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CD4"Foxp3™ regulatory T cells (Tregs) are essential for maintaining immune
tolerance, and selective expansion of Tregs via TNFR2 signaling represents a
promising therapeutic approach for autoimmune and inflammatory diseases.
Here, we report the identification and characterization of UMR2-705, a novel
TNFR2 agonist discovered through phage display screening. In vitro, peptide
UMR2-705 selectively promoted Treg proliferation in both human peripheral
blood mononuclear cells and murine CD4* T cell cultures without stimulating
conventional CD4™" effector or CD8" T cells. This effect was abrogated by the
TNFR2-specific blocking antibody TR75-54.7, indicating its TNFR2 dependency.
In vivo, administration of peptide UMR2-705 expanded Tregs in murine spleen
and lymph nodes, attenuated LPS-induced systemic cytokine release (IL-6, TNF-
o, IL-17A) in serum, and preserved immune homeostasis during systemic
inflammation through TNFR2-dependent modulation of the regulatory
compartment. Transcriptomic profiling revealed activation of TNFR2-
associated signaling and upregulation of immune-regulatory pathways. These
findings identify peptide UMR2-705 as a selective, peptide-based TNFR2 agonist
with potent Treg-expanding and anti-inflammatory activities, supporting its
potential as a therapeutic candidate for autoimmune and inflammatory disorders.
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Introduction

CD4"Foxp3™ regulatory T cells (Tregs) are immunosuppressive cells that play a critical
role in maintaining immune homeostasis and preventing autoimmune diseases, including
allergic diseases, graft-versus-host disease (GVHD), and transplant rejection (1, 2).
Modulating Treg activity holds significant therapeutic promise; for instance, enhancing
Treg function can effectively attenuate autoimmune and inflammatory responses (3).
Accordingly, targeting the molecular pathways that regulate Treg function offers a strategic
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approach for immune intervention across diverse disease settings.
In 2007, we first reported that tumor necrosis factor (TNF)
promotes the activation and expansion of Tregs through its
receptor TNFR2 (4). TNF selectively upregulates TNFR2
expression on Tregs, and the TNF-TNFR2 interaction is
dispensable for their in vivo function and phenotypic stability (5,
6). Since then, extensive evidence has reinforced the pivotal role of
TNEFR2 signaling in Treg activation, expansion, and stability in
response to TNF stimulation (7-9). Consequently, TNFR2 has
emerged as a promising therapeutic target, with current
translational research efforts focused on developing biologics and
small molecules to modulate TNFR2 activity in autoimmune
diseases, GVHD, and cancer.

Several TNFR2 agonists have been shown to suppress
inflammatory responses by enhancing Treg function and
expansion (10-14). TNFR2 agonism provides an effective strategy
for expanding low-purity human Tregs, thereby supporting its
application in adoptive Treg transfer therapies. Combining
TNFR2 agonistic antibodies with standard Treg expansion
protocols (e.g., anti-CD3/CD28 stimulation, IL-2, with or without
rapamycin) generates stable, homogeneous Tregs with robust
immunosuppressive function (15, 16). TNFR2 agonism holds
promise for treating autoimmunity due to its restricted expression
on immunosuppressive cells like Tregs. This contrasts with low-
dose IL-2 therapy, which expands Tregs but also activates unwanted
effector cells, such as Teff and NK cells, due to its narrow
therapeutic window, thereby increasing the risk of off-target
immune activation and related adverse effects (17, 18). The
restricted expression of TNFR2 suggests a potentially more
targeted therapeutic strategy (19, 20). To enhance TNFR2
signaling, dodecavalent ligands engineered using the
oligomerization domain from GCN4 and TNFR2-selective TNF
mutants (GCN4-sc-mTNFR2) have demonstrated superior
bioactivity and binding affinity in vitro compared to other
oligomerized TNFR2-selective TNF variants (21). Additionally,
GCN4-sc-mTNFR2 may be less immunogenic due to its
structural resemblance to human proteins, although
immunogenicity remains a concern given its non-natural
sequences. It is also important to distinguish our strategy of
TNFR2 agonism from the well-established anti-TNF therapies,
such as etanercept and infliximab, which act by broadly
neutralizing TNF. While these biologics are highly effective in
treating various autoimmune diseases through inhibition of the
proinflammatory signaling predominantly mediated by TNFRI,
they concurrently suppress the beneficial immunoregulatory
effects via TNFR2. Such non-selective blockade of TNF may
underlie some of the known limitations of anti-TNF therapy,
including an increased susceptibility to infections and potential
disruption of immune homeostasis and tissue repair (22). In
contrast, our approach favors selectively potentiatinge TNFR2
signaling. Such non-selective blockade of TNF may underlie some
of the known limitations of anti-TNF therapy, including an
increased susceptibility to infections and potential disruption of
immune homeostasis and tissue repair (22). In contrast, our
approach seeks to selectively potentiate TNFR2 signaling. By
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employing a TNFR2-specific agonist, we aim to harness the
intrinsic immunosuppressive and tissue-protective functions of
the TNF-TNFR2 axis, thereby offering a more targeted
therapeutic strategy that mitigates the drawbacks associated with
global TNF inhibition. Compared with conventional biologics,
peptides offer distinct advantages, including lower production
costs, facile synthesis, and reduced immunogenicity (23).

