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Yeasts have contributed to human and animal health through functional antigen

production for vaccine formulations. Some yeast-made vaccines have become a

reality for humankind because they have reached commercialization (hepatitis B,

HPV, and tick parasitosis). Many other vaccine prototypes are under preclinical

and clinical evaluations, hoping for their usage soon. Currently, genomes,

genetic modification techniques, and industrial vaccine manufacturing have

been successfully developed for Saccharomyces cerevisiae, Komagataella

phaffii (formerly Pichia pastoris), and Hansenula polymorpha. Moreover, several

yeast species are under research as prospects for vaccine production systems,

such as Kluyveromyces lactis, Yarrowia lipolytica, Schizosaccharomyces pombe,

Saccharomyces boulardii, and Komagataella phaffii. This review was mainly

focused on commercial human and animal vaccines, describing and discussing

genetic engineering tools, downstream antigen purification processes, GMP

according to regulatory issues, and identifying challenges and future directions

on the use of yeast as a vaccine production platform to fight against

infectious diseases.
KEYWORDS
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Introduction

Infectious diseases continue to pose a major global health burden, affecting both

humans and animals (1). Moreover, zoonotic pathogens are a significant concern due to

their ability to cross species barriers and cause widespread outbreaks, as exemplified by the

recent COVID-19 pandemic (2). In this sense, the use of antibiotics and vaccination

remains the most effective strategy for controlling and preventing infectious [zoonotic]
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diseases. Nonetheless, the excessive and indiscriminate application

of antibiotics leads to several problems, including antimicrobial

resistance, environmental contamination, and disruption of the

microbial diversity balance (3). In such scenarios, vaccines

continue to be the most effective and safest strategy for

controlling infectious diseases. Conventional vaccines are based

on whole inactivated, attenuated pathogens or purified antigenic

components from pathogens, such as subunit proteins or toxoids,

all of which are rationally designed to elicit a protective immune

response. These platforms have demonstrated substantial efficacy in

decreasing disease incidence and mortality caused by infectious

agents (4). However, conventional vaccines present several

limitations, including safety risks associated with live or

attenuated organisms, the need for highly trained personnel, cold-

chain dependency, longer development timelines, and high

production costs, among others (5). Consequently, novel vaccines

are investigated to surpass or mitigate those challenges, which

ideally should be cost-effective, suitable for alternative delivery

routes, and tailored to resource-limited settings.

The arrival of recombinant DNA technology marked a

significant turning point in vaccine development, enabling the

precise design and production of specific antigens, for instance,

without the need to cultivate or inactivate whole pathogens (6). This

advancement has facilitated the development of recombinant

protein-based vaccines using expression platforms such as

bacteria, yeast, plants, mammalian cells, and insect cells, offering

enhanced safety features compared to conventional approaches (7).

Vaccines produced using recombinant expression platforms offer

potential advantages, including reduced biosafety risks, the

possibility of alternative routes of administration, lower

production costs, and suitability for resource-limited settings (8).

In this regard, yeasts have been used as a host system for

recombinant protein production. In line with recombinant

vaccine development, Valenzuela et al. (1982) reported for the

first time the production of hepatitis B virus surface antigen in

yeast, which was later evaluated in animal models (9, 10). To date,

only yeast-based vaccines for humans against hepatitis B and

human papillomavirus (HPV) have been approved, using

Saccharomyces cerevisiae and Hansenula polymorpha as

expression platforms (11, 12). In animals, certain commercial

yeast-based vaccines targeting cattle ticks have been developed

using Komagataella phaffii (formerly Pichia pastoris) as the

expression system (13–15). Currently, yeasts offer practical

advantages such as ease of genetic engineering, rapid growth, high

biomass yield, and the absence of endotoxins. These features,

combined with their capacity to express structurally complex

recombinant proteins, make them highly suitable for large-scale

vaccine production (16). This review outlines the current landscape

of commercial vaccines produced in yeast. Although only a few

yeast-based vaccines have been approved to date, they demonstrate

the potential of yeast as a safe and versatile platform for producing

recombinant vaccines. Reviewing these vaccines, their applications,

and limitations provides valuable insight and highlights directions

to improve their effectiveness, scalability, and applicability for

future development in both human and animal health.
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Yeast as a vaccine production
platform: genetic engineering tools

