,
making them more prone to invasion and metastasis (159).
Furthermore, studies have found that the methylation state
of certain miRNA genes related to tumor metastasis is closely
associated with lung cancer metastasis (160). The miR-34a gene is
often downregulated in lung cancer due to high methylation of its
promoter. miR-34a targets and inhibits several genes associated
with tumor metastasis. Following miR-34a downregulation, its
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inhibitory effect on target genes weakens, leading to enhanced
invasion and metastatic ability of lung cancer cells (161-163).

DNA methylation is closely related to the treatment resistance of
lung cancer. During chemotherapy for lung cancer, tumor cells can
alter the expression of resistance-related genes through DNA
methylation, leading to resistance (164, 165). Multidrug resistance
gene 1 (MDRI) encodes P-glycoprotein (P-gp), a drug efflux pump
that can expel chemotherapy drugs that enter the cell, resulting in
tumor cells developing resistance to chemotherapy drugs (166).
Studies have found that after long-term stimulation with
chemotherapy drugs, the methylation level of the MDR1 gene
promoter region decreases, leading to upregulation of gene
expression and overexpression of P-gp protein, causing lung cancer
cells to develop resistance to various chemotherapy drugs, such as
paclitaxel and cisplatin (167, 168). O6-methylguanine-DNA
methyltransferase (MGMT) is a DNA repair enzyme, and its
promoter methylation status is closely related to the sensitivity of
tumor cells to alkylating agent chemotherapy drugs (169). When the
MGMT promoter is highly methylated, gene expression is
suppressed, and tumor cells become more sensitive to alkylating
agents such as temozolomide. Conversely, when the MGMT
promoter is lowly methylated, gene expression is upregulated,
allowing tumor cells to repair DNA damage caused by alkylating
agents, leading to resistance to these drugs (170, 171). In targeted
therapy for lung cancer, DNA methylation can also affect treatment
outcomes. For example, during treatment of non-small cell lung
cancer with epidermal growth factor receptor (EGFR) tyrosine kinase
inhibitors (TKI), some patients may develop resistance (172). Studies
have found that the methylation status of some genes related to the
EGFR signaling pathway changes in resistant cells, leading to
sustained activation of the EGFR signaling pathway, causing tumor
cells to develop resistance to TKI (173, 174) (Figure 4).

4.2 The regulatory role of histone
modifications in the microenvironment of
lung cancer

Histone modifications, as an important mechanism of regulation
at the chromatin level, play a key role in the remodeling of chromatin
structure and the activation or silencing of gene transcription in the
lung cancer microenvironment. Chromatin is formed by DNA
wrapping around histone octamers to create nucleosomes, which are
further assembled into higher-order structures (175). Within these
nucleosomes, the N-terminal tails of histones extend out from
the surface, and the amino acid residues on them can undergo
various post-translational modifications, including acetylation,
methylation, phosphorylation, and ubiquitination. These
modifications can alter the compactness and accessibility of
chromatin, thereby affecting gene transcription activity (176).
Although histone modifications are post-translational modifications
of proteins at the molecular level, they are often regarded as core
components of epigenetic mechanisms. This is because these
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The regulatory role of DNA methylation in the microenvironment of lung cancer.

modifications can regulate gene expression in a heritable and
reversible manner without changing the DNA sequence, and they
have long-term regulatory effects in cell differentiation, stress response,
and tumor microenvironment remodeling (177) (Figure 5).

Histone acetylation and deacetylation represent dynamic and
regulated modifications that are orchestrated by HATs and histone
deacetylases (HDACs), respectively (178). In healthy cellular
contexts, this equilibrium plays a crucial role in sustaining
appropriate gene expression. However, within the lung cancer
microenvironment, this delicate balance is frequently disturbed.
Research indicates that lung cancer cells often exhibit elevated levels
of both the expression and activity of HDACs. These enzymes
facilitate the removal of acetyl groups from histones, which
subsequently results in chromatin condensation and the
repression of gene transcription (179, 180). For instance, the
upregulation of HDACs leads to histone deacetylation at the
promoter regions of critical tumor suppressor genes, including
p53 and Rb, thereby contributing to a tighter chromatin
configuration. As a result, the transcriptional activity of these
tumor suppressor genes is inhibited, undermining their essential
roles in curbing tumor cell proliferation and fostering apoptosis,
which ultimately promotes the progression of lung cancer (181).
Conversely, a reduction in HAT activity or expression leads to
diminished levels of histone acetylation, further disrupting normal
gene expression (182). In light of these observations, various studies
have investigated the therapeutic efficacy of histone deacetylase
inhibitors (HDACi) in the treatment of lung cancer. These
inhibitors function by obstructing HDAC activity, enhancing
histone acetylation, and reactivating silenced tumor suppressor
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genes, consequently thwarting the growth and proliferation of
lung cancer cells (183). In both lung cancer cell lines and animal
models, HDACi have been shown to induce apoptosis, halt cell
cycle progression, and partially inhibit tumor growth and
metastasis (184).

