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Roles of cytokine storm in sepsis
progression: biomarkers, and
emerging therapeutic strategies
Weibin You*

Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
Sepsis is a life-threatening syndrome marked by uncontrolled systemic

inflammation, cytokine storm, and organ dysfunction. Central to its

pathogenesis is innate immune hyperactivation, which triggers excessive

cytokine release and inflammatory cell death, ultimately driving multiorgan

failure. Despite advancements in intensive care, immune dysregulation remains

a major therapeutic hurdle. Moreover, recent discoveries of emerging

biomarkers, such as serum amyloid A (SAA), high-density lipoprotein (HDL),

monocyte distribution width (MDW), neutrophil-to-lymphocyte ratio (NLR), and

RDW-to-albumin ratio (RAR), highlight their potential diagnostic and prognostic

value. This review systematically summarizes the cellular and molecular

mechanisms underlying cytokine storm, emphasizing the roles of TNF-a, IL-1b,
IL-6, and inflammasome activation. Furthermore, we outline current and

emerging therapeutic strategies targeting both immune overactivation and

late-stage immunosuppression, including cytokine antagonists, immune

checkpoint inhibitors, and nanomedicine-based approaches, providing a

comprehensive framework to guide precis ion immunotherapy in

sepsis management.
KEYWORDS

cytokine, sepsis, biomarker, immune response, therapy, inflammatory cell death
1 Introduction

Sepsis is a life-threatening clinical syndrome stemming from a dysregulated immune

response to infection, marked by systemic inflammation and organ dysfunction (1). Its

pathogenesis involves the recognition of pathogen-associated molecular patterns (PAMPs)

and damage-associated molecular patterns (DAMPs) via pattern recognition receptors

(PRRs), initiating innate immune activation and excessive cytokine production (2).

Although antimicrobial therapy and organ support are essential, they have shown

limited efficacy in reducing mortality, underscoring the need to target immune

dysregulation. Central to this process is the cytokine storm, driven by uncontrolled

release of TNF-a, IL-1b, and IL-6, which exacerbates systemic inflammatory response

syndrome (SIRS) and tissue injury (3).
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Amplification of inflammation is further fueled by pyroptosis

and necroptosis, releasing intracellular DAMPs that perpetuate the

immune cascade and lead to multiple organ dysfunction syndrome

(MODS) (4). Septic shock, the most severe form, carries a mortality

rate of up to 70% (5), necessitating early and precise intervention.

Hence, identifying biomarkers for early diagnosis, risk stratification,

and prognostic assessment is crucial (6). This review delineates the

mechanistic basis of cytokine storm-driven injury in sepsis, explores

evolving immunomodulatory therapies, and evaluates emerging

diagnostic tools to inform clinical decision-making.
2 Mechanisms underlying the cytokine
storm in sepsis

2.1 Cytokine-driven hyperinflammation in
sepsis

Sepsis results from a profoundly dysregulated host immune

response to infection, in which homeostatic immune control is lost.

Unlike localized infections, sepsis manifests as an unrestrained

systemic inflammatory cascade, dominated by the overproduction

of pro-inflammatory cytokines. Central mediators of this cascade

include tumor necrosis factor-a (TNF-a), interleukins (IL-1, IL-6,
IL-12), interferons (IFN-a , IFN-b , IFN-g) , monocyte

chemoattractant protein-1 (MCP-1), and IL-8, each contributing

to the propagation of inflammation and the onset of a cytokine

storm—characterized by immune hyperactivation, extensive tissue

injury, and multi-organ dysfunction (7). This hyperinflammatory

state is driven primarily by two converging mechanisms:

hypersensitivity of innate immune sensors and the induction of

inflammatory cell death pathways. Pattern recognition receptors

(PRRs) detect pathogen-associated molecular patterns (PAMPs)

