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Background: Cholesterol metabolism has been shown to affect the tumor
microenvironment in various cancers, but its immunological role in lung
adenocarcinoma (LUAD) remains unclear.

Methods: We integrated 1,682 LUAD samples (including 7 treatment-naive bulk
cohorts and 3 immunotherapy bulk cohorts) to develop a Cholesterol
Metabolism Signature (CMS) based on cholesterol metabolism-associated
genes. Survival analysis, ROC curves, and PCA were used to evaluate the ability
of CMS to predict prognosis and immunotherapy efficacy. Immune infiltration
analysis, single-cell transcriptomics, as well as in vitro and in vivo experiments
were further performed to investigate the function and mechanism of the key
CMS gene, DHCRY.

Results: CMS effectively predicted the survival outcomes and immunotherapy
benefits of LUAD patients, which was consistently validated in all independent
cohorts. Patients with high CMS had worse prognosis. Compared with 51
previously published LUAD signatures, CMS showed higher predictive accuracy
and stratification ability. Immune-related analyses showed that the high CMS
group had reduced immune cell infiltration and suppressed immune function,
which was further supported by single-cell analysis revealing enhanced
immunosuppressive pathways. Expression of the key gene DHCR7 was highly
correlated with CMS score (R = 0.42, P<0.05), negatively associated with many
immune-related genes and immune cycles, and promoted poor prognosis and
cancer pathways. Multiplex immunohistochemistry confirmed that regions with high
DHCRY expression had fewer infiltrating CD8T and CD208B cells. /n vitro experiments
demonstrated that silencing DHCR7 inhibited the proliferation, invasion, and
migration of LUAD cells; mouse models confirmed that suppressing DHCR7
enhanced the efficacy of PD-1 inhibitors. Flow cytometry showed that DHCR7
knockdown significantly increased IFN-y+CD8T and GZMB+CD8T cell infiltration.

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2025.1696360/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1696360/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1696360/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1696360/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1696360/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1696360/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1696360/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1696360&domain=pdf&date_stamp=2025-10-30
mailto:drzhuang2017@163.com
mailto:huangchenjun@jsph.org.cn
mailto:yewei10380@jsph.org.cn
https://doi.org/10.3389/fimmu.2025.1696360
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1696360
https://www.frontiersin.org/journals/immunology

Du et al.

10.3389/fimmu.2025.1696360

Conclusion: Our study demonstrates that the CMS can effectively predict
prognosis and immunotherapy response in LUAD. DHCR7, as a key gene in
CMS, is closely related to immune suppression and poor prognosis. Inhibition of
DHCR7 can improve the tumor immune microenvironment and enhance the
efficacy of immunotherapy, suggesting that DHCR7 is a potential new target for
LUAD immunotherapy.

lung adenocarcinoma, cholesterol metabolism, DHCR7, immune microenvironment,

immunotherapy

Introduction

Lung cancer remains the leading cause of cancer incidence and
mortality worldwide, posing a serious threat to human health (1).
Lung adenocarcinoma (LUAD) is the most common histological
subtype of lung cancer, and its incidence continues to rise (2, 3).
Although traditional treatments such as surgery, chemotherapy, and
radiotherapy have progressed in recent years, the overall prognosis for
advanced LUAD remains unsatisfactory. Immunotherapy, particularly
immune checkpoint inhibitors (ICIs) targeting programmed cell death
protein 1 (PD-1) or its ligand PD-LI, has revolutionized the treatment
of non-small cell lung cancer (NSCLC), especially LUAD, significantly
prolonging survival in a subset of patients (4-6). As immunotherapy
becomes a standard treatment option, the therapeutic paradigm for
patients with LUAD is undergoing profound change. However, the
clinical benefit of ICIs still varies greatly among individuals; some
patients exhibit limited or no response to immunotherapy, and
adverse events remain a concern (7). Numerous studies have shown
that immunosuppression, impaired immune cell infiltration, and
immune tolerance within the tumor microenvironment are key
factors affecting immunotherapy efficacy (8, 9). Therefore, exploring
the molecular mechanisms regulating the tumor immune
microenvironment and identifying biomarkers that can accurately
predict immunotherapy outcomes and guide patient stratification are
important focal points in both clinical and basic LUAD research.

In recent years, cancer cell metabolic reprogramming has been
recognized as a crucial mechanism regulating the tumor immune
microenvironment, with different metabolic pathways exerting
profound effects on immune responses (10, 11). In particular,
aberrant cholesterol metabolism not only provides the substrate
for membrane synthesis and key signaling molecules in tumor cells
but also shapes an immunosuppressive microenvironment by
modulating the metabolism and function of immune cells such as
T cells, B cells, and macrophages, thereby influencing
immunotherapy efficacy (12-14). Recent studies have also found
that the UPR key factor XBP1 in cancer cells can promote
cholesterol synthesis and package it into small extracellular
vesicles, which are taken up by MDSCs via macropinocytosis,
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thereby shaping an immunosuppressive microenvironment and
weakening the efficacy of immunotherapy (15). Although some
scholars have investigated the role of cholesterol metabolism in
tumorigenesis and progression (16, 17), systematic studies on its
function in the immune microenvironment and immunotherapy of
LUAD—as well as molecular markers and key regulatory genes
involved-remain limited.

With the advancement of high-throughput sequencing and
bioinformatics analysis, constructing molecular scoring systems
based on specific biological pathways, combined with clinical data
and multi-omics analysis, not only improves the accuracy of patient
prognosis prediction but also provides new strategies for optimizing
immunotherapy screening and stratification (18-21). Studies have
indicated that DHCR?7, a critical gene in cholesterol biosynthesis, is
closely related to immune regulation in certain malignancies (22,
23), but its specific role and regulatory mechanisms in LUAD
remain to be elucidated.

In this study, we focused on LUAD, integrating large-scale,
multicenter datasets to systematically construct and validate a
Cholesterol Metabolism Signature (CMS). We comprehensively
evaluated the value of CMS in prognosis and immunotherapy
outcome prediction, and further focused on DHCR7 to explore its
pivotal role in regulating the tumor immune microenvironment and
influencing immunotherapy response in LUAD. Our aim is to provide
a theoretical and practical basis for precise stratification management
and novel therapeutic targets in LUAD immunotherapy.

