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Liver disease is a major threat to human health and life safety, primarily
encompassing hepatitis caused by various factors (viral, alcoholic, fatty and
autoimmune hepatitis), cirrhosis and liver cancer. Cytokines are molecules
found on cell membranes that mediate the inflammation, immunity and a
range of cellular functions, such as cell differentiation, proliferation, metastasis
and apoptosis. In general, the delicate balance between pro- and anti-
inflammatory effects is maintained by the body's regulatory mechanisms. Once
this balance is disturbed, complex chain reactions can occur, including systemic
injury, tumor, multi-organ failure or death, resulting in the release of cytokines.
This review mainly focuses on the classification, biological characteristics,
pathogenesis, signaling pathways of various cytokines (interleukins, interferons,
tumor necrosis factor, colony-stimulating factors, chemokines and growth
factors) and their important roles in the occurrence and development of
different liver diseases, mediating the immune responses, and further discusses
the application prospects of cytokines in the clinical treatments of liver diseases.
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1 Introduction

Pathogens, autoimmune diseases, genetic disorders, and malignant tumors have been
identified as triggers for life-threatening systemic inflammatory syndromes, characterized
by excessive activation of immune cells and release of cytokines (1, 2). This heightened
immune response involves increased activity of dendritic cells (DC), lymphocytes,
macrophages, and other immune cells, resulting in elevated levels of interleukins (IL)
such as IL-6, IL-8, and IL-10, as well as C-reactive protein (CRP). These inflammatory
markers contribute to the severity of systemic response (3, 4). The dysregulated
inflammatory response initiates a self-reinforcing feedback loop that endangers the
host’s life, a phenomenon recognized as cytokine release syndrome (CRS) or cytokine
storm (CS) (5). CRS usually manifests with the symptoms of fever, fatigue, anorexia,
hypotension, hypoxia, and even organ dysfunction (6). Early detection of cytokines is
crucial for determining treatment strategies and predicting disease outcomes.
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The inflammasome, an intracellular signaling complex of innate
immune system, stimulated by the danger signals emitted from
damaged cells and pathogens, resulting in the maturation and
release of pro-inflammatory cytokines such as IL-1f, IL-18 and IL-
37, causing the activation of cysteine proteases including caspase-1/
4/5/8/11 (7, 8), ultimately triggering cell pyroptosis (9). Macrophages
contribute to local inflammation by generating reactive oxygen
species (ROS), secreting cytokines and chemokines (CKs), and
attracting more immune cells (10, 11). The involvement of
inflammasome leads to various aseptic inflammatory diseases,
hereditary autoinflammatory diseases, metabolic disorders,
cardiovascular diseases, neurodegenerative diseases and cancers
(12). Previous studies have suggested that inflammatory mediator
and transcription factors including ILs, CKs, tumor necrosis factor-o.
(TNF-a1), transforming growth factor- (TGF-B), and granulocyte
macrophage colony-stimulating factor (GM-CSF), as well as nuclear
factor kB (NF-kB), signal transducer and activator of transcription 3
(STAT3) are essential for cancer-related inflammation (13).

The primary liver cancer (PLC) ranks as the fourth common
malignant tumors worldwide with a high mortality rate and it’s the
leading cause of cancer-related death in China (14, 15). According
to the pathological type of PLC, they’re divided into hepatocellular
carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC) and
mixed liver cancer (16). Early-stage PLC usually doesn’t cause
noticeable symptoms, while advanced PLC manifests as
abdominal pain, distension, nausea, and poor appetite. The
common treatments encompass surgery, ablation, transcatheter
hepatic arterial chemoembolization (TACE), targeted therapy,
immunotherapy and chemotherapy, but recurrence rate of post-
surgery can be as high as 40%-70% within five years. HCC
comprises approximately 75%-85% of PLC with poor prognosis.
The critical pathogenesis of HCC including hepatitis virus B (HBV)
or hepatitis virus C (HCV) infection, alcohol abuse and obesity
(17, 18). Lipid alterations are a common consequence of chronic
HBV and HCV infection, alcoholic hepatitis, nonalcoholic fatty
liver disease (NAFLD), and steatohepatitis (19). Chronic hepatitis
damages the liver epithelial cells, leading to DNA injury and
genomic mutations, facilitating tumor cells evasion of immune
surveillance and triggering the liver self-defense mediated by
immune cells including natural killer (NK) cells, NKT cells and
intrahepatic macrophages (20-23), which eventually causing liver
fibrosis and HCC. There’re various pro-fibrogenic mediators
including TGF-B1, platelet-derived growth factor (PDGF),
endothelin-1 (ET-1), toll-like receptor 4 (TLR4) and reactive
oxygen species (ROS), stimulating the epithelial to mesenchymal
transition, resulting in the secretion of elastin, collagen,
proteoglycans and glycoproteins, which play essential roles in
liver fibrosis (24). ET-1, a peptide distributed in liver, inducing
hepatic stellate cells proliferation, which is responsible for fibrosis/
cirrhosis and portal hypertension (25). ROS is derived from
molecular oxygen and formed by reduction-oxidation (redox)
reactions (26). The glutathione, lipoic acid and taurine are
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pleiotropic molecules acting as ROS scavengers, which are
involved in fibrosis progression by modulating the TGF-f8, PDGF
and TLR pathways (24).

Cytokines play a pivotal role in liver diseases by impacting
inflammatory responses, hepatocyte proliferation, liver fibrosis or
cirrhosis. Certain cytokines can contribute to inflammation and
liver injury, they can also facilitate liver regeneration and enhance
antiviral defenses (27-30). Comprehensive understanding of
cytokines pleiotropy is essential for achieving optimal therapeutic
outcomes in the management of liver disease. This review delves
into the biological attributes of various cytokines and their diverse
functions in the progression and treatments of liver diseases.
Furthermore, innovative immunotherapy strategies utilizing
cytokines as targets in liver diseases will be explored and discussed.

2 Classification and biological
characteristics of cytokines

Cytokines are small proteins characterized by a broad spectrum
of biological activities. They are synthesized and secreted by
different immune cells (like monocytes, macrophages, T cells,
B cells and NK cells) and non-immune cells (like endothelial
cells, epidermal cells, and fibroblasts) in response to stimuli (31).
Cytokines play critical roles in regulating innate and adaptive
immunity, as well as in facilitating the tissue repair. By binding to
specific receptors, they modulate cell growth and differentiation.
Cytokines can be categorized into ILs, interferons (IFNs), TNF,
colony-stimulating factors (CSF), CKs, and growth factors (GF)
(32). Cytokines can act in an autocrine or paracrine manner,
exhibiting both pro-inflammatory and anti-inflammatory effects.

Within the tumor microenvironment (TME), cytokines serve as
vital signaling proteins with diverse functions, which have
antineoplastic and/or tumor-promoting effects on the occurrence and
progression of tumors (Figure 1). On the one hand, TGF-f can directly
inhibit the growth of tumor cells, while IFN-y, IL-2, IL-12 and IL-15
enhance the cytotoxicity of lymphocytes or bone marrow cells to
suppress the proliferation of tumor cells. On the other hand, TGF-j3,
TNF, IL-1B can promote the cell survival and proliferation. TNF and
IL-6 may disrupt the cytokine regulation and trigger the inflammation
in TME. In addition, IL-10, IL-4 and TGF-P have the ability to induce
immunosuppression, whereas TNF, IL-6 and chemokines can
stimulate the angiogenesis (33). In this review, we illustrate the
characteristics, signaling pathways of cytokines in various liver diseases.