Histone methylation modifications are relatively complex and
can occur on different amino acid residues of histones, with varying
degrees of methylation (monomethylation, dimethylation, and
trimethylation). The different modification sites and degrees have
varying effects on gene transcription (185). In the lung cancer
microenvironment, abnormal changes in histone methylation
contribute significantly to the occurrence and progression of lung
cancer (186). For example, trimethylation at lysine 4 of histone H3
(H3K4me3) is usually associated with gene activation. In lung
cancer, certain genes that promote tumor growth and metastasis
have increased H3K4me3 marks in their promoter regions,
enhancing the transcriptional activity of these genes (187). Studies
have found that in NSCLC, some angiogenesis-related genes, such
as the VEGF gene, exhibit elevated H3K4me3 modification in their
promoter regions, promoting VEGF gene transcription. This
facilitates tumor angiogenesis, providing sufficient nutrients and
oxygen for tumor cells, thereby supporting tumor growth and
metastasis (188). Conversely, trimethylation at lysine 27 of
histone H3 (H3K27me3) is usually associated with gene silencing
(189). Moreover, in lung cancer, some tumor suppressor genes
show enhanced H3K27me3 levels in their promoter regions. This
leads to the silencing of these genes. For instance, the increased
H3K27me3 modification in the promoter region of the pl6 gene
prevents its normal expression. This results in the loss of its
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regulatory effect on the cell cycle, giving lung cancer cells a
proliferative advantage (190). Histone methylation is catalyzed by
histone methyltransferases (HMTs), with different HMTs
responsible for methylation modifications at various sites and
degrees (191). In lung cancer, abnormal expression of multiple
HMTs leads to disrupted methylation patterns, among which EZH2
and SETD2 are the most representative key regulators. EZH2, the
core methyltransferase of the polycomb repressive complex PRC2,
is capable of catalyzing the H3K27me3 modification (192). EZH2 is
commonly upregulated in lung cancer. Excessive H3K27me3
silences tumor suppressor genes including pl6, CDHI, and
PTEN, promoting cell proliferation, EMT, and invasive metastasis
(193). Additionally, EZH2 has multiple immunoregulatory effects in
the TME. On one hand, EZH2 promotes immune evasion by
silencing the expression of MHC-I and T cell chemokines (such
as CXCL9 and CXCL10), reducing antigen presentation and CD8"T
cell infiltration (194). On the other hand, EZH2 can maintain the
immunosuppressive phenotype of Treg cells by silencing cytotoxic
factor gene expression via methylation, such as IFNG and GZMB,
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weakening the effector function of CD8'T cells (195, 196).
Meanwhile, in DCs, overactivation of EZH2 can inhibit the
expression of co-stimulatory molecules (CD80/CD86) and antigen
presentation molecules, limiting the activation of naive T cells. Its
inhibition can restore DC-mediated immunogenic responses (197).
In TANs, EZH2-mediated H3K27me3 enrichment is associated
with the silencing of pro-inflammatory factors (such as IL-12 and
TNF-0), promoting N2 polarization and angiogenesis. EZH2
inhibitors can reverse this phenotype, enhancing N1 cytotoxic
function and immune response (198). Furthermore, EZH2
collaborates with histone demethylase LSD1 to co-regulate the
chromatin accessibility of T cell exhaustion markers. An
imbalance in their activities can lead to stabilization of T cell
exhaustion and reduced response to anti-PD-1 therapy (199). In
mouse lung cancer models, EZH2 inhibitors (such as Tazemetostat)
can significantly reduce H3K27me3 levels, relieve the epigenetic
silencing of antigen presentation genes, and synergize with PD-1/
PD-L1 immune checkpoint inhibitors, suggesting the potential of
combining epigenetic therapy with immunotherapy (200). In
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contrast, SETD2 is the only H3K36me3 methyltransferase in
mammals, and its function is crucial for maintaining genomic
stability, RNA splicing accuracy, and DNA repair (201). In lung
cancer, mutations or deletions of SETD2 lead to decreased
H3K36me3 levels, triggering replication stress, DNA mismatch
repair defects, and genomic instability, thereby promoting tumor
heterogeneity and drug resistance (202). More importantly,
downregulation of SETD2 weakens the transcriptional
activation of immune-related genes and reduces neoantigen
presentation and interferon signaling. It also inhibits CD8"T cell
infiltration and enhances the accumulation of immunosuppressive
cells, such as Tregs and M2 TAMs (203). However, impaired
SETD?2 function can activate the cGAS-STING pathway and type
I interferon signaling, triggering a “double-edged sword” effect
characterized by both chronic inflammation and immune
exhaustion. Clinically, SETD2 mutations are considered
associated with unstable efficacy of immune checkpoint inhibitors
and are potential targets for immune profiling combined with
epigenetic therapy (204, 205).

Histone phosphorylation is the addition of phosphate groups to
specific amino acid residues of histones under the action of protein
kinase. This modification can alter the interaction between histones
and DNA, affecting the structure and function of chromatin,
thereby regulating gene transcription (206). Such phosphorylation

10.3389/fimmu.2025.1697428

events play important roles in the lung cancer microenvironment,
being involved in the initiation and progression of lung cancer.
Studies have found that lung cancer cells, when stimulated by
external factors such as growth factors and cytokines, exhibit
phosphorylation of histones H2A, H2B, H3, and H4 (207).
Among these, phosphorylation at serine 10 of histone H3
(H3S10ph) is closely associated with gene activation. Specifically,
in lung cancer cells stimulated by EGF, intracellular signaling
pathways are activated, leading to increased protein kinase
activities and resulting in H3S10 phosphorylation (208). H3S10ph
can alter the structure of chromatin and promote the transcription
of genes related to cell proliferation and survival, such as c-Myc and
Cyclin D1, thereby facilitating the proliferation and survival of lung
cancer cells (209, 210). Histone phosphorylation is also linked to the
invasion and metastasis capabilities of lung cancer cells. During the
EMT process in lung cancer cells, specific histone phosphorylation
modifications change (211). Research shows that under the
stimulation of EMT-inducing factors, such as TGEF-f, the
phosphorylation level of serine 14 on histone H2B (H2BS14ph)
increases (212). H2BS14ph can regulate the expression of EMT-
related genes by affecting the recruitment of chromatin remodeling
complexes, promoting the expression of mesenchymal markers like
N-cadherin and vimentin, while inhibiting the expression of
epithelial markers like E-cadherin. This allows lung cancer cells to
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acquire mesenchymal characteristics and enhances their invasion
and metastasis capabilities (213) (Figure 6).

4.3 Regulatory role of Non-coding RNA in
lung cancer microenvironment

Non-coding RNA refers to a category of RNA molecules that do
not translate into proteins, yet they serve an essential regulatory
function within the microenvironment of lung cancer. This
category predominantly encompasses miRNA and IncRNA. These
molecular entities modulate gene expression at both transcriptional
and post-transcriptional stages through their interactions with
specific target genes. Consequently, they impact the biological
activities of lung cancer cells as well as the cellular
communication and interactions occurring within the lung
cancer microenvironment.