Successful yeast heterologous protein expression depends on

having different and efficient genetic engineering tools for cell

transformation. The first genetic yeast transformation through

DNA recombinant technology was reported by Hinnen et al. and

Beggs in 1978 (17, 18). The initial attempt consisted of producing

spheroplasts (cells without a wall) to introduce foreign DNA. Later

in 1983, Ito et al. standardized a genetic transformation protocol for

whole intact cells, opening the path for an easier method (19). Other

methods have been developed over the decades to improve efficient

yeast transformation for recombinant protein production (20, 21).

Improving protein yield has been an achievement through 1) the

plasmid design and 2) the evaluation of different promoters, both

constitutive and inducible, to manage gene expression (22).

Since the 90s, different plasmids have been developed to

regulate the expression of foreign genes. Yeast vectors could be

classified into two groups: plasmids that contain the yeast

centromere sequence (CEN) and plasmids with a 2 m origin of

replication (23). Plasmids with CEN (centromere) sequences are

mitotically stable yeast replicates, with only a single copy present

per cell, whereas the 2µ plasmids are multicopy (about 20 per cell).

Christianson et al. (24) developed four episomal plasmids with a

high copy number based on endogenous sequences of yeast

replication origin 2µ from S. cerevisiae and the bacterial plasmid

pBluescript, making a shuttle vector (24). Plasmids for protein

expression have been mainly developed for S. cerevisiae, K. phaffii,

Yarrowia lipolytica, and emerging yeasts used to express

recombinant proteins (25–28).

Mumberg et al. (29) developed a series of plasmids to clone

genes under the control of constitutive promoters, allowing

different levels of protein yield (29). The different promoters used

encompassed weak (CYC1) and strong (TEF and GPD) promoters.

Interestingly, Drew and Kim (27) designed an expression plasmid

using an inducible GAL1 promoter, the recombinant protein of

interest, and the GFP-octa-histidine sequence, which is a multi-

copy plasmid integrating by homologous recombination in S.

cerevisiae (23).

There are many plasmids based on these basic genetic elements.

An extensive review of promoters and terminators for the

expression of recombinant protein in non-common yeast,

including K. phaffii and Y. lipolytica, has recently been reviewed

(30). Given the industrial importance of K. phaffii and its potential

for vaccine production, we provide a brief description of the

commonly employed promoter. Representative constitutive

promoters include GAP, fsLovA, cTRDL, and TEF1; while

inducible promoters, which use methanol as the inducer,

comprise SNT5, iTRDL, and AOX1. Among these, the methanol-

inducible AOX1 promoter is the most widely used, enabling high-

level expression of heterologous proteins (31). This system is

advantageous for producing vaccines, as it can yield proteins

constituting up to 30% of total cell protein (32, 33). While the

methanol-inducible system is effective, concerns regarding

methanol’s toxicity and flammability have led to the exploration
frontiersin.org
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of safer alternatives to induction methods. For instance, some

orthologous promoters from yeasts can outperform the

expression levels of AOX1 promoter (34).
Downstream antigen purification and
additional bioprocesses

Downstream processing of yeast-made antigens involves a

series of purification techniques essential for recovering and

refining bioproducts from fermentation broths. This process is

critical for ensuring product purity and reducing production

costs, particularly in the pharmaceutical industry. The key aspects

of downstream yeast-made antigen purification and additional

bioprocesses will be outlined.

The initial steps often involve removing microbial cells through

centrifugation and filtration, which are crucial for clarifying the

fermentation broth (35). Techniques such as protein A

chromatography are effective for purifying antibodies and

removing contaminants like b-glucan, which can pose

immunogenic risks (36, 37). Other methods include ion exchange

and affinity chromatography, which are tailored to the specific

properties of the target biomolecule (37).

The liquid-liquid extraction method is commonly used to

extract fermentation products, allowing for the separation of

desired compounds from complex mixtures (38). The next step is

the scale-up of the fermentation process, which involves optimizing

the bioreactor (pH, dissolved oxygen, and medium composition).

