? frontiers ‘ Frontiers in Immunology

@ Check for updates

OPEN ACCESS

EDITED BY
Zhe Pei,
Virginia Tech, United States

REVIEWED BY
Xuejun Guo,
Shanghai Jiao Tong University, China

*CORRESPONDENCE
Xianying Lei
leixianying310@swmu.edu.cn

RECEIVED 01 September 2025
ACCEPTED 21 October 2025
pUBLISHED 05 November 2025

CITATION
Yang Y, Zhang Y, Wu J, Liu Y and Lei X (2025)
Decoding immune low-response states in
sepsis: single-cell and 3D spatial
transcriptomic insights into immunoparalysis.
Front. Immunol. 16:1696914.

doi: 10.3389/fimmu.2025.1696914

COPYRIGHT

© 2025 Yang, Zhang, Wu, Liu and Lei. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Immunology

TYPE Mini Review
PUBLISHED 05 November 2025
p0110.3389/fimmu.2025.1696914

Decoding immune low-response
states in sepsis: single-cell and
3D spatial transcriptomic insights
Into immunoparalysis

Yulian Yang'?, Yi Zhang*, Jingjing Wu?, Yi Liu*
and Xianying Lei™
‘Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou,

Sichuan, China, 2Department of Critical Care Medicine, The Second People’'s Hospital of Deyang,
Deyang, Sichuan, China

Sepsis remains a leading cause of critical illness worldwide. Despite advances in
supportive care, durable benefit from immune-directed therapies is limited,
reflecting heterogeneity with immune low-response states (immunoparalysis’)
across innate and adaptive compartments. In this review we summarize advances
from single-cell RNA and ATAC profiling, immune-repertoire assays and 3D
spatial transcriptomics that resolve monocyte, dendritic-cell (cDC1, cDC2 and
pDC), lymphocyte and NK-cell programs, and appraise translational
opportunities spanning endotype-guided risk stratification, pharmacodynamic
monitoring and spatial biomarkers. We also discuss enduring challenges—
including assay standardization, harmonized thresholds for monocyte HLA-DR
and whole-blood stimulation, and limited availability of clinically compatible
spatial platforms—that temper implementation. By integrating bedside function
(HLA-DR trajectories, LPS-induced cytokine capacity) with single-cell endotypes
(MS1/HLA-DRAlow S100AMhigh monocytes, dendritic-cell attrition, checkpoint-
biased T cells) and host—pathogen topology from FFPE-ready spatial assays,
emerging strategies aim to restore antigen presentation, reconstitute priming,
disrupt inhibitory myeloid—lymphoid circuits and prevent secondary infection.
Our synthesis provides an appraisal of the evolving landscape of
immunoparalysis-informed precision medicine in sepsis and outlines pragmatic
standards for composite biomarkers, patient selection and on-therapy decision
rules. We hope these insights will assist investigators and clinicians as they
endeavor to convert descriptive immune low-response states into tractable,
reversible clinical entities.
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1 Introduction

Sepsis is a leading cause of critical illness and death worldwide
and is characterized by organ dysfunction arising from a
dysregulated host response to infection (1-4). Contemporary
immunology has reframed this response as dynamic and
heterogeneous, with phases of exuberant inflammation often
overlapped by immune low-response states collectively termed
immunoparalysis (5-7). These states are marked by impaired
antigen presentation, altered cytokine production, and defects in
innate-adaptive crosstalk that increase susceptibility to secondary
infection and adverse outcomes, underscoring the need for precise
endotyping and immune-directed interventions (8-11).

Clinically, immunoparalysis is captured by functional and
phenotypic readouts that indicate reduced host defense capacity.
Two complementary assays are most established: ex vivo
lipopolysaccharide-stimulated cytokine production (typically
diminished tumor necrosis factor-o release) and decreased
expression of HLA-DR on circulating monocytes, the latter
indexing an antigen-presentation deficit (12-15). Both correlate
with infection risk and mortality and have been proposed for risk
stratification and for selecting patients into immuno-adjuvant trials
(16-18). Mechanistically, these abnormalities align with endotoxin
tolerance programs in myeloid cells and checkpoint-mediated
exhaustion in lymphocytes.