and damage-associated molecular patterns (DAMPs), triggering

downstream signaling cascades such as NF-kB and AP-1, which

upregulate pro-inflammatory gene programs (8). Central to this

process are inflammasomes—multiprotein complexes that sense

intracellular stress and activate caspase-1, which in turn cleaves

pro-IL-1b and pro-IL-18 into their active forms. Although acute

cytokine responses can support pathogen clearance and tissue

repair, their dysregulation results in sustained hypercytokinemia,

which disrupts immune equilibrium, induces host tissue toxicity,

and initiates a self-amplifying cycle of inflammation and

immunopathology (9).
2.2 Inflammatory cell death

Inflammatory forms of programmed cell death (PCD) are

central to the pathophysiology of cytokine storm in sepsis.

Among the PCD pathways, pyroptosis and necroptosis—unlike

the immunologically silent apoptosis—are inherently pro-

inflammatory and thus critically implicated in disease
Frontiers in Immunology 02
progression. Pyroptosis is executed through gasdermin family

pore formation, while necroptosis is driven by RIPK3-mediated

oligomerization of MLKL, resulting in membrane rupture and

subsequent DAMP release (10). Although these modalities were

once viewed as discrete, mounting evidence reveals substantial

crosstalk, particularly under sustained inflammatory stress. This

interplay culminates in panoptosis, a unified death pathway

integrating molecular components of pyroptosis, apoptosis, and

necroptosis (11). Notably, innate immune responses to pathogens

such as SARS-CoV-2 elicit high levels of TNF-a and IFN-g, which
act synergistically to amplify panoptosis. Murine models provide

compelling evidence of its pathogenic role, as pharmacologic

inhibition of panoptosis significantly lowers mortality in

cytokine-driven sepsis, establishing a mechanistic link between

excessive cytokine production and inflammatory cell death.

Moreover, PAMPs, DAMPs, and pro-inflammatory cytokines

form a self-amplifying circuit, whereby inflammation promotes

further immune cell death, and the products of dying cells

exacerbate cytokine release, sustaining a vicious cycle of immune

dysfunction (12).
2.3 Evolution of cytokine storm in
advanced sepsis

Although advances in intensive care have improved early

survival in CS and septic shock, persistent immune and tissue

dysfunction remain barriers to recovery. While acute-phase sepsis

has received significant focus, long-term outcomes are often

dictated by sustained immunological imbalance. In late-stage

sepsis, CS disrupts Th1/Th2 balance, impairing antimicrobial

defense and promoting autoimmune tissue damage (13).

Concurrently, excessive reactive oxygen species (ROS) and

circulating cell-free DNA (cfDNA) amplify inflammation via

PRRs, especially Toll-like receptors (TLRs), perpetuating disease

progression (14). Early lymphocyte depletion, a hallmark of sepsis,

correlates with increased mortality (15). Sepsis also skews

hematopoiesis toward monocyte and neutrophil expansion,

promoting immature myeloid-derived suppressor cell (MDSC)

accumulation and anti-inflammatory cytokine secretion.

Simultaneously, reduced expression of HLA-DR on antigen-

presenting cells impairs pathogen recognition and Th1/Th2

signaling, worsening immune dysfunction (16). A subset of

p a t i e n t s p r o g r e s s e s t o p e r s i s t e n t i nfl amma t i o n –

immunosuppression–catabolism syndrome (PICS), marked by

chronic inflammation, immune suppression, hematopoietic

dysregulation, muscle wasting, and poor functional recovery,

often requiring prolonged ICU care (17). Clinically, PICS

manifests as ventilator dependence, secondary infections, ICU-

acquired weakness, and rehospitalization (18). Many fail to regain

baseline function, requiring long-term care. The chronic immune

dysfunction in PICS complicates therapy, limiting the efficacy of

standard antimicrobials or immunosuppressants. Importantly, early
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identification using markers such as lymphopenia, low HLA-DR,

and elevated IL-6, coupled with immunostimulatory therapy,

nutrition, and rehabilitation, is vital for improving outcomes (19).
3 Biomarkers in sepsis

3.1 Serum amyloid A

Serum amyloid A (SAA) is a prototypical acute-phase reactant

predominantly synthesized by hepatocytes in response to systemic

inflammatory stimuli. Circulating in complex with high-density

lipoproteins (HDL), SAA modulates innate immunity via

engagement with toll-like receptors (TLRs) and formyl peptide

receptor-like molecules, thereby initiating proinflammatory cascades.

