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Liver disease is a major threat to human health and life safety, primarily

encompassing hepatitis caused by various factors (viral, alcoholic, fatty and

autoimmune hepatitis), cirrhosis and liver cancer. Cytokines are molecules

found on cell membranes that mediate the inflammation, immunity and a

range of cellular functions, such as cell differentiation, proliferation, metastasis

and apoptosis. In general, the delicate balance between pro- and anti-

inflammatory effects is maintained by the body’s regulatory mechanisms. Once

this balance is disturbed, complex chain reactions can occur, including systemic

injury, tumor, multi-organ failure or death, resulting in the release of cytokines.

This review mainly focuses on the classification, biological characteristics,

pathogenesis, signaling pathways of various cytokines (interleukins, interferons,

tumor necrosis factor, colony-stimulating factors, chemokines and growth

factors) and their important roles in the occurrence and development of

different liver diseases, mediating the immune responses, and further discusses

the application prospects of cytokines in the clinical treatments of liver diseases.
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1 Introduction

Pathogens, autoimmune diseases, genetic disorders, and malignant tumors have been

identified as triggers for life-threatening systemic inflammatory syndromes, characterized

by excessive activation of immune cells and release of cytokines (1, 2). This heightened

immune response involves increased activity of dendritic cells (DC), lymphocytes,

macrophages, and other immune cells, resulting in elevated levels of interleukins (IL)

such as IL-6, IL-8, and IL-10, as well as C-reactive protein (CRP). These inflammatory

markers contribute to the severity of systemic response (3, 4). The dysregulated

inflammatory response initiates a self-reinforcing feedback loop that endangers the

host’s life, a phenomenon recognized as cytokine release syndrome (CRS) or cytokine

storm (CS) (5). CRS usually manifests with the symptoms of fever, fatigue, anorexia,

hypotension, hypoxia, and even organ dysfunction (6). Early detection of cytokines is

crucial for determining treatment strategies and predicting disease outcomes.
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The inflammasome, an intracellular signaling complex of innate

immune system, stimulated by the danger signals emitted from

damaged cells and pathogens, resulting in the maturation and

release of pro-inflammatory cytokines such as IL-1b, IL-18 and IL-

37, causing the activation of cysteine proteases including caspase-1/

4/5/8/11 (7, 8), ultimately triggering cell pyroptosis (9). Macrophages

contribute to local inflammation by generating reactive oxygen

species (ROS), secreting cytokines and chemokines (CKs), and

attracting more immune cells (10, 11). The involvement of

inflammasome leads to various aseptic inflammatory diseases,

hereditary autoinflammatory diseases, metabolic disorders,

cardiovascular diseases, neurodegenerative diseases and cancers

(12). Previous studies have suggested that inflammatory mediator

and transcription factors including ILs, CKs, tumor necrosis factor-a
(TNF-a), transforming growth factor-b (TGF-b), and granulocyte

macrophage colony-stimulating factor (GM-CSF), as well as nuclear

factor kB (NF-kB), signal transducer and activator of transcription 3

(STAT3) are essential for cancer-related inflammation (13).

The primary liver cancer (PLC) ranks as the fourth common

malignant tumors worldwide with a high mortality rate and it’s the

leading cause of cancer-related death in China (14, 15). According

to the pathological type of PLC, they’re divided into hepatocellular

carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC) and

mixed liver cancer (16). Early-stage PLC usually doesn’t cause

noticeable symptoms, while advanced PLC manifests as

abdominal pain, distension, nausea, and poor appetite. The

common treatments encompass surgery, ablation, transcatheter

hepatic arterial chemoembolization (TACE), targeted therapy,

immunotherapy and chemotherapy, but recurrence rate of post-

surgery can be as high as 40%-70% within five years. HCC

comprises approximately 75%-85% of PLC with poor prognosis.

The critical pathogenesis of HCC including hepatitis virus B (HBV)

or hepatitis virus C (HCV) infection, alcohol abuse and obesity

(17, 18). Lipid alterations are a common consequence of chronic

HBV and HCV infection, alcoholic hepatitis, nonalcoholic fatty

liver disease (NAFLD), and steatohepatitis (19). Chronic hepatitis

damages the liver epithelial cells, leading to DNA injury and

genomic mutations, facilitating tumor cells evasion of immune

surveillance and triggering the liver self-defense mediated by

immune cells including natural killer (NK) cells, NKT cells and

intrahepatic macrophages (20–23), which eventually causing liver

fibrosis and HCC. There’re various pro-fibrogenic mediators

including TGF-b1, platelet-derived growth factor (PDGF),

endothelin-1 (ET-1), toll-like receptor 4 (TLR4) and reactive

oxygen species (ROS), stimulating the epithelial to mesenchymal

transition, resulting in the secretion of elastin, collagen,

proteoglycans and glycoproteins, which play essential roles in

liver fibrosis (24). ET-1, a peptide distributed in liver, inducing

hepatic stellate cells proliferation, which is responsible for fibrosis/

cirrhosis and portal hypertension (25). ROS is derived from

molecular oxygen and formed by reduction–oxidation (redox)