High-dimensional profiling now offers a path to resolve this
heterogeneity. Single-cell RNA sequencing in sepsis blood defined
discrete immune states—including an expanded CD14" monocyte
state with suppressed HLA-DR and altered inflammatory signaling—
that robustly distinguish patients and provide mechanistic anchors for
biomarker development (19-21). Subsequent multicohort analyses
reinforced that composite single-cell signatures capturing
lymphopenia, dendritic-cell loss, and myeloid HLA-DR
downregulation track disease trajectories and may improve
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FIGURE 1
Sepsis-induced immunoparalysis: key reversible hallmarks.
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diagnostics and prognostication across age groups (22-24). These
findings support an endotype-based view of sepsis in which
therapeutic responsiveness depends on the prevailing immune
program rather than on a uniform “hyperinflammation” construct.

At the tissue level, dissociative assays incompletely represent
microanatomical context, which is critical for understanding host-
pathogen interfaces, vascular compromise, and compartmentalized
immunoregulation in sepsis. Spatially resolved transcriptomics has
therefore emerged as a complementary approach, recognized for
enabling quantitative maps of gene expression within intact
architecture; recent advances extend these maps into three
dimensions, providing volumetric views of cellular neighborhoods
and gradients relevant to barrier defense and organ injury (25-28).
The integration of spatial readouts with single-cell state dictionaries
creates opportunities to localize immunoparalysis niches, quantify
cell-cell communication in situ, and nominate spatial biomarkers
suitable for translation.

This review synthesizes evidence on immune low-response
states in sepsis with a focus on how single-cell modalities
(scRNA-seq, scATAC-seq, CITE-seq, TCR/BCR profiling) and
three-dimensional spatial transcriptomics delineate innate-
adaptive programs, tissue topology, and host-pathogen contact
zones. The aim is to standardize concepts and measurement
frameworks for immunoparalysis, highlight robust cellular and
spatial biomarkers for risk stratification, and outline principles for
patient selection and pharmacodynamic monitoring in trials that
seek to reverse immune low-response states.

2 Defining immunoparalysis in sepsis:
concepts, metrics, and clinical context

As shown in Figure 1, immunoparalysis denotes a clinically
significant, often reversible, low-response immune state that arises

Reversible
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during sepsis and is characterized by concurrent defects across
innate and adaptive compartments, including impaired antigen
presentation, blunted stimulus-induced cytokine production,
apoptosis-associated lymphocyte depletion, and checkpoint-
mediated T-cell dysfunction (29-31). These abnormalities reflect
an adaptive reprogramming frequently described as endotoxin
tolerance in myeloid cells and exhaustion or anergy in
lymphocytes, and they contribute to heightened susceptibility to
secondary infection and adverse outcomes. Conceptually, this state
is supported by mechanistic and clinical observations of reduced
HLA-DR expression on antigen-presenting cells, diminished ex
vivo cytokine release after lipopolysaccharide challenge,
quantitative and qualitative lymphocyte defects, and subset-
specific dendritic-cell abnormalities—depletion of ¢DCI,
functional impairment of ¢DC2, and contraction of pDCs
(markers as listed), with the same transcriptional programs and
signaling changes as previously described.

Operationalization in practice relies on complementary
functional and phenotypic readouts. Monocyte HLA-DR
measured by standardized flow cytometry is the most widely
adopted marker of innate deactivation; persistently low expression
identifies patients at increased risk of nosocomial infection and
death and has been proposed as an indicator of “immune organ
failure” suitable for risk stratification and for selecting candidates
for immunostimulatory interventions. Longitudinal trajectories of
HLA-DR during septic shock refine this risk assessment and
capture recovery versus persistent suppression (32-35).
Functional assays—CD107a degranulation (K562 or PMA/
ionomycin) and IFN-y release after IL-12/IL-18—map to risk
(lower responses predict secondary infection) and serve as on-
therapy targets with LPS-TNF and HLA-DR (36-38). Adaptive
immune components provide parallel indicators: global
lymphopenia and features of T-cell dysfunction, including
increased PD-1/PD-L1, LAG-3 and TIM-3 signaling, align with
impaired host defense and are being explored as therapeutic targets
in biomarker-enriched trials (39-41). Dendritic-cell loss and
dysfunction further reduce antigen presentation capacity and have
been linked to secondary infection risk in septic shock, validating
their inclusion within a composite definition (42, 43). In
malignancy, CKD, diabetes, or prior immunosuppression,
interpret ‘low-response’ using within-patient deltas and percentile
thresholds, and require concordance across =2 modalities (e.g.,
HLA-DR"" plus LPS-TNF'°Y),