miRNAs are small RNA molecules approximately 22
nucleotides in length. They bind to the 3’-untranslated region (3’-
UTR) of target gene mRNA through complementary pairing,
inhibiting mRNA translation or promoting its degradation,
thereby achieving negative regulation of gene expression (214). In
the lung cancer microenvironment, the expression levels of many
miRNAs are abnormally altered. These miRNAs participate in the
processes of lung cancer occurrence, development, metastasis, and
immune escape (215). miR-21 is highly expressed in lung cancer
tissues and cell lines. It can target and inhibit the expression of
tumor suppressor genes such as programmed cell death protein 4
(PDCD4), and phosphatase and tensin homolog (PTEN) (216).
After the expression of PDCD4 is suppressed, PDCD4 cannot
effectively inhibit the activity of the protein translation initiation
factor eIF4A, which promotes the proliferation and invasion of lung
cancer cells (217). The downregulation of PTEN expression
weakens its inhibitory effect on the phosphoinositide 3-kinase
(PI3K)/protein kinase B (AKT) signaling pathway. This activates
the signaling pathway and enables lung cancer cells to acquire
stronger survival and proliferation capabilities (218). miR-155 is
also highly expressed in the lung cancer microenvironment. It can
affect the function of immune cells by targeting and regulating some
immune-related genes (219). miR-155 can target and inhibit the
expression of the SHIP1 gene, which is a negative regulator involved
in immune cell signaling. Its suppression leads to excessive
activation of immune cells and enhanced inflammatory responses,
facilitating immune escape of lung cancer cells (220, 221). miR-155
can also promote the polarization of TAMs towards the M2 type,
enhancing the immunosuppressive function of TAMs and further
inhibiting the body’s anti-tumor immune response (222). In
addition to TAMs, miRNAs also mediate epigenetic regulation
and immune exhaustion in various immune populations. For
example, in T cells, miR-31, miR-146a, and miR-155 can target
molecules such as T-bet, SOCS1, and DNMT1, reshaping
exhaustion-related epigenetic programs (223). Upregulation of
miR-31 promotes the expression of TOX and PD-1, locking
CDS8'T cells into an exhausted phenotype. Upregulation of miR-
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146a inhibits IFN-y production, weakening cytotoxic responses,
while miR-34a targets PD-L1 mRNA, partially restoring the killing
activity of T cells and enhancing sensitivity to immune checkpoint
therapy (224, 225). In DCs, the miR-148/152 family enhances
antigen presentation by inhibiting CaMKIIo. and DNMT1,
upregulating CD80/CD86 and type I interferons; conversely, high
expression of miR-22 and miR-146a inhibits IRF5, RelB, and IL-12,
inducing DCs to transition to a tolerant phenotype, weakening T
cell activation (226). In TANs, miR-223 and miR-142-3p regulate
the STAT3 and HIF-1o pathways, balancing pro-inflammatory and
immunosuppressive responses. Downregulation of miR-223 drives
N2 polarization and enhances VEGF expression, promoting
angiogenesis and immune evasion, while upregulation of miR-
142-3p can inhibit Neutrophil Extracellular Traps (NETs)
formation and restore pro-inflammatory responses (227, 228).
Furthermore, an increasing number of studies have found that
miRNAs can directly regulate epigenetic mechanisms. They become
key nodes connecting metabolism and immune remodeling. For
example, the miR-29 family can target DNA methyltransferases
DNMT3A/3B, downregulating their expression, thereby relieving
the methylation silencing of tumor suppressor genes, such as p15
and RASSFIA. miR-148a and miR-152 directly target DNMT1,
restoring gene demethylation and inhibiting the EMT process in
lung cancer cells. miR-101 and miR-26a can downregulate histone
methyltransferase EZH2, reducing H3K27me3 levels and
reactivating the transcription of tumor suppressor genes, thereby
enhancing T cell activation and anti-tumor immune responses (229,
230). Additionally, miR-34a targets deacetylase SIRT1, increasing
p53 acetylation levels, promoting cell cycle arrest and apoptosis
(231). miR-137 inhibits histone demethylase LSD1 (KDM1A),
blocking the EMT process in lung cancer cells (232). These
miRNAs reshape chromatin states and the immune
microenvironment through the “miRNA-epigenetic enzyme” axis,
revealing the molecular intersection of immune evasion and
metabolic abnormalities in lung cancer.

LncRNAs are classified as non-coding RNAs that exceed 200
nucleotides in length. The mechanisms by which they exert their
effects are intricate, allowing them to modulate gene expression
through a variety of pathways (233). Within the lung cancer
microenvironment, IncRNAs engage with DNA, RNA, and
proteins, fulfilling regulatory functions at several tiers,
encompassing both transcriptional and post-transcriptional levels
(234). One notable IncRNA, MALAT1, has been closely associated
with the metastasis of lung cancer and exhibits elevated expression
levels in lung cancer tissues and cellular models (235). MALAT1
regulates the expression of genes associated with tumor metastasis
by recruiting chromatin modification complexes and altering the
structure and accessibility of chromatin (236). MALAT1 can
interact with the histone methyltransferase EZH2, leading to the
enrichment of EZH2 in certain tumor suppressor gene promoter
regions and catalyzing the trimethylation of H3K27me3. This
results in the silencing of these tumor suppressor genes and
promotes the invasion and metastasis of lung cancer cells.
Moreover, MALAT]I affects the stability and transport of specific
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mRNAs related to cell migration and invasion, enhancing their
stability and thereby regulating the biological behavior of lung
cancer cells (237, 238). Similarly, HOTAIR is also a LncRNA that
plays an important role in lung cancer; it regulates gene expression
by interacting with various proteins and RNAs (239). HOTAIR
binds to the PRC2 complex, recruiting PRC2 to specific gene loci
and promoting gene silencing (240). In lung cancer, HOTAIR
promotes tumor occurrence and development by regulating the
expression of genes related to cell proliferation, apoptosis, and
metastasis (241). Research shows that HOTAIR can inhibit the
expression of the E-cadherin gene, promoting the EMT process of
lung cancer cells and enabling them to acquire stronger invasion
and metastasis capabilities (238). Further research indicates that
some IncRNAs directly affect the stability or recruitment of
epigenetic enzymes, thereby altering the chromatin accessibility in
lung cancer cells and immune cells. For example, the XIST-EZH2
axis involves XIST recruiting EZH2 to mediate H3K27me3-
dependent silencing of CDH1 and KLF2, which promotes the
proliferation and migration of lung cancer cells (242). The
NEAT1-EZH2/DNMT1 axis functions through NEAT1 binding
to EZH2 or DNMT]1, leading to silencing of p21 and DUSP4 by
H3K27me3 or DNA methylation, facilitating tumor immune
evasion and chemotherapy resistance (243). In the PVT1-EZH2
axis, PVTI1 stabilizes EZH2 protein levels and suppresses the
expression of the miR-200 family of microRNAs and tumor
suppressor genes, inducing an immunosuppressive phenotype
(244). The LINCO01138-PRMTS5 axis involves LINC01138 binding
to and stabilizing the arginine methyltransferase PRMT5, thereby
potentiating gene silencing and immunosuppressive transcriptional
programs (245). Lastly, the SNHG16-HDACI axis recruits HDAC1
to deacetylate the p53 promoter, reducing its transcriptional activity
and promoting cell survival and immune tolerance (246).
Non-coding RNAs play a key role in intercellular
communication within the lung cancer microenvironment.
Tumor cells can transfer their ncRNAs to surrounding cells
through the secretion of exosomes, thereby affecting their
functions (247). Lung cancer exosomes contain a large amount of
miRNAs and IncRNAs, which can be taken up by CAFs and
immune cells (248). Exosomal miR-21 can be taken up by CAFs,
activating the PI3K/Akt pathway, leading CAFs to secrete more
extracellular matrix and pro-tumor factors (such as TGF-f, PDGF),
providing a more favorable growth environment for tumor cells
(249). Meanwhile, ncRNAs carried by exosomes, such as miR-29,
miR-101, MALAT1, and HOTAIR, can directly regulate epigenetic
modifications in recipient cells. For example, in T cells, exosomal
miR-214 and miR-24-3p inhibit signaling transduction and
methylation regulation by targeting PTEN/DNMT1, inducing the
expression of exhaustion genes (PDCD1, TOX); while miR-34a and
miR-101 downregulate EZH2 and reduce H3K27me3, partially
restoring cytotoxic activity (250). In DCs, exosomal HOTAIR
recruits DNMT1 to inhibit CD80/CD86 and IL-12, inducing
immune tolerance; while miR-148a/152 inhibits DNMT1 to
promote antigen presentation and type I interferon secretion
(251). In TANSs, exosomal miR-223 and LINCO00665 activate the
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STAT3/NF-kB pathway, driving N2 polarization and enhancing
VEGF and IL-10 expression; conversely, miR-142-3p
downregulates PAD4 to inhibit NETs formation, improving the
pro-inflammatory immune environment (252) (Table 2, Figure 7).