reactions (26). The glutathione, lipoic acid and taurine are
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pleiotropic molecules acting as ROS scavengers, which are

involved in fibrosis progression by modulating the TGF-b, PDGF
and TLR pathways (24).

Cytokines play a pivotal role in liver diseases by impacting

inflammatory responses, hepatocyte proliferation, liver fibrosis or

cirrhosis. Certain cytokines can contribute to inflammation and

liver injury, they can also facilitate liver regeneration and enhance

antiviral defenses (27–30). Comprehensive understanding of

cytokines pleiotropy is essential for achieving optimal therapeutic

outcomes in the management of liver disease. This review delves

into the biological attributes of various cytokines and their diverse

functions in the progression and treatments of liver diseases.

Furthermore, innovative immunotherapy strategies utilizing

cytokines as targets in liver diseases will be explored and discussed.
2 Classification and biological
characteristics of cytokines

Cytokines are small proteins characterized by a broad spectrum

of biological activities. They are synthesized and secreted by

different immune cells (like monocytes, macrophages, T cells,

B cells and NK cells) and non-immune cells (like endothelial

cells, epidermal cells, and fibroblasts) in response to stimuli (31).

Cytokines play critical roles in regulating innate and adaptive

immunity, as well as in facilitating the tissue repair. By binding to

specific receptors, they modulate cell growth and differentiation.

Cytokines can be categorized into ILs, interferons (IFNs), TNF,

colony-stimulating factors (CSF), CKs, and growth factors (GF)

(32). Cytokines can act in an autocrine or paracrine manner,

exhibiting both pro-inflammatory and anti-inflammatory effects.

Within the tumor microenvironment (TME), cytokines serve as

vital signaling proteins with diverse functions, which have

antineoplastic and/or tumor-promoting effects on the occurrence and

progression of tumors (Figure 1). On the one hand, TGF-b can directly
inhibit the growth of tumor cells, while IFN-g, IL-2, IL-12 and IL-15

enhance the cytotoxicity of lymphocytes or bone marrow cells to

suppress the proliferation of tumor cells. On the other hand, TGF-b,
TNF, IL-1b can promote the cell survival and proliferation. TNF and

IL-6 may disrupt the cytokine regulation and trigger the inflammation

in TME. In addition, IL-10, IL-4 and TGF-b have the ability to induce

immunosuppression, whereas TNF, IL-6 and chemokines can

stimulate the angiogenesis (33). In this review, we illustrate the

characteristics, signaling pathways of cytokines in various liver diseases.

Some cytokines have antineoplastic and/or tumor-promoting

effects. On the one hand, TGF-b can inhibit tumor cell growth,

IFN-g and IL-2/12/15 suppress cell proliferation by enhancing the

cytotoxicity of lymphocytes or bone marrow cells. On the other

hand, TGF-b, TNF, IL-1b promote tumor cell proliferation. TNF

and IL-6 can stimulate the angiogenesis, disturb cytokine regulation

and trigger inflammation. Moreover, IL-4/10 and TGF-b can

induce the immunosuppression.
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2.1 Interleukin

2.1.1 Biological characteristics of IL
Based on the recognition sequence homology and receptor

chain similarity of interleukins, they’re divided into different

families and exert important effects in inflammation, autoimmune

diseases and cancers (34, 35) (Table 1). IL-1 and IL-6 family

members are introduced detailedly in this review. IL-1 family

consists of three main types: agonists (IL-1a, IL-1b, IL-18, IL-33,
IL-36a, IL-36b and IL-36g), antagonists (IL-1Ra, IL-36Ra and

IL-38) and anti-inflammatory cytokine (IL-37) (53). They serve as

crucial signaling molecules in both innate and adaptive immune

systems, mediating the inflammatory responses to varieties of

stimuli (54). The high-resolution structures of IL-1a, IL-1b, IL-
1Ra, IL-18, IL-33, IL-36g, IL-37 and IL-38 have been determined by