A practical definition of immunoparalysis in sepsis is a time-
varying syndrome of impaired innate and adaptive immunity
evidenced by persistently low monocyte HLA-DR, reduced
stimulus-induced cytokine production capacity, lymphocyte
depletion and/or exhaustion signatures, and dendritic-cell
deficiency, each associated with elevated risk of secondary
infection and mortality. This framework supports standardized
endotyping and provides an entry point for biomarker-guided,
immune-restorative strategies in critical illness. Secondary
infection’ denotes a new, adjudicated infection >48 h after index
presentation (or after initial control), assessed in day-14 and day-
28 windows.
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3 Single-cell dissection of immune
low-response states: innate—adaptive
programs and regulatory circuits

Single-cell modalities resolve the composite nature of immune
low-response states by jointly defining cell identities, activation
gradients, and regulatory dependencies at single-cell resolution.
Across independent cohorts, scRNA-seq consistently identifies an
expanded myeloid program characterized by HLA-DR suppression
and increased S100A8/A9, RETN, VCAN, and IL1R2 expression—
often referred to as the “MS1/HLA-DR"" S100A"&™ monocyte
state—which is mechanistically linked to impaired antigen
presentation and broad inhibitory crosstalk with lymphocytes and
dendritic cells (e.g., predicted LGALS9-HAVCR?2 and class I HLA-
LILRB interactions) (44-46). These features recapitulate clinically
recognized innate deactivation and provide a cell-state framework
for immunoparalysis endotyping, as detailed in Table 1.

Adaptive compartments show concurrent low-response
programs detectable by scRNA-seq and immune-repertoire
profiling. Across cohorts, cDC1 depletion occurs earliest and
most profoundly with down-shifted CLEC9A/XCRI and BATF3/
IRF8 regulons; cDC2 persist but exhibit dysfunction with impaired
CD86/CCR7 and IL12B modules; and pDCs contract with
attenuated IRF7 programs and type I interferon release—together
explaining suboptimal priming and Thl skewing. Cytokine
production capacity and antigen-presentation cues decline in
parallel with transcriptional features of T-cell dysfunction,
including enrichment of inhibitory checkpoint transcripts and
contraction of naive/central memory pools, while dendritic-cell
fractions decrease (47-49). These single-cell readouts align with
clinical low-response phenotypes and reveal trajectories from
activation to dysfunction that are not captured by bulk assays.

Regulatory-circuit reconstruction strengthens mechanistic
inference. Chromatin accessibility profiling (scATAC-seq) and
integrated analyses of endotoxin-tolerance-like states identify
promoter—enhancer reconfiguration and transcription-factor
programs that stabilize monocyte hyporesponsiveness, while
multimodal pipelines infer active regulons and state transitions
that track movement toward low-response phenotypes (50-52).
Dynamic modeling (RNA velocity) and ligand-receptor inference
systematically connect myeloid inhibitory signaling to T- and NK-
cell dysfunction—ideally using composition-preserving
permutations or cell-count offsets to control compositional
confounding, zero-inflation-aware models to mitigate gene
dropout, and FDR correction for multi-test burden—offering
testable hypotheses for pharmacodynamic reversal.

Tissue-level sampling extends these insights beyond blood by
localizing low-response programs within injured organs and host-
pathogen contact zones (53-55). Time-resolved single-cell maps in
septic organs reveal compartmentalized myeloid reprogramming,
dendritic-cell attrition, and disrupted lymphocyte niches,
supporting the view that immunoparalysis is a distributed,
topology-dependent state that can now be quantified and
monitored with single-cell tools.
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TABLE 1 Key single-cell-defined immune low-response programs in sepsis and how to recognize them.