Notably, SAA functions as a potent chemoattractant, directing

neutrophils and monocytes to sites of inflammation, and serves as a

sentinel biomarker across infectious and autoimmune disorders. In

sepsis, elevated plasma SAA concentrations reflect the intensity of

systemic inflammation and are markedly amplified during septic

shock, correlating with disease severity and aiding prognostication

(20, 21). Baseline serum levels range from 1–5& mg/mL

under physiological conditions (22), but levels can surge up to a

thousand-fold within hours of microbial insult, before declining

upon pathogen clearance. This rapid kinetic profile underscores its

sensitivity to inflammatory stress; however, its limited specificity

diminishes its utility as a stand-alone diagnostic tool (23).

Nonetheless, SAA remains clinically valuable, particularly in

ruling out bacterial infection and guiding antimicrobial therapy.

When combined with other acute-phase markers such as C-reactive

protein (CRP), diagnostic accuracy improves for distinguishing

bacterial etiologies (24). In a multicenter cohort, Li et al. (25)

demonstrated that SAA, CRP, and procalcitonin (PCT)

independently predicted sepsis risk, and that their integration into

composite diagnostic panels significantly enhanced precision in

critically ill populations.
3.2 High-density lipoprotein

High-density lipoprotein (HDL), composed of cholesterol,

phospholipids, and apolipoproteins, orchestrates reverse

cholesterol transport by shuttling peripheral cholesterol to the

liver for excretion& (26). During sepsis, this homeostatic

mechanism is severely compromised. Inflammatory insults

precipitate both quantitative reductions in HDL levels and

qualitative structural alterations, including particle enlargement

and functional derangement& & (27). These modifications

impair HDL ’s vasoprotective roles, including its anti-

inflammatory, antioxidant, and anticoagulant properties.

Moreover, key HDL-associated enzymes—phospholipid transfer

protein (PLTP) and cholesteryl ester transfer protein (CETP)—

undergo dysregulation under septic conditions, further

compromising lipid transport and immune modulation& (28).

Therapeutic interventions aiming to enhance apolipoprotein A-I
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expression or inhibit PLTP/CETP activity have shown potential in