In this study, we aimed to develop a novel peptide that targets
the TNF-TNFR2 interaction as a selective Treg stimulator. Through
phage display screening, we identified peptide UMR2-705 (also
referred to as 705), which promotes Tregs expansion without
affecting CD8" T cells or conventional effector T cells (Teffs),
acting through TNFR2 signaling. These findings highlight the
potential of TNFR2-targeting peptides as immunomodulatory
agents for the treatment of autoimmune and inflammatory diseases.

Results

Peptide UMR2-705 increased the
stimulatory effect of TNF on Treg cells

To identify peptides that bind to TNFR2, three rounds of
biopanning were performed using a phage display library.
Following selection, individual phage clones were randomly
isolated, and sequencing revealed 20 unique nucleotide sequences
(Figures 1A-C). The corresponding amino acid sequences of
enriched clones are listed in Supplementary Table 1. Based on
these results, 13 representative peptides were synthesized for further
evaluation. We previously demonstrated that TNF preferentially
promotes the proliferation and expansion of Tregs, along with
increased surface expression of TNFR2 on these cells (4, 24). In
the current study, mixed T cells cultured with interleukin-2 (IL-2)
and treated with peptide UMR2-705 showed a significant
enhancement of TNF-induced Treg proliferation. In contrast, the
TNF inhibitor etanercept (ETA) markedly suppressed TNE-
induced Treg expansion (Figures 1D, E). Overall, our findings
support the conclusion that peptide UMR2-705 functions as an
agonist that enhances TNF-induced Treg expansion.

Peptide UMR2-705 induces dose-
dependent expansion of Tregs in murine
CD4* T cells and human PBMCs

To evaluate the effect of peptide UMR2-705 on T cells, splenic
lymphocytes were cultured in vitro with increasing concentrations
of peptide UMR2-705 (0, 5, 10, 20, 50, and 100 pg/mL) and
analyzed for proliferation after 72 hours using flow cytometry.
Peptide UMR2-705 promoted a dose-dependent induction of Treg
proliferation (Figure 2A, B).

To furtherly assess the ability of peptide UMR2-705 to expand
Tregs, we evaluated its effects on both murine CD4" T cells and
human peripheral blood mononuclear cells (PBMCs) in vitro.
MACS-purified murine CD4" T cells were treated with increasing
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FIGURE 1

Screening for potent TNFR2 agonist peptide for Treg expansion by phage display. (A) Schematic illustration of phage display peptide library screening.
(B) Dot plot of ELISA OD values showing 72 high-affinity phage clones (red dot). (C) Dot plot of ELISA OD values showing 20 top clones (red dot)

selected from the 72 high-affinity phage clones. (D) Mixed T cells isolated from mouse spleen and lymph nodes were labeled with CellTrace™

Violet

(CTV) and cultured for 72 hours with IL-2 (10 ng/mL) alone, or in combination with TNF (20 ng/mL) and one of 13 different peptides (5 pg/mL).
Quantification of Treg proliferation across treatment groups. (E) Treg cell proliferation was assessed by CTV dilution and analyzed via flow cytometry.
****p < 0.0001 by one-way ANOVA tests. FigurelA Created in BioRender. Chen, Z. (2025) https://BioRender.com/jzy9iea.

concentrations of peptide UMR2-705 for 72 hours. Flow cytometric
analysis revealed a dose-dependent increase in the proportion of
CD4"FOXP3" Tregs compared to untreated controls (Figures 2C, D).
These CD4"FOXP3" Tregs are shown to have a stronger suppressive
transcriptional signature, including elevated gene expression of Icos,
Ikzf2, Ctla4, and 1110 (Supplementary Figure SIA-D).