Some cytokines have antineoplastic and/or tumor-promoting
effects. On the one hand, TGF-f can inhibit tumor cell growth,
IFN-y and IL-2/12/15 suppress cell proliferation by enhancing the
cytotoxicity of lymphocytes or bone marrow cells. On the other
hand, TGF-, TNF, IL-1B promote tumor cell proliferation. TNF
and IL-6 can stimulate the angiogenesis, disturb cytokine regulation
and trigger inflammation. Moreover, IL-4/10 and TGF-f can
induce the immunosuppression.
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FIGURE 1

Pleiotropy of cytokines in tumor microenvironment. Some cytokines have antineoplastic and/or tumor-promoting effects. On the one hand, TGF-B
can inhibit tumor cell growth, IFN-y and IL-2/12/15 suppress cell proliferation by enhancing the cytotoxicity of lymphocytes or bone marrow cells.
On the other hand, TGF-B, TNF, IL-1B promote tumor cell proliferation. TNF and IL-6 can stimulate the angiogenesis, disturb cytokine regulation and
trigger infammation. Moreover, IL-4/10 and TGF-B can induce the immunosuppression.

2.1 Interleukin

2.1.1 Biological characteristics of IL

Based on the recognition sequence homology and receptor
chain similarity of interleukins, theyre divided into different
families and exert important effects in inflammation, autoimmune
diseases and cancers (34, 35) (Table 1). IL-1 and IL-6 family
members are introduced detailedly in this review. IL-1 family
consists of three main types: agonists (IL-1o;, IL-1B, IL-18, IL-33,
IL-360, IL-36P and IL-36y), antagonists (IL-1Ra, IL-36Ra and
IL-38) and anti-inflammatory cytokine (IL-37) (53). They serve as
crucial signaling molecules in both innate and adaptive immune
systems, mediating the inflammatory responses to varieties of
stimuli (54). The high-resolution structures of IL-1o, IL-1B, IL-
1Ra, IL-18, IL-33, IL-367, IL-37 and IL-38 have been determined by
X-ray crystallography or solution nuclear magnetic resonance
(NMR). All of them have conserved B-trilobate conformation and
a hydrophobic core consisting of 12f3-sheets (55). In the context of
tumor development and therapy, IL-1 expression is differentially
regulated in tumor cells, tissue stromal cells and immune cells in a
stage-specific and tissue-specific manner. IL-1 family members and
their receptors have pleiotropic functions depending on the target
cells, playing complicated roles in inflammation, tumorigenesis,
tumor metastasis, immunosuppression and immune surveillance
(56). IL-1 signaling regulation lies on IL-1R1 and IL-1R2. IL-1R1 is
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involved in the differentiation, expansion and survival of Th17 cells,
as well related to autoimmune disease (57). Most IL-1 family
members form into signaling complexes by binding to their
homologous receptors, such as IL-1RI (IL-1o and IL-1B), IL-33R
(ST2) and IL-36R (IL-360;, IL-36B and IL-36Y). IL-1 receptor
accessory protein (IL-1RAcP) commonly serves as shared
secondary receptor, facilitating the formation of cytokine-receptor
co- receptor complexes. Therefore, targeting to the IL-1RAcP can
selectively inhibit the signaling transduction mediated by IL-1
family members, which provides a potential strategy for treating
cancers (58).

Recent studies have highlighted the significance of IL-1 family
members including IL-18, IL-33, IL-36, IL-37 and IL-38 in
mediating the inflammation and immune responses. They’re
tightly regulated by antagonists and anti-inflammatory cytokines
under physiological and pathological conditions (53). Some
evidence demonstrate that IL-1 family can influence the
expression of vascular endothelial growth factor (VEGF) and
fibroblast growth factor (FGF), two mediators which sustain
tumor progression. Blocking the IL-1 signaling pathways may
disrupt the recruitment of immature cells and inhibit tumor
immune evasion (59). IL-1o and IL-1f are key downstream
factors in intrinsic and extrinsic pathways linked to inflammation
and malignant tumors. IL-1o can translocate to the nucleus, acting
as a transcription factor that initiate the signaling transduction by
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TABLE 1 Classifications and clinical applications of IL family members.

IL family member Main representative

Pro-inflammatory cytokines
(IL-1o, IL-1B, IL-18, IL-33,
IL-360, IL-36P, IL-36Y)

10.3389/fimmu.2025.1694582

Clinical disease Author

Breast cancer, colon cancer, head and neck Gelfo V, et al. (36)

cancer, lung cancer, pancreatic cancer and R
& P Akdis M, et al. (34)

melanoma

Colorectal cancer,
inflammatory bowel disease,

Sugiura K, et al. (37)
Dang J, et al. (38)

IL-1 family
Anti-inflammatory cytokines
(IL-1Ra, IL-36Ra, IL-37, IL-38)
IL-6 family IL-6, IL-11, IL-31

atopic dermatitis

Colorectal cancer,
pancreatic cancer,

Mesjasz A, et al. (39)

Johnson DE, et al. (40)
Miura T, et al. (41)

IL-10, IL-19, IL-20, IL-22,

IL-10 famil
amiy IL-24, IL-26, IL-28, IL-29

IL-12 family 1L-12, 1L-23, IL-27, IL-35

IL-2, IL-4, IL-7, IL-9,

¥- chain cytokine family 115 IL21

IL with chemokine activity 1L-8, IL-16

non-small cell lung cancer Nagash ARTA, et al. (42)

Psoriasis, hepatitis, pancreatitis,
graft versus host disease (GVHD),
human T-cell lymphotropic virus type 1
(HTLV-1) infection

Ouyang W, et al. (43)
Shefler I, et al. (44)
Brites C, et al. (45)

Inflammatory bowel disease,

. R Verstockt B, et al. (46)
tuberculosis, malaria,

Tait Wojno ED, et al. (47)

influenza virus infection,
Kourko O, et al. (48)

pancreatic cancer, HCC

Colorectal cancer, melanoma (MM), non-small
Ma S, et al. (49)
Long D, et al. (50)

cell lung cancer,
rheumatoid arthritis, psoriasis,
systemic lupus erythematosus

HCC, colon, pancreatic,
P Fousek K, et al. (51)

breast and 1 g
reast and lung cancer Jorgensen AR, et al. (52)

Crohn’s disease

binding to DNA and enhancing IL-8 expression. IL-1[, extensively
studied in the autoinflammatory diseases, contributing
to atherosclerosis and cancer progression (60). Experiments have
suggested that antibodies blocking IL-1f can prevent cardiovascular
events and reduce the incidence and mortality of lung cancer,
emphasizing the importance of IL-1 and related family members
(such as IL-33 and IL-18) in shaping the innate immunity
and inflammation responses (61, 62). Recent researches have
indicated that IL-1f signaling is relevant to cell death of
hepatocytes (63-65).

IL-6 family proteins regulate various pathways through binding
to gpl30 receptor and affecting the liver regeneration. IL-11, a
member of IL-6 family, playing distinct roles from IL-6 in biological
and pathological aspects (Figure 2). IL-6R is predominantly
expressed in the immune cells, while IL-11R is highly expressed
in the stromal, epithelial and polarized cells, and IL-11RA is
prominent in the hepatocytes and hepatic stellate cells. IL-11 can
promote the development of liver diseases, eventually leading to
inflammation, steatosis, fibrosis and liver failure. Widjaja et al. (66)
reported that IL-11 induced the signaling cascade responses
involving the transcriptional activator 3 (STAT3) phosphorylation
and extracellular signal-regulated protein kinase (ERK) activation
in various cell types, resulting in increased expression of pro-
inflammatory genes, such as SERPINB2, TNFRSF18, IL-33,
CCL20, IL1IRL1, CXCL3/5/8, intercellular adhesion molecule 1
(ICAM1) and IL-11. Proteomic studies demonstrated that IL-11
promoted the secretion of pro-inflammatory cytokines, significantly
increased the levels of IL-6, IL-8, monocyte chemoattractant protein
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1 (MCP1), CCL20 and CXCL1/5/6, which were crucial for
neutrophils, monocytes and lymphocytes. On the other hand, IL-
11 was observed to exhibit anti-inflammatory, anti-fibrosis and
regenerative properites (67).

