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Sepsis remains a leading cause of critical illness worldwide. Despite advances in

supportive care, durable benefit from immune-directed therapies is limited,

reflecting heterogeneity with immune low-response states (‘immunoparalysis’)

across innate and adaptive compartments. In this reviewwe summarize advances

from single-cell RNA and ATAC profiling, immune-repertoire assays and 3D

spatial transcriptomics that resolve monocyte, dendritic-cell (cDC1, cDC2 and

pDC), lymphocyte and NK-cell programs, and appraise translational

opportunities spanning endotype-guided risk stratification, pharmacodynamic

monitoring and spatial biomarkers. We also discuss enduring challenges—

including assay standardization, harmonized thresholds for monocyte HLA-DR

and whole-blood stimulation, and limited availability of clinically compatible

spatial platforms—that temper implementation. By integrating bedside function

(HLA-DR trajectories, LPS-induced cytokine capacity) with single-cell endotypes

(MS1/HLA-DR^low S100A^high monocytes, dendritic-cell attrition, checkpoint-

biased T cells) and host–pathogen topology from FFPE-ready spatial assays,

emerging strategies aim to restore antigen presentation, reconstitute priming,

disrupt inhibitory myeloid–lymphoid circuits and prevent secondary infection.

Our synthesis provides an appraisal of the evolving landscape of

immunoparalysis-informed precision medicine in sepsis and outlines pragmatic

standards for composite biomarkers, patient selection and on-therapy decision

rules. We hope these insights will assist investigators and clinicians as they

endeavor to convert descriptive immune low-response states into tractable,

reversible clinical entities.
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1 Introduction

Sepsis is a leading cause of critical illness and death worldwide

and is characterized by organ dysfunction arising from a

dysregulated host response to infection (1–4). Contemporary

immunology has reframed this response as dynamic and

heterogeneous, with phases of exuberant inflammation often

overlapped by immune low-response states collectively termed

immunoparalysis (5–7). These states are marked by impaired

antigen presentation, altered cytokine production, and defects in

innate–adaptive crosstalk that increase susceptibility to secondary

infection and adverse outcomes, underscoring the need for precise

endotyping and immune-directed interventions (8–11).

Clinically, immunoparalysis is captured by functional and

phenotypic readouts that indicate reduced host defense capacity.

Two complementary assays are most established: ex vivo

lipopolysaccharide–stimulated cytokine production (typically

diminished tumor necrosis factor-a release) and decreased

expression of HLA-DR on circulating monocytes, the latter

indexing an antigen-presentation deficit (12–15). Both correlate

with infection risk and mortality and have been proposed for risk

stratification and for selecting patients into immuno-adjuvant trials

(16–18). Mechanistically, these abnormalities align with endotoxin

tolerance programs in myeloid cells and checkpoint-mediated

exhaustion in lymphocytes.

High-dimensional profiling now offers a path to resolve this

heterogeneity. Single-cell RNA sequencing in sepsis blood defined

discrete immune states—including an expanded CD14+ monocyte

state with suppressed HLA-DR and altered inflammatory signaling—

that robustly distinguish patients and provide mechanistic anchors for

biomarker development (19–21). Subsequent multicohort analyses

reinforced that composite single-cell signatures capturing

lymphopenia, dendritic-cell loss, and myeloid HLA-DR

downregulation track disease trajectories and may improve
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diagnostics and prognostication across age groups (22–24). These

findings support an endotype-based view of sepsis in which

therapeutic responsiveness depends on the prevailing immune

program rather than on a uniform “hyperinflammation” construct.

At the tissue level, dissociative assays incompletely represent

microanatomical context, which is critical for understanding host–

pathogen interfaces, vascular compromise, and compartmentalized

immunoregulation in sepsis. Spatially resolved transcriptomics has

therefore emerged as a complementary approach, recognized for

enabling quantitative maps of gene expression within intact

architecture; recent advances extend these maps into three

dimensions, providing volumetric views of cellular neighborhoods

and gradients relevant to barrier defense and organ injury (25–28).