restoring HDL functionality. Notably, oxidative modification of

HDL disrupts its ability to regulate coagulation, correlates with

heightened mortality risk, and demonstrates superior prognostic

accuracy over conventional scoring systems such as APACHE II

and SOFA in septic shock& & (29).
3.3 Monocyte distribution width

Monocyte Distribution Width (MDW) has emerged as a

promising and cost-efficient biomarker for the early detection of

sepsis, reflecting monocyte size heterogeneity through

measurements of cell volume, conductivity, and light scatter

properties. In early septic states, pathogen-associated molecular

patterns (PAMPs) drive monocyte functional reprogramming,

increasing morphological and phenotypic diversity within the

circulating pool (30). Multiple studies have demonstrated that

MDW possesses favorable diagnostic sensitivity and specificity

(31), showing performance on par with conventional biomarkers

in acute care settings (32). Agnello et al. (33) reported robust

discriminatory power of MDW in emergency departments, where

elevated values were consistently associated with microbiologically

confirmed sepsis. A diagnostic threshold of 23.5 was identified as

optimal, balancing sensitivity and specificity. However, the clinical

adoption of fixed cutoffs such as MDW& >& 23.5 is hindered by

variability introduced by patient demographics, comorbidities, and

differences in instrumentation across healthcare systems, thereby

complicating universal standardization. Despite these limitations,

MDW has demonstrated superior diagnostic performance

compared to procalcitonin (PCT) in some studies, suggesting its

potential utility as a frontline screening tool for sepsis in high-

throughput clinical environments (34, 35). Meta-analyses further

corroborate its diagnostic value, indicating metrics comparable to

CRP and PCT. When incorporated into multi-marker panels,

MDW may significantly enhance diagnostic accuracy and risk

stratification in sepsis (36).
3.4 Neutrophil-to-lymphocyte ratio

In sepsis, immune dysregulation triggered by microbial

invasion can escalate into a cytokine storm, underscoring the

need for reliable immunological markers to guide individualized

interventions (37). Among peripheral indicators, the neutrophil-to-

lymphocyte ratio (NLR) has emerged as a clinically accessible and

dynamic metric, capturing the balance between innate immune

activation and adaptive suppression (38). Its prognostic relevance in

sepsis is increasingly recognized (39), with suggested thresholds

ranging from 3 to 5 (40). Specifically, in elderly diabetic patients

with sepsis, an NLR ≥3.482 was associated with adverse outcomes

(41). Biologically, neutrophilia in sepsis reflects IL-6–driven

emergency granulopoiesis, mobilizing neutrophils that enhance

microbial clearance but concurrently exacerbate systemic

inflammation via degranulation and ROS production (42, 43).
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Conversely, lymphopenia results from T cell apoptosis and

exhaustion, facilitated by persistent cytokine exposure (TNF-a,
IL-10) and upregulation of immune checkpoints such as PD-1

and CTLA-4, impairing adaptive responses (44–46). Compared to

conventional markers including procalcitonin (PCT), ALT/AST

ratio, and platelet-to-lymphocyte ratio (PLR), NLR may offer

superior prognostic performance in specific clinical contexts (47).

For instance, Zhong et al. (48) demonstrated that baseline NLR

predicted disease progression in pediatric sepsis, and its

combination with PCT improved early diagnostic sensitivity. Li

et al. (49) identified both NLR and the monocyte-to-HDL ratio

(MHR) as independent predictors of 28-day mortality. Similarly,

Wei et al. (50) associated elevated NLR with increased mortality

in septic patients complicated by acute myocardial infarction.

While NLR offers operational simplicity, its prognostic utility

improves when integrated with other biomarkers and monitored

dynamically—an approach that aligns with the complex and

evolving nature of sepsis pathobiology.
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3.5 Prognostic utility of the red cell
distribution width-to-albumin ratio in
sepsis

Red cell distribution width (RDW), an indicator of anisocytosis,

reflects variability in erythrocyte size and is elevated across a range

of pathological states. In sepsis, increased RDW has been robustly

associated with adverse outcomes, and proposed cutoff values

facilitate early risk stratification. When combined with serum

lactate, RDW achieves diagnostic performance comparable to

SOFA and APACHE II scores (51). Although RDW lacks high

specificity, Moisa et al. (52) demonstrated its relevance in bacterial

sepsis, where elevations reflect inflammation-induced disruption of

erythropoiesis and red blood cell turnover. Albumin (ALB), a

negative acute-phase reactant synthesized in the liver, maintains

oncotic pressure and exerts antioxidant and anti-apoptotic effects at

the endothelial interface. During sepsis, albumin’s detoxification

and toxin-binding functions are markedly impaired (53).
FIGURE 1

Roles of cytokine storm in sepsis progression.
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Alterations in baseline ALB, its dynamic fluctuations, and minimal

values independently correlate with mortality risk (54, 55). When

combined with CRP and pre-existing functional status, ALB reliably

predicts 28-day mortality in elderly septic patients, with accuracy

comparable to SOFA scores (56). Recently, the RDW-to-albumin

ratio (RAR) has emerged as a composite biomarker with prognostic

value across inflammatory disorders, including pneumonia, hepatic

cirrhosis, and heart failure. In sepsis, Xu et al. (57) demonstrated

that RDW and ALB reflect distinct pathophysiological axes—

hematopoietic disruption and systemic inflammation, respectively.