IL-6R is expressed in immune cells, while IL-11R is expressed in
stromal, epithelial and polarized cells. IL-11 can cause liver
inflammation, steatosis, fibrosis and liver failure. IL-11 induces
STAT3 phosphorylation and ERK activation, resulting in
SERPINB2, TNFRSF18, IL-33, CCL20, IL1IRL1, CXCL3/5/8,
ICAMI and IL-11 overexpression. IL-11 can also promote the
secretion of IL-6, IL-8, MCP1, CCL20 and CXCL1/5/6.

2.1.2 Signaling pathway of IL

IL-1 is an inflammatory cytokine that activates the genes
associated with inflammation and immune diseases. The
formation of IL-1 receptor heterodimer triggers a series of
biological responses, including the activation of nuclear factor-xB
(NF-xB) and mitogen-activated protein kinase (MAPK) pathways.
IL-1 can bind to IL-1R on the cell surface, inducing downstream
nuclear transcription such as NF-«B and activator protein-1 (AP-1)
(68). This signaling cascade also involves a feedback regulatory
mechanism that promotes the expression of inflammatory
mediators like cyclooxygenase (COX) and nitric oxide synthase
(NOS), ultimately leading to inflammation (69). IL-1 receptor-
associated kinase 4 (IRAK4) is crucial in signaling pathways
mediated by Toll-like receptor and IL-1R, which plays a key role
in innate and adaptive immune responses (70, 71). MaIRAK4, a
homologue of IRAK4, has been shown to modulate NF-«B pathway
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IL-11 plays distinct roles from IL-6 in biological and pathological aspects. IL-6R is expressed in immune cells, while IL-11R is expressed in stromal,
epithelial and polarized cells. IL-11 can cause liver inflammation, steatosis, fibrosis and liver failure. IL-11 induces STAT3 phosphorylation and ERK
activation, resulting in SERPINB2, TNFRSF18, IL-33, CCL20, IL1IRL1, CXCL3/5/8, ICAM1 and IL-11 overexpression. IL-11 can also promote the secretion

of IL-6, IL-8, MCP1, CCL20 and CXCL1/5/6.

mediated by MaMyD88, leading to reduced expression of pro-
inflammatory factors (IL-1pB, IL-6, IL-8, TNF-0.) when knocked
down (72).

IL-6 activates the signaling molecule STAT3 by classical and
trans-signaling pathways. Classical signaling occurs in the cells
expressing IL-6Ra, inducing anti-inflammatory molecules,
whereas transmembrane signaling happens in cells expressing
gp130, triggering pro-inflammatory cytokine release and
promoting chronic inflammation (73). Sun et al. (74) observed
that mRNA let-7i regulated the maturation of dendritic cells (DC)
targeting to IL-10 through janus kinase-signal transducers and
activators of transcription (JAK-STAT3) pathway.

IL-17 is prominent for host immune defenses, tissue repair,
inflammatory disease pathogenesis, and cancer progression (75). It
can induce the expression of IL-1, IL-6, TNF, GM-CSF and CCL.
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The IL-23/IL-17 axis plays a crucial role in inflammatory responses
(76). IL-23 induces the Th17 cells to secrete IL-17 by activating
JAK-STAT cascade. Studies indicated that chronic inflammation
could worsen cardiovascular complications in myeloproliferative
neoplasms (MPNs) by activating JAK-STAT pathway (77). Liu
et al. (78) verified that T cell immunoglobulin domain and mucin
domain 4 (TIM-4) was a novel growth factor promoting non-small
cell lung cancer (NSCLC) progression. IL-6 facilitated NSCLC
metastasis by up-regulating TIM-4 expression through NF-xB
pathway. Chen et al. (79) showed that IL-17A promoted the
development of gallbladder cancer (GBC) through stimulating
the epithelial-mesenchymal transformation (EMT) mediated by
ERK/NF-xB pathway. IL-17A, served as a new therapeutic target
and diagnostic marker, significantly impacting the treatment
of GBC.
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IL-33 is released by epithelial and smooth muscle cells of the
airway system in response to environmental factors, such as
allergens, viruses, parasites and pollutants (80). Recent studies
have linked IL-33 to various cancers, including lung cancer, liver
cancer, head and neck squamous cell carcinoma. The expression of
IL-33/ST2 in cancer tissues correlates with tumor growth and
progression (81, 82). IL-33 binds to ST2 on precursor mast cells,
recruiting IL-1RAcP and activating a common signaling pathway
mediated by Toll/interleukin-1 receptor (TIR). MyD88 recruitment
further activates the ERK, JNK, p38 MAPK and NF-kB signaling
pathways, resulting in the transcription of pro-inflammatory
cytokines (such as IL-1B, IL-6, IL-13, TNF-o) and chemokines
(83). The matrix metalloproteases (MMPs) belong to a family of
zinc-dependent endopeptidases, regulated by cytokines and
hormones, which are involved in cancer pathogenesis and
progression (84). The tissue inhibitor of metalloproteinases
(TIMPs) are multi-functional proteins mediating cellular
signaling, among which TIMP-1, 2, 3, 4 are considered as natural
inhibitors of metalloproteinases to facilitate cancer progression.
TIMPs are endogenous protease inhibitors binding to MMPs to
form complexes that regulate the activation or function of MMPs.
The remodeling of myocardium extracellular matrix (ECM)
modulated by TIMPs and MMPs is related to heart health and
disease (85). IL-37 acts as an anti-inflammatory cytokine mediated
by Racl/NF-kB/MMP2 pathway (86). In 2021, Wang et al. (87)
suggested that IL-37f was involved in endometrial cancer
pathogenesis, offering a potential target for diagnosing and
treating the endometrial cancer.

IL-1 superfamily members including IL-1o, IL-1f, IL-18,
IL-3601, IL-36B, IL-36y and IL-38, which play vital roles in
inflammation, immunity and cancers. In synergy with IL-36Ra,
IL-36 promotes the intestinal inflammation through the NF-KB
pathway, which maintains the homeostasis by balancing the pro-
and anti-inflammatory responses in the TME (88). IL-38 also
exhibits anti-inflammatory property of decreasing IL-6, IL-1(,
CCL5 and CXCLI10 expression, reducing the production of pro-

TABLE 2 Categories, receptors and mechanisms of ILs.

10.3389/fimmu.2025.1694582

inflammatory mediators including IL-17 and IL-22 (89, 90), which
is considered as a receptor antagonist in inhibiting IL-36 to bind to
IL-36R (69). ILs play a crucial part in disease progression, which
possess pro- or anti-inflammatory properties by mediating various
signaling pathways (Table 2). However, further researches are
needed to confirm these effects.

2.1.3 Role of IL in liver diseases

NAFLD has emerged as a prevalent liver disorder worldwide
(91). The expression levels of IL-1f3, IL-18, procaspase-1 and
nucleotide-binding oligomerization domain (NOD)-like receptor
family - pyrin domain (NLRP3) are markedly increased in NAFLD.
Hepatic stellate cells have the capability to engulf the NLRP3
particles, potentially enhancing IL-1B expression. This, in turn,
leading to the pyroptosis and inflammasome release, finally causing
the liver injury and fibrosis (63). As is known to all, IL-6 plays a
pivotal role in immune responses at early stage of cancers. Current
researches indicate that IL-6 impacts tumor cell renewal and
metastasis by modulating downstream target named osteopontin
(OPN), making it a prognostic risk factor of HCC (92).