The fermentation processes used by biopharmaceutical

manufacturers have demonstrated increased quantities of

therapeutic proteins. However, this increase subsequently leads to

capacity bottlenecks in the purification process (known as

downstream processing) and is associated with high costs.

Downstream processing comprises up to 80 percent of the total

production costs (39, 40). Producers are increasingly recognizing

the urgent need for improvement and have shifted their focus from

enhancing the production process (upstream) to refining the

downstream process (41, 42). This includes examining operating

modes (batch, fed-batch, and continuous) and their impact on

productivity. For instance, Martinez-Hernández et al. (43)

developed a fed-batch bioprocess to produce a recombinant

vaccine against Entamoeba histolytica in K. phaffii under

operational conditions suitable for large-scale bioprocesses (43).

Following the scale-up, the production of the recombinant protein

reached 0.43 mg/mL, marking a 12-fold increase in production,

despite the presence of methanol and oxygen-limited conditions. A

maximum volumetric productivity of 3.75 mg/L h was achieved in a

bioreactor, compared to 0.26 mg/L h attained in a shake flask. The

next step involves assessing post-purification antigen stability,

estimating the effects of freeze-thaw and lyophilization cycles, and

analyzing protein integrity by SDS-PAGE and Western blot (44).

Finally, in process validation, reproducibility must be verified in

large-scale production batches (e.g., 10 L to 60 L) (45).

The comparison of purification yields and efficiencies between

yeast and E. coli for recombinant antigen production reveals distinct
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edges and challenges associated with each host. Yeast, particularly

species such as S. cerevisiae and K. phaffii, has shown promising

results in producing functional recombinant proteins, while E. coli

remains a widely used system due to its established protocols and

high yields. Yeast can produce highly immunogenic proteins, as

seen in the manufacture of vaccines against hepatitis B and HPV

(46). Also, advances in understanding yeast metabolism have led to

improved yields, especially for complex proteins (47). Companies

employ various techniques to achieve effective purification in

commercial yeast-based vaccines, focusing on optimizing

processes that enhance both the purity and recovery of

recombinant proteins. For instance, the purification of the SARS-

CoV-2 receptor-binding domain uti l ized mixed-mode

chromatography fol lowed by hydrophobic interaction

chromatography, achieving over 99% purity with a yield of

approximately 21 mg/L (48). Tam et al. (49) have successfully

applied a two-step purification strategy involving ion exchange

chromatography (IEC) and size exclusion chromatography (SEC)

to purify hepatitis B surface antigen, yielding a purity of 95.48% and

a recovery rate of 78.07% (49). Additionally, the characteristics of

yeast-based vaccines and the assembly of virus-like particles (VLPs)

significantly influence purification efficiency. Particularly, K. phaffii

is widely utilized for producing VLPs due to its ability to generate

high levels of antigens like the Hepatitis B surface antigen (HBsAg)

and poliovirus VLPs (50). However, the assembly process and the

intracellular localization of these antigens can complicate the

purification process.

On the other hand, E. coli can achieve considerable yields up to

23 mg of purified protein per liter of culture (51), and secretory

production methods simplify the purification and improve protein

folding crucial for functional proteins (52). Moreover, E. coli strains

engineered for better disulfide bond formation can produce

biologically active proteins more effectively than yeast in some

cases (53). In summary, E. coli remains a robust choice for high-

yield production and efficient purification, particularly for simpler

proteins, while yeast offers advantages in producing complex

proteins and vaccines. However, the choice of host ultimately

depends on the specific requirements of the recombinant protein

being produced. Finally, all processes must comply strictly with

Good Manufacturing Practice (GMP) regulations for clinical trials,

including long-term stability evaluations for regulatory approval.

The GMP regulations are compulsory for ensuring the safety and

efficacy of vaccines produced from yeast for clinical trials (54).

These regulations encompass a range of processes, from initial

production to quality control, guaranteeing that vaccines meet

stringent safety standards before human administration (55).
Good manufacturing practices for
compliance with regulatory issues

One of the key advantages of employing yeast systems for

vaccine production lies in their well-established use in the

biopharmaceutical industry. For several decades, yeasts have

served as hosts to produce recombinant vaccines and other
frontiersin.org
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biotherapeutics approved for human use (8, 10). This historical

precedent facilitates regulatory approval and streamlines

compliance with GMP, ensuring that medicinal products are

consistently produced and controlled according to rigorous

quality standards appropriate for their intended use. GMP

compliance is critical throughout the vaccine development

pipeline, including preclinical stages, where assessments of

immunogenicity, toxicity, and allergenicity are conducted using

carefully selected and justified in vitro and in vivo models (56).