Method

Datasets and cholesterol metabolism-
related gene sets

The gene expression data, somatic single nucleotide variant
(SNV) data, and copy number variation (CNV) data used in this
study were all obtained from The Cancer Genome Atlas (TCGA)
database. Normal lung tissue expression data were obtained from
the Genotype-Tissue Expression (GTEx) database for subsequent
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differential expression analysis. In addition, we integrated six
independent LUAD cohorts from the Gene Expression Omnibus
(GEO) database, including GSE13213 (24) (n=117), GSE26939 (25)
(n=115), GSE29016 (26) (n=39), GSE30219 (27) (n=85), GSE31210
(28) (n=226), and GSE42127 (29) (n=133). Batch effects among
different cohorts were corrected using the ComBat algorithm,
followed by normalization to ensure consistency across datasets.
To evaluate the clinical utility of cholesterol metabolism-related
gene sets in immunotherapy, we further included eight NSCLC
immunotherapy cohorts: POPLAR (30) (n=59), OAK (30) (n=257),
NG (31) (n=46), GSE126044 (32) (n=16), GSE135222 (33) (n=27),
GSE166449 (34) (n=22), and GSE207422 (35) (n=24). The
cholesterol metabolism-related gene set was obtained from the
GeneCards database (https://www.genecards.org/) by searching
with the keyword “cholesterol metabolism” and selecting genes
with a Relevance Score >15. The final set of core genes related to
cholesterol metabolism was used for subsequent analyses.

Differential expression and prognostic
modeling

To examine expression differences, the limma package was
utilized to identify cholesterol metabolism-related genes with
significant dysregulation between tumor and control tissues, using
thresholds of FDR < 0.05 and |log2FC| > 1. For mutation landscape
characterization, the maftools package (36) was employed to
comprehensively visualize the distribution of mutations across
these genes, with Oncoplot used to display representative genes
harboring high mutation frequencies and to summarize dominant
mutation patterns. For prognostic biomarker development,
univariate Cox regression was first applied to highlight genes
closely correlated with survival outcomes. A range of statistical
and machine learning algorithms were then tested through ten-fold
cross-validation, including Lasso, Ridge, CoxBoost, Random
Survival Forest (RSF), Enet, GBM, stepwise Cox regression,
SuperPC, plsRcox, and survival-SVM, with performance mainly
evaluated using the concordance index (C-index). The
final prognostic signature’s predictive power was assessed via
Kaplan-Meier survival analysis, principal component analysis
(PCA), and time-dependent ROC curves, and benchmarked
against published models.

Immune microenvironment profiling

Immune phenotyping of samples was conducted using
immunophenoscore (IPS) data from The Cancer Immunome Atlas
platform (37), providing a quantitative estimate of the likelihood of
immunotherapy responsiveness. The activity of immune cells and
related pathways in the tumor microenvironment was assessed
using the ssGSEA approach. Additionally, comprehensive immune
infiltration data for TCGA samples were compiled through the
TIMER2.0 platform (38), integrating results from various
computational methods for a systematic view of the immune
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landscape. The immune-related genes are summarized from
previous literature (39).

Single-cell transcriptome analysis

Single-cell gene expression analysis was based on raw data
obtained from the Genome Sequence Archive for Human (GSA
for Human) of the China National Center for Bioinformation
(CNCB, https://ngdc.cncb.ac.cn/gsa-human/, accession number
HRA005794). Seurat was used for initial quality control and
processing (40). Inclusion required each gene to be detected in at
least 10 cells within a given cluster. Cells with fewer than 200 or
more than 5,000 detected genes, or with mitochondrial UMI
fractions exceeding 10%, were excluded. Dataset integration
across samples was accomplished with the harmony algorithm.
Subsequent analysis involved identifying highly variable genes,
conducting principal component analysis (PCA), and applying
t-SNE on the top 30 principal components for dimensionality
reduction. Marker genes for each subset were determined using
the FindAllMarkers function, and cell types were annotated based
on established lineage markers from previous literature.

Cell-cell communication network

In this study, the CellChat R package (41) was employed for an
in-depth analysis of single-cell RNA sequencing data, aiming to
elucidate the signaling networks between different cell types within
the tumor microenvironment. Quality control, normalization,
clustering, and cell type annotation were first performed on the
single-cell expression data. Subsequently, based on the built-in
ligand-receptor database in CellChat, cell-cell communication
pathways among different cell subpopulations were inferred.
Combined with the expression profiles of signature genes in each
population, major signaling sources, receptors, and corresponding
signaling axes were identified. Network visualization techniques
were used to present the communication strength, key signaling
pathways, and critical nodes between cell populations, thereby
enabling further analysis of their biological significance and roles
during tumor progression.

Sample collection

All subjects in this study were LUAD patients treated at the
Department of Pathology, Tianjin Medical University Cancer Institute
and Hospital. All samples were derived from formalin-fixed, paraffin-
embedded (FFPE) surgical specimens. None of the patients had
received radiotherapy, chemotherapy, immunotherapy, or targeted
therapy before surgery. The pathological diagnosis of each specimen
was confirmed by at least two experienced pathologists. All procedures
strictly adhered to medical ethical standards and were approved by the
Institutional Ethics Committee (Approval No.: bc2023152). Written
informed consent was obtained from all participants.
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Multiplex immunofluorescence staining
and analysis

FFPE tissue sections (approximately 4 um in thickness) were
subjected to standard clinical protocols for deparaffinization:
sequential incubation in xylene and graded ethanol solutions,
followed by rehydration in distilled water. After high-temperature
antigen retrieval with citrate buffer and cooling to room temperature,
the sections were incubated in 5% goat serum for 30 minutes at room
temperature to block nonspecific binding sites. Subsequently,
primary antibodies were applied sequentially and incubated
overnight at 4 °C in a humidified chamber: DHCR7 (ab226784,
1:500), CD4 (ab133616, 1:500), CD8 (ab217344, 1:2000), and CD20
(ab64088, 1:100), all prepared according to the respective datasheets.
After incubation, sections were rinsed multiple times in PBS buffer.
Fluorophore-conjugated secondary antibodies corresponding to each
primary antibody were then added and incubated at room
temperature for 1 hour in the dark. After further PBS washing, cell
nuclei were counterstained with DAPI at room temperature for 10
minutes, followed by a brief rinse with distilled water. Finally, slides
were air-dried and mounted with an antifade mounting medium.
Imaging was performed using a multichannel laser confocal
fluorescence microscope, with high-resolution images acquired for
each fluorophore channel. All procedures for antibody incubation,
washing, and imaging were carried out strictly in accordance with
standardized experimental protocols.