4.4 Interaction network of epigenetic
regulation in lung cancer
microenvironment

Epigenetic regulation in the microenvironment of lung cancer is a
highly complex and delicate process. DNA methylation, histone
modification, and ncRNAs do not act in isolation but interweave to
form a tight regulatory network, jointly influencing the biological
behavior of lung cancer cells as well as the communication and
interaction between cells in the tumor microenvironment (Figure 8).

DNA methylation is closely related to histone modifications.
DNA methylation can recruit protein complexes associated with
histone modifications, thereby affecting the modification state of
histones (253). In lung cancer cells, the DNA methylation binding
protein MeCP2 can interact with HDACs and recruit them to
DNA-methylated regions (254). HDACs remove acetyl groups from
histones, which compacts the chromatin structure and inhibits gene
transcription (255). Studies have found that in lung cancer, while
certain tumor suppressor gene promoter regions are highly
methylated, the acetylation levels of nearby histones decrease,
leading to suppressed gene expression (256). This synergistic
effect of DNA methylation and histone deacetylation silences
tumor suppressor genes and promotes the initiation and
progression of lung cancer (257). Conversely, histone
modifications can also affect DNA methylation. Trimethylation of
H3K9me3 can recruit DNMTs, promoting DNA methylation at
target sites (258). In lung cancer, the H3K9me3 modification in
some oncogene promoter regions increases, leading to elevated
DNA methylation levels in those regions, upregulating oncogene
expression, and driving the progression of lung cancer (259).

A reciprocal regulatory interaction exists between DNA
methylation and ncRNAs. NcRNAs can influence DNA
methylation through various mechanisms (260). MmiRNAs have
the capacity to target and modulate the expression of DNMTs,
thereby impacting the overall levels of DNA methylation (261).
Studies indicate that miR-148a specifically targets DNMTT1, leading
to a suppression of its expression and a corresponding decrease in
DNA methylation levels. In lung cancer cells, a reduction in miR-
148a expression corresponds with an increase in DNMT1 levels,
resulting in abnormal DNA methylation patterns,
hypermethylation of specific tumor suppressor gene promoters,
and subsequent gene silencing, which contributes to lung cancer
progression (262). LncRNAs also play a significant role in the
regulation of DNA methylation. Certain IncRNAs can interact
with DNMTs, facilitating their recruitment to designated gene
loci and enhancing DNA methylation processes (263). For
instance, IncRNA HOTAIR has been shown to associate with
DNMT1, DNMT3A, and DNMT3B, which are concentrated in
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TABLE 2 Regulatory network of ncRNA-mediated epigenetic and immune modulation in lung cancer TME.
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Regulatory role of ncRNAs in the microenvironment of lung cancer.

the promoter regions of genes associated with tumor metastasis,
resulting in hypermethylation of these genes and promoting the
metastatic potential of lung cancer cells (264). On the other hand,
DNA methylation can also affect the expression of non-coding
RNA. Methylation of the promoter regions of some non-coding
RNA genes can lead to their expression being suppressed (265). In
lung cancer, hypermethylation of certain miRNA and IncRNA gene
promoters results in downregulation of their expression, losing their
normal regulatory effects on lung cancer cells, and affecting the
progression of lung cancer (266).

Histone modifications also have complex interactions with non-
coding RNAs. Histone modifications can alter the structure and
accessibility of chromatin, affecting the transcription of non-coding
RNA genes (267). For example, histone H3K4me3 modification is
often associated with gene activation. In the promoter regions of
some non-coding RNA genes, elevated levels of H3K4me3
modification can promote the transcription of these ncRNAs
(268, 269). In lung cancer, some IncRNAs associated with tumor
growth and metastasis show increased H3K4me3 modification in
their gene promoter regions, leading to upregulation of IncRNA
expression and contributing to tumor progression (270).
Conversely, non-coding RNAs can also affect histone
modifications. IncRNAs can interact with histone modification
complexes to regulate histone modification patterns (271).
MALAT1 can interact with the histone methyltransferase EZH2,
promoting the methylation of histone H3K27 in the promoter
regions of certain tumor suppressor genes, inhibiting the
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expression of these genes and promoting the invasion and
metastasis of lung cancer cells (272). miRNAs can also indirectly
influence histone modifications by regulating the expression of
proteins involved in histone modification regulation. Specifically,
miRNAs can target and inhibit some proteins involved in the
regulation of histone modifications, thereby altering histone
modification patterns. This affects gene expression and the
biological behavior of lung cancer cells (273) (Figure 8).

5 Clinical perspective: challenges and
opportunities

5.1 Challenges faced by epigenetic
regulation of lung cancer
microenvironment

From a clinical standpoint, the epigenetic modulation of the
lung cancer microenvironment presents not only a myriad of
challenges but also significant opportunities. These factors are
intricately linked to the diagnosis, treatment, and prognostic
evaluation of lung cancer patients, thereby exerting a considerable
influence on the advancement of clinical interventions for this
malignancy. Regarding clinical diagnosis, while epigenetic
alterations within the lung cancer microenvironment have
demonstrated potential as innovative biomarkers, several hurdles
remain unaddressed. A predominant concern involves the
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The interaction among DNA methylation, histone modification, and ncRNAs in the microenvironment of lung cancer jointly affects the biological

behavior of lung cancer cells.