These evaluations form the foundation for subsequent clinical trials,

which are essential for regulatory approval (57).

The standards of GMP demand precise characterization and

traceability of production strains, underscoring the advantages of

yeast-based systems over mammalian cells in recombinant protein

manufacturing. Yeast cultures are inherently less susceptible to

contamination by bacteria, fungi, mycoplasma, and viruses, a

resilience largely attributed to their ability to proliferate in acidic

environments that suppress the growth of many microbial

contaminants (58, 59). Notably, yeast-based production also

circumvents the risk of endotoxin contamination, a common

concern in bacterial systems due to lipopolysaccharide residues

(60). Furthermore, VLPs generated in yeast offer a compelling

alternative to conventional vaccines derived from attenuated or

inactivated viruses. In addition to the economic benefits of yeast

cultivation, VLPs lack genetic material, thereby enhancing their

safe ty profi l e—part icular ly for immunocompromised

individuals (61).

In general terms for vaccine production, adherence to local

regulatory frameworks is necessary to avoid delays or complications;

however, the primary GMP guidelines are issued by major international

agencies such as the EuropeanMedicines Agency (EMA), the U.S. Food

and Drug Administration (FDA), and the World Health Organization

(WHO). To further harmonize regulatory requirements and reduce

redundancy in clinical and non-clinical studies, the International

Council for Harmonisation of Technical Requirements for

Pharmaceuticals for Human Use (ICH) was established (http://

ich.org/). The ICH framework represents a significant

advancement in aligning global standards, minimizing

unnecessary duplication of human trials, and reducing animal use

without compromising the integrity of safety and efficacy data.

Within the GMP framework, the ICH Quality Guidelines are

particularly relevant to vaccine development. These guidelines

span 14 core areas, covering topics from stability testing (Q1A–

Q1F) to analytical procedure development (Q14), offering a robust

foundation for ensuring product quality and regulatory compliance

(62). In the United States, the FDA regulates vaccine development

and manufacturing under Subchapter F—Biologics, while GMP

requirements for drug manufacturing, processing, packaging, and

storage are detailed in Subchapter C—Drugs: General. Additional

relevant provisions are found in Subchapters D—Drugs for Human

Use and A—General (63). The EMA complements these regulations

with its Good Pharmacovigilance Practices (GVP) guidelines, which

encompass risk management plans, including detailed product

profiles (e.g., vaccine composition, adjuvants, preservatives, and

residuals), safety specifications, pharmacovigilance strategies, post-
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Similarly, the WHO provides comprehensive guidance, such as the

Guidelines on Clinical Evaluation of Vaccines (65). Regulatory

aspects have been fundamental to improving the safety and

efficacy of vaccines against infectious diseases. In this context,

yeast-based systems offer several advantages for vaccine

development: enhanced safety due to the absence of

lipopolysaccharides (LPS), and their recombinant protein-based

nature enables safe administration in immunocompromised

individuals, positioning them as a preferable alternative to

attenuated vaccines; scalability enabled by the use of low-cost

culture media with minimal risk of contamination; and strong

immunogenicity through the potential to produce VLPs-

based vaccines.
Human vaccines produced in yeast

To date, at least several recombinant vaccines expressed in yeast

have been approved by the U.S. Food and Drug Administration

(FDA), European Medicines Agency (EMA), and WHO for human

use (see Table 1 and Supplementary Figure S1). Leading

manufacturers in this field include Merck & Co., Inc.,

GlaxoSmithKline Biologicals, Dynavax Technologies Corporation,

and Sanofi Pasteur Inc. While the vaccines from these

pharmaceutical companies are widely used across many countries,

it is worth noting that China has developed a significant portfolio of

domestically produced vaccines. These include several HPV

vaccines manufactured using yeast-based expression systems—

some of which have already been approved, such as the Shanghai

Zerun vaccine (Walvax)—as well as others currently in various

clinical trial stages (66, 67). Notably, two yeast-derived vaccines—

Mosquirix™ (GlaxoSmithKline) and R21/Matrix-M™ (Oxford

University, Novavax, Inc., and Serum Institute of India)—have

been recommended by the World Health Organization for the

prevention of malaria in children residing in endemic regions (68).