Cell culture and RNA interference

A549 and PC9 cell lines were obtained from a certified cell bank
and maintained in RPMI 1640 medium supplemented with 10% fetal
bovine serum and antibiotics at 37 °C in a humidified incubator with
5% CO,. To modulate DHCR7 gene expression, specific shRNA
sequences were delivered to target cells using a lentiviral vector
system. Following puromycin selection, quantitative real-time PCR
was performed to validate knockdown efficiency.

Cell proliferation assay

Cellular proliferation was evaluated using the CCK-8 assay. Both
cell lines were digested with trypsin, counted, and then seeded into 96-
well plates according to experimental grouping, comprising knockdown,
vector control, and blank control groups, with multiple replicates for
each. After cells adhered for 24 hours, CCK-8 solution was added at
various time points. Absorbance was measured using a microplate
reader, and proliferation curves were plotted for group comparison.

Establishment and intervention of
subcutaneous tumor model in mice

For in vivo experiments, healthy female C57BL/6 mice were
randomly assigned to groups. A total of 1x10° LLC NC or sh
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—Dhcr7-treated cells suspended in sterile PBS were injected
subcutaneously at a single site on the right dorsal flank (one site
per mouse). Tumor length and width were measured daily with
calipers to monitor growth. When any tumor reached a volume of
100 mm® (designated as day 0), mice received intraperitoneal
injections of either a PD—1 monoclonal antibody or an IgG2a
isotype control (100 g per mouse) on days 1, 4, and 7. On day
12 after the first intervention, euthanasia was performed using
cervical dislocation, carried out rapidly (approximately 1-2
seconds) by trained personnel. Death was confirmed by cessation
of respiration and heartbeat and loss of the righting reflex, after
which tumors were harvested, their volumes and weights measured,
and samples processed for immunological analyses.

Flow cytometry analysis

For flow cytometry, freshly excised tumors were minced and
digested in a solution containing collagenase IV and DNase I to
prepare single-cell suspensions. The cell suspensions were filtered to
remove debris and immune cells were enriched with density gradient
centrifugation. Sorted cells were incubated with stimulants to induce
functional molecule expression, followed by Fc receptor blocking to
minimize non-specific binding. Surface staining was performed with
fluorescence-conjugated antibodies against CD45, CD3e, and CD8o..
After fixation and permeabilization, intracellular staining was
conducted using antibodies against IFNy and GZMB. Data were
acquired using a flow cytometer, and sequential gating was used to
identify CD45" leukocytes, CD3" T cells, CD8" T cells, and to assess
the proportion of IFNy and GZMB positive cells within the CD8" T
cell population.

Statistical analysis

All data analyses were performed using R software. Comparisons
between two groups were conducted using t-tests or non-parametric
tests, and comparisons among multiple groups were conducted using
analysis of variance. Kaplan-Meier method and Log-rank test were
used for survival curve comparison. Correlation analyses were
performed using Spearman correlation coefficients. All
statistical tests were two-sided, and p < 0.05 was considered
statistically significant.

Result

Mutation characteristics and prognostic
implications of cholesterol-related genes

In recent years, the role of cholesterol metabolism in the
immune microenvironment of LUAD has attracted increasing
attention. Based on this, the present study first integrated 1,682
patient samples from 14 cohorts and selected cholesterol
metabolism-related genes to construct a CMS, which was used to
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evaluate prognosis and response to immunotherapy. Subsequently,
the CMS was analyzed across multiple cohorts and examined in
relation to immune characteristics. Further, multiplex
immunofluorescence and in vitro and in vivo experiments were
conducted to investigate the association between the key gene
DHCR7 and the immune microenvironment, revealing its
involvement in LUAD progression (Figure 1). We first explored
the mutation characteristics of cholesterol-related genes
(Figures 2A, B). Analysis revealed that the predominant mutation
types were missense mutations and nonsense mutations, with single
nucleotide polymorphisms (SNPs) being the most common.
Notably, C>A and C>T mutations exhibited higher frequencies.
The median mutation load was 3, indicating a significant

Cholesterol metabolism

signature —;ﬁ
CMS-Lung Adenocarcinoma

Cholesterol
metabolism-related
genes from GeneCards

Model Development

The workflow of CMS

1 Cohort Integration 2 Performance

) 0
T it
0 0

1,682 Samples Across 14
Independent Cohorts
Study Population: A total of 1,682
samples were analyzed from 14
independent cohorts, TCGA
(n=516), OAK (n=257), GSE31210
(n=226), GSE42127 (n=133), POPLAR
(n=59), NG (n=46), GSE126044
(n=16), GSE13213 (n=117),
GSE26939 (n=115), GSE30219
(n=85), GSE29016 (n=39),
GSE207422 (n=24), GSE166449
(n=22), GSE135222 (n=27).

immune-cold
CMS: A Lung
Adenocarcinoma Signature
The CMS-Lung Adenocarcinoma
signature surpasses existing
biomarkers in stratifying
prognosis and forecasting
immunotherapy response for
lung adenocarcinoma patients,
with higher scores indicative of
immune-cold tumor
characteristics.

Integration of 14 cohorts to construct CMS '
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accumulation of mutations in these genes during tumorigenesis.
Among the top 30 mutated genes, APOB, CPS1, and CUBN were
ranked highest, with APOB playing a key role in lipid transport,
CPS1 involved in amino acid metabolism, and CUBN participating
in the absorption and transport of nutrients. Next, we conducted
differential analysis of cholesterol-related genes using tumor
samples from TCGA and normal samples from GTEx. A COX
proportional hazards analysis was performed on seven bulk cohorts,
with batch effects removed, leading to the identification of 29
statistically significant genes across at least four datasets for
further analysis. The heatmap of differential expression analysis
(Figure 2C) clearly illustrated the expression differences of these
genes between tumor and normal samples, highlighting their

Model Evaluation

Comparison of Performance with

s  Existing Gene Signatures.

IE CMS Functions as an Indicator for
Immune Cell Presence.

Identification and Selection of Key
Genes within CMS.