The integration of spatial readouts with single-cell state dictionaries

creates opportunities to localize immunoparalysis niches, quantify

cell–cell communication in situ, and nominate spatial biomarkers

suitable for translation.

This review synthesizes evidence on immune low-response

states in sepsis with a focus on how single-cell modalities

(scRNA-seq, scATAC-seq, CITE-seq, TCR/BCR profiling) and

three-dimensional spatial transcriptomics delineate innate–

adaptive programs, tissue topology, and host–pathogen contact

zones. The aim is to standardize concepts and measurement

frameworks for immunoparalysis, highlight robust cellular and

spatial biomarkers for risk stratification, and outline principles for

patient selection and pharmacodynamic monitoring in trials that

seek to reverse immune low-response states.
2 Defining immunoparalysis in sepsis:
concepts, metrics, and clinical context

As shown in Figure 1, immunoparalysis denotes a clinically

significant, often reversible, low-response immune state that arises
FIGURE 1

Sepsis-induced immunoparalysis: key reversible hallmarks.
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during sepsis and is characterized by concurrent defects across

innate and adaptive compartments, including impaired antigen

presentation, blunted stimulus-induced cytokine production,

apoptosis-associated lymphocyte depletion, and checkpoint-

mediated T-cell dysfunction (29–31). These abnormalities reflect

an adaptive reprogramming frequently described as endotoxin

tolerance in myeloid cells and exhaustion or anergy in

lymphocytes, and they contribute to heightened susceptibility to

secondary infection and adverse outcomes. Conceptually, this state

is supported by mechanistic and clinical observations of reduced

HLA-DR expression on antigen-presenting cells, diminished ex

vivo cytokine release after lipopolysaccharide challenge,

quantitative and qualitative lymphocyte defects, and subset-

specific dendritic-cell abnormalities—depletion of cDC1,

functional impairment of cDC2, and contraction of pDCs

(markers as listed), with the same transcriptional programs and

signaling changes as previously described.

Operationalization in practice relies on complementary

functional and phenotypic readouts. Monocyte HLA-DR

measured by standardized flow cytometry is the most widely

adopted marker of innate deactivation; persistently low expression

identifies patients at increased risk of nosocomial infection and

death and has been proposed as an indicator of “immune organ

failure” suitable for risk stratification and for selecting candidates

for immunostimulatory interventions. Longitudinal trajectories of

HLA-DR during septic shock refine this risk assessment and

capture recovery versus persistent suppression (32–35).

Functional assays—CD107a degranulation (K562 or PMA/

ionomycin) and IFN-g release after IL-12/IL-18—map to risk

(lower responses predict secondary infection) and serve as on-

therapy targets with LPS-TNF and HLA-DR (36–38). Adaptive

immune components provide parallel indicators: global

lymphopenia and features of T-cell dysfunction, including

increased PD-1/PD-L1, LAG-3 and TIM-3 signaling, align with

impaired host defense and are being explored as therapeutic targets

in biomarker-enriched trials (39–41). Dendritic-cell loss and

dysfunction further reduce antigen presentation capacity and have

been linked to secondary infection risk in septic shock, validating

their inclusion within a composite definition (42, 43). In

malignancy, CKD, diabetes, or prior immunosuppression,

interpret ‘low-response’ using within-patient deltas and percentile

thresholds, and require concordance across ≥2 modalities (e.g.,

HLA-DRlow plus LPS-TNFlow).