X-ray crystallography or solution nuclear magnetic resonance

(NMR). All of them have conserved b-trilobate conformation and

a hydrophobic core consisting of 12b-sheets (55). In the context of

tumor development and therapy, IL-1 expression is differentially

regulated in tumor cells, tissue stromal cells and immune cells in a

stage-specific and tissue-specific manner. IL-1 family members and

their receptors have pleiotropic functions depending on the target

cells, playing complicated roles in inflammation, tumorigenesis,

tumor metastasis, immunosuppression and immune surveillance

(56). IL-1 signaling regulation lies on IL-1R1 and IL-1R2. IL-1R1 is
Frontiers in Immunology 03
involved in the differentiation, expansion and survival of Th17 cells,

as well related to autoimmune disease (57). Most IL-1 family

members form into signaling complexes by binding to their

homologous receptors, such as IL-1RI (IL-1a and IL-1b), IL-33R
(ST2) and IL-36R (IL-36a, IL-36b and IL-36g). IL-1 receptor

accessory protein (IL-1RAcP) commonly serves as shared

secondary receptor, facilitating the formation of cytokine-receptor

co- receptor complexes. Therefore, targeting to the IL-1RAcP can

selectively inhibit the signaling transduction mediated by IL-1

family members, which provides a potential strategy for treating

cancers (58).

Recent studies have highlighted the significance of IL-1 family

members including IL-18, IL-33, IL-36, IL-37 and IL-38 in

mediating the inflammation and immune responses. They’re

tightly regulated by antagonists and anti-inflammatory cytokines

under physiological and pathological conditions (53). Some

evidence demonstrate that IL-1 family can influence the

expression of vascular endothelial growth factor (VEGF) and

fibroblast growth factor (FGF), two mediators which sustain

tumor progression. Blocking the IL-1 signaling pathways may

disrupt the recruitment of immature cells and inhibit tumor

immune evasion (59). IL-1a and IL-1b are key downstream

factors in intrinsic and extrinsic pathways linked to inflammation

and malignant tumors. IL-1a can translocate to the nucleus, acting

as a transcription factor that initiate the signaling transduction by
FIGURE 1

Pleiotropy of cytokines in tumor microenvironment. Some cytokines have antineoplastic and/or tumor-promoting effects. On the one hand, TGF-b
can inhibit tumor cell growth, IFN-g and IL-2/12/15 suppress cell proliferation by enhancing the cytotoxicity of lymphocytes or bone marrow cells.
On the other hand, TGF-b, TNF, IL-1b promote tumor cell proliferation. TNF and IL-6 can stimulate the angiogenesis, disturb cytokine regulation and
trigger inflammation. Moreover, IL-4/10 and TGF-b can induce the immunosuppression.
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binding to DNA and enhancing IL-8 expression. IL-1b, extensively
studied in the autoinflammatory diseases, contributing

to atherosclerosis and cancer progression (60). Experiments have

suggested that antibodies blocking IL-1b can prevent cardiovascular

events and reduce the incidence and mortality of lung cancer,

emphasizing the importance of IL-1 and related family members

(such as IL-33 and IL-18) in shaping the innate immunity

and inflammation responses (61, 62). Recent researches have

indicated that IL-1b signaling is relevant to cell death of

hepatocytes (63–65).

IL-6 family proteins regulate various pathways through binding

to gp130 receptor and affecting the liver regeneration. IL-11, a

member of IL-6 family, playing distinct roles from IL-6 in biological

and pathological aspects (Figure 2). IL-6R is predominantly

expressed in the immune cells, while IL-11R is highly expressed

in the stromal, epithelial and polarized cells, and IL-11RA is

prominent in the hepatocytes and hepatic stellate cells. IL-11 can

promote the development of liver diseases, eventually leading to

inflammation, steatosis, fibrosis and liver failure. Widjaja et al. (66)

reported that IL-11 induced the signaling cascade responses

involving the transcriptional activator 3 (STAT3) phosphorylation

and extracellular signal-regulated protein kinase (ERK) activation

in various cell types, resulting in increased expression of pro-

inflammatory genes, such as SERPINB2, TNFRSF18, IL-33,

CCL20, IL1RL1, CXCL3/5/8, intercellular adhesion molecule 1

(ICAM1) and IL-11. Proteomic studies demonstrated that IL-11

promoted the secretion of pro-inflammatory cytokines, significantly

increased the levels of IL-6, IL-8, monocyte chemoattractant protein
Frontiers in Immunology 04
1 (MCP1), CCL20 and CXCL1/5/6, which were crucial for

neutrophils, monocytes and lymphocytes. On the other hand, IL-

11 was observed to exhibit anti-inflammatory, anti-fibrosis and

regenerative properites (67).