Similarly, treatment of human PBMCs with peptide UMR2-705
resulted in a significant, concentration-dependent elevation in the
frequency of CD4"FOXP3" Tregs (Figures 2E, F). To confirm its
effect on human Treg proliferation, MACS-purified CD4+ T cells from
human PBMCs were activated with anti-CD3/CD28 antibodies for 48
hours. Treatment with peptide UMR2-705 significantly increased the
frequency of regulatory T cells (Tregs) compared with the activated
control (Figures 2G, H). These results indicate that peptide UMR2-705
effectively promotes the selective expansion of Tregs across both
murine and human immune cell populations.
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Peptide UMR2-705 selectively promotes
Treg expansion through TNFR2 signaling

To determine whether the Treg-expanding activity of peptide
UMR2-705 is mediated through TNFR2 signaling, murine CD4" T
cells were cultured with peptide UMR2-705 in the presence or absence
of TR75-54.7, a TNFR2-specific blocking antibody. Flow cytometric
analysis demonstrated that peptide UMR2-705 significantly increased
the frequency of Tregs, whereas co-treatment with TR75-54.7
effectively abolished this expansion (Figures 3A, B). This result
demonstrates that the Treg-promoting effect of peptide UMR2-705
is strictly dependent on TNFR2 engagement.

Molecular docking of peptide UMR2-705 to TNFR2 predicted a
strong interaction, with a calculated binding energy of -5.3 kcal/mol.
The binding was stabilized by a network of hydrogen bonds to TNFR2
residues ARG-43, CYS-75, SER-55, THR-73, ASP-72, and THR-70.
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In vitro pharmaceutical Evaluation of peptide UMR2-705 in Treg activation.(A, B) Peptide UMR2-705 promotes Treg proliferation in murine mixed T
cell cultures. (A) Representative FACS plots of proliferating CD4*FOXP3* Tregs. (B) Quantification of proliferative responses in Treg cells. (C, D)
Peptide UMR2-705 dose-dependently increases Treg frequency in purified murine CD4" T cells. (C) Representative flow plots (gated on CD4" T

ls). (D) Quantification of Treg proportions among total CD4" T cells. (E, F) Peptide UMR2-705 elevates Treg frequency in human PBMCs. (E)
Representative flow plots (gated on CD4* T cells). (F) Quantification of Treg frequencies in human CD4" T cells. (G, H) Peptide UMR2-705 enhances
Treg frequency in anti-CD3/CD28-activated human PBMCs. (G) Representative flow plots (gated on CD4* T cells). (H) Quantification of Treg
frequencies in activated human CD4* T cells. Data are representative of or quantified from at least three independent experiments (n = 3). Statistical

significance was determined by one-way ANOVA; *P < 0.05,

Notably, the predicted binding site of UMR2-705 substantially overlaps
with the native binding site of TNF (25). These results provide a
structural model for the specific binding of peptide UMR2-705 to
TNFR2 and suggest a mechanism of action via receptor agonism.

In addition, in TNFR2-overexpressing Jurkat cells(JK-R2),
treatment with biotin-UMR2-705 followed by detection with
APC-conjugated streptavidin revealed strong binding of biotin-
UMR2-705 to Jurkat-R2 cells, whereas no binding was observed
in control Jurkat-NC cells (Supplementary Figure S2A).

We next assessed whether the effect of peptide UMR2-705 was
specific to Tregs. Splenic lymphocytes were cultured in vitro with
increasing concentrations of peptide UMR2-705 (0, 5, 10, 20, 50, and
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**P < 0.01, ***P < 0.001, ****P < 0.0001.

100 pg/mL) and assessed by CTV dilution. Notably, peptide UMR2-
705 did not induce proliferation of CD4Foxp3™~ effector T cells (Teft)
or CD8" T cells (Figures 3D-E). Together, these results indicate that
peptide UMR2-705 selectively expands Tregs in a TNFR2-dependent
manner, without stimulating the proliferation of other T cell subsets.