]

3 Internal Cohort 4 Experimental

Multiplex DHCR?7 expression
Immunofluorescence negatively correlated with
DHCR7 and CD8A showed a multiple cytokines
significant negative In vivo and flow cytometry
correlation, and multiplex analyses

Knockdown of DHCR7 slowed
tumor growth, and flow
cytometry analysis confirmed
that reducing DHCR7 increased
the proportion of GZMB*/IFNy*
CD8 T cells.

immunofluorescence further
confirmed that regions with
high DHCR? expression had
limited CD8T/CD20B cell
infiltration.

FIGURE 1

Construction and validation process of the cholesterol metabolism signature (CMS). We integrated data from 1,682 lung adenocarcinoma samples across 14
independent cohorts to identify cholesterol metabolism-related genes and developed the CMS scoring system. In the evaluation phase, we validated the
CMS in three main areas (1): comparing its predictive ability for prognosis and immunotherapy with other gene models; (2) assessing its effectiveness as a
marker for immune cell infiltration; (3) identifying key genes. The specific steps include: (1) integrating sample data; (2) evaluating the CMS performance in
predicting prognosis and immunotherapy response; (3) experimentally verifying the relationship between DHCR7 and immune cell infiltration; (4) confirming
that knocking down DHCRY increases the infiltration of GZMB+ CD8+ T cells and enhances the effectiveness of PD-1 blockade.

Frontiers in Immunology

05

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1696360
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

10.3389/fimmu.2025.1696360

Du et al.

Variant Classification Variant Type SNV Class Variants per sample Varlant Classification Topdo genes
Missense_Mutation 6 |63 e summany APOB N 2%
Nonsense_Mutation [l SNP. a W20z 8 cusN Bl

Frame_shif_Del | CPs1 s
e 1o " e B s il
Fl;mi 7::::_ ;’:/ | = EJ ABCB11 (7%
Nonsop. Waion co Wz 2 oviire:
Translation_Start_Site e [ o2 PPARGC1A lls%
—— —r—— —r T 0 e e cvpiiet Fsn
© 8 &8 8 "8 EEE FTrEgct I,
—_— == = = = = = = = = = = = — 5
Altered in 315 (77.02%) of 409 samples.
o 100
! .Ih .ﬂ.d.l]l. |I.| itk 1 it L] No.ofsamples
24% |
15%
TN 0 0 14% —
i 100 — |
—
—
—
—] |
—
—
— ) ;
W = Missense_Mutation
B . Nonsense_Mutation |
o " Splice_site
mm - Frame_Shift_Del
| LAY 1 B Nonsiop baaton |
- = Frame_ ift_Ins
HS%',‘%I” i I B * Transiafion_Start_Site
| £§>é£é2!||l i ! i Multi_Hit
ABCGB 1 1 1
MMOT 1 1
| ACE Il 1 |
MIER | 1
MTTP 1
LserfET | i A i .
C | Normal | Tiirora Hazardous factors(HR>1)
SLC19A3 Protective factors(HR<1)
amMT
ALDOA =
| ADRB2 GAPDH
CAPNS # sLc2A1
Ak
GPI-
T \‘H TN ~oLr2r HsPD1
[0S AR N ALDOA
‘ ‘ H H ‘ “ LDHA MTHFD1
| ‘ w ‘ GAPDH ABCD1
IV 10 A Aok
H‘ Hl‘H‘ \H‘H‘H‘\‘\‘ wocos s
NSDHL-
R D
’ [RCATHEOR H [ABco? sprict
I (TR orHCR?
AEAENGRL A A B 707 LR
AFTE TR wocos
(AR coas
(AR AR EADH
‘ H‘| ‘ TUFM
mcccez ——
H ‘H“\” ‘\‘\‘ | — gl
SLC19A3 —
‘H‘ ‘H ‘M‘H ‘ EHHADH L & © © = Groups @) cse3213 (@) GsE20016 @) GsE3t210 AK1 o
s o AMT- —t
| ‘H | ‘ ‘ @ @ Tcea aseze0s0 (@) cseo2t0|@) eseazizr T R
HACN L ADREZ{  —8— f*
RN R
AN A Type [T ave [l o= o 70 5 20
F Hazard Ratio
5 chr12 chri4|chr15| chr16 |chr18[chr19| chr2o chrX
[
= N N N ST N T 0 T O T T o o © =
I E a5 8T EsSa23 8T HsxTRa
§4 80352 3ILI QL RT3 rReg LT Sg0 %08 §5388
S 2N o g i e I < R 3 d £ 90O
2 < F O ks o T g © = 3 Q 2 3 <
%] P g =S < 6 Q S s < s 1%}
FIGURE 2

Analysis of molecular characteristics of cholesterol-related genes in lung adenocarcinoma. (A) Overview of mutation characteristics, highlighting the
predominant mutation types (missense and nonsense mutations) and their relative frequencies, specifically noting the high occurrence of C>A and
C>T mutations, with a median mutation load of 3; (B) Waterfall plot showing the frequency of gene mutations; (C) Heatmap showing differential
expression of cholesterol-related genes between tumor and normal samples; (D) Chromosomal localization analysis illustrating the distribution of
cholesterol-related genes across the genome; (E) Forest plot revealing the relationships between cholesterol-related genes and tumor prognosis,
indicating potential risk and protective factors; (F) Copy humber variation analysis highlighting the significant amplification of the LBR gene and the

notable deletion of the CAPN3 gene.

importance in the tumor microenvironment. Chromosomal
localization analysis (Figure 2D) displayed the genomic
distribution of these genes. The PCA plot illustrated the sample
distribution across the seven bulk cohorts after batch effect removal,
providing a basis for subsequent analyses. The forest plot
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(Figure 2E) offered insights into the relationships between these
genes and tumor prognosis, revealing potential risk and protective
factors, thereby further validating the association between
differential genes and clinical outcomes. Finally, an assessment of
copy number variation among these genes indicated that LBR
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exhibited a significant copy number amplification, while CAPN3
showed a notable copy number deletion (Figure 2F). These changes
may reflect the adaptation of tumor cells to environmental
pressures during evolution, emphasizing the critical roles these
genes play in tumorigenesis and progression.