Surgical resection is a primary treatment for HCC. However, the
phenomenon of postoperative recurrence and metastasis is common
in clinical practice, contributing to poor prognosis. The efficacy of
current drug treatment for HCC is deemed unsatisfactory. Therefore,
it’s urgent to explore novel therapies to improve the prognosis of
patients and prevent the recurrence and metastasis of liver cancer
after surgery. Moreover, rational approaches to prevention,
surveillance, early detection, comprehensive diagnosis and
treatments can increase the overall survival time of patients with
HCC (93). Virus infection, especially hepatitis B virus (HBV)
infection, is the leading cause of HCC (94, 95). So antiviral
therapy is critical throughout the treatment process of HCC.
Wang et al. (96) selected 92 HBeAg-positive patients with chronic
hepatitis B (CHB) who received one year of standard long-acting
interferon named IFN-02b. Patients who did not respond to IFN
therapy were treated with sequential low-dose IL-2 for 6 months.

Cytokines Signaling pathway Effect Receptor Reference
-1 NF-kB pathway proinflammatory effect IL-1R (72)

(IL-1a, IL-1B)
IL-6 NF-kB pathway proinflammatory or anti-inflammatory effect IL-6R (73)
1L-10 JAK-STATS3 pathway anti-inflammatory effect IL-10R (74)
IL-17 ERK/NF-kB pathway proinflammatory effect IL-17R (76)
IL-18 NF-«B pathway proinflammatory effect IL-18R (62)
1L-27 STAT1 anti-inflammatory effect WSX-1/gp130 (48)
1L-33 ST2+Foxp3+/MyD88 proinflammatory effect ST2 (81, 83)
IL-36 MAPKs and NF-«B pathway proinflammatory or anti-inflammatory effect IL-36R (88)
IL-37 Racl/NF-kB/MMP2 pathway anti-inflammatory effect IL-18R (86, 87)
138 MAPKs and NF-B pathway r:et;t‘:rﬂ:nmt:;tzz ?IfffcltRZ‘)m;ﬁ ;213]“61; IL-1Rep2, IL-36R (69)
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The regulatory T cells (Treg cells) number and programmed cell
death protein 1 (PD-1) expression were reduced in non-responders.
Sequential administration of IL-2 restored effective immune
function, including signal transducers and transcriptional activator
1 (STAT1) activation. In addition, IL-2 therapy enhanced the
frequency and function of HBV-specific CD8+ T cells, thereby
improving the prognosis of patients. The constrain of IL-11-
STAT3 signaling could effectively prevent the postoperative
recurrence of HCC. Overall, this study suggested that sequential
IL-2 therapy could be a promising approach to effectively save the
immune function in patients with CHB who didn’t not respond to
standard IFN therapy.

The liver expresses IL-10., IL-33 and IL-18 in steady state, while
under pathological conditions, IL-1 family members are up-
regulated. Acute liver failure (ALF) is a life-threatening clinical
syndrome with rapid hepatocyte injury and hepatic encephalopathy
(97). Studies observed that IL-10t and IL-1[3 were related to the NF-
kB signaling activation and liver damage, playing a central role
inALF pathogenesis (98). Anakinra, a recombinant IL-1Ra, was
verified to improve survival of patients with acute liver injury by
regulating inflammatory response (99). It was confirmed that IL-33
served as an “alarmin” released by stressed hepatocytes, which
could bind to the receptor termed suppressor of tumorigenicity 2
(ST2), then activated NF-kB and mitogenactivated protein kinases
(MAPKs) pathways, ultimately promoting the formation of liver
fibrosis (100, 101).

IL-36 exerts effects on cells and tissue by activating NF-kB,
MAPKs, JNK, and ERK1/2 kinase cascades (102). Hu et al. (103)
found that higher expression of IL-36 indicated better prognosis and
longer survival of HCC. IL-37, an anti-inflammatory and
antineoplastic cytokine, blocking the effects of IL-10/f and IL-18,
thereby inducing the autophagia and facilitating hepatocytes apoptosis
in HCC through inhibiting the PI3K/Akt/mTOR signaling pathway
(104). The interaction between pro-inflammatory and anti-
inflammatory cytokines is a significant factor in host protection
against the HCC progression. However, further researches are
essential to investigate the complicated mechanisms involved and
therapeutic potential of targeting these cytokines in HCC.

2.2 Interferon

2.2.1 Classification of IFN

IFNs are important immune mediators in the natural defense
against infectious agents and they’ re classified into types I, IT and III
based on the receptors they bind to (105). Type I IFNs are expressed
in placental mammals, including IFN-o, IFN-B and IFN-e. While
IFN-6 and IFN-T are found in non-primate and non-rodent
mammals. IFNs exert anti-viral effects due to pro-inflammatory
and anti-inflammatory properties (106, 107). Type III IFN (IFN-A)
has a limited action spectrum, with its primary function of providing
an effective first defense line for mucosal surfaces (108, 109).

Type I and type III TFNs have unique ability to activate the
STAT. leading to STAT1/STAT2 heterodimer formation, then
interacting with IFN regulatory factor 9 (IRF9) to assemble into
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IFN-stimulated gene factor 3 (ISGF3) (110). NAFLD and non-
alcoholic steatohepatitis (NASH) are significant challenges
threatening human health due to their increasing incidence and
prevalence. Studies have demonstrated that IRFs are important
molecules involved in triggering IFN transcription, which play a
critical role in the pathogenesis of NAFLD/NASH (111).

Type II IFNs, specifically IFN-y, produced by T helper (Th)
cells, which is associated with adaptive immune system. IFN-y, a
pleiotropic cytokine, exhibiting essential effects on mediating Th1
immune responses, enhancing antiviral activity, modulating Th1/
Th2 balance and regulating cancer cells apoptosis and proliferation
(Figure 3). These diverse functions of IFN-vy highlight its significant
and potential therapeutic implications in infections, inflammation,
and cancers (112).

IFN-o and IFN-A respectively activate STAT1 and STAT2 to
form into STAT1/STAT2 heterodimer, which can interact with
IRF9 to assemble ISGF3 complex, so as to exert antiviral and anti-
inflammatory effects. IFN-A possesses the abilities of promoting
macrophage activation, controlling the Th1/Th2 balance, regulating
cell apoptosis and proliferation to play important roles in pathogen
clearance, anti-virus and anti-inflammation effects.

2.2.2 IFN-mediated signaling pathway

Among the IFNs, IFN-y plays a critical role in mediating
immune and inflammation responses through activating the JAK-
STAT signaling pathway. IFN-y/STAT1 pathway is promptly
activated responding to infections or inflammatory signals and
then being deactivated once the threat is resolved, assisting to
maintain the immune balance (113). Moreover, IFN-y/STAT1
pathway is regulated by facilitating the non-cytolytic virus
clearance and modulating the neuronal excitability within
neurons, thus contributing to enhance the immune surveillance
(114). The stimulator of interferon genes (STING) is emerging
as a novel role with pleiotropic effects in the immune system. The
applications of STING agonists manifest their importance in cancer
immunotherapy. STING signaling is involved in promoting tumor
metastasis (115, 116). The STING pathway have prominent effects
in detecting the pathogens and self-DNA released from tumor cells,
then the antiviral immunity is triggered by activating NF-kB
signaling and inducing immune-stimulated genes (ISG) and type
I IFN expression (117, 118).

2.2.3 Role of IFN in liver diseases

Currently, main treatments for CHB are IFNs and nucleotide
analogues. These reagents are utilized to suppress HBV replication,
reduce liver inflammation and prevent disease progression. IFNs exert
effects by boosting the immune response against the virus, while
nucleotide analogues can interfere with the process of viral replication.
Hackstein et al. (119) revealed that IFNs signalings stimulated the
myeloid-derived IL-10 expression, presenting a novel avenue for
enhancing the T-cell immunity in patients with chronic liver disorders.