In vivo administration of peptide UMR2-
705 increases the proportion of Tregs in
the spleen and lymph nodes

To evaluate the in vivo immunomodulatory effect of peptide
UMR?2-705, Balb/c mice were intraperitoneally injected with PBS,
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FIGURE 3

Peptide UMR2-705 selectively activates Tregs via TNF-TNFR2 signaling. (A, B) Anti-TNFR2 antibody (TR75-54.7) blocks peptide UMR2-705-induced
Treg proliferation in MACS-purified murine CD4* T cells. (A) Representative flow plots (gated on CD4* T cells) and (B) quantification of CD4*Foxp3*
Tregs after 72h culture. (C) A detailed view of the interaction interface between peptide UMR2-705 and TNFR2. Key residues on TNFR2 involved in
hydrogen bonding are shown as sticks. Hydrogen bonds are indicated by yellow dashed lines. (D, E) Peptide UMR2-705 dose-dependently inhibits
proliferation in mixed T cell cultures. Representative FACS plots of proliferating cells and quantification in CD4*FOXP3™ effector T cells (Teffs) and (D)
CD8* T cells (E). Data are representative of at least three independent experiments and are presented as mean + SEM. Statistical significance was

determined using one-way ANOVA; **P < 0.01, ****P < 0.0001.

peptide UMR2-705, or control peptide 701 for three consecutive
days. Twenty-four hours after the final treatment, cells from the
spleen and lymph nodes were harvested and analyzed by flow
cytometry to assess the frequency of CD4"Foxp3™ regulatory T
cells (Tregs). Peptide UMR2-705 treatment significantly increased
the proportion of Tregs in both the spleen and lymph nodes
compared to PBS or control peptide 701 (Figures 4A, B). These
findings demonstrate that peptide UMR2-705 promotes the
expansion or accumulation of Tregs in vivo, supporting its

potential as a therapeutic agent for modulating immune responses.

Peptide UMR2-705 mitigates LPS-induced
systemic inflammation and cytokine
production

To assess the anti-inflammatory efficacy of peptide UMR2-705,
we first profiled a murine model of LPS-induced systemic
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inflammation. Mice were pretreated with PBS or UMR2-705 (25
mg/kg/day) for three consecutive days prior to a single intraperitoneal
injection of LPS (Figure 4C). Twenty-four hours later, serum cytokine
levels were quantified by cytometric bead array (CBA). As expected,
LPS challenge markedly elevated circulating IL-6, TNF, and IL-17A
levels compared with PBS controls. Pretreatment with UMR2-705
substantially attenuated this cytokine surge, indicating a pronounced
anti-inflammatory effect (Figure 4D).

To determine whether UMR2-705 influences immune
regulation, we analyzed Treg populations in the spleen and
mesenteric lymph nodes. LPS exposure led to a moderate
expansion of Tregs, reflecting a compensatory response to acute
inflammation. Remarkably, UMR2-705 treatment further increased
the proportion of Tregs in the spleen, with a more pronounced rise
in Ki67" Tregs among CD4" T cells observed in the mesenteric
lymph nodes (mLN), indicating enhanced proliferation and
activation of the regulatory compartment (Figures 4E, F). To
further evaluate whether the expansion of Tregs induced by
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UMR2-705 is dependent on TNFR2 signaling, mice were co-
administered the TNFR2 antagonist TR75-54.7 from the first day
of treatment. TNFR2 blockade completely abolished the UMR2-
705-induced augmentation of Tregs, confirming that the
immunoregulatory activity of UMR2-705 is mediated through
TNFR2 engagement.

Together, these findings demonstrate that peptide UMR2-705
alleviates LPS-induced systemic inflammation by promoting
TNFR2-dependent expansion of Tregs, thereby reinforcing
immune tolerance in vivo.

Peptide UMR2-705 promotes
dendritic cell accumulation in vivo
and enhances their capacity to
expand regulatory T cells in vitro

In addition to its direct effect on Tregs, we observed that
intraperitoneal administration of peptide UMR2-705 (25 mg/kg/
day for three consecutive days) markedly increased the frequency of
CD11c" dendritic cells (DCs) in the peritoneal lavage fluid of
treated mice (Figure 4G). To further investigate the functional
relevance of these DCs, bone marrow-derived dendritic cells
(BMDC:s) were generated from mice, treated with peptide UMR2-
705, and subsequently subjected to maturation stimuli. These DCs
were then co-cultured with MACS-purified CD4" T cells isolated
from mouse spleens. Strikingly, peptide UMR2-705-treated DCs
significantly upregulate the proportion of CD4"Foxp3™ Tregs in the
co-culture system compared with untreated controls (Figure 4H).