A practical definition of immunoparalysis in sepsis is a time-

varying syndrome of impaired innate and adaptive immunity

evidenced by persistently low monocyte HLA-DR, reduced

stimulus-induced cytokine production capacity, lymphocyte

depletion and/or exhaustion signatures, and dendritic-cell

deficiency, each associated with elevated risk of secondary

infection and mortality. This framework supports standardized

endotyping and provides an entry point for biomarker-guided,

immune-restorative strategies in critical illness. Secondary

infection’ denotes a new, adjudicated infection ≥48 h after index

presentation (or after initial control), assessed in day-14 and day-

28 windows.
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3 Single-cell dissection of immune
low-response states: innate–adaptive
programs and regulatory circuits

Single-cell modalities resolve the composite nature of immune

low-response states by jointly defining cell identities, activation

gradients, and regulatory dependencies at single-cell resolution.

Across independent cohorts, scRNA-seq consistently identifies an

expanded myeloid program characterized by HLA-DR suppression

and increased S100A8/A9, RETN, VCAN, and IL1R2 expression—

often referred to as the “MS1/HLA-DRlow S100Ahigh” monocyte

state—which is mechanistically linked to impaired antigen

presentation and broad inhibitory crosstalk with lymphocytes and

dendritic cells (e.g., predicted LGALS9–HAVCR2 and class I HLA–

LILRB interactions) (44–46). These features recapitulate clinically

recognized innate deactivation and provide a cell-state framework

for immunoparalysis endotyping, as detailed in Table 1.

Adaptive compartments show concurrent low-response

programs detectable by scRNA-seq and immune-repertoire

profiling. Across cohorts, cDC1 depletion occurs earliest and

most profoundly with down-shifted CLEC9A/XCR1 and BATF3/

IRF8 regulons; cDC2 persist but exhibit dysfunction with impaired

CD86/CCR7 and IL12B modules; and pDCs contract with

attenuated IRF7 programs and type I interferon release—together

explaining suboptimal priming and Th1 skewing. Cytokine

production capacity and antigen-presentation cues decline in

parallel with transcriptional features of T-cell dysfunction,

including enrichment of inhibitory checkpoint transcripts and

contraction of naïve/central memory pools, while dendritic-cell

fractions decrease (47–49). These single-cell readouts align with

clinical low-response phenotypes and reveal trajectories from

activation to dysfunction that are not captured by bulk assays.

Regulatory-circuit reconstruction strengthens mechanistic

inference. Chromatin accessibility profiling (scATAC-seq) and

integrated analyses of endotoxin-tolerance–like states identify

promoter–enhancer reconfiguration and transcription-factor

programs that stabilize monocyte hyporesponsiveness, while

multimodal pipelines infer active regulons and state transitions

that track movement toward low-response phenotypes (50–52).

Dynamic modeling (RNA velocity) and ligand–receptor inference

systematically connect myeloid inhibitory signaling to T- and NK-

cell dysfunction— ideally using composition-preserving

permutations or cell-count offsets to control compositional

confounding, zero-inflation–aware models to mitigate gene

dropout, and FDR correction for multi-test burden—offering

testable hypotheses for pharmacodynamic reversal.

Tissue-level sampling extends these insights beyond blood by

localizing low-response programs within injured organs and host–

pathogen contact zones (53–55). Time-resolved single-cell maps in

septic organs reveal compartmentalized myeloid reprogramming,

dendritic-cell attrition, and disrupted lymphocyte niches,

supporting the view that immunoparalysis is a distributed,

topology-dependent state that can now be quantified and

monitored with single-cell tools.
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The above cell-state dictionary supports a practical approach to

endotyping: prioritize detection of the MS1/HLA-DRlow S100Ahigh

monocyte expansion and dendritic-cell loss, quantify checkpoint-

biased T-cell states with concurrent repertoire features, infer

inhibitory myeloid–lymphoid communication, and, where

feasible, corroborate stabilizing chromatin programs. These

readouts provide mechanistic anchors for biomarker-guided

patient selection and pharmacodynamic monitoring in trials that

seek to reverse immune low-response states.
4 3D spatial transcriptomics of sepsis
tissues: ecosystem topology and
host–pathogen interfaces

Three-dimensional spatial transcriptomics enables quantitative

mapping of immune activity within intact organ architecture,

providing volumetric context for gradients, barriers, and

interfacial zones that shape antimicrobial defense during sepsis.