IL-6R is expressed in immune cells, while IL-11R is expressed in

stromal, epithelial and polarized cells. IL-11 can cause liver

inflammation, steatosis, fibrosis and liver failure. IL-11 induces

STAT3 phosphorylation and ERK activation, resulting in

SERPINB2, TNFRSF18, IL-33, CCL20, IL1RL1, CXCL3/5/8,

ICAM1 and IL-11 overexpression. IL-11 can also promote the

secretion of IL-6, IL-8, MCP1, CCL20 and CXCL1/5/6.

2.1.2 Signaling pathway of IL
IL-1 is an inflammatory cytokine that activates the genes

associated with inflammation and immune diseases. The

formation of IL-1 receptor heterodimer triggers a series of

biological responses, including the activation of nuclear factor-kB
(NF-kB) and mitogen-activated protein kinase (MAPK) pathways.

IL-1 can bind to IL-1R on the cell surface, inducing downstream

nuclear transcription such as NF-kB and activator protein-1 (AP-1)

(68). This signaling cascade also involves a feedback regulatory

mechanism that promotes the expression of inflammatory

mediators like cyclooxygenase (COX) and nitric oxide synthase

(NOS), ultimately leading to inflammation (69). IL-1 receptor-

associated kinase 4 (IRAK4) is crucial in signaling pathways

mediated by Toll-like receptor and IL-1R, which plays a key role

in innate and adaptive immune responses (70, 71). MaIRAK4, a

homologue of IRAK4, has been shown to modulate NF-kB pathway
TABLE 1 Classifications and clinical applications of IL family members.

IL family member Main representative Clinical disease Author

IL-1 family

Pro-inflammatory cytokines
(IL-1a, IL-1b, IL-18, IL-33,
IL-36a, IL-36b, IL-36g)

Breast cancer, colon cancer, head and neck
cancer, lung cancer, pancreatic cancer and

melanoma

Gelfo V, et al. (36)
Akdis M, et al. (34)

Anti-inflammatory cytokines
(IL-1Ra, IL-36Ra, IL-37, IL-38)

Colorectal cancer,
inflammatory bowel disease,

atopic dermatitis

Sugiura K, et al. (37)
Dang J, et al. (38)

Mesjasz A, et al. (39)

IL-6 family IL-6, IL-11, IL-31
Colorectal cancer,
pancreatic cancer,

non-small cell lung cancer

Johnson DE, et al. (40)
Miura T, et al. (41)

Naqash ARTA, et al. (42)

IL-10 family
IL-10, IL-19, IL-20, IL-22,
IL-24, IL-26, IL-28, IL-29

Psoriasis, hepatitis, pancreatitis,
graft versus host disease (GVHD),

human T-cell lymphotropic virus type 1
(HTLV-1) infection

Ouyang W, et al. (43)
Shefler I, et al. (44)
Brites C, et al. (45)

IL-12 family IL-12, IL-23, IL-27, IL-35

Inflammatory bowel disease,
tuberculosis, malaria,

influenza virus infection,
pancreatic cancer, HCC

Verstockt B, et al. (46)
Tait Wojno ED, et al. (47)

Kourko O, et al. (48)

g- chain cytokine family
IL-2, IL-4, IL-7, IL-9,

IL-15, IL-21

Colorectal cancer, melanoma (MM), non-small
cell lung cancer,

rheumatoid arthritis, psoriasis,
systemic lupus erythematosus

Ma S, et al. (49)
Long D, et al. (50)

IL with chemokine activity IL-8, IL-16
HCC, colon, pancreatic,
breast and lung cancer,

Crohn’s disease

Fousek K, et al. (51)
Jørgensen AR, et al. (52)
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mediated by MaMyD88, leading to reduced expression of pro-

inflammatory factors (IL-1b, IL-6, IL-8, TNF-a) when knocked

down (72).

IL-6 activates the signaling molecule STAT3 by classical and

trans-signaling pathways. Classical signaling occurs in the cells

expressing IL-6Ra, inducing anti-inflammatory molecules,

whereas transmembrane signaling happens in cells expressing

gp130, triggering pro-inflammatory cytokine release and

promoting chronic inflammation (73). Sun et al. (74) observed

that mRNA let-7i regulated the maturation of dendritic cells (DC)

targeting to IL-10 through janus kinase-signal transducers and

activators of transcription (JAK-STAT3) pathway.