These findings suggest that, beyond directly promoting Treg
expansion, peptide UMR2-705 may also indirectly augment Treg
proliferation by modulating DC function, thereby revealing an
additional mechanism of its immunoregulatory activity.

Peptide UMR2-705 activates
inflammation-associated signaling
pathways

To investigate the molecular effects of peptide UMR2-705 on
TNF receptor signaling, transcriptomic profiling was performed on
purified CD4" T cells treated with either PBS or peptide UMR2-705
for three days. RNA sequencing revealed substantial transcriptional
alterations in response to peptide UMR2-705, with 573 genes
significantly upregulated and 286 genes downregulated
(Figure 4]J). Among the most upregulated genes were Foxp4,
Tnfrsf8, and Clqtnf6, while downregulated genes included Gzmb,
Irf4, and Nr4al, etc. KEGG pathway enrichment analysis
demonstrated significant activation of immune-related pathways,
notably cytokine-cytokine receptor interaction, inflammatory bowel
disease, and type I diabetes mellitus (Figure 4]). In particular,
peptide UMR2-705 treatment led to increased expression of
multiple members of the TNF receptor superfamily, including
Tnfrsf10b (TRAILR2), Tnfrsf9 (4-1BB), Tnfrsf18 (GITR),
Tnfrsflb (TNFR2), and Tnfrsf4 (OX40), suggesting enhanced
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TNFR2-mediated signaling activity (Figure 4K). Previous studies
have shown that TNFR2 signaling correlates with the expression of
4-1BB, GITR, and OX40 in Tregs, and that TNFR2 co-stimulation
augments their surface levels, indicating coordinated regulation
within the TNFRSF network (26). Moreover, co-expression and
functional synergy among TNFR2, 4-1BB and GITR, support a
shared regulatory axis that promotes Treg proliferation and survival
(27, 28). This coordinated upregulation pattern further indicates
that peptide UMR2-705-treated Tregs exhibit an enhanced
functional phenotype consistent with heightened TNFRSF
signaling activity. Collectively, these findings indicate that peptide
UMR2-705 modulates key transcriptional programs associated
with immune regulation and underscores its therapeutic potential
in promoting Treg-mediated immunomodulation.

Discussion

The TNF-TNFR2 signaling axis has emerged as a promising
target in immunotherapy, with relevance to both cancer treatment
and the management of autoimmune diseases (19, 29). TNFR2 is
expressed at high levels on Tregs and plays a pivotal role in their
expansion and functional maintenance, making it a compelling
candidate for immunomodulation strategies (4, 6, 30). In this study,
we employed phage display screening of a random peptide library
and identified peptide UMR2-705, which selectively expanded
Tregs without affecting conventional CD4" effector T cells (Teffs)
or CD8" T cells.

Functional validation in both murine and human peripheral
blood mononuclear cell (PBMC) models confirmed that peptide
UMR2-705 robustly promotes the expansion of Tregs. Importantly,
this effect was abrogated by TNFR2-specific antagonists TR75-54.7
antibody both in vivo and in vitro, confirming that peptide UMR2-
705 functions as a TNFR2 agonist. Beyond its immunoregulatory
activity, peptide UMR2-705 also exhibited anti-inflammatory
properties in an in vivo model of LPS-induced systemic
inflammation, significantly attenuating the elevation of pro-
inflammatory cytokines such as IL-6, TNF, and IL-17A. Together,
these findings support the dual functionality of peptide UMR2-705
as both a Treg-expanding agent and an anti-inflammatory
modulator, with potential therapeutic relevance for autoimmune
and inflammatory disorders.