constraints associated with existing detection methodologies.
Current technologies for identifying DNA methylation, histone
modifications, and ncRNAs exhibit limitations in sensitivity,
specificity, operational simplicity, and affordability. For example,
methylation-specific PCR (MSP) used in DNA methylation
detection is susceptible to yielding both false positive and false
negative results, and is capable of identifying only known
methylation sites. Although bisulfite sequencing can offer
comprehensive methylation insights across the entire genome, it
comes with high costs, operational complexities, and necessitates
substantial quantities of sample DNA. In the context of histone
modification detection, the chromatin immunoprecipitation
sequencing (ChIP-seq) method entails a cumbersome
experimental protocol, demands high-quality antibodies, and
involves sophisticated data analysis. The examination of ncRNAs
also encounters challenges, particularly due to the brevity of
miRNAs; standard RNA sequencing techniques struggle to
accurately quantify their expression levels, and real-time
quantitative PCR (qPCR) is also vulnerable to cross-reactivity
when assessing miRNAs. Beyond these technical obstacles, there
are additional complexities associated with the acquisition and
processing of clinical samples. The cellular composition within
the lung cancer microenvironment is highly intricate, with
variations in the proportion and functional states of diverse cell
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types across patients, which may influence the detection outcomes
of epigenetic markers. Furthermore, stringent conditions must be
maintained throughout the collection, transportation, and storage
of clinical specimens to preserve their quality and stability; any lapse
in this process could lead to alterations in epigenetic modifications,
ultimately compromising the accuracy of the tests.

In terms of treatment, the epigenetic regulation of the lung
cancer microenvironment faces severe challenges as well.
Developing drugs targeting epigenetic sites is an important
direction, but there are still multiple challenges at various levels.
The specificity and selectivity of epigenetic modification enzymes as
drug targets remain core issues. For example, while DNA
methyltransferase inhibitors (DNMT inhibitors) can reverse
abnormal methylation states, they often also act on normal cells,
leading to non-specific hypomethylation and off-target toxicity
(274). Similarly, histone deacetylase inhibitors (HDAC
inhibitors), while inhibiting tumor cell proliferation, can also
disrupt the transcription balance of normal tissues, resulting in
cardiovascular, hematopoietic, and nervous system side effects
(275). Furthermore, epigenetic regulation has dynamic
reversibility and complex feedback loops, allowing tumor cells to
rapidly restore abnormal phenotypes through compensatory
pathways (such as TET-DNMT balance, HAT-HDAC
interaction, and ncRNA feedback loops), leading to acquired
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resistance (276, 277). Moreover, some epigenetic drugs (such as
EZH2 inhibitors and BET inhibitors) have also shown an “early
response—late rebound” phenomenon in clinical trials, indicating
that the long-term efficacy and resistance control mechanisms
remain unclear. In addition, the functional overlap of enzymatic
activities among different epigenetic targets increases the
complexity of combination therapy, making drug optimization
and dosage control more challenging. On this basis, the efficacy
evaluation of epigenetic drugs also faces bottlenecks. Due to their
mechanism of action focusing on reshaping gene expression and
immune status rather than directly inducing tumor shrinkage,
traditional radiographic indices (such as the RECIST criteria)
often fail to accurately reflect efficacy. The optimal assessment
indicators for epigenetic regulatory drugs need to combine
comprehensive parameters such as molecular-level methylation
profiles, histone modification profiles, and immune cell functional
outcomes, which poses higher requirements for clinical
monitoring systems.

From the perspective of clinical translation, converting research
findings on the epigenetic regulation of the lung cancer
microenvironment into effective therapeutic methods remains a
major challenge. Currently, most studies are at the basic and
preclinical stages, and although positive results have been
achieved in cell lines and animal models, efficacy in clinical trials
is often inconsistent. For instance, DNMT inhibitors can restore
tumor suppressor gene expression and inhibit tumor growth in
vitro, but in clinical settings, they often show limited efficacy and
serious toxic side effects, such as bone marrow suppression (278).
This discrepancy partly arises from the complex immune-
metabolic-epigenetic interaction network within the tumor
microenvironment. This network causes drug effects to be
influenced by individual differences and microenvironmental
plasticity, which refers to the dynamic and adaptable nature of
the tumor microenvironment. Additionally, the high heterogeneity
of epigenetic characteristics among lung cancer patients leads to
significant differences in individual responses to the same epigenetic
drugs. Therefore, establishing precision medicine strategies based
on epigenetic profiling and developing individualized drug
sensitivity prediction models will be key directions for the
successful translation of epigenetic therapies for lung cancer in
the future.

5.2 Opportunities brought by epigenetic
regulation of lung cancer
microenvironment

Epigenetic regulation of the microenvironment in lung cancer
has also brought unprecedented opportunities for clinical
treatment. These opportunities mainly lie in the epigenetic
modifications in the tumor microenvironment, which act as novel
biomarkers. They provide new approaches for the early diagnosis
and prognostic assessment of the disease, thereby offering strong
support for new targets and strategies in its treatment.
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5.2.1 Provide new markers for the diagnosis and
prognosis assessment of lung cancer

The timely identification and precise prognostic evaluation of
lung cancer are essential for enhancing treatment efficacy and
improving patient survival rates. Conventional diagnostic
approaches primarily depend on imaging techniques—such as
chest radiographs and computed tomography scans—alongside
histopathological assessments and tumor marker analysis.
However, these techniques exhibit several limitations. For
example, imaging modalities often demonstrate insufficient
sensitivity for the early detection of lung cancer, while
histopathological evaluations are invasive and may be prone to
sampling inaccuracies. Furthermore, the specificity and sensitivity
of standard tumor markers, including carcinoembryonic antigen
(CEA) and cytokeratin 19 fragment (CYFRA21-1), require further
refinement for effective diagnosis and prognostic evaluation of lung
cancer. Recently, epigenetic alterations within the lung cancer
microenvironment have emerged as promising novel biomarkers,
offering innovative strategies for the diagnosis and prognostic
evaluation of this malignancy.