Cholesterol metabolism signature
characteristics

To explore the impact of CMS on the prognosis of LUAD patients,
this study employed machine learning algorithms using the TCGA
dataset as the training group, while selecting six GEO datasets as
validation groups to enhance the model’s generalizability. Our
calculations revealed that the Lasso + StepCox[both] model
achieved the highest average concordance index (c-index) in the
validation groups (Figure 3A), indicating its strong adaptability and
reliability across different datasets. After establishing the model, we
analyzed the sample sizes across the datasets. The pie chart in
Figure 3B visually demonstrates the proportion of each dataset in
the sample, providing a foundation for interpreting subsequent results.
Next, we assessed the role of CMS in the survival of LUAD patients.
The survival curves presented in Figures 3C-I indicate that the
survival probability of the high CMS group is significantly lower
than that of the low CMS group. This directly supports the importance
of cholesterol metabolism characteristics in evaluating patient
prognosis, showing that high CMS levels are associated with poorer
survival outcomes. Specifically, Figures 3], L illustrate overall survival
(OS) results, while Figure 3K presents progression-free survival (PFS)
results, with no significant differences observed in the remaining
corresponding PES and OS results (see Supplementary Figures 1A-
C). We then further explored the differences in CMS between the
responder and non-responder groups across four NSCLC cohorts.
The results indicate that consistently low CMS values appear to
correlate with better immunotherapy outcomes (see Supplementary
Figures 1D-G). These findings emphasize that CMS can serve as a
stable biomarker to predict the prognosis and immunotherapy efficacy
in LUAD patients.

Comprehensive validation of cholesterol
metabolism signature

To systematically evaluate the prognostic predictive performance
of the CMS in LUAD, we conducted a comprehensive validation
analysis. Figure 4A illustrates the comparison of CMS with traditional
clinical indicators in prognostic prediction. The results revealed that
traditional clinical features such as age, gender, and tumor stage
showed relatively low c-index values, while CMS demonstrated
significantly higher predictive power. Specifically, the c-index values
were 0.58 for age, 0.55 for gender, and 0.62 for tumor stage, in contrast
to CMS reaching 0.83, indicating its potential superiority as a
prognostic marker. ROC curve analysis (Figure 4B) assessed the
predictive performance of CMS. In both training and validation sets,
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the AUC values consistently exceeded 0.65, demonstrating the model’s
robust prognostic prediction capability. The stable performance across
different cohorts provides strong support for CMS as a prognostic
prediction tool for LUAD. To explore CMS’s molecular-level
discrimination ability, we performed Principal Component Analysis
(PCA) (Figure 4C). The results revealed distinct spatial distribution
patterns between high-score and low-score samples across all
validation cohorts based on CMS feature genes. This clustering
characteristic suggests that CMS is not merely a statistical indicator
but can effectively distinguish patient populations with different
prognostic risks at the molecular level. Finally, we conducted a
rigorous benchmark test for CMS. By systematically comparing 51
previously published LUAD prognostic signatures (Figure 4D), we
found that CMS consistently maintained the highest c-index values
across all validation cohorts, significantly outperforming all previously
published prognostic models. In conclusion, through multi-angle and
multi-dimensional analyses, we comprehensively validated the
excellent prognostic predictive performance of the CMS. Whether
compared with clinical indicators, ROC curve analysis, molecular-level
validation, or benchmarking against existing models, CMS
demonstrated remarkable advantages. This not only provides a new
molecular strategy for personalized prognosis assessment of LUAD
but also offers a new research perspective for understanding tumor
progression mechanisms, particularly the potential key role of
cholesterol metabolism in tumor biology.

Cholesterol metabolism signature shapes
immune microenvironment

To comprehensively investigate the impact of CMS on the immune
microenvironment in LUAD, we conducted an extensive
bioinformatics analysis. The influence of cholesterol metabolism
characteristics on the immune microenvironment in LUAD
represents a complex, multidimensional process. Initially, using the
TIMER 2.0 platform to analyze TCGA database with seven different
algorithms for immune infiltration (Figure 5A), we observed that the
low CMS group demonstrated significantly higher infiltration of
multiple immune cell types. Specifically, the low CMS group
exhibited elevated levels of CD8+ T cells, B cells, dendritic cells
(DCs), and natural killer (NK) cells. To further elucidate the precise
changes in immune cells, we employed ssGSEA algorithm to analyze
immune cell infiltration and function (Figures 5B, C). The results
revealed that the low CMS group displayed markedly more active
immune cell infiltration and functional characteristics. Immunology-
related gene analysis (Figure 5D) uncovered deeper mechanistic
insights. The low CMS group showed significantly upregulated MHC
IT antigen gene expression, suggesting enhanced antigen presentation
capabilities that could promote T cell recognition and activation. MHC
IT molecules play a crucial role in tumor immune surveillance, and their
high expression may be a key reason for the more robust immune
activity in the low CMS group. Through ESTIMATE algorithm
assessment of immune microenvironment features (Figures 5E-H),
we discovered a negative correlation between CMS and immune scores,
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FIGURE 3

Analysis of cholesterol metabolism signature (CMS) characteristics in lung adenocarcinoma. (A) Average concordance index (c-index) of the Lasso +
StepCox[both] model across validation datasets, indicating its adaptability and reliability; (B) Pie chart demonstrating the proportion of samples from
the POPLAR cohort included in the analysis; (C) Overall survival (OS) results for the POPLAR cohort; (D-I) Survival curves illustrating overall survival
(OS) and progression-free survival (PFS) for lung adenocarcinoma patients categorized by low and high CMS levels, with high CMS levels associated
with lower survival probabilities; (J) Overall survival (OS) analysis for the OAK cohort showing significant differences between high and low CMS
groups; (K) Progression-free survival (PFS) results for the OAK cohort exhibiting similar trends to overall survival; (L) Overall survival (OS) outcomes
for the NG cohort further supporting the association between CMS levels and patient prognosis.