Parallel to our findings, there is a growing interest in developing
TNFR2-targeting agents for clinical use (19, 29). Several TNFR2-
targeting antibodies are currently under clinical evaluation, including
antagonists such as BI-1808 (Phase 1/2a, NCT04752826), being tested
alone or in combination with anti-PD-1 therapy (Merck) (31), as well
as APX601 (32), AN3025 (33), and NBL-020 (34). Agonistic antibodies
in development include BI-1910 (35), HFB200301 (36), and MM-401
(37). Despite the encouraging progress in antibody-based therapeutics,
peptide-based approaches remain largely underexplored. Peptides offer
several potential advantages, including lower immunogenicity, cost-
effective synthesis, and improved tissue penetration due to their smaller
molecular size (38). Our study introduces peptide UMR2-705 as a
novel TNFR2-targeted agent with robust immunomodulatory activity.
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FIGURE 4

Peptide UMR2-705 increases the proportion of Treg cells in the spleen and lymph nodes of Balb/c mice. (A, B) Increased splenic (A) and lymph
node (B) CD4*Foxp3* Treg frequency in mice treated i.p. with Peptide UMR2-705 (25 mg/kg/day x 3 days) vs PBS. Representative flow plots (gated

on CD4* T cells) and quantification are shown. (C—F) Peptide UMR2-705 (25 mg/kg/day x 3 days, i.p.) attenuates LPS (10 mg/kg)-induced

inflammation with or without TNFR2-antagonist TR75-54.7(10mg/kg). (D) Serum cytokine levels (CBA). (E) CD4*Foxp3* Treg proportion in spleen. (F)
Proliferating CD4*Foxp3* Treg cells in mesenteric lymph nodes (mLN). (G) Increased CD11c* DC frequency in peritoneal lavage fluid of Peptide
UMR2-705-treated mice (i.p.). Representative plots and quantification. (H) Peptide UMR2-705-preconditioned BMDCs enhance Treg proliferation in
vitro (co-culture with CD4™ T cells). Representative flow plots (gated on CD4" T cells) and quantification of CD4*Foxp3* cells. (I-K) Transcriptome
analysis of CD4* T cells treated with Peptide UMR2-705 (72h). (K) Volcano plot of DEGs (|log2FC| > Y, adj. p < Z). (L) Enriched KEGG pathways in
upregulated DEGs. (M) Relative mRNA expression of TNF receptor superfamily genes. Data are presented as mean + SEM from at least three
independent experiments (n = 3). Statistical significance was determined using one-way ANOVA; *P < 0.05, **P < 0.01, ***P < 0.001, ****P <

0.0001.

These results underscore the therapeutic promise of peptide-based

TNFR2 agonists as either standalone agents or complementary
alternatives to existing antibody-based strategies.

The role of TNFR2 signaling in modulating immune responses

is complex and context-dependent, particularly in the settings of
autoimmune diseases and cancer. Mechanistically, TNFR2
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engagement may influence a diverse range of immune cell

subsets, including regulatory T cells (Tregs) (4, 6), myeloid-

derived suppressor cells (MDSCs) (22, 39, 40), conventional
CD4" T cells (Tcon) (41, 42), CD8" T cells (43, 44), and may also
contribute to antibody-dependent cellular cytotoxicity (ADCC)
(43). While TNFR2 signaling is essential for the stability and
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suppressive function of Tregs (16, 19, 39), its activation can also
enhance effector T cell responses, particularly in CD8" T cells (45).
Thus, the therapeutic outcome of TNFR2 modulation is likely
determined by the nature of the agonist, the disease context, and
tissue-specific immune dynamics. In this regard, peptide UMR2-
705 demonstrated selective activity toward Tregs without detectable
effects on CD4+Teffs or CD8" T cells, suggesting a more
targeted approach to immunomodulation that minimizes pro-
inflammatory risk.

This study has several limitations that also highlight valuable
directions for future investigation. A key consideration lies in its
translational relevance to human disease. While our findings in
mouse models provide a strong mechanistic foundation and proof-
of-concept for TNFR2 activation by peptide UMR2-705, further
validation using human primary immune cells or humanized mouse
models will be necessary to establish direct applicability to human
physiology. In addition, the pharmacokinetic characteristics of peptide
UMR2-705 in vivo remain to be fully elucidated. To address this
critical aspect, future work will focus on characterizing the peptide’s
metabolic stability and clearance in vivo. If its stability proves
insufficient for therapeutic use, established peptide optimization
strategies—such as D-amino acid substitution or site-specific
glycosylation—will be applied to enhance metabolic resistance and
improve pharmacokinetic performance.