Saccharomyces cerevisiae remains the preferred host for

recombinant antigen expression; however, the hepatitis B vaccine

HEPLISAV-B, Hexyon, and Hexacima are produced in Hansenula

polymorpha, whereas the R21/Matrix-M™ vaccine is produced in

K. phaffii. These yeasts are classified as Generally Recognized As

Safe (GRAS), capable of growing in low-cost media and yielding

high levels of recombinant protein (11, 12). Despite the use of

similar genetic transformation tools, these yeasts differ in their

regulatory protein expression elements (69, 70). Currently, yeast-

expressed vaccines target hepatitis B, malaria and various types of

HPV, all formulated as virus-like particles (VLPs). VLP-based

strategies offer enhanced immunogenicity compared to non-

assembled recombinant proteins (71). Despite more complex

proteins requiring mammalian systems, such as glycoprotein E in

the SHINGRIX vaccine (produced in Chinese hamster ovary cells),

many yeast-derived recombinant vaccines without multiple post-

translational modifications and capable of forming VLPs have

demonstrated efficacy rates exceeding 95% (72). The main

immune response involved in these vaccines is through the
frontiersin.org
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TABLE 1 Recombinant yeast-expressed vaccines approved by the FDA, EMA, and WHO for human use.
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Twinrix
(GlaxoSmithKline
Biologicals)

Saccharomyces
cerevisiae

Hepatitis A and B 20 µg HBsAg antigen with aluminum phosphate and aluminum
hydroxide

3 intram
0, 1, an

Recombivax HB (Merck
& Co., Inc.)

Saccharomyces
cerevisiae

Hepatitis B 5 µg (pediatric) or 10 µg (adult) HBsAg antigen with
amorphous aluminum hydroxyphosphate sulfate
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0, 1, an
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aluminum hydroxyphosphate sulfate

3 intram
0, 1, an

Hexyon
(Sanofi Winthrop
Industrie)

Hansenula
polymorpha
(for HBsAg)

Hepatitis B
Diphtheria, tetanus, pertussis,
poliomyelitis
and Haemophilus influenzae type
b

10 µg HBsAg antigen 2 intram
eight w

Fendrix
(GlaxoSmithKline
Biologicals)

Saccharomyces
cerevisiae

Hepatitis B for patients with
kidney failure

20 µg HBsAg antigen adjuvanted with AS04C (3-O-desacyl-4’-
monophosphoryl lipid A (MPL))

4 intram
0, 1, 2,

Hexacima
(Sanofi Winthrop
Industrie)

Hansenula
polymorpha
(for HBsAg)

Hepatitis B
Diphtheria, tetanus, pertussis,
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production of highly neutralizing antibodies, where the adjuvants

play a critical role in the immunogenicity of yeast-based vaccines.

Most adjuvanted formulations rely on aluminum salts (see Table 1).

An exception is Dynavax’s HEPLISAV-B, which incorporates CpG

1018, a Toll-like receptor 9 (TLR9) agonist. Additional examples

include malaria vaccines. Mosquirix™ employs the AS01E

adjuvant, which consists of Quillaja saponaria Molina fraction 21

(QS-21) and 3-O-desacyl-4’-monophosphoryl lipid A (MPL). In

contrast, R21/Matrix-M™ utilizes the Matrix-M™ adjuvant—a

saponin-based formulation developed by Novavax AB (Uppsala,

Sweden)—which elicits both Th1 and Th2 immune responses.