Organism-wide spatial profiling in experimental sepsis already
Frontiers in Immunology 04
demonstrates tissue-specific transcriptional programs across

multiple organs, establishing the feasibility and biological value of

spatially resolved readouts for systemic infection (56–58).

Extending these approaches into true 3D volumes allows precise

localization of low-response immune niches at epithelial,

endothelial, and perivascular interfaces where host–pathogen

contact and microcirculatory compromise converge.

Volumetric reconstruction is now technically routine through

serial-section acquisition coupled to dedicated alignment

frameworks. Open-ST registers consecutive sections into a

coherent 3D representation while preserving whole-transcriptome

coverage, enabling reconstruction of cellular neighborhoods and

long-range axes within diseased tissue. Computational toolkits such

as Spateo further support 3D gradient modeling and inference of

intercellular interactions across entire organs (59–61). Slice-to-slice

and cross-modality alignment at scale can be performed with

STalign, which maps sections to a three-dimensional common

coordinate framework using diffeomorphic metric mapping, and

with SLAT, a graph-based algorithm that robustly aligns

heterogeneous spatial slices across technologies (62–64). Together,

these methods permit organ-level assemblies in which immune
TABLE 1 Key single-cell–defined immune low-response programs in sepsis and how to recognize them.

Program/Cell
State

Canonical
transcript or

protein
features

(illustrative)

Single-cell
readouts that

establish the state

Representative
inhibitory signals or
network features

Functional
interpretation for
immunoparalysis

Analytic notes
(quality and
integration)

HLA-DRlow

S100Ahigh monocytes
(“MS1”-like)

↓HLA-DRA/DRB1,
↓CD74; ↑S100A8/
S100A9, RETN,
VCAN, IL1R2,
LILRB1/2

scRNA-seq clusters with
antigen-presentation
deficit; CITE-seq confirms
low HLA-DR surface
protein

Predicted LGALS9–
HAVCR2, HLA class I–
LILRB, TGFB1–TGFBR
pathways; myeloid
suppressive regulons

Innate deactivation;
antigen presentation
failure; broad
suppression of
lymphocyte function

Guard against neutrophil
contamination; harmonize
ambient RNA removal;
validate with flow
cytometry

Antigen-presenting
monocytes/DC with
reduced capacity

↓HLA-class II genes;
↓CCR7; ↓CD86

Depletion of cDC1/cDC2
clusters; reduced co-
stimulatory gene modules

Weak ligand delivery to T
cells; impaired IL-12/IFN
axes

Impaired priming and T-
cell activation

Include whole-blood or
DC-enriched sampling;
standardize batch correction
across centers

Exhausted/
dysfunctional CD8+

and CD4+ T cells

↑PDCD1, LAG3,
TIGIT, HAVCR2;
↓IL7R; reduced
cytotoxic module in
subsets

scRNA-seq state gradients;
TCR clonality skew;
diminished effector gene
scores

Inhibitory checkpoint
circuits; reduced antigen-
receipt signatures

Blunted effector
responses; susceptibility
to secondary infection

Pair scRNA-seq with TCR-
seq; control for
lymphopenia when
comparing proportions

Atypical memory/
age-associated B cells

↑ITGAX (CD11c),
FCRL5, TBX21;
altered SHM/CSR
patterns

BCR clonotype
contraction; scRNA-seq B-
cell state shift

Attenuated antigen
presentation to T cells

Suboptimal antibody
responses and help to T
cells

Joint BCR-seq profiling
advisable; remove doublets
(B/T conjugates)