while observing a positive correlation with tumor purity. This indicates ~ metabolic characteristics but may also directly influence tumor
that as CMS scores increase, tumor immune activity gradually =~ immune escape mechanisms. Lastly, the TCIA Immunotherapy
decreases, accompanied by a proportional increase in tumor cell — Potential Score (IPS) analysis (Figures 5I-L) further substantiated our
content. This finding suggests that CMS not only reflects tumor  hypothesis. The significantly higher IPS scores in the low CMS group
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Comprehensive validation of cholesterol metabolism signature (CMS) in lung adenocarcinoma prognosis. (A) Comparison of c-index values between
CMS and traditional clinical indicators, demonstrating the superior prognostic predictive power of CMS across different clinical features, with CMS
consistently showing the highest predictive performance; (B) ROC curve analysis across multiple cohorts, showing AUC values consistently above
0.65 in the training set (TCGA cohort) and validation sets (GSE13213, GSE26939, GSE29016, GSE30219, GSE31210, GSE42127), indicating robust
prognostic prediction capabilities across different datasets; (C) Principal Component Analysis (PCA) based on CMS feature genes, revealing distinct
molecular-level clustering of samples and clearly differentiating patient populations with different risk profiles; (D) Comparative analysis against 51
previously published prognostic signatures, highlighting CMS's superior performance with the highest c-index values across all validation cohorts,

demonstrating its potential as a novel prognostic marker for lung adenocarcinoma.

suggest that these patients may exhibit better responses to
immunotherapy, providing crucial molecular stratification for
personalized immune interventions. In conclusion, our research
reveals the intricate associations between cholesterol metabolism
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characteristics and the tumor immune microenvironment. The low
CMS group demonstrates a more active immune microenvironment,
potentially attributed to its superior antigen presentation capabilities

and immune cell infiltration characteristics.
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Cholesterol Metabolism Signature Shapes Immune Microenvironment in Lung Adenocarcinoma. (A) Immune cell infiltration analysis using TIMER 2.0
platform across seven different algorithms, revealing significantly higher infiltration of CD8+ T cells, B cells, dendritic cells (DCs), and natural killer
(NK) cells in the low CMS group compared to the high CMS group; (B, C) ssGSEA algorithm analysis of immune cell infiltration and functional
characteristics, showing detailed visualization of immune cell populations and immune-related functions, highlighting the more active immune
profile of the low CMS group; (D) Differential expression of immune-related genes, focusing on MHC Il antigen gene expression, with significantly
upregulated MHC Il class antigen genes in the low CMS group, suggesting enhanced antigen presentation capabilities; (E—H) ESTIMATE algorithm
assessment of immune microenvironment features, demonstrating negative correlation between CMS and immune scores, positive correlation with
tumor purity, and comprehensive mapping of immune activity variations; (I-L) TCIA Immunotherapy Potential Score (IPS) analysis, revealing
significantly higher potential for immunotherapeutic response in the low CMS group.
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CMS-mediated immune suppression

In the context of our previous investigation into the CMS and its
immunological implications in tumor microenvironments, single-cell

10.3389/fimmu.2025.1696360

transcriptomic analysis was performed to elucidate the underlying
cellular mechanisms. Unsupervised clustering was initially conducted
on the single-cell dataset, resulting in the identification of 16 distinct
cellular clusters (Figure 6B). Cell type annotation was achieved through
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FIGURE 6

Analysis of cholesterol metabolism signature (CMS) characteristics in lung adenocarcinoma. (A, B) Expression and t-SNE distribution of characteristic
marker genes in different cell clusters; (C) Annotation of 10 cell types in lung adenocarcinoma microenvironment; (D) CMS score distribution across
different cell types, highlighting concentrated expression in APOE macrophages and dendritic cells; (E) Ro/e analysis comparing cellular composition
between high and low CMS groups, showing enrichment patterns of specific cell populations; (F, G) Cell co-occurrence analysis in high and low
CMS environments; (H) Comparison of intercellular communication intensity and quantity between low and high CMS groups; (1) Signal pathway
analysis revealing immune regulatory pathway activation in high and low CMS groups; (J) Comparative diagram of cellular signal intensity in and out

of low and high CMS groups. * P<0.05
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comprehensive marker gene expression profiling (Figure 6A),
subsequently categorizing cells into 10 distinct populations
(Figure 6C). The proportion of cell type abundance in each sample
was Supplementary Figure 2A. A CMS scoring algorithm was
implemented to quantify the molecular signature, with t-SNE
visualization revealing concentrated expression patterns (Figure 6D).
Notably, elevated CMS scores were predominantly observed in APOE-
expressing macrophages and dendritic cells, with significant epithelial
cell representation. Comparative analysis between high and low CMS
groups demonstrated differential cellular composition. The high CMS
group was characterized by significant enrichment of macrophages,
dendritic cells, and epithelial cells, in contrast to the low CMS group,
which was predominantly populated by T cells and plasma cells
(Figure 6E). Cellular co-occurrence analysis (Figures 6F, G) revealed
distinctive microenvironmental characteristics. Enhanced intercellular
communication was documented in the high CMS group, with
increased signaling complexity and interaction intensity (Figure 6H;
Supplementary Figure 2B). Pathway enrichment analysis disclosed
upregulation of immunomodulatory signaling cascades, including
PDGF and MK pathways, which have been previously associated
with immunosuppressive microenvironmental configurations
(Figure 6I). Mechanistic interrogation of cellular signaling dynamics
demonstrated heightened signal transduction capabilities of APOE-
positive macrophages within the high CMS cohort (Figure 6]). These
observations align with established immunological literature
documenting the immunosuppressive potential of APOE-
expressing macrophage populations in neoplastic environments.
Collectively, this single-cell resolution investigation provides
unprecedented insights into the intricate role of CMS in tumor
microenvironment remodeling. A complex interplay between APOE-
positive macrophages, dendritic cells, and epithelial cells was
characterized, revealing mechanisms underlying immunosuppressive
microenvironmental programming.

DHCR7-mediated immunosuppression

Interestingly, we discovered that DHCR7, as a key model gene,
shows a significant positive correlation with CMS scores (r=0.42,
q=0) (Supplementary Figure 3A). This finding reveals the potential
important role of DHCR7 in LUAD molecular progression.
Immunohistochemical staining from the Human Protein Atlas
(HPA) database demonstrated that DHCR7 expression was
significantly upregulated in LUAD tissues compared to normal
lung tissues, with staining intensity shifting from low intensity
(<25%) to high intensity (>75%), localized in the cytoplasm and cell
membrane (Supplementary Figure 3B). To verify the immune-
related function of DHCR7, we integrated TCGA and OAK
immunotherapy cohorts for in-depth analysis. Results showed a
significant negative correlation between DHCR7 and the key
immune-related gene CD8A (TCGA cohort: R=-0.38, p=38.3e-12;
OAK cohort: R=-0.22, p=4.6e-07) (Figure 7A). Survival analysis
revealed that patients with high DHCR7 expression had
significantly shorter overall and progression-free survival
compared to the low expression group (p<0.001). Additionally,