Notably, several yeast-derived vaccine candidates are currently

undergoing evaluation (see Table 2). One example is the same

malaria vaccine R21/Matrix-M™ expressed in H. polymorpha,

forming VLPs, which is being evaluated in adult populations

(ClinicalTrials.gov ID: NCT05252845). On the other hand, several

vaccine prototypes have been evaluated in preclinical studies,

including those targeting complex antigens such as the SARS-

CoV-2 spike protein and influenza hemagglutinin. These proteins

require specific glycosylation patterns, which have driven the

development of innovative strategies to optimize yeast expression

systems for industrial-scale production (73–75).
Animal vaccines produced in yeast

There are many recombinant yeast-based vaccines at preclinical

levels, particularly useful in livestock, poultry, aquaculture, and

companion animals, providing targeted protection against

pathogenic viruses, bacteria, and parasites (see Supplementary

Figure S1) (8, 76, 77). In birds, yeast-produced vaccines include

those targeting fowl adenovirus (FAdV) (78) and parasites such as

Eimeria tenella (79), where S. cerevisiae-expressed antigenic

proteins serve as effective subunit vaccines. For fish, yeast-based

vaccines expressing antigens from Cyprinid herpesvirus 2 and 3

have been developed to protect species such as Gibel carp (Carassius

auratus gibelio), common carp (Cyprinus carpio) against these viral

infections (80–82). In cattle, recombinant yeast vaccines expressing

proteins from Babesia bovis (83) (and Theileria parva (84) are being

investigated to reduce the impact of tick-borne diseases. For pigs,

yeast-expressed vaccines against porcine circovirus type 2 (PCV2)

and African swine fever virus (ASFV) have shown promising

immune protection (85, 86). In pets, experimental yeast-based

vaccines have demonstrated strong immunogenicity against

hookworm, Ancylostoma caninum, and canine distemper virus

(CDV) in dogs and feline infectious peritonitis virus (FIPV) in

cats (75, 87, 88). However, in terms of commercial availability for

veterinary purposes, there are just a few recombinant vaccines

expressed in yeast, precisely in K. phaffii, and only against ticks

(13, 15, 89–91). Although there are several commercial subunit

recombinant veterinary vaccines on the market, most of them have

been produced in Escherichia coli or baculovirus systems (92, 93).

The E. coli expression system is the most widely used due to its

simplicity, rapid growth, and low production cost. It allows high

yields of recombinant proteins in a short time, making it ideal for
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large-scale vaccine manufacturing (94, 95). However, E. coli lacks

the machinery for post-translational modifications such as

glycosylation, which can limit its use for complex eukaryotic

antigens (96). On the other hand, the baculovirus system offers a

eukaryotic environment that enables proper protein folding,

disulfide bond formation, and post-translational modifications,

producing more structurally and functionally authentic antigens.

This system is especially valuable for glycoproteins and complex

multimeric proteins used in vaccines (97, 98). The baculovirus

system is more expensive and slower than E. coli but often improves

vaccine production and efficacy of immunologically relevant

proteins (99). In contrast, the yeast system is a cheap platform

that can perform functional post-translational modifications, and

its disadvantage is over-glycosylation of proteins or the production

of non-mammalian glycan patterns, which could affect vaccine

immunogenicity (100, 101). Here, the recombinant yeast-based

vaccines commercially available for animals will be reviewed by

analyzing doses, efficacy, and immune responses.

Regarding commercial vaccines, the yeast-made vaccine

Gavac® (Heber Biotec S.A., Havana, Cuba) and TickGARD®

(Biotech Australia Pty. Ldt.) are composed of recombinant

Rhipicephalus microplus Bm86 gut antigen expressed in K. phaffii

that allows protection against cattle ticks (13, 14, 90, 102). These

vaccines are administered in the neck in multiple doses in a

recommended schedule of two initial doses on days 0 and 28,

followed by a booster dose every 6 months (103). The effectiveness

of Bm86-based vaccines like Gavac® and TickGARD® has been

assessed through parameters such as tick survival, egg production,

and fertility. Studies show variable efficacy (>50% in some cases),

influenced by tick strain and cattle breed. Interestingly, vaccines

reduced acaricide use by up to 87% and saved $23.4 per animal/year

(15). However, efficacy varies due to tick genetic diversity,
Frontiers in Immunology 07
particularly polymorphisms in the Bm86 gene (104). Additionally,

in 2018, Mexico developed Bovimune Ixovac® using the “Media

Joya” strain and expressed it in K. phaffii (105). It reduced tick

infestations to <10 per animal and tick baths from 14 to 3 per year,

with an 86% drop in tick fertility. In Colombia, Tick-Vac®,

developed by LIMOR and marketed by TECNOQUI ́MICAS, uses

Bm86 from tick larvae. It follows a three-dose initial schedule with

biannual boosters. Field trials showed 80% protection, with clinical

studies reporting 64–96% efficacy and reduced parasite loads across

various agroecosystems (15).