DNA methylation, as an important epigenetic modification,
exhibits characteristic changes during the occurrence and
development of lung cancer, making it a potential biomarker for
lung cancer diagnosis and prognosis assessment (279). Studies have
found that abnormal methylation of various genes is closely related
to the occurrence of lung cancer. These genes include tumor
suppressor genes, oncogenes, and those involved in tumor
metabolism, invasion, and metastasis. The RASSF1A gene is an
important tumor suppressor gene whose promoter region
frequently undergoes hypermethylation in lung cancer tissues,
leading to gene silencing. Detecting the methylation status of the
RASSFIA gene promoter can serve as a potential biomarker for
lung cancer diagnosis (280). Similarly, methylation of the APC gene
is also associated with lung cancer occurrence, with
hypermethylation of the APC gene promoter detectable in both
lung cancer tissues and patient plasma. Monitoring the methylation
status of the APC gene aids in the early diagnosis of lung cancer,
especially for early lesions, which are difficult to detect through
imaging examinations (281). In addition to diagnosis, DNA
methylation markers can also be used for prognosis assessment in
lung cancer. Hypermethylation of the DAPK1 gene promoter is
associated with poor prognosis in lung cancer patients, with
methylation-positive patients-defined as those exhibiting
promoter hypermethylation-having significantly shorter
progression-free survival and overall survival compared to
methylation-negative patients (282, 283). By detecting the
methylation status of the DAPKI gene, a better assessment of
patient prognosis can be achieved, providing a basis for
developing personalized treatment plans. In addition, the DNA
methylation profile not only reflects the molecular typing
characteristics of tumors but also provides important evidence for
patient stratification. By integrating the methylation status of
multiple genes (such as RASSF1A, pl6, CDHI1, and TMEFF2),
researchers can distinguish between the “highly methylated
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phenotype” (CIMP) and the “low methylation phenotype”
subgroups (284). The CIMP-positive subtype is usually associated
with an immunosuppressive microenvironment, high expression of
PD-LI, and sensitivity to epigenetic drugs, while CIMP-negative
patients often exhibit immune inflammatory characteristics and
respond better to immunotherapy. Therefore, detection of
methylation characteristics can be used not only for early
diagnosis and prognosis evaluation but also to lay a molecular
foundation for personalized therapy and stratified management of
lung cancer patients.

Histone modifications also undergo abnormal changes in the
lung cancer microenvironment, which are closely related to the
biological behaviors and prognosis of lung cancer, and can serve as
potential biomarkers for the diagnosis and prognosis assessment of
lung cancer. The trimethylation of H3K9me3 is associated with
gene silencing. In lung cancer cells, the levels of H3K9me3 in the
promoter regions of certain tumor suppressor genes are elevated,
leading to gene silencing (285). Studies have found that the overall
level of H3K9me3 in lung cancer tissues is related to the staging and
grading of tumors, as well as the prognosis of patients (286). In
early-stage lung cancer patients, the levels of H3K9me3 in tumor
tissues are lower, while in late-stage lung cancer patients, the levels
of H3K9me3 are significantly elevated. Detection of H3K9me3
levels in lung cancer tissues aids in assessing tumor progression
and patient prognosis (287). Trimethylation of H3K4me3, is usually
associated with gene activation. In lung cancer, the levels of
H3K4me3 in the promoter regions of some genes related to
tumor growth and metastasis are elevated. By detecting the levels
of H3K4me3 in these gene promoter regions, the proliferation and
metastatic ability of lung cancer cells can be assessed, providing a
reference for the prognosis evaluation of lung cancer (288).
Furthermore, different combinations of histone modifications
constitute the “epigenetic subtypes” of lung cancer. For example,
high levels of H3K27me3 caused by EZH2 overactivation often
indicate an immunologically cold subtype, which is less responsive
to ICIs but sensitive to EZH2 inhibitors; the loss of H3K36me3
caused by SETD2 mutations is associated with an immunologically
hot phenotype (289). In the future, a multidimensional stratification
model combining histone modification characteristics is expected to
achieve precise matching of immune therapies and epigenetic drug
combination predictions for lung cancer patients.

NcRNAs, especially miRNAs and IncRNAs, are abnormally
expressed in the lung cancer microenvironment and are closely
related to the occurrence, development, metastasis, and prognosis of
lung cancer, showing great potential as biomarkers for lung cancer
diagnosis and prognosis assessment (290). miR-21 is highly
expressed in lung cancer tissues and cell lines, and its expression
level is associated with the staging, grading, and prognosis of lung
cancer. Studies have found that the level of miR-21 in the serum of
lung cancer patients is significantly higher than that of healthy
controls, and lung cancer patients with high expression of miR-21
have a poorer prognosis. Detecting the level of miR-21 in serum can
assist in the diagnosis of lung cancer and assess the prognosis of
patients (291, 292). miR-155 is also highly expressed in the lung
cancer microenvironment, and it is involved in regulating the
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proliferation, invasion, and metastasis of lung cancer cells.
Clinical studies have shown that the expression level of miR-155
is closely related to the survival of lung cancer patients, with
patients expressing high levels of miR-155 having significantly
shorter survival times (293). Furthermore, detecting the
expression level of miR-155 can serve as an important indicator
for lung cancer prognosis assessment. Research on IncRNAs in lung
cancer is also receiving increasing attention, with many IncRNAs
such as MALAT1 and HOTAIR being abnormally expressed in lung
cancer tissues. The high expression of MALAT1 is associated with
metastasis and poor prognosis in lung cancer. By detecting the
expression level of MALATI in lung cancer tissues or patient
plasma, the metastatic potential of lung cancer and the prognosis
of patients can be assessed (294). NcRNAs, especially circulating
miRNAs and exosomal IncRNAs, provide new avenues for dynamic
stratification of patients during treatment. The expression profiles
of different ncRNA combinations can reflect tumor immune status
and treatment sensitivity; for example, the high expression subtype
of miR-21/miR-155 usually corresponds to immunosuppressive
lung cancer, while low expression of miR-126 and the miR-200
family suggests immune-active characteristics (295). In addition,
exosomal ncRNAs as liquid biopsy epigenetic biomarkers can be
used for dynamic monitoring of treatment response and resistance
evolution. By integrating miRNA, IncRNA, and DNA methylation
signals to construct the “Epigenetic-Immune Signature Score,” a
comprehensive and precise assessment from diagnosis and
stratification to efficacy prediction can be achieved (296, 297).

5.2.2 Provide new targets and strategies for the
treatment of lung cancer

Comprehensive investigations into the epigenetic regulatory
mechanisms within the lung cancer microenvironment have
unveiled novel therapeutic targets and strategies, potentially
enhancing treatment efficacy and prognostic outcomes for lung
cancer patients. Among these, the therapeutic approaches related to
DNA methylation have emerged as significant focal points in
research. DNMTs represent critical enzymes that facilitate the
process of DNA methylation. In the context of lung cancer, the
aberrant expression of DNMTs results in altered DNA methylation
patterns, characterized by hypermethylation occurring in the
promoter regions of numerous tumor suppressor genes, which
ultimately leads to the silencing of gene expression. Consequently,
DNMTs have been identified as promising therapeutic targets,
prompting the development of DNMTis aimed at lung
cancer treatment.