Frontiers in Immunology

12

10.3389/fimmu.2025.1696360

validation using the KM Plotter database confirmed that higher
DHCR?7 expression is significantly associated with poorer survival
outcomes, further supporting our survival analysis findings (Figure
7D). Surprisingly, we found that as DHCR?7 expression increased,
key immune regulatory genes, including immunostimulatory
factors, immunosuppressive factors, MHC molecules, cytokine
receptors, and chemokines, showed a progressive downregulation,
which was observed in both OAK and TCGA cohorts (Figure 7B,
Supplementary Figure 4A). Furthermore, we discovered
that DHCR7 displayed a clear negative correlation with critical
immune circulation steps (CD8T recruitment), while showing a
positive correlation with cell cycle and DNA replication pro-
oncogenic pathways (Supplementary Figure 4B). Multiplex
immunohistochemical images clearly demonstrated that CD20+,
CD4+, and CD8+ T cell infiltration was significantly higher in
DHCR?7 low-expression areas compared to high-expression areas
(Figure 7C), further confirming our previous findings. To validate
our functional hypothesis, we performed DHCR?7 gene knockdown
experiments in A549 and PC9 LUAD cell lines. Cell proliferation
assays (CCK8) showed that DHCR7 knockdown significantly
reduced cell proliferation capacity, resulting in a flattened growth
curve (Figures 7E-H). In summary, we discovered that DHCR?7 is
not only a core gene in the CMS model but may also participate in
LUAD progression by regulating the immune microenvironment
and cell proliferation processes.

DHCRY7 regulates LUAD progression

High DHCR?Y expression was associated with consistently worse
survival across seven lung adenocarcinoma datasets (Supplementary
Figure 5). To further verify the biological function of DHCR?7, we first
explored its role in LUAD cell migration and invasion through in vitro
experiments. Migration and invasion assay results showed that DHCR7
gene knockdown significantly inhibited the migration and invasion
capabilities of A549 and PC9 LUAD cell lines compared to the control
group (NC) (Figures 8A-D). Quantitative analysis revealed that cell
migration and invasion numbers decreased by approximately 60-70%
(Figures 8B, D), indicating that DHCR7 may play a critical role in
tumor metastasis. To further validate DHCR7’s biological function in
tumor growth, we constructed a mouse xenograft tumor model
(Figure 8E). The in vivo experimental results were highly consistent
with the in vitro research findings. We established four experimental
groups: shNC+IgG2a (control group), shNC+PD-1, shDher7+1gG2a,
and shDhcr7+PD-1. Compared to the control group, the DHCR7
knockdown group (shDhcr7+IgG2a) showed significantly inhibited
tumor growth, with markedly reduced tumor volume and weight
(Figures 8F-H). During the 12-day observation period, the tumor
volume growth rate of the DHCR?7 knockdown group was significantly
slowed. Notably, the DHCR?7 knockdown group combined with PD-1
inhibition (shDher7+PD-1) demonstrated more significant tumor
growth suppression, with further reduced tumor volume and weight
compared to the group with DHCR7 knockdown alone. The body
weight changes across all groups remained stable (Figure 8I), indicating
that the experimental treatment did not significantly affect the overall

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1696360
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Du et al.

>

o

DHCRY7 expression
£

TCGA

R=.0.38, p=8.3e-12

R=-022,p=4.6e-07

o

A

DHCRY7 expression
S

Survival probability

0

1 [ e 01T 31| [T [T 1 ][]
Immunoinhibitor Receptor Chemokine
| Fes———ecTE— EE————————_—

o

o

10.3389/fimmu.2025.1696360

001 1.004
2
751 < 0751
g
50+ S 0.501
2
251 S 0.251
S
[7)
004, . . . . 0.00 ! . . .
0 5 10 15 20 0 5 10 15 20
Time(years) Time(Month)

» 0¥ad
«xx 0800

O wex LAdLINT

EJd0JdX2-00p00ddddddddICZU0 X0OWIO
NZUZEEJUUOUZZ2Z22Z22ZIC0<y 50430
m"'lm"'l;u;u,r\)h ENTITIITITMIOImMmNINC ®Aaxns N—k’_<'|'|
)>0‘)EDJU7(O*Oommo\l;um;uu)mg(ﬂ;U)'Um,\lUCDZDOA
L R 21D r00OTMOITNONS » 1O =0 x gD
Pl oy PO fMmMM 2T 2T o ot T N

© i T2l iraged i " .
[ I N0 s x4
+ i * + @O o ¥
- HI H

H

..O
o)
[¢3]

m
n

o
- HR =1.32 (1.11 - 1.56) A549
1.254 1.254
@ logrank P = 0.0018 < c
=] o )
] [
2o 8 1.001 g 1.001
= "y, o o
Qo %, X X
2 N G o7 [N o o75-
27 DHORT T g e £
i sh-DHCR7
& o | Exressin | € s £ 0.50
- low ° °
@ high 2 2
L ‘ 5 0.254 S 0.254
0 50 _ 100 150 200 K] &
Number at risk Time (months) 0.00- 0.00-
low580 300 60 12 1
highs81 263 57 19 3

FIGURE 7

+» £917100Ad
xex PPCA0D

\H‘ “\
bl
[
[ [
AT R
| ] ‘\‘\ \ |
I ‘I | \ |
\ ‘H |
(A TRC LU
T [T [] I
] | \ ‘H‘ \ ’
\ \ \ \
J 114 \ ‘ \\
H ‘[ | ‘\‘HH\
\ M\
\ | \‘ I ‘ ‘
I[{F] ‘HH \H‘H
me'loxoL___W ‘\ il !
24oHa
dnoso

o:con;ﬁoooxooooooo 0000000000000
AHUOR RN XXO000OXOXX XOOXXQ00X00Q0
CE000 2 00WIXBIONOL O oY Hor o
2HOg® | NS @RA0DG R0 FR2r02N2FalNN
Par xSy TR sy r0 10 2RO NWO Ay 4O
P PR [ e N N I 3 B
|4 * - LA T 4 P *
* i i H % i
H

|
3

=

g s
!