By integrating these divergent processes, RAR provides improved

predictive power for short-term morbidity and mortality,

underscoring its potential clinical utility (Figure 1).
4 Therapeutic approaches for
controlling systemic inflammation in
sepsis

4.1 Pharmacologic regulation of
inflammatory dysregulation

In the early stages of sepsis, a systemic cytokine storm (CS)

driven by excessive proinflammatory mediator release represents a

key therapeutic target. Pharmacological strategies thus focus on

attenuating this initial hyperinflammatory cascade to limit tissue

injury and organ failure. In preclinical models, blockade of major

cytokines such as TNF-a and IFN-g significantly improves survival

outcomes (58). However, clinical trials targeting TNF-a, IL-1b, and
other mediators have yielded limited success—largely due to

immune heterogeneity among patients, suboptimal timing of

intervention, and the pleiotropic roles of these cytokines in host

defense. Tocilizumab, an IL-6R monoclonal antibody, has

demonstrated efficacy in modulating cytokine dysregulation

during COVID-19–related sepsis, highlighting its broader

potential in inflammatory syndromes (58). Upstream inhibition

using Janus kinase (JAK) inhibitors, such as baricitinib, offers more

comprehensive suppression by concurrently modulating IL-6, IL-

1b, and TNF-a signaling and reducing compensatory pathway

activation (59). Targeting pathogen recognition pathways,

particularly Toll-like receptor 4 (TLR4), has also emerged as a

viable approach. TLR4 mediates lipopolysaccharide (LPS)-induced

inflammatory signaling; its inhibition reduces cytokine production

and mitigates tissue damage in sepsis models (60). The small-

molecule inhibitor Resatorvid (TAK-242) attenuates organ

dysfunction and improves survival in animal studies (61), though

its lack of antimicrobial activity underscores the need for

combinatory or sequential approaches. Caspases, particularly

caspase-1, regulate both inflammasome activation and pyroptosis.

Inhibition of caspase-1 suppresses NLRP1 inflammasome signaling,

gasdermin D (GSDMD) cleavage, and the maturation of IL-1b and

IL-18, thereby ameliorating sepsis-induced acute kidney injury (62).

While no caspase inhibitor has gained clinical approval,

nitrosonisoldipine—a photolytic metabolite of nisoldipine—
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selectively inhibits caspases-1, -4, and -11. It effectively blocks

pyroptosis and dampens IL-1b release, improving survival in

murine models. These findings support further development of

caspase inhibitors as therapeutic candidates in sepsis.
4.2 Pharmacological modulation of
immunosuppression

4.2.1 Cytokine-based immunostimulatory
therapies

Although advances in understanding sepsis pathophysiology and

critical care have reduced early multiple organ dysfunction, late-stage

mortality remains predominantly driven by profound immune

suppression. This has shifted therapeutic strategies toward preventing

immune cell apoptosis and reversing immunosuppression. Interleukin-

7 (IL-7), noted for its robust anti-apoptotic activity, promotes T cell

survival and proliferation, thereby restoring adaptive immunity. Both

preclinical and clinical studies support the use of recombinant IL-7 in

septic patients, demonstrating recovery of lymphocyte counts and

improved immune competence without triggering systemic

hyperinflammation or organ toxicity (63). Moreover, granulocyte

colony-stimulating factor (G-CSF) and granulocyte-macrophage

colony-stimulating factor (GM-CSF) have exhibited the capacity to

counteract sepsis-induced immune paralysis. In particular, GM-CSF

has been shown to enhance human leukocyte antigen-DR (HLA-DR)