NK cell
hyporesponsiveness

↑KLRC1 (NKG2A);
↓GNLY, PRF1, NKG7
in subsets

Reduced cytotoxicity
modules; altered cytokine
gene scores

Inhibitory receptor
dominance; reduced
activating ligand inputs

Weakened early
pathogen control

Include whole-blood
captures; verify with
degranulation markers if
available

Myeloid progenitor
bias/trained-tolerance
imprint

Accessibility shifts at
myeloid enhancers;
↑C/EBP/STAT motif
activity

scATAC-seq peaks linked
to tolerized genes;
integrated GRN modules

Stabilized tolerized gene
programs; diminished
inflammatory transcription

Persistence of
hyporesponsive
myelopoiesis

Integrate scATAC-seq with
scRNA-seq; use batch-aware
peak calling

Cross-talk
bottlenecks
(myeloid→lymphoid)

Diminished
costimulatory ligands;
dominance of
inhibitory ligands

Ligand–receptor networks
showing low CD28/ICOS
signaling and high
inhibitory pairs

Net negative signaling into
T/NK compartments

Propagation of low-
response state across
compartments

Apply curated LR databases;
adjust for cell-type
composition effects
↓, decreased/downregulated expression/abundance; ↑, increased/upregulated expression/abundance.
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programs can be quantified as continuous fields rather than isolated

2D snapshots.

Within such volumes, ecosystem topology can be defined by

combining cell-type deconvolution with spatial statistics that test

whether ligand–receptor signaling is non-randomly organized in

space (58, 65, 66). Approaches like SpatialDM use bivariate spatial

autocorrelation to score interaction hotspots, allowing in situ

quantification of immunoregulatory circuits (for example,

inhibitory myeloid–lymphoid signaling) and their relationship to

distances from vasculature, airspaces, or tubular lumina (28, 50, 67).

This framework operationalizes “immunoparalysis niches” as

measurable 3D entities that co-vary with tissue gradients relevant

to sepsis pathophysiology.

Resolving host–pathogen interfaces requires simultaneous

detection of microbial and host transcripts. Two sequencing-

based strategies now enable this. Spatial host–microbiome

sequencing (SHM-seq) co-captures polyadenylated host mRNA

and 16S rRNA from bacteria on the same array, accurately

mapping bacterial biogeography against host programs (68–70).

Spatial metatranscriptomics (SmT) broadens this to include fungal

taxa by jointly sequencing 16S and 18S/ITS, while explicitly

addressing contamination risk by leveraging spatial patterns to

separate true tissue-embedded microbial signals from

environmental noise (71–73). For clinical material, dual spatial

transcriptomics in FFPE sections achieves unbiased co-detection

of human and viral RNAs, offering a practical route to archived

sepsis tissues and high-containment samples. Collectively, these

methods transform microbe–host colocalization from proxy

histology into transcriptome-wide, spatially explicit measurements.

Platform choice influences detection at the host–pathogen

boundary. Oligo-dT capture alone is suboptimal for many

microbes and can be hindered by FFPE-induced 3′ tail

modification, motivating total-RNA or targeted capture schemes

in infected tissue (74, 75). Recent array chemistries using random

primers extend spatial capture to total RNA in FFPE while retaining

high spatial resolution, improving the likelihood of detecting

microbial transcripts alongside host responses in clinically

processed sepsis samples (76–78). High-field-of-view platforms

such as Stereo-seq additionally support wide-area mapping at

near-single-cell granularity, facilitating reconstruction of large

infected regions and their immunoregulatory gradients.

Integration with single-cell atlases strengthens mechanistic

interpretation. Projecting single-cell–defined immune states into

3D spaces using tools such as scHolography reconstructs cellular

neighborhoods and refines estimates of cell–cell communication in

volumes, complementing spot-level deconvolution and enabling

hypothesis testing on how myeloid deactivation, dendritic-cell

attrition, or checkpoint-biased T cells are spatially organized

relative to pathogen density and tissue microanatomy (79–81).

These analyses can be standardized across cohorts by aligning

multi-slice datasets into common coordinate systems with

STalign or SLAT, supporting comparative studies of therapeutic

modulation of low-response states.