N

)

o
N ]

PC9 G A549 H PC9

15
wonn 20
=201 Bl s-DHCR7 I* £ sh-DHCRT *
£ s
s g16
2
NC Q 3
T oo 815
2 s
Zos So08
3 3
“03 0.4
00 0.0
0 24 48 72 9% 24 48 72 %

Incubation time(h) Incubation time(h)

Functional Validation and Mechanistic Insights of DHCR7 in Lung Adenocarcinoma. (A) Gene correlation of DHCR7 and CD8A and DHCR7
prognostic analysis in TCGA and OAK cohorts; (B) Heatmap of immune-related gene expression correlated with DHCR7 levels in OAK data; (C)
Multiplex immunofluorescence image showing immune cell distribution in high and low DHCR7 expression regions; (D) The KM-plotter website
further confirmed that LUAD patients with high DHCR7 expression have a poorer prognosis; (E, F) Verification of DHCR7 gene knockdown efficiency
in A549 and PC9 cell lines using gRT-PCR and Western blot; (G, H) Cell proliferation assays (CCK8) showing significant growth inhibition after
DHCRY7 knockdown. * P<0.05; ** P<0.01; *** P<0.001; **** P<0.0001

health of the animals. To deeply explore DHCR7’s impact on the

tumor immune microenvironment, we performed a detailed analysis of

immune cell subsets in tumor tissues using flow cytometry. The results

showed significant changes in immune cell distribution in the DHCR7

knockdown group compared to the control group. Specifically, the
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proportions of CD8+ T cells (Figure 8]), CD3+ T cells (Figure 8K),
IFN-y+ T cells (Figure 8L), and GZMB+ CD8+ T cells (Figure 8M)
were significantly increased. This finding suggests that DHCR7 may
influence tumor progression by regulating immune cell infiltration.
Notably, the DHCR7 knockdown group combined with PD-1
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DHCRY7 Regulates Lung Adenocarcinoma Progression through Multiple Mechanisms. (A—D) Migration and invasion assays reveal significant inhibition
of A549 and PC9 cell motility and invasiveness upon DHCR7 knockdown. (E) Schematic illustration of the mouse xenograft tumor model
experimental design. (F=H) Tumor growth analyses demonstrate reduced tumor volume and weight across different experimental groups, with
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T cells, and GZMB+ CD8+ T cells, highlighting DHCR7's profound impact on the tumor immune microenvironment. * P<0.05; ** P<0.01; ***
P<0.001; **** P<0.0001.
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inhibition (shDhcr7+PD-1) showed further enhanced immune cell
activity, implying a potential synergistic effect between DHCR7 and
PD-1. In conclusion, DHCR7 demonstrates multiple regulatory
functions in LUAD development, providing important theoretical
basis for DHCR?7 as a potential therapeutic target.

Discussion

As the most common subtype of lung cancer, the complexity of
LUAD’s occurrence and development has long been a major
challenge in tumor research (42-44). With the rapid development
of tumor immunology and precision medicine, the critical role of
metabolic reprogramming in tumor biology has gradually become a
research hotspot (45, 46). Cholesterol metabolism, as an essential
life process of cells, has attracted significant attention for its
regulatory mechanisms in tumor progression (47). By integrating
1,682 patient samples from 14 cohorts, this study aims to
comprehensively reveal the molecular mechanisms and immune
regulatory effects of cholesterol metabolism in LUAD development.

Gene mutations have been a core focus of tumor research as key
drivers of tumor occurrence and development (48, 49). Our
systematic analysis of cholesterol-related gene mutations revealed
that these genes primarily undergo missense and nonsense
mutations, predominantly single nucleotide polymorphisms (SNPs).
The high incidence of C>A and C>T mutation types, with a median
mutation burden of 3, indicates significant genetic variations in these
genes during tumor progression. The heterogeneity and individual
differences of tumors have always been major challenges for precision
medicine (50, 51). Traditional clinical prognosis assessment methods
are often limited to tumor staging, age, and mutations, making it
difficult to comprehensively reflect the complex biological
characteristics of tumors. In recent years, prognosis models based
on molecular characteristics have become a focal point of precision
oncology research. We innovatively constructed a CMS model to
provide a more precise prognostic assessment tool. Using advanced
machine learning algorithms, particularly the Lasso + StepCox[both]
model, we demonstrated excellent predictive performance across
multiple independent validation cohorts, significantly surpassing
traditional clinical indicators. Compared to single traditional
indicators, the CMS model not only improved prognostic
prediction accuracy but also opened up new research directions for
personalized precise treatment of LUAD.

The immune microenvironment plays a crucial role in tumor
progression and has become a cutting-edge field in tumor
immunology research (52, 53). Previous studies primarily focused
on tumor immune escape mechanisms, with relatively limited
research on the interactive regulation between metabolic pathways
and the immune microenvironment (54). Through single-cell
transcriptome analysis, we discovered that the low CMS group
exhibits more active immune cell infiltration and functional
characteristics. The low CMS group showed significant increases in
CD8+ T cells, B cells, dendritic cells, and natural killer (NK) cells,
with upregulated MHC II antigen gene expression, suggesting
enhanced antigen presentation capabilities. This finding provides a
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new perspective for understanding the regulatory mechanisms of the
tumor immune microenvironment. DHCR?7, as a key gene in the
CMS model, was comprehensively validated through in vitro and in
vivo experiments for its multidimensional regulatory effects in LUAD
progression. The research found that DHCR?7 is highly expressed in
LUAD tissues and shows a significant negative correlation with key
immune-related genes (such as CD8A). Gene knockdown
experiments demonstrated not only significant inhibition of tumor
growth but also enhanced immune cell infiltration, particularly with
notable increases in IFN-y+ CD8+ T cells and GZMB+ CD8+ T cell
proportions. This finding provides strong experimental evidence for
DHCRY as a potential therapeutic target.

This study constructed a multi-dimensional regulatory model
from molecules to cells, from genes to immunity, providing a new
theoretical framework for understanding LUAD development.
Despite significant progress, the study has limitations. Future
research requires larger-scale prospective clinical studies to
further validate our findings and explore the precise mechanism
of DHCR? in regulating the immune microenvironment.

In conclusion, by constructing a CMS model centered on DHCR?7,
this study systematically elucidates the multidimensional regulatory
mechanisms of cholesterol metabolism in LUAD development,
providing important clues for personalized immunotherapy
strategies and pointing out new directions for precise LUAD
treatment research.
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