Previous studies indicate that Interferon regulatory factor 1
(IRF-1) is crucial in occurrence and evolution of liver diseases,
which can inhibit hepatitis virus (A/B/C/E) replication, alleviate
liver fibrosis progression, making it a potential mediator for
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Classification and role of IFNs in inflammation and immune response. IFN-o and IFN-y respectively activate STAT1 and STAT2 to form into STAT1/
STAT2 heterodimer, which can interact with IRF9 to assemble ISGF3 complex, so as to exert antiviral and anti-inflammatory effects. IFN-y possesses
the abilities of promoting macrophage activation, controlling the Th1/Th2 balance, regulating cell apoptosis and proliferation to play important roles

in pathogen clearance, anti-virus and anti-inflammation effects.

predicting the prognosis and recurrence of liver cancer (120). IRF-1
binds to the promoter of programmed cell death protein ligand 1
(PDL1) in tumor cells and triggers immune escape in HCC. Besides,
IRF-1 can promote malignant phenotype of HCC by activating
mTOR/STAT3/AKT signal pathway (121). STING is important to
maintain the liver homeostasis. When STING pathway is
stimulated, IFNs and pro-inflammatory cytokines are produced
via downstream IRF3 and NF-kB pathways to inhibit hepatitis virus
replication, initiate the immune response, facilitate the oncogenesis
and metastasis of HCC (122).

2.3 Tumor necrosis factor

TNF-o. was first cloned in 1984 followed by the cloning of its
receptors TNFR1 and TNFR2 after 1990 (123, 124). Early studies
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suggested that TNF-ou exhibited anti-neoplastic properties (125).
With increasing researches on TNF, some experiments have revealed
that TNF-o. can directly impact on tumor cells and trigger the pro-
metastatic property by fostering cancer stem cells (CSCs) generation,
promoting epithelial cells transit to mesenchymal cells, enhancing
the invasion capability and inducing the metabolic alterations (126).

The inflammatory responses play a key role in innate and
adaptive immune systems, which is a protective immune response
that maintains tissue homeostasis by eliminating harmful stimuli,
including damaged cells, irritants, pathogens and sterile lesions
(32). Studies have shown that TNF and its receptors TNFR1 and
TNFR2 can be used as therapeutic targets for certain diseases (127).
TNF is a pleiotropic cytokine involved in a variety of inflammatory
and autoimmune diseases, such as rheumatoid arthritis (RA),
psoriasis, Alzheimer’s disease (AD) and multiple sclerosis (MS).
TNEF-o serves as a soluble toxic medium produced by liver Kuff cells
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(KC), mediating the inflammation, tumor cell proliferation
and apoptosis.

2.3.1 TNF-mediated signaling pathway

TNF was initially identified and named for its anti-tumor
properties. Both forms of TNF have biological roles, with sizes of 26
kDa and 17 KDa respectively. TNF can exert its actions in paracrine or
autocrine manner by binding to one of two cell surface receptors, TNF
receptors 1 and 2 (TNFR1 and TNFR2, named p55 and p75,
respectively). Among them, the cytoplasmic region of TNFRI
contains a characteristic death domain (DD) comprised of 80 amino
acids, which is utilized to assemble the signaling complex, hence earning
it the designation of a death receptor (128). Receptor-interacting protein
kinase 1 (RIPK1) binds to TNFRI to activate NF-kB pathway. TNFRI1
signaling can also induce the apoptosis and necrosis through the
phosphorylation of receptor interacting protein kinase 3 (RIPK3) and
changes of mixed lineage kinase domain-like (MLKL) (129). Guo et al.
(130) found that TNF was related to TNFAIP1, TNFAIP3, TNFAIP5,
TNFAIP6, TNFAIP8 and TNFAIP9, which could directly participate in
TNFAIP1, TNFAIP5, TNFAIP8 and TNFAIPY activation. The results
confirmed that TNFAIP1, TNFAIP2 and TNFAIP3 induced the tumor
progression by mediating NF-kB pathway.

2.3.2 Role of TNF in liver diseases

Alcohol metabolism produces toxic metabolites by releasing
cytokines, chemokines, and ROS (131). Long-term chronic alcohol
abuse can lead to liver injury, hepatitis, fibrosis and HCC. The
development of alcoholic liver disease (ALD) can be influenced by
TNF and IFN-y. ALD is a multimodal disease that encompasses
alcoholic steatohepatitis (ASH) and alcoholic fatty liver disease
(AFLD), ultimately giving rise to liver fibrosis and cirrhosis. IL-6
and IL-10 act as protective cytokines in the liver, which are
correlated with ALD progression. NASH is an inflammatory
subtype of NAFLD characterized with significantly elevated pro-
inflammatory cytokines. TNF-o. expression is relevant to the degree
of liver damage in ALD and NASH (132). Alcohol consumption
may bring about liver inflammation through inducing the
translocation of enterogenic endotoxins circulate to portal vein.
Moreover, alcohol consumption triggers KCs activation via the
lipopolysaccharide/toll-like receptor 4 (LPS/TLR4) pathway,
further promoting liver inflammation. HSCs exert a dramatic
influence in liver fibrosis angiogenesis. By exploring anti-
angiogenic therapy, we’re making efforts to pursue therapeutic
approaches to address the alcoholic liver fibrosis (ALF) (133).

Researchers have confirmed that TNF-o is important in the
pathogenesis of NAFLD (30). TNF-o. is originally discovered to
prevent HCC development, it exhibits a gradual increase tendency
from normal controls to patients with NAFLD and HCC (134).
TNF-o triggers hepatocyte apoptosis, necrosis, liver inflammation
and regeneration, autoimmune hepatitis and HCC, making it a
promising diagnostic biomarker and appealing therapeutic target
for NAFLD-associated HCC (27). Han et al. (135) demonstrated
that TNF- inducible gene 6 protein and its derived peptide could
ameliorate the liver fibrosis in mice with ALD by restraining CD44
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activation, so as to be a treatment approach for ALF. NF-xB
signaling plays a dual role in the advancement of liver diseases. It
exerts a protective effect and maintains normal liver function
under physiological conditions; while under pathological
conditions, the excessive activation of NF-kB may promote the
hepatocarcinogenesis and tumor progression (136-138). TNF-o
can facilitate the occurrence and development of HCC by
activating the NF-xB or JNK pathway. It may also hinder the
HCC progression through inhibiting hepatocyte apoptosis (139).
Hepatic encephalopathy (HE) refers to a combination of mental
and neurological disorders of central nervous system secondary to
serious liver diseases. HE is commonly observed in patients
suffering from acute or subacute liver injury (severe viral
hepatitis, poisoning), cirrhosis and advanced liver cancer, as well
as some patients after the operation of transjugular intrahepatic
portosystemic stent shunt (TIPS). When liver function is severely
impaired, toxic metabolites in the blood cannot be eliminated. The
secretion of TNF-q., IL-1P and IL-6 can disrupt neurotransmission,
leading to dysfunction of cognitive and motion (140, 141).

2.4 Colony stimulating factor

Colony stimulating factor 1 (CSF-1) is involved in recruiting the
monocytes from peripheral blood to TME and promoting their
differentiation into macrophages. CSF-1 can restain the
tumorigenesis of tumor-associated macrophages (TAMs), making
it a key regulator of survival and proliferation. The phenotypes of
TAMs are categorized into type M1 and M2. M1-type macrophages
are generated in response to granulocyte macrophage colony
stimulating factors (GM-CSF or CSF2) and stimulated by IFN-v,
lipopolysaccharide, TNF-o,, which share the same properties of
anti-tumor and pro-inflammation. M2-type macrophages possess
biological functions of anti-inflammatory property, regulating
immune response, promoting tumor growth, angiogenesis,
invasion and metastasis, as well as resisting to cancer treatments.