The earliest DNMTis investigated include 5-aza-2-
deoxycytidine (5-aza-dC) and 5-aza-cytidine (5-aza-CR). These
agents can be incorporated into DNA, forming covalent bonds
with DNMTs, thereby inhibiting their enzymatic activity and
leading to a reduction in DNA methylation levels. This
mechanism facilitates the reactivation of tumor suppressor gene
expression (298, 299). Experimental studies conducted on lung
cancer cell lines and animal models have demonstrated that both 5-
aza-dC and 5-aza-CR effectively inhibit lung cancer cell
proliferation, induce apoptosis, and suppress tumor growth and
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metastatic spread (300). Nevertheless, it is important to note that
despite these beneficial effects, these drugs exhibit certain
limitations, including high cytotoxicity and a lack of specificity.
Recently, novel DNMTis such as decitabine and zebularine have
been developed. Decitabine is a modified DNMTi that possesses
enhanced activity and reduced toxicity, showing promising
therapeutic potential for lung cancer in clinical trials (301).
Zebularine has better cell permeability and stability and can more
effectively inhibit the activity of DNMTs (302). In addition to
directly inhibiting the activity of DNMTs, zebularine can also
affect the DNA methylation status by regulating the signaling
pathways related to DNA methylation (303). Research has
identified several signaling pathways, including the Wnt/f-catenin
and PI3K/Akt pathways, as being intimately linked to DNA
methylation processes. By targeting and inhibiting these
pathways, it is possible to indirectly regulate DNMT activity and
DNA methylation levels, presenting a novel therapeutic strategy for
lung cancer management (304).

Therapeutic targets and strategies related to histone
modifications have also made significant progress. HDACs are key
enzymes that regulate histone acetylation levels. In lung cancer, the
activity of HDACs is elevated, leading to enhanced histone
deacetylation and suppression of tumor suppressor gene expression
(305). Therefore, HDAC inhibitors (HDACi) have become potential
drugs for lung cancer treatment. Vorinostat, Romidepsin, and
Belinostat are commonly used HDAC inhibitors in clinical practice.
These drugs inhibit the activity of HDACs, increase histone
acetylation levels, and reactivate the expression of tumor
suppressor genes, thereby inhibiting the growth and proliferation of
lung cancer cells (306). In lung cancer cell lines and animal models,
HDACi can induce apoptosis of lung cancer cells, inhibit cell cycle
progression, and suppress tumor metastasis to some extent. Some
HDAC] have entered clinical trials, bringing new hope to lung cancer
patients (307, 308). In addition to HDAC inhibitors, inhibitors
targeting HMTs are also under investigation. EZH2 is an important
HMT that catalyzes the trimethylation of H3K27me3. In lung cancer,
the expression of EZH?2 is often upregulated, leading to elevated levels
of H3K27me3 and silencing of many tumor suppressor genes (309).
Inhibitors targeting EZH2, such as EPZ-6438, and GSKI26, can
reduce H3K27me3 levels, reactivate tumor suppressor genes, and
inhibit the growth and metastasis of lung cancer cells. These
inhibitors have shown good efficacy in preclinical studies and are
expected to become new drugs for lung cancer treatment (310).

Therapeutic targets and strategies related to non-coding RNA
have opened new directions for lung cancer treatment. As a type of
ncRNA, miRNAs are abnormally expressed in lung cancer and are
closely related to its occurrence and development (311). Regulating
the expression or activity of miRNAs can influence the biological
behavior of lung cancer cells, thereby offering new approaches for
lung cancer therapy. Antisense oligonucleotides, including
chemically modified antagomiRs, can be designed to inhibit the
function of oncogenic miRNAs that are highly expressed (312). For
oncogenic miRNAs such as miR-21, which is highly expressed in
lung cancer, antagomiR-21 can specifically bind to miR-21 and
inhibit its regulatory effect on target genes; this suppresses the
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proliferation, invasion, and metastasis of lung cancer cells (313).
Research has also found that some miRNAs can act as tumor
suppressors, and restoring their expression can contribute to lung
cancer treatment. For example, miR-34a is downregulated in lung
cancer, and introducing miR-34a mimics into lung cancer cells via
gene delivery technology can inhibit tumor growth and metastasis
while inducing apoptosis (314, 315). The role of IncRNA in lung
cancer is also receiving increasing attention. For certain IncRNAs
closely related to lung cancer progression, such as MALAT1 and
HOTAIR, small interfering RNA (siRNA) or short hairpin RNA
(shRNA) can be designed to inhibit their expression, thereby
affecting the biological behavior of cancer cells (316). Specifically,
inhibiting MALAT1 expression reduces the migration and invasion
abilities of lung cancer cells, suppressing tumor metastasis (317).
Furthermore, developing small molecule inhibitors or antibodies
that target the interactions between IncRNAs and other molecules
represents another promising research direction for lung cancer
treatment (318).

Combining epigenetic therapy with traditional treatment
methods, to achieve combination therapy, is an important strategy
to improve the efficacy of lung cancer treatment. Epigenetic therapy
can enhance the sensitivity of tumor cells to traditional treatment
methods such as chemotherapy, radiotherapy, targeted therapy, and
immunotherapy by altering the epigenetic modifications of tumor
cells (319). In chemotherapy, DNMTi and HDACi can increase the
sensitivity of lung cancer cells to chemotherapeutic agents by
reactivating tumor suppressor genes. Studies have found that in
lung cancer cell lines, treatment with 5-aza-2’-deoxycytidine (5-aza-
dC) in combination with cisplatin is more effective than cisplatin
alone. This results in more significant inhibition of lung cancer cell
proliferation and increased apoptosis (320). Similarly, in
radiotherapy, epigenetic therapy can improve the effectiveness of
radiotherapy by regulating the DNA damage repair mechanisms and
the immune microenvironment of tumor cells. HDACi can increase
the sensitivity of tumor cells to radiotherapy. Additionally, they
modulate the function of immune cells in the tumor
microenvironment, enhancing the body’s anti-tumor immune
response (321). In targeted therapy, epigenetic therapy can
overcome the drug resistance of tumor cells. For lung cancer cells
resistant to epidermal growth factor receptor (EGFR) tyrosine kinase
inhibitors (TKI), the use of DNMTi or HDACi can alter the
epigenetic modifications of drug resistance-related genes, partially
restoring the sensitivity of lung cancer cells to TKI (306, 322). In
immunotherapy, epigenetic therapy can enhance the efficacy of
immunotherapy by regulating the function of immune cells and the
immune signaling pathways in the tumor microenvironment (323).
In recent years, the widespread application of immune checkpoint
inhibitors (such as PD-1/PD-L1 and CTLA-4 antibodies) has made
the synergistic potential of epigenetic therapy and immunotherapy a
research hotspot. Tumor immune evasion is often accompanied by
multi-layered epigenetic reprogramming, including DNA
methylation, histone deacetylation, and abnormal expression of
non-coding RNAs. These changes lead to defects in antigen
presentation and increased infiltration of immunosuppressive cells
(324). Epigenetic therapy can reverse these changes and activate
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previously silenced immune pathways, thereby enhancing
immunotherapy. Specifically, DNMTi and HDACi can relieve the
methylation silencing of tumor-associated antigens (TAAs) and
genes of antigen processing complexes (MHC-I, TAP1/2). This
restoration improves antigen presentation capability (324). At the
same time, DNMTi can induce a viral mimicry response by activating
the transcription of endogenous retroviruses and upregulating
interferon signaling, which enhances immunogenicity (325).
Epigenetic drugs can also improve the function of immune effector
cells. For example, HDACi promotes the memory differentiation of
CDS8'T cells and inhibits the expression of exhaustion markers. BET
inhibitors (BETi) suppress the M2 polarization of TAMs. EZH2
inhibitors (EZH2i) weaken the immunosuppressive effects of Tregs
(325). Moreover, in “cold-type” lung cancer, epigenetic regulators can
activate chemokines such as CXCL9 and CXCLI10, transforming it
into a “hot-type” tumor and significantly enhancing the response rate
to PD-1/PD-LI inhibitors. Preclinical studies have demonstrated
significant synergistic effects when combining DNMTi with PD-1
inhibitors, HDACi with PD-L1 inhibitors, and EZH2i with CTLA-4
inhibitors. A stratified treatment strategy based on epigenomic
characteristics (such as CIMP status, EZH2 expression levels, and
Treg enrichment) is expected to enhance the precision and clinical
translation of epigenetic-immunotherapy combination therapies
(326, 327).