Therapeutic targeting of TNFR2, which is selectively expressed on
Tregs and certain immune subsets, represents a compelling strategy
owing to its restricted expression profile. This selectivity underpins the
considerable promise of TNFR2 agonism in treating autoimmune
diseases by specifically expanding and activating immunosuppressive
Tregs to restore immune homeostasis. Indeed, preclinical studies have
demonstrated the potential efficacy of TNFR2 agonists in multiple
autoimmune models (19, 20). A legitimate concern, however, is that
excessive Treg expansion could, in theory, result in unintended
immunosuppression, thereby compromising antitumor immunity or
antiviral defense. It is therefore critical to emphasize that the disease
context (e.g., autoimmunity versus cancer) and the dynamics of
receptor activation (transient versus sustained) will be key
determinants of safety. Future studies will aim to delineate these
parameters to ensure an optimal balance between therapeutic efficacy
and immune regulation for this promising strategy.

Future studies should focus on elucidating the detailed
structural basis of peptide UMR2-705-TNFR2 interaction,
evaluating its pharmacokinetic and pharmacodynamic properties,
and assessing its efficacy in models of chronic inflammation and
autoimmune pathology. Ultimately, the development of peptide
UMR2-705 could open a new paradigm in targeted
immunotherapy with improved specificity and tolerability.

Materials and methods
Mice and reagents

Female wild-type BALB/c and C57BL/6 mice (6-8 weeks old)
were obtained from the Animal Facility of the University of Macau.
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All animal procedures were approved by and conducted in
accordance with the guidelines of the Animal Research Ethics
Committee of the University of Macau. Recombinant mouse
interleukin-2 (IL-2), tumor necrosis factor (TNF), and anti-mouse
monoclonal antibodies (CD45, TCR-, CD4, Foxp3, CD8a, and
TNFR2), as well as anti-human CD4 and Foxp3 antibodies, were
purchased from BD Biosciences. Cytometric Bead Array (CBA)
Mouse Inflammation Kits were also obtained from BD Biosciences.
Lipopolysaccharide (LPS) was purchased from Sigma-Aldrich.
LIVE/DEAD ™ Fixable Near-IR Dead Cell Stain Kit, Foxp3/
Transcription Factor Staining Buffer Set, FOXP3 antibodies,
RPMI 1640 medium, penicillin-streptomycin solution, and fetal
bovine serum (FBS) were acquired from Thermo Fisher Scientific.
CD4 (L3T4) MicroBeads and LS Columns for magnetic cell sorting
were obtained from Miltenyi Biotec.

CD4+T cell purification and in vitro culture

CD4" T cells were isolated from the spleen and lymph nodes of
mice using CD4 (L3T4) MicroBeads (Miltenyi Biotec) according to
the manufacturer’s protocol. Purified cells were seeded in U-bottom
96-well plates and cultured in RPMI 1640 medium supplemented
with 10% fetal bovine serum (FBS), 2 mM L-glutamine, 10 mM
HEPES, 0.1 mM non-essential amino acids, 1 mM sodium pyruvate,
1% penicillin (100 U/mL)/streptomycin (100 ug/mL), and 50 uM 2-
mercaptoethanol. Cultures were maintained at 37°C in a humidified
incubator with 5% CO,. To support CD4" T cell viability,
recombinant mouse IL-2 (10 ng/mL; BD Pharmingen) was added
to the culture medium. For the induction of regulatory T cell (Treg)
expansion and proliferation, recombinant mouse TNF (20 ng/mL;
BD Pharmingen) was included.

Isolation of human peripheral blood
mononuclear cells

Peripheral blood was obtained from healthy donors through the
Macao Blood Transfusion Center under an approved human
subjects protocol. Whole blood was processed by density gradient
centrifugation using Ficoll-Paque (Sigma) to isolate PBMCs. Cells
collected at the interface were washed with phosphate-buffered
saline (PBS).

Generation, peptide treatment of BMDCs,
and co-culture with T Cells

Bone marrow-derived dendritic cells (BMDCs) were generated
from C57BL/6 mice. In brief, bone marrow cells were flushed from
femurs and tibias. The cells were then cultured in RPMI-1640
medium supplemented with 10% FBS, 20 ng/mL recombinant
murine GM-CSF (BD Pharmingen), and 10 ng/mL recombinant
murine IL-4 (BD Pharmingen) for 7 days. Fresh medium containing
cytokines was replenished on days 3 and 5. On day 7, immature
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BMDCs were harvested and in the presence or absence of peptide
UMR2-705 for 24 hours.