2.4.1 CSF-mediated signaling pathway

In recent years, CSF1/CSFI1R axis has attracted more attention
in clinical applications. Fujiwara et al. (142) confirmed that CSF1R
inhibitor Pexidartinib (PLX3397) could effectively inhibit the
activation of pERK1/2 signaling molecules by CSF-1, resulting in
decreased polarization, survival and chemotaxis of TAMs. This
pathway could induce the simultaneous depletion of TAMs and
Forkhead protein/transcription factor (FOXP3+) Treg cells, hinder
the primary tumor growth and distant metastasis, improve the
metastasis-free survival, which made a new breakthrough in
cancer immunotherapy.

2.4.2 Role of CSF in liver diseases

It’s reported that more than one million people die from
advanced chronic liver diseases worldwide every year, and liver
surgery remains a crucial treatment option to achieve long-term
survival for patients with HCC. Granulocyte colony-stimulating
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factor (G-CSF) is secreted by fibroblasts, monocytes, macrophages,
endothelial cells, stromal cells and bone marrow cells, which can
promote the maturation and release of granulocytes, and induce the
synthesis of macrophages and eosinophils. Previous researches have
shown that G-CSF can regulate the inflammatory response, enhance
the liver regenerative capacity, and improve the survival rates of
patients with advanced chronic liver disorders. In 2023, Colli et al.
(143) conducted 20 experiments involving 1,419 participants
from different countries. The intervention measures of this
research included administering G-CSF alone or combination
with any of following factors: growth hormone, erythropoietin,
N-acetylcysteine, infusion of CD133-positive hematopoietic stem
cells or autologous bone marrow monocytes. The results
demonstrated that utilizing G-CSF alone or combination with
above factors was beneficial for participants who experienced one
or more liver disease-related complications, such as HE,
hepatorenal syndrome and esophageal varices rupture bleeding.
Moreover, G-CSF reduced the mortality and development of
infections like sepsis in patients with decompensated chronic
liver diseases.

In 2019, Zhu et al. (144) isolated chemical-induced liver tumors
from wild-type mice and OPN- knockout mice, tumor infiltrating
cells and inflammatory immunoprofiles in the two groups were
analyzed respectively, and then they conducted a cell co-culture
experiment in vitro. The results indicated that OPN/CSF1/CSF1R
axis exhibited immunosuppress property in HCC. Furthermore,
TAMs migration could be impeded by blocking the CSF1/CSF1R
axis, thereby enhancing the efficacy of immune checkpoint
inhibitors in treating HCC. This provides a new method for HCC
clinical treatment.

2.5 Chemokines

CKs, secreted by leukocytes and stromal cells, possessing the
characteristics of chemotaxis and activation. Based on the
arrangement position of first two cysteine residues near the amino
terminal, CKs are divided into four subfamilies, including CXC,
CC, CXXXC and C subfamily (145). After binding to specific
receptors, CKs activate the phosphatidyl creatine kinase or
phosphatase pathway to trigger leukocyte adhesion and regulate
liver inflammation by controlling the migration of hepatocytes,
KCs, HSCs and immune cells.

2.5.1 CK-mediated signaling pathway

CKs are crucial in promoting tumor cell invasion with tumor
infiltrating lymphocytes (TILs), and recruiting TAMs (146). There
are 14 typical chemokine receptors that recognize multiple ligands,
which can bind to multiple receptors in a similar manner (147). CKs
and their receptors regulate tumor cells proliferation and metastasis
through various signaling pathways (148). Leukocyte-derived
chemotaxin-2 (LECT2), secreted by hepatocytes, which is
involved in pathogen clearance, inflammation and immune
response, tumor metastasis in NASH (149).
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IL-8 has two receptors, IL-8RA and IL-8RB, also known as
CXCRI1 and CXCR2, the sequence homology of which is up to 77%
(150). CXCLS plays an important role in inflammatory diseases and
tumors (151). Zhai et al. (152) found that CXCL8 might cause the
chemotherapy resistance of gastric cancer through activating the
NF-kB signaling and up-regulating the ATP-binding cassette
subfamily B member 1 (ABCB1). CXCR1 only binds to CXCL6
and CXCLS8, while CXCR2 is a typical G protein-coupled receptor
responding to CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7
and CXCL8 (153). CK receptors and ligands have a profound effect
on the occurrence, angiogenesis, metastasis, proliferation and
invasion of lung cancer, colorectal cancer, gastric cancer and
HCC, making them promising targets for immunotherapy, which
impact the prognosis and treatment outcomes of patients with
tumors (154, 155).

By modulating the pathways mediated by CKs and their
receptors, TME immunophenotype can be reshaped to improve
the immunotherapy efficacy. Desurmont et al. (156) discovered that
CXCR2 and CXCL7 overexpression shortened the overall survival
(OS) and disease-free survival (DFS) of colorectal cancer patients
with liver metastasis, which could be recognized as a predictor of
poor prognosis in metastatic colorectal cancer. Hermitte et al. (157)
demonstrated that LECT2 low expression in HCC was relevant with
advanced tumor grade and immune invasion, which makes it a
promising biomarker in HCC immunotherapy.

CCL28, a ligand of CCR3/CCR10, makes some effects on the
growth, metastasis and spread of breast cancer. CCR10/CCL27
signaling is associated with the adherence and survival of
melanoma cells during the metastatic process (158). CXCR5/
CXCL13 is related to bone metastasis of prostate cancer (159).
Zanetti et al. (160) proved that recombinant CXCL13 could increase
cell proliferation of pAKT and B-cell acute lymphoblastic leukemia
(B-ALL), CXCR5/CXCL13 axis might be considered as a prognostic
marker and promising target for treating the prostate cancer and
B-ALL.

2.5.2 Role of CK in liver diseases

ALD is mainly correlated with excessive alcohol consumption.
If ALD isn’t well controlled, it may evolve into liver fibrosis,
cirrhosis, eventually HCC with fatal property and poor prognosis.
There is substantial evidence showing that therapeutic agents
targeted to oxidative stress or gut-liver axis are considered as
crucial treatments for ALD by suppressing inflammatory response
and enhancing liver regeneration (161-163). Alcohol consumption
promotes hepatocytes to secrete CKs, in turn triggering the
inflammatory cells to recruit to liver and increasing micro
ribonucleic acid (miRNA)-155 expression through NF-xB
pathway, then stimulating the lipopolysaccharids-triggered KCs to
secrete TNF, ultimately facilitating liver inflammation (164, 165).
Therefore, it’s essential to search for therapeutic strategies to block
the CK-mediated pathway for treating ALD and HCC.

NAFLD is the third leading cause of HCC worldwide and
characterized by steatosis, liver inflammation, liver cell damage
and progressive fibrosis, which can be divided into nonalcoholic
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fatty liver disease (NAFL) and NASH (166). Several cellular
components or molecular pathways of NASH can be targeted
simultaneously to achieve anticipative therapeutic goals (167-
171). CCL2/CCR2 is utilized as therapeutic targets for treating
NASH (172). The gut-liver axis is critical in NAFLD pathogenesis.
The intestinal flora of patients with NAFLD, cirrhosis and HCC are
significantly associated with systemic inflammation. The contents
of IL-8/13, CCL3/4/5 are higher in HCC than those in normal
subjects (173). Immune cells mainly include macrophages,
monocytes and neutrophils, derived from hematopoietic stem
cells of bone marrow, which are responsible for immune defense,
stabilization and immune surveillance (174). Macrophages and
hepatocytes can release CKs, and immune cells are attracted into
the injured position to promote collaborative recruitment (175).
CXCL16 can promote cell proliferation, invasion and migration by
mediating PI3K/AKT/PKB and ERK/MAPK pathway, which plays
a key role in the progression of NAFLD, cancer, atherosclerosis,
renal fibrosis (176).