The immunological outcomes behind vaccination rely on

antigen-presenting cells like dendritic cells and macrophages that

process and present Bm86 via bovine leukocyte antigen. This

activates naive T cells, which help activate B cells in germinal

centers, leading to the formation of plasma and memory B cells

(106). Plasma cells produce specific antibodies, while memory cells

remain in lymphoid organs awaiting booster doses. Antibodies

(IgM and IgG) circulate in the blood and are ingested by ticks

during feeding. They bind to Bm86 in the tick gut and activate the

classical complement pathway, causing enterocyte lysis and

impairing digestion and overall tick health (107, 108). In general,

yeast-made veterinary vaccines are an option to fight against animal

diseases that remains to be fully exploited.
Limitations and future directions

Yeast as eukaryotic cells have many advantages to produce

recombinant vaccines over mammalian cells and bacterial

counterparts. However, several disadvantages have led to limited

success in reaching commercial vaccines (See Figure 1). The main

issues revolve around proper glycosylation, accurate formation of

VLPs, and high yields. Although glycosylation is essential for the

structural and functional integrity of many antigens—and yeast is

capable of performing this post-translational modification—certain

glycosylation patterns, such as high-mannose N-glycans, pose

challenges to protein stability. These modifications can alter the

expected glycosylation profile and critically impact both the

immunogenicity and allergenicity of antigens (107). To address

these issues, advances in glycoengineering have partially mitigated

such limitations (109). In the context of yeast genetic engineering,

efforts have focused on generating knockout strains of S. cerevisiae

targeting genes involved in mannosylphosphate biosynthesis (110).

Particularly, genes such as Mnn2p, Mnn11p, and a-1, 6-

mannosyltransferase Och1p have been disrupted to reach this

goal (29). Parallel strategies have explored the overexpression of

endoglycosidase genes to enhance glycosylation efficiency (111).

Both approaches hold promise for the production of complex

antigens with more human-like glycosylation profiles.

An alternative strategy involves modifying antigen sequences to

eliminate glycosylation sites. For instance, research groups

developing yeast-based vaccines against SARS-CoV and SARS-

CoV-2 have evaluated the expression in K. phaffi i of

deglycosylated receptor-binding domain (RBD) fragments. In

these constructs, N-linked glycosylated asparagine residues were
TABLE 2 Examples of recombinant yeast-expressed vaccines in clinical
trials.

Manufacturer
Antigen and target

disease
Yeast Phase

CDIBP L1 antigen from HPV
6,11,16,18 types

Hansenula
polymorpha

NDA
submited

CNBG L1 antigen from HPV
6,11,16,18,31,33,45,
52,58,59,68 types

Hansenula
polymorpha

Phase III

Stemirna Bovax L1 antigen from HPV
6,11,16,18,31,33,45,
52,58 types

Komagataella
phaffii

Phase III

Serum Institute of
India Pvt. Ltd.

R21 antigen fused with
hepatitis B Surface, against
malaria

Hansenula
polymorpha

Phase I

Jiangsu RecBio L1 antigen from HPV
6,11,16,18,31,33,
45,52,58 types

Hansenula
polymorpha

Phase I

Shanghai Zerun
(Walvax)

L1 antigen from HPV
6,11,16,18,31,33,
45,52,58 types

Komagataella
phaffii

Phase I
CDIBP, Chengdu Institute of Biological Products; CNBG, China National Biotec Group;
NDA, New Drug Application.
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removed (112). The resulting proteins exhibited high yields without

compromising antigenicity and elicited even stronger neutralizing

antibody responses than their glycosylated antigen. Building on this

approach, subsequent work during the SARS-CoV-2 pandemic

targeted Asn331 and Cys538, again demonstrating robust

induction of neutralizing antibodies (74). Interestingly, the

CRISPR-Cas technology has emerged as a novel tool for genome

modification applied in yeast, achieving successful glycoengineering

(113). Collectively, these efforts underscore the potential of yeast as

a cost-effective platform to produce complex antigens from

pathogens of epidemic and pandemic relevance.