The MACS-purified CD4™ T cells were then co-cultured with
peptide UMR2-705-treated or control BMDCs at a ratio of 3:1 (T
cells:BMDCs) in 96-well U-bottom plates for 72 hours. All cultures
were maintained at 37°C in a 5% CO, humidified incubator.

After co-culture, cells were harvested and analyzed by flow
cytometry to determine the percentage of CD4 "Foxp3™ regulatory T
cells (Tregs). Intracellular staining for Foxp3 was performed using a
Foxp3/Transcription Factor Staining Buffer Set according to
standard protocols.

RNA sequencing

Purified CD4" T cells were cultured in RPMI 1640 complete
medium supplemented with 10 ng/mL IL-2 and 20 ng/mL TNF,
followed by treatment with either PBS or peptide UMR2-705. After
72 hours, total RNA was extracted from the cells. Library
preparation and sequencing were performed by Shanghai Applied
Protein Technology Co., Ltd. RNA sequencing libraries were
constructed for Illumina according to the manufacturer’s
protocol. Sequencing was conducted on an Illumina NovaSeq
platform. Gene expression levels were quantified as fragments per
kilobase of transcript per million mapped reads (FPKM).

Inflammatory cytokine assay

Mouse serum levels of IL-6, TNF, and IL-17A were measured using
the BD Cytometric Bead Array (CBA) Mouse Inflammation Kit,
following the manufacturer’s instructions. Briefly, serum samples
were incubated with capture bead sets, PE detection reagent, and
PBS. The mixtures were incubated in the dark at room temperature for
2 hours. Serial dilutions of mouse inflammation standards were
prepared to establish a standard curve. Following incubation,
samples were analyzed by flow cytometry, and cytokine
concentrations were determined by comparison to the standard curve.

Synthesis and sequence of peptide

The peptide UMR2-705, with the amino acid sequence
DLLISIY, was supplied by Nanjing TGpeptide Biotechnology Co.,
Ltd. It was synthesized employing standard solid-phase Fmoc (9-
fluorenylmethoxycarbonyl) chemistry. Following synthesis, the
crude peptide was purified to >95% purity by preparative reverse-
phase high-performance liquid chromatography (RP-HPLC). The
molecular weight and identity of the peptide were confirmed by
mass spectrometry (MALDI-TOF or ESI-MS). The purified peptide
was provided as a lyophilized powder and stored at -20°C until use.
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Flow cytometry

After blocking the Fc receptors, the cells were incubated with
appropriately diluted antibodies. The cells were then suspended in
FACS buffer for flow cytometry analysis. Data acquisition was
performed via BD Fortessa and Celesta flow cytometers. Data analysis
was conducted via Flow]Jo software (Tree Star Inc., Ashland, OR, USA).

Molecular docking of peptide UMR2-705
to TNFR2

The three-dimensional structure of the extracellular domain of
human TNFR2 (UniProt ID: P20333) was obtained from the RCSB
Protein Data Bank (PDB ID: 3ALQ). The structure of peptide
UMR2-705 was constructed and its geometry was optimized using
energy minimization with the MMFF94 force field in Chem3D.

Molecular docking simulations were performed using
AutoDock Vina 1.1.2 (46). The TNFR2 receptor structure was
prepared by removing water molecules and adding polar
hydrogen atoms and Kollman united atom charges. A grid box of
sufficient size (e.g., 60 A x 60 A x 60 A) was centered on the known
TNEF-binding site to encompass the entire receptor binding
interface. The exhaustiveness parameter was set to 20 to ensure
comprehensive sampling of conformational space.

The docking pose with the most favorable (lowest) binding
energy (calculated to be -5.3 kcal/mol) was selected for further
analysis. The protein-ligand interactions, including hydrogen bonds
and hydrophobic contacts, were visualized and analyzed using
Biovia Discovery Studio Visualizer or PyMOL (47).

Statistical analysis

Data were analyzed using GraphPad Prism software (version
10). Comparisons among multiple groups were performed using
one-way analysis of variance (ANOVA) followed by appropriate
post hoc tests. Results are expressed as mean + SEM from multiple
independent experiments.
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