Excessive alcohol consumption, a high-fat diet, and chronic
hepatitis virus infection can lead to liver inflammation, eventually
cause portal hypertension, liver fibrosis, cirrhosis, HCC. Endothelial
p300 is a regulator of gene transcription with the properties of
activating NF-kB pathway, promoting CCR2+ monocytes/
macrophages accumulation and increasing CCL2 expression in
the damaged liver, ultimately resulting in portal hypertension and
liver fibrosis (177). Guo et al. (178) discovered that cenicriviroc
could inhibit liver fibrosis and cirrhosis by inactivating CCR2-
STAT1/NF-kB/ERK pathway. Puengel et al. (179) demonstrated
that CCR2/5 signaling ameliorated liver fibrosis through inhibiting
the monocytes and macrophages. Dudek et al. (180) showed that
CXCR6" CD8 T cells were abundant in NASH, characterized by
low-activity transcription factor forkhead box O1(FOXOL1). Fas and
its ligand FasL were related to cell apoptosis. Blocking the FasL
could prevent self-attack of CD8 in vitro and T cells after adoptive
transfer in vivo, which further improved the liver injury in NASH.

HCC, one of the common solid malignancies, the key factors of
which are alcohol intake, sex, age, lipid, obesity, type 2 diabetes,
dysregulation of gut microbial and genetic variation. Previous
experiments and theories have confirmed that CXCR1/2 axis
activated immunosuppressive cells, and CXCR3/4 axis increased
the recruitment of effector cells. TME immunophenotype might be
reshaped to improve the efficacy of tumor immunotherapy by
regulating CKs and CK receptor-related pathways (181). As is
known to all, forkhead frame transcription factor C1 (FOXC1) is
closely related to blood vessels maturation through interacting with
Notch and VEGF pathway. Hang et al. (182) found that CXCR1 and
CCL2 could target to FOXCI, making them predictors of
postoperative recurrence and OS in HCC.

CCL20, expressed in liver, colon, skin, the specific receptor of
which is CCR6. CCL20/CCR6 axis can facilitate cell proliferation
and migration by modulating immune cells to reshape TME, so as
to be utilized as a target for immunotherapy in HCC, colorectal
cancer, breast cancer, pancreatic cancer, cervical cancer and kidney
cancer (183). In 2023, Xie et al. (184) found that the overexpression
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of E-26 specific sequence variant 4 (ETV4) in hepatocytes
transactivated the expression of PD-L1 and CCL2, consequently
inhibited CD8+T cell accumulation. Knockout the CCL2 gene with
lentivirus or CCR2 inhibitor CCX872 could compromise the
infiltration of TAM and MDSC induced by ETV4 and HCC
metastasis, which provided a theoretical basis for developing a
novel combined immunotherapy strategy for HCC. We
summarize the mechanisms and clinical applications of
chemokine receptors or ligands in Table 3.

2.6 Growth factor

2.6.1 GF-mediated signaling pathway

As a potential signaling molecule, GF plays a dramatic role in
the repair of tissue and the regeneration of vascular through
regulating the cell growth, stem cell differentiation and tissue
healing. Llopis-Hernandez et al. (186) proved that fibronectin
(EN) was utilized to make the GF interacting with the
extracellular matrix (ECM) proteins, which could offer a new
substrate for efficient and low dose delivery to local lesions. The
polymer system might reduce the dose of GF and locally delivered
GF to the site where regeneration was needed. By targeting the
integrins and GF receptors, the synergistic effect might be
maximized. The integrin/GF signaling contributed to the
differentiation of stem cell and the repair of tissue.

GF is a crucial component of regenerative strategies for
therapeutic repair or tissue replacement. There are some complex
signaling pathways in mediating the liver regeneration (Table 4).
Chen et al. (198) discovered that controlling the tissue development
by modulating the local availability of GF combinations would
provide a powerful tool for studying and manipulating a wide range
of developmental and regenerative process. The optimal GF
combination was delivered to the target site safely. GFs can be
classified into PDGFs, bone morphogenetic proteins (BMPs),
insulin-like growth factors (IGFs), TGF-B and VEGF, which have
good prospects in application for the bone healing and
osteogenesis (199).

Cytokines and GFs can regulate cell recruitment, migration,
adhesion, proliferation, differentiation and apoptosis. Previous
researches have demonstrated that gut microbiota can modulate
the release of IL-6, TNF-a, hepatocyte growth factor (HGF), IFN-y
and TGF-f, which are involved in liver regeneration and different
liver disorders (200, 201). Tumor cells have the ability to produce
the cytokines to facilitate cell growth and overexpress the GF
receptors. Abnormal GF signalings can improve the survival
through mediating RAS/RAF/MEK/ERK and PI3/AKT/mTOR
pathways, and some GFs may boost tumor cell growth and
metastasis by post-transcriptional mechanisms (202).

2.6.2 Role of GF in liver diseases

The liver has a satisfactory capacity of regeneration, so that it can
recover the function and size even after 70% of the liver is partially
removed. The process of liver regeneration involves a complex
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TABLE 3 The mechanisms and clinical applications of chemokine receptors or ligands in liver disease.

Chemokine receptor

: Mechanism Disease type Author
or ligand
H L. (182
CXCR1/CCL2 Promoting cells proliferation, migration and invasion HCC ;i:getetai (isi))
Inhibiting liver fibrosis and cirrhosis by mediating
CCR25 CCR2 -STAT1/NF-kB/ERK pathway; Liver fibrosis and cirrhosis; Guo et al. (178)
Restraining the circulating Ly6C+ monocytes and NASH Puengel et al. (179)
macrophages derived from liver monocytes
Promoting the infiltration and metastasis of TAM and MDSC; NASH:
CCR2/CCL2 Recruiting the monocytes/macrophages and activating KCs; HC C) Zhuang et al. (185)
Promoting tumor cell angiogenesis and metastasis
Contacting CXCR6 CD8+ T cells with ATP led to the up-regulation of
CXCRé FasL; Blocking the .FasL could s'usta'in the self-attack of FZDS in vitro' and NASH Dudek et al. (180)
T cells after adoptive transfer in vivo, and further ameliorated the liver
damage
Leading to tumor cells proliferation, migration, invasion and metastasis .
XCL16/CXCR6 NAFLD Korbecki et al. (176
CXCLIGICXC by mediating the PI3K/AKT/PKB or ERK/MAPK pathway orbeckd et al. (176)
Regulating i 1ls to reshape TME;
CCL20/CCR6 cguiating immune e7s fo restape 1 HCC Kadomoto et al. (183)
Promoting cell proliferation and migration
Involved in pathogen clearance, inflammatory and immune responses,
tumor metastasis;
Leuk 11-derived
eukocyte ce . erve In HCC with low expression of LECT2, B-catenin pathway was activated NASH; Takata et al. (149)
chemotaxin-2 . o . . ;
LECT2 to induce epithelial cell transform into mesenchymal cell, then triggered HCC Hermitte et al. (157)
TME and tumor phenotype remodel, ultimately inhibited HCC
occurrence and progression

network of hepatocyte growth-promoting factors, cytokines,  Liver regeneration occurs when the liver is damaged by viruses or
signaling pathways and transcription factors. The mechanical and  drugs, as well as after partial hepatectomy or liver transplantation.
chemical environment of the liver changes with the accumulation of ~ Some characteristic alterations will happen after partial hepatectomy
various GFs and the remodeling of the extracellular environment.  or partial liver transplantation, such as hemodynamic changes in

TABLE 4 Signaling pathway mechanisms in liver regeneration phase.