expression on circulating monocytes, thereby augmenting microbial

clearance efficiency (19). In parallel, targeting Toll-like receptors such

as TLR2 and TLR4 to modulate the secretion of pro-inflammatory

cytokines presents another viable approach to facilitate immune

restoration (64).
4.2.2 Therapeutic blockade of immune
checkpoint molecules

Immune checkpoint regulators serve as key negative modulators

of T lymphocyte activation and cytokine secretion during the

adaptive immune phase& (65). Among them, the PD-1/PD-L1

axis plays a pivotal role in modulating the magnitude and duration

of immune responses. Pharmacological blockade of PD-1 or PD-L1

has been shown to reinvigorate exhausted T cells and restore

antimicrobial immunity in preclinical and clinical sepsis models,

with evidence of enhanced T cell functionality and improved survival

(66). However, the use of immune checkpoint inhibitors (ICIs) in

sepsis necessitates caution, given their potential to trigger immune-

related adverse events. Thus, patient stratification based on

immunological status is paramount. Low HLA-DR expression on

monocytes—indicative of immunoparalysis and associated with

adverse prognosis—may help identify candidates likely to benefit

from ICI therapy (67). Likewise, elevated PD-1 levels on CD4+ and

CD8+ T cells suggest functional exhaustion and can inform

therapeutic eligibility (45). Recent advancements in immune

profiling, including multiparameter flow cytometry and

transcriptomic platforms, enable dynamic assessment of immune

competence. These tools provide actionable insights for balancing
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efficacy with safety during ICI administration (68). Overall, these

findings underscore the promise of immune checkpoint inhibition as

a targeted strategy to reverse sepsis-induced immunosuppression and

improve clinical outcomes.

4.2.3 Therapeutic applications of nanotechnology
Emerging nanotechnological platforms have shown

considerable promise in counteracting the immunopathology of

sepsis, particularly in attenuating cytokine storm–associated

inflammation (69). One notable innovation is the development of

tannic acid–Mn²+–polymyxin B–PVP nanoparticles (TMPPs),

which integrate antimicrobial and anti- inflammatory

functionalities. Polymyxin B (PMB) enhances bactericidal activity

while neutralizing lipopolysaccharide (LPS), thereby disrupting

TLR4-mediated signaling and suppressing pro-inflammatory

cytokine production. Concurrently, tannic acid (TA) scavenges

reactive oxygen species (ROS) and neutralizes cell-free DNA

(cfDNA), both key drivers of CS-induced tissue injury (70). This

multifunctional design addresses the shortcomings of single-target

agents like TAK-242, which lack intrinsic antimicrobial effects.

TMPPs exhibit superior efficacy in mitigating pulmonary and

systemic inflammation in septic models, underscoring the

therapeut ic potent ia l o f nanomedic ine to modula te

hyperinflammatory states and restore immune balance.
5 Conclusion

Sepsis represents a paradigm of immune dysregulation, where

hyper inflammatory responses evo lve in to pro found

immunosuppression, driven in part by sustained CS and

inflammatory cell death. Unchecked cytokine release not only

promotes multiorgan failure but also reshapes the immune

landscape through pyroptosis, necroptosis, and PANoptosis,

perpetuating a vicious cycle of damage. Understanding these

intertwined mechanisms has revealed critical molecular targets,

offering new therapeutic avenues that may disrupt this

pathological feedback loop. In parallel, the identification of

reliable biomarkers such as SAA, HDL, MDW, NLR, and RAR

enhances early diagnosis, risk stratification, and therapeutic

monitoring. Additionally, emerging interventions—including

cytokine blockade, immune checkpoint modulation, and

nanotechnology-driven delivery systems—highlight the promise

of precision immunomodulation in sepsis care. Future strategies
Frontiers in Immunology 06
should aim to integrate multi-biomarker panels with individualized

therapies to balance inflammation and immune competence.

Collectively, translating these mechanistic insights into clinical

practice may transform the current sepsis paradigm, shifting from

reactive care to targeted immunological control.
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