6 Future research directions and
prospects

The investigation into the epigenetic regulation of the tumor
microenvironment in lung cancer presents extensive potential and
considerable significance. In the realm of technological
advancements, the imperative lies in creating more sophisticated
and sensitive methodologies that facilitate single-cell and real-time
dynamic detection. Additionally, enhancing single-cell sequencing
techniques to improve their throughput and precision will permit a
more thorough examination of the epigenetic traits exhibited by
various cell types within the tumor microenvironment. The
innovation of new detection platforms leveraging nanotechnology,
microfluidics, and other methodologies is vital to achieve highly
sensitive identification of low-abundance epigenetic markers in the
lung cancer microenvironment while also enabling real-time
observation of the temporal dynamics of epigenetic alterations.
Technologies that amalgamate nanosensors with microfluidic
devices are capable of detecting, in real time, fluctuations in DNA
methylation markers released by tumor cells into the bloodstream
of lung cancer patients throughout treatment. This capability serves
as a foundation for timely modifications of treatment strategies.

Regarding mechanistic exploration, it is essential to thoroughly
investigate the intricate network of epigenetic regulation within the
lung cancer microenvironment and its dynamic alteration patterns.
By employing systems biology and bioinformatics methodologies
and integrating multi-omics data, a more comprehensive model of
the epigenetic regulatory network pertaining to the lung cancer
microenvironment can be established. This model will facilitate a
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holistic analysis of interactions between distinct cell types, diverse
epigenetic modifications, and the interplay of epigenetic regulation
with signaling pathways and cellular components. Furthermore, it is
crucial to conduct a detailed examination of the temporal dynamics
of epigenetic regulatory mechanisms within the tumor
microenvironment across various developmental stages and
treatment phases, thus providing a theoretical framework for the
comprehensive management of lung cancer. As lung cancer
progresses from early to advanced stages, analyzing the temporal
dynamics of epigenetic changes in tumor cells and immune cells at
various time intervals, along with assessing the influence of these
changes on tumor immune evasion and metastasis, is essential. Such
investigations lay the groundwork for the formulation of targeted
treatment strategies.

The primary objective of research concerning epigenetic
regulation in the lung cancer microenvironment is its clinical
translation. Moving forward, it is imperative to enhance the synergy
between fundamental research and clinical application. Researchers
ought to undertake extensive, multi-center clinical trials to validate the
effectiveness and safety of diagnostic biomarkers and therapeutic
targets influenced by epigenetic mechanisms. It is essential to
establish a comprehensive epigenetic database for lung cancer
patients, which should encompass their clinical data and treatment
responses. This database will facilitate the development of precise,
individualized treatment prediction models aimed at achieving
accurate diagnosis and management of lung cancer. Additionally,
there is a need to further refine the integrative treatment approaches
that combine epigenetic therapies with conventional treatment
modalities, investigate novel combinatorial treatment frameworks,
and enhance the therapeutic outcomes for lung cancer patients.
Furthermore, it is crucial to examine the optimal dosing regimens
and administration sequences of DNMTi in conjunction with
immune checkpoint inhibitors for lung cancer treatment. This
should be complemented by preclinical and clinical trials to assess
the safety and efficacy of such combination therapies, ultimately
offering more effective treatment alternatives for lung cancer patients.

Despite the numerous challenges associated with investigating
the epigenetic regulation of the lung cancer microenvironment,
there are significant opportunities for advancement. Through
ongoing technological innovations, comprehensive mechanistic
studies, and efforts toward clinical translation, it is anticipated
that novel breakthroughs will emerge in the prevention and
treatment of lung cancer, thereby substantially enhancing the
prognosis and quality of life for individuals affected by this disease.

7 Conclusion

Lung cancer represents a malignant neoplasm that poses a
significant threat to global health and exhibits a multifaceted
etiology. Nonetheless, there remains a critical need to enhance
both the therapeutic effectiveness and prognostic outcomes for
affected individuals. While investigations into the epigenetic
modulation of the lung cancer microenvironment encounter

considerable obstacles, they simultaneously present promising
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avenues for progress. Several novel biomarkers have been
discovered for the diagnosis and prognosis of lung cancer, which
encompass DNA methylation indicators, histone modification
markers, and ncRNA signatures. These biomarkers aid in
facilitating earlier detection and more precise prognostic
evaluations. Additionally, innovative therapeutic targets and
strategies have emerged, including interventions that focus on
DNA methylation, histone modifications, and ncRNA pathways.
The implementation of combination treatment regimens that merge
epigenetic therapies with conventional approaches is anticipated to
improve therapeutic outcomes and patient prognoses. Furthermore,
investigations into epigenetic regulation have catalyzed
advancements in precision medicine for lung cancer. By assessing
the unique epigenetic profiles of patients, tailored treatment plans
can be formulated, thereby enhancing both the safety and efficacy of
therapeutic interventions. In summary, research focused on
epigenetic regulation within the lung cancer microenvironment
offers a crucial pathway for elucidating the disease’s underlying
mechanisms and pioneering innovative treatment methodologies.
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