Signaling pathway Main mechanism Author

Activating soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP)/
c¢GMP-dependent protein kinase 1 (PKG-1) pathway, releasing NO by endothelial
cells, then initiating liver regeneration

NO pathway
(initiation phase)

Emily et al. (187)
Dai et al. (188)

YAP pathway Increasing YAP nuclear level and gene expression at initial stage, resuming at the Grijalva et al. (189)
ijalv .
(initiation phase) termination stage, thereby regulating the hepatocyte proliferation /

IL-6 pathway Stimulating IL-6/JAK/STAT3 pathway; Regulating IL-6, STAT3, c-Myc and c-Jun Wen et al. (190)
(initiation phase) signaling molecules ’
TNF-o pathway L

A NF-kB path Zh:; (191
(initiation phase) ctivating KB pathway ang et al. (191)
Notch pathway Activating Notch- HIF-1a pathway, Prom‘oting LR by enhancing hepatocytes Zhang et al. (192)
(initiation phase) proliferation
Wnt/B-catenin pathway Inducing the transformation of transitional liver progenitor cells (TLPCs) into Pu et al. (193)
u .
(initiation phase) hepatocytes

HGF/c-Met signaling can regulate the survival of liver progenitor cells;

HGF path
pathway Activating downstream pathways such as PI3K/AKT, JAK/STAT3 and Ras/Raf

(initiation phase)

Chiang et al. (194)
Li et al. (195)

pathways
TGF-p path
(terfiinl:ti[;n l:};?;e) Activating TGF-B- Smad 2/3 signaling pathway, thereby inhibiting cell cycle Li et al. (196)
PI3K/AKT/mTOR pathway Panax notoginseng saponins (PNSs) promoting LR through activating PI3K/AKT/ Zhang et al. (197)
(progression phase) mTOR pathway 8 '
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portal vein flow pressure, tissue ischemia and hypoxia, and platelet
activation (203). The process of liver regeneration is a cascade
chemical signaling pathway. Signaling molecules are delivered to
the nucleus to activate the liver regeneration, including hepatocyte
proliferation, stem cell differentiation, extracellular matrix
remodeling, and termination signals that regulate the size of the

10.3389/fimmu.2025.1694582

regenerated liver. KCs and HSCs can secrete transforming growth
factor B (TGF-B1) and HGF. The KCs can activate the Wnt signaling
pathway to act on the hepatocytes. The signal transduction
mechanisms involved in the liver regeneration mainly including
NO pathway, YAP pathway and actomyosin remodeling (204).
Moreover, following signaling pathways like IL-6, TNF-0, Notch
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FIGURE 4

Pivotal role of cytokines in liver disease pathogenesis and clinical application. (A) IL-2 can activate STAT1 signaling, restore effective immune and
enhance HBV-specific CD8+ T cells. IL-6 impacts tumor cell renewal and metastasis by modulating OPN. The postoperative recurrence of HCC can
be prevented by constraining IL-11-STAT3 signaling. HSCs engulf NLRP3, enhance IL-1B expression, cause liver injury, fibrosis and HCC. (B) TNF-o
affects liver inflammation, apoptosis by activating NF-xB and JNK pathways. HE is appeared in patients with acute or subacute liver injury, cirrhosis
and advanced HCC. (C) IFNs can suppress HBV replication, reduce liver inflammation, prevent disease progression by stimulating myeloid-derived
IL-10 expression and enhancing immune response. (D) CKs promote tumor initiation, progression, angiogenesis, metastasis, proliferation and
invasion by targeting the non-immune cells and reshaping the TME. ETV4 overexpression in hepatocytes can activate PD-L1 and CCL2, increase
TAM and MDSC infiltration, inhibit CD8+T cell accumulation, then promote HCC metastasis. (E) When liver function is damaged by viruses, drugs, as
well as after partial hepatectomy or liver transplantation, Liver regeneration occurs with GFs accumulation and extracellular environment remodeling
through activating pathways including NO, YAP, actomyosin remodeling, IL-6, TNF-a, Notch, Wnt/B-catenin, HGF, TGF- and PI3K/AKT/mTOR
pathways. (F) G-CSF is secreted by fibroblasts, monocytes, macrophages, endothelial cells, stromal cells and bone marrow cells. It can induce
macrophages and eosinophils synthesis, regulate inflammatory response and enhance liver regeneration. OPN/CSF1/CSF1R axis has

immunosuppress property in HCC microenvironment.
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pathway, Wnt/B-catenin, HGF, TGF-f pathway and PI3K/AKT/
mTOR pathway are also involved (191). During the process of liver
regeneration, HGF triggers the loss contact of cell-matrix, thus
promotes the hepatocytes proliferation.

Myelogenic growth factor is a mechanically-induced vascular
secretion signal present in the human liver endothelial cells. By
activating MAPK and STAT3 signaling, primary human
hepatocytes from different donors are induced to improve their
survival (205). The liver acts as a central immune organ that
activates the immune system in response to the circulating
antigens (206, 207). Di-Tacovo et al. (208) revealed that optimal
liver regeneration was achieved by integrating the IL-6/JAK/STAT3
and PI3K/PDK1/AKT pathways to accelerate the cell proliferation.

3 Conclusions

Cytokines are essential for biological processes including cell
proliferation, tissue repair, aging, inflammation and immunity.
Current researches have demonstrated that TNF, IL-10/f3, IL-1Ra,
IL-6, IL-18, IL-33, IL-36, IL38, CCL2 and CCR2 are closely
associated with liver disorders (209-211). The pivotal roles of
cytokines in liver diseases pathogenesis and clinical application
are elaborated respectively in the previous sections of this
review (Figure 4).

Nowadays, recombinant IL-2, IFN-o and TNF are applied into
cancer immunotherapy (212, 213). The therapeutic efficacy is
dramatically hindered by complex pleiotropy, redundancy,
toxicity, off-target effect, short half-life and narrow therapeutic
window of cytokines (214). Moreover, the therapy-induced
immune response may limit the efficacy by neutralizing
antibodies with drugs or restrict the security through inducing
inflammatory responses (215). Based on these factors above, there
are still great challenges in developing innovative drugs based on
cytokine therapy.

Supercytokines are formed into fusion proteins or bifunctional
cytokines by modifying the binding domains, enhancing the affinity
or improving the half-life of cytokines. There are also adaptor
cytokines, synplastic cytokines, nanocellular cytokines, adaptive
immune cells equipped with cytokines, and cytokine-armed
oncolytic viruses existing in the clinical applications (216).
Deckers et al. (217) developed safe and effective cytokine-
based therapies for immune-mediated diseases by means of
technological innovations in protein engineering, nanomedicine,
RNA technology and cell engineering. In addition, prodrugs of
various cytokines including IL-2, IL-12 and IFNo2b were exploited
to treat cancers (218, 219).

Recently, immunotherapy has emerged as promising treatment
in solid cancers, such as immune checkpoint inhibitors (ICIs),
tumor vaccines, oncolytic virus immunotherapy, adoptive cell
therapy and cytokine therapy (220-222). The combination of ICI
and VEGEF inhibitor is verified to be a first-line therapy for advanced
HCC (223). Meanwhile, antiviral therapy is necessary during the
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process of HCC treatment (94). The recurrence and metastasis rate
can be reduced when the surgery is combined with IFN therapy
mediated by cGAS-STING pathway (224). Moreover, cGAS-STING
signaling pathway agonists can also be combined with radiotherapy,
chimeric antigen receptor T Cell (CAR-T) therapy, oncolytic virus
therapy to enhance tumor immunity and improve efficacy (225,
226). By means of exploring the mechanisms of cytokines and
constructing the diverse combination complexes to inhibit the
process of liver diseases, we are trying to pursue more promising
targets for immunotherapy strategies in liver disorders.
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