As previously discussed, licensed yeast-derived vaccines in

humans predominantly rely on VLPs as antigenic platforms.

Despite their success, several challenges remain in the production

and optimization of VLP-based vaccines. These include efficient

VLP assembly and secretion, the formation of enveloped and non-

enveloped VLPs, and the tendency of VLPs to aggregate—often

necessitating the use of anti-aggregation agents (76, 114). In most

cases, VLPs expressed in yeast accumulate intracellularly, which

poses significant limitations for large-scale production due to the

need for cell lysis and complex downstream processing (115, 116).

To circumvent these issues and reduce purification costs, secretion

strategies have been explored, notably through the use of signal

peptides such as the a-mating factor secretion signal (117, 118).

However, unlike other eukaryotic systems capable of producing

enveloped VLPs via budding from the plasma membrane (119),

yeast lacks this capability under normal conditions. Enveloped VLP
Frontiers in Immunology 08
production in yeast has only been achieved through the generation

of spheroplasts by enzymatic removal of the cell wall (120). A

promising strategy involves the co-assembly of VLPs incorporating

multiple antigens. These multilayered or mosaic VLPs may enhance

vaccine efficacy or confer multivalent protection against diverse

viral strains or species (121, 122).

A relevant issue is the improvement of recombinant protein

yields. This aspect has claimed attention for research focused on

strong AOX1 and GAP promoters (123–125), along with new

promoters recently reported (126, 127). Additionally, it is well-

known that yeast-preferred codons enhance recombinant antigen

production (128). Of interest to improve yeast-made vaccines is that

higher copy gene number through repeated sequences can also

proportionally increase antigen transcript and recombinant

protein (129). Even if high recombinant protein yields can be

accurately reached, the downstream protein recovery and

purification process faces additional challenges. To surpass this

issue, for instance, cell disruption methods have been proposed for

better recovery of recombinant antigens, especially those based on

response surface methodology (130, 131). Innovations in protein

purification have also been pursued, such as non-affinity

chromatographic methods (132, 133). Moreover, improvements in

classical ion (134, 135) and anion (136) exchange chromatography

are being investigated to remove aggregates and optimize the

purification process. Notably, current research on optimized

buffers during down-processing is relevant for VLP-based

recombinant vaccines (137). Lastly, partial purification as a
FIGURE 1

Limitations and future directions in yeast vaccine production.
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downstream process using nano-colloidal silica adsorbent (Aerosil-

380) can help in the separation of antigens (138), serving as a

clarification process before final purification through non-affinity

and affinity methods. In this regard, the use of nanoparticles is a

future direction that promises high-efficiency nano-systems for the

purification of antigens produced in yeast (139).

It is convenient to mention that the production of commercial

recombinant vaccines in yeast has been limited to S. cerevisiae, K.

phaffii, and H. polymorpha. However, many yeast species should be

explored to find a better host to produce specific antigens on a case-

by-case basis. It means a battery of available yeasts to select the best

host in terms of yields, functionality, and safety. Prospects in this

direction include the use of Kluyveromyces lactis (140–142),

Yarrowia lipolytica (140), Schizosaccharomyces pombe (143–145),

and Saccharomyces boulardii (146), in which antigens have been

recombinantly produced. In addition to commercial vaccines,

efforts in research & development have led to experimental

vaccines with promising outcomes to prevent human and animal

infectious diseases. Among many others, the most recent studies

include experimental vaccines against rabies (147), herpesvirus

hematopoietic necrosis (148, 149), Covid-19 (150), polio (151),

bovine mastitis (152), tuberculosis (153), ETEC (154), human

papillomavirus type 52 (155), and cancer (156).
Conclusion

Yeasts are an antigen production platform for which genetic

engineering tools, downstream processes, and industrial

manufacturing have led to the benefit of vaccine commercialization to

prevent hepatitis B, HPV, malaria, and tick parasitosis (Rhipicephalus

microplus). In addition, efforts in R&D of experimental vaccines in

preclinical and clinical studies hope to reach commercialization soon to

fight against human and animal infectious diseases.
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