A practical sepsis workflow therefore acquires serial sections

from infected organs, reconstructs 3D transcriptomic volumes with
Frontiers in Immunology 05
Open-ST or Spateo, overlays host–pathogen colocalization via

SHM-seq or SmT (FFPE-compatible where necessary), and

quantifies spatially significant signaling using methods such as

Spat ia lDM. The result ing volumetric maps del ineate

immunoregulatory niches at barrier and vascular interfaces that

are likely to determine secondary-infection risk and therapeutic

responsiveness, providing a foundation for spatial biomarkers and

pharmacodynamic readouts in trials seeking to reverse immune

low-response states.
5 Clinical translation and outlook:
biomarkers, risk stratification, and
therapeutic reversal strategies

Clinical translation of immune low-response states in sepsis

should converge on composite, serially measurable biomarkers that

couple circulating function, single-cell endotypes, and spatial

context to decision-making. A pragmatic framework links three

tiers. First, bedside-accessible functional and phenotypic readouts

quantify host-defense capacity and its recovery dynamics;

thresholds and slopes over the first week should inform risks of

secondary infection, prolonged organ support, and death, and gate

entry into immune-restorative interventions. Second, single-cell

state dictionaries—capturing expansion of HLA-DRlow S100Ahigh

monocytes, dendritic-cell attrition, and checkpoint-biased T cells—

can be operationalized as reduced-gene RNA or protein panels with

predefined quality controls; these signatures provide mechanistic

enrichment for trials and pharmacodynamic anchors to confirm

on-target immune reversal. Third, spatially aware metrics from

routine histology–compatible platforms (including FFPE-adapted

spatial assays) should localize immunoparalysis niches at epithelial,

endothelial, and perivascular interfaces and quantify adjacency

rules (e.g., macrophage–endothelium interface length, lymphoid

aggregate burden) that modify risk beyond cell fractions (24, 82–

84). Integration across tiers yields an “immunoparalysis index” with

calibrated cut points, validated in prospective cohorts, and

accompanied by minimal-surrogate surrogates (e.g., monocyte

HLA-DR plus reduced-gene myeloid signature) for resource-

limited settings.

Therapeutic reversal strategies should be biomarker-guided and

time-sensitive: candidates include antigen-presentation

upregulation and dendritic-cell reconstitution, targeted disruption

of inhibitory ligand–receptor circuits, and context-aware

checkpoint modulation; for PD-1/PD-L1, LAG-3 or TIM-3 trials,

enroll checkpoint-high patients (e.g., PD-1hi CD8+ T cells and/or

PD-L1hi monocytes in the top cohort quartile together with HLA-

DR^low), and predefine pharmacodynamic reversal as increased

TCR- or cytokine-stimulated IFN-g/TNF with higher CD107a

degranulation/cytotoxic scores and a fall in checkpoint MFI or

gene scores toward reference ranges (85–88). Trial designs should

embed adaptive enrichment, early futility based on target

engagement, and safety monitoring for hyperinflammatory

breakthroughs; we recommend primary endpoints of infection-
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free and organ-support–free days to day-28 (composite ventilator-,

vasopressor- and renal-replacement–free days), with secondary

endpoints including 28/90-day mortality, new secondary infection

by day-14, DSOFA to day-7, ICU-free days to day-28, and patient-

reported outcomes. Immunostimulatory therapies should be

withheld when hyperinflammatory markers suggest a MAS-like

phenotype (e.g., very high ferritin or rapidly rising IL-6/CRP).

Over the near term, we anticipate: analytical standardization of

monocyte HLA-DR and whole-blood stimulation assays;

translation of single-cell signatures into CLIA-ready panels;

extension of spatial readouts to archived tissues using total-RNA–

compatible chemistries; and composite risk models that outperform

single biomarkers and enable allocation of immunoadjuvants to the

subset most likely to benefit. These steps can convert heterogeneous,

descriptive low-response states into tractable clinical entities with

measurable entry criteria, reversible targets, and reproducible

outcome gains.
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