Program/Cell

NEE

HLA-DR""
S100AMe monocytes
(“MS17-like)

Canonical
transcript or
protein
features
(illustrative)

JHLA-DRA/DRBI,
1CD74; 1S100A8/
S100A9, RETN,
VCAN, ILIR2,
LILRB1/2

Single-cell
readouts that

establish the state

scRNA-seq clusters with
antigen-presentation
deficit; CITE-seq confirms
low HLA-DR surface
protein

Representative

inhibitory signals or

network features

Predicted LGALS9-
HAVCR2, HLA class I-
LILRB, TGFB1-TGFBR
pathways; myeloid
suppressive regulons

Functional
interpretation for
immunoparalysis

Innate deactivation;
antigen presentation
failure; broad
suppression of
lymphocyte function

Analytic notes
(quality and
integration)

Guard against neutrophil
contamination; harmonize
ambient RNA removal;
validate with flow

cytometry

Antigen-presenting
monocytes/DC with
reduced capacity

I|HLA-class II genes;
|CCR7; |CD86

Depletion of cDC1/cDC2
clusters; reduced co-
stimulatory gene modules

Weak ligand delivery to T
cells; impaired IL-12/IFN
axes

Impaired priming and T-
cell activation

Include whole-blood or
DC-enriched sampling;
standardize batch correction
across centers

Exhausted/
dysfunctional CD8"
and CD4" T cells

Atypical memory/
age-associated B cells

1PDCD1, LAG3,
TIGIT, HAVCR2;
JIL7R; reduced
cytotoxic module in
subsets

TITGAX (CDl1lc),
FCRL5, TBX21;
altered SHM/CSR
patterns

1KLRC1 (NKG2A);

scRNA-seq state gradients;
TCR clonality skew;
diminished effector gene
scores

BCR clonotype
contraction; scRNA-seq B-
cell state shift

Reduced cytotoxicity

Inhibitory checkpoint
circuits; reduced antigen-
receipt signatures

Attenuated antigen
presentation to T cells

Inhibitory receptor

Blunted effector
responses; susceptibility
to secondary infection

Suboptimal antibody
responses and help to T
cells

Pair scRNA-seq with TCR-
seq; control for
lymphopenia when
comparing proportions

Joint BCR-seq profiling
advisable; remove doublets
(B/T conjugates)

Include whole-blood

NK cell Weakened earl; tures; verify with
e . IGNLY, PRF1, NKG7 = modules; altered cytokine dominance; reduced eakened earty captures v-e rify wi .
hyporesponsiveness . o . pathogen control degranulation markers if
in subsets gene scores activating ligand inputs ;
available
A ibility shifts at
Myeloid progenitor ccessibility shifts scATAC-seq peaks linked Stabilized tolerized gene Persistence of Integrate sScATAC-seq with

bias/trained-tolerance
imprint

myeloid enhancers;
1C/EBP/STAT motif
activity

to tolerized genes;
integrated GRN modules

programs; diminished
inflammatory transcription

hyporesponsive
myelopoiesis

scRNA-seq; use batch-aware
peak calling

Cross-talk
bottlenecks
(myeloid—lymphoid)

Diminished
costimulatory ligands;
dominance of
inhibitory ligands

Ligand-receptor networks
showing low CD28/ICOS
signaling and high
inhibitory pairs

Net negative signaling into
T/NK compartments

Propagation of low-
response state across
compartments

Apply curated LR databases;
adjust for cell-type
composition effects

1, decreased/downregulated expression/abundance; 1, increased/upregulated expression/abundance.

The above cell-state dictionary supports a practical approach to
endotyping: prioritize detection of the MS1/HLA-DR'" S100A™¢"
monocyte expansion and dendritic-cell loss, quantify checkpoint-
biased T-cell states with concurrent repertoire features, infer
inhibitory myeloid-lymphoid communication, and, where
feasible, corroborate stabilizing chromatin programs. These
readouts provide mechanistic anchors for biomarker-guided
patient selection and pharmacodynamic monitoring in trials that
seek to reverse immune low-response states.

4 3D spatial transcriptomics of sepsis
tissues: ecosystem topology and
host—pathogen interfaces

Three-dimensional spatial transcriptomics enables quantitative
mapping of immune activity within intact organ architecture,
providing volumetric context for gradients, barriers, and
interfacial zones that shape antimicrobial defense during sepsis.
Organism-wide spatial profiling in experimental sepsis already
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demonstrates tissue-specific transcriptional programs across
multiple organs, establishing the feasibility and biological value of
spatially resolved readouts for systemic infection (56-58).
Extending these approaches into true 3D volumes allows precise
localization of low-response immune niches at epithelial,
endothelial, and perivascular interfaces where host-pathogen
contact and microcirculatory compromise converge.

Volumetric reconstruction is now technically routine through
serial-section acquisition coupled to dedicated alignment
frameworks. Open-ST registers consecutive sections into a
coherent 3D representation while preserving whole-transcriptome
coverage, enabling reconstruction of cellular neighborhoods and
long-range axes within diseased tissue. Computational toolkits such
as Spateo further support 3D gradient modeling and inference of
intercellular interactions across entire organs (59-61). Slice-to-slice
and cross-modality alignment at scale can be performed with
STalign, which maps sections to a three-dimensional common
coordinate framework using diffeomorphic metric mapping, and
with SLAT, a graph-based algorithm that robustly aligns
heterogeneous spatial slices across technologies (62-64). Together,
these methods permit organ-level assemblies in which immune
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programs can be quantified as continuous fields rather than isolated
2D snapshots.

Within such volumes, ecosystem topology can be defined by
combining cell-type deconvolution with spatial statistics that test
whether ligand-receptor signaling is non-randomly organized in
space (58, 65, 66). Approaches like Spatial DM use bivariate spatial
autocorrelation to score interaction hotspots, allowing in situ
quantification of immunoregulatory circuits (for example,
inhibitory myeloid-lymphoid signaling) and their relationship to
distances from vasculature, airspaces, or tubular lumina (28, 50, 67).
This framework operationalizes “immunoparalysis niches” as
measurable 3D entities that co-vary with tissue gradients relevant
to sepsis pathophysiology.

Resolving host-pathogen interfaces requires simultaneous
detection of microbial and host transcripts. Two sequencing-
based strategies now enable this. Spatial host-microbiome
sequencing (SHM-seq) co-captures polyadenylated host mRNA
and 16S rRNA from bacteria on the same array, accurately
mapping bacterial biogeography against host programs (68-70).
Spatial metatranscriptomics (SmT) broadens this to include fungal
taxa by jointly sequencing 16S and 18S/ITS, while explicitly
addressing contamination risk by leveraging spatial patterns to
separate true tissue-embedded microbial signals from
environmental noise (71-73). For clinical material, dual spatial
transcriptomics in FFPE sections achieves unbiased co-detection
of human and viral RNAs, offering a practical route to archived
sepsis tissues and high-containment samples. Collectively, these
methods transform microbe-host colocalization from proxy
histology into transcriptome-wide, spatially explicit measurements.

Platform choice influences detection at the host-pathogen
boundary. Oligo-dT capture alone is suboptimal for many
microbes and can be hindered by FFPE-induced 3’ tail
modification, motivating total-RNA or targeted capture schemes
in infected tissue (74, 75). Recent array chemistries using random
primers extend spatial capture to total RNA in FFPE while retaining
high spatial resolution, improving the likelihood of detecting
microbial transcripts alongside host responses in clinically
processed sepsis samples (76-78). High-field-of-view platforms
such as Stereo-seq additionally support wide-area mapping at
near-single-cell granularity, facilitating reconstruction of large
infected regions and their immunoregulatory gradients.

Integration with single-cell atlases strengthens mechanistic
interpretation. Projecting single-cell-defined immune states into
3D spaces using tools such as scHolography reconstructs cellular
neighborhoods and refines estimates of cell-cell communication in
volumes, complementing spot-level deconvolution and enabling
hypothesis testing on how myeloid deactivation, dendritic-cell
attrition, or checkpoint-biased T cells are spatially organized
relative to pathogen density and tissue microanatomy (79-81).
These analyses can be standardized across cohorts by aligning
multi-slice datasets into common coordinate systems with
STalign or SLAT, supporting comparative studies of therapeutic
modulation of low-response states.

A practical sepsis workflow therefore acquires serial sections
from infected organs, reconstructs 3D transcriptomic volumes with
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Open-ST or Spateo, overlays host-pathogen colocalization via
SHM-seq or SmT (FFPE-compatible where necessary), and
quantifies spatially significant signaling using methods such as
SpatialDM. The resulting volumetric maps delineate
immunoregulatory niches at barrier and vascular interfaces that
are likely to determine secondary-infection risk and therapeutic
responsiveness, providing a foundation for spatial biomarkers and
pharmacodynamic readouts in trials seeking to reverse immune
low-response states.

5 Clinical translation and outlook:
biomarkers, risk stratification, and
therapeutic reversal strategies

Clinical translation of immune low-response states in sepsis
should converge on composite, serially measurable biomarkers that
couple circulating function, single-cell endotypes, and spatial
context to decision-making. A pragmatic framework links three
tiers. First, bedside-accessible functional and phenotypic readouts
quantify host-defense capacity and its recovery dynamics;
thresholds and slopes over the first week should inform risks of
secondary infection, prolonged organ support, and death, and gate
entry into immune-restorative interventions. Second, single-cell
state dictionaries—capturing expansion of HLA-DR™" $100A™e"
monocytes, dendritic-cell attrition, and checkpoint-biased T cells—
can be operationalized as reduced-gene RNA or protein panels with
predefined quality controls; these signatures provide mechanistic
enrichment for trials and pharmacodynamic anchors to confirm
on-target immune reversal. Third, spatially aware metrics from
routine histology—compatible platforms (including FFPE-adapted
spatial assays) should localize immunoparalysis niches at epithelial,
endothelial, and perivascular interfaces and quantify adjacency
rules (e.g., macrophage-endothelium interface length, lymphoid
aggregate burden) that modify risk beyond cell fractions (24, 82-
84). Integration across tiers yields an “immunoparalysis index” with
calibrated cut points, validated in prospective cohorts, and
accompanied by minimal-surrogate surrogates (e.g., monocyte
HLA-DR plus reduced-gene myeloid signature) for resource-
limited settings.

Therapeutic reversal strategies should be biomarker-guided and
time-sensitive: candidates include antigen-presentation
upregulation and dendritic-cell reconstitution, targeted disruption
of inhibitory ligand-receptor circuits, and context-aware
checkpoint modulation; for PD-1/PD-L1, LAG-3 or TIM-3 trials,
enroll checkpoint-high patients (e.g, PD-1" CD8" T cells and/or
PD-L1™ monocytes in the top cohort quartile together with HLA-
DRAlow), and predefine pharmacodynamic reversal as increased
TCR- or cytokine-stimulated IFN-y/TNF with higher CD107a
degranulation/cytotoxic scores and a fall in checkpoint MFI or
gene scores toward reference ranges (85-88). Trial designs should
embed adaptive enrichment, early futility based on target
engagement, and safety monitoring for hyperinflammatory
breakthroughs; we recommend primary endpoints of infection-
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free and organ-support-free days to day-28 (composite ventilator-,
vasopressor- and renal-replacement-free days), with secondary
endpoints including 28/90-day mortality, new secondary infection
by day-14, ASOFA to day-7, ICU-free days to day-28, and patient-
reported outcomes. Immunostimulatory therapies should be
withheld when hyperinflammatory markers suggest a MAS-like
phenotype (e.g., very high ferritin or rapidly rising IL-6/CRP).

Over the near term, we anticipate: analytical standardization of
monocyte HLA-DR and whole-blood stimulation assays;
translation of single-cell signatures into CLIA-ready panels;
extension of spatial readouts to archived tissues using total-RNA-
compatible chemistries; and composite risk models that outperform
single biomarkers and enable allocation of immunoadjuvants to the
subset most likely to benefit. These steps can convert heterogeneous,
descriptive low-response states into tractable clinical entities with
measurable entry criteria, reversible targets, and reproducible
outcome gains.
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