IL-17 is prominent for host immune defenses, tissue repair,

inflammatory disease pathogenesis, and cancer progression (75). It

can induce the expression of IL-1, IL-6, TNF, GM-CSF and CCL.
Frontiers in Immunology 05
The IL-23/IL-17 axis plays a crucial role in inflammatory responses

(76). IL-23 induces the Th17 cells to secrete IL-17 by activating

JAK-STAT cascade. Studies indicated that chronic inflammation

could worsen cardiovascular complications in myeloproliferative

neoplasms (MPNs) by activating JAK-STAT pathway (77). Liu

et al. (78) verified that T cell immunoglobulin domain and mucin

domain 4 (TIM-4) was a novel growth factor promoting non-small

cell lung cancer (NSCLC) progression. IL-6 facilitated NSCLC

metastasis by up-regulating TIM-4 expression through NF-kB
pathway. Chen et al. (79) showed that IL-17A promoted the

development of gallbladder cancer (GBC) through stimulating

the epithelial-mesenchymal transformation (EMT) mediated by

ERK/NF-kB pathway. IL-17A, served as a new therapeutic target

and diagnostic marker, significantly impacting the treatment

of GBC.
FIGURE 2

IL-11 plays distinct roles from IL-6 in biological and pathological aspects. IL-6R is expressed in immune cells, while IL-11R is expressed in stromal,
epithelial and polarized cells. IL-11 can cause liver inflammation, steatosis, fibrosis and liver failure. IL-11 induces STAT3 phosphorylation and ERK
activation, resulting in SERPINB2, TNFRSF18, IL-33, CCL20, IL1RL1, CXCL3/5/8, ICAM1 and IL-11 overexpression. IL-11 can also promote the secretion
of IL-6, IL-8, MCP1, CCL20 and CXCL1/5/6.
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IL-33 is released by epithelial and smooth muscle cells of the

airway system in response to environmental factors, such as

allergens, viruses, parasites and pollutants (80). Recent studies

have linked IL-33 to various cancers, including lung cancer, liver

cancer, head and neck squamous cell carcinoma. The expression of

IL-33/ST2 in cancer tissues correlates with tumor growth and

progression (81, 82). IL-33 binds to ST2 on precursor mast cells,

recruiting IL-1RAcP and activating a common signaling pathway

mediated by Toll/interleukin-1 receptor (TIR). MyD88 recruitment

further activates the ERK, JNK, p38 MAPK and NF-kB signaling

pathways, resulting in the transcription of pro-inflammatory

cytokines (such as IL-1b, IL-6, IL-13, TNF-a) and chemokines

(83). The matrix metalloproteases (MMPs) belong to a family of

zinc-dependent endopeptidases, regulated by cytokines and

hormones, which are involved in cancer pathogenesis and

progression (84). The tissue inhibitor of metalloproteinases

(TIMPs) are multi-functional proteins mediating cellular

signaling, among which TIMP-1, 2, 3, 4 are considered as natural

inhibitors of metalloproteinases to facilitate cancer progression.

TIMPs are endogenous protease inhibitors binding to MMPs to

form complexes that regulate the activation or function of MMPs.

The remodeling of myocardium extracellular matrix (ECM)

modulated by TIMPs and MMPs is related to heart health and

disease (85). IL-37 acts as an anti-inflammatory cytokine mediated

by Rac1/NF-kB/MMP2 pathway (86). In 2021, Wang et al. (87)

suggested that IL-37b was involved in endometrial cancer

pathogenesis, offering a potential target for diagnosing and

treating the endometrial cancer.

IL-1 superfamily members including IL-1a, IL-1b, IL-18,

IL-36a, IL-36b, IL-36g and IL-38, which play vital roles in

inflammation, immunity and cancers. In synergy with IL-36Ra,

IL-36 promotes the intestinal inflammation through the NF-KB

pathway, which maintains the homeostasis by balancing the pro-

and anti-inflammatory responses in the TME (88). IL-38 also

exhibits anti-inflammatory property of decreasing IL-6, IL-1b,
CCL5 and CXCL10 expression, reducing the production of pro-
Frontiers in Immunology 06
inflammatory mediators including IL-17 and IL-22 (89, 90), which

is considered as a receptor antagonist in inhibiting IL-36 to bind to

IL-36R (69). ILs play a crucial part in disease progression, which

possess pro- or anti-inflammatory properties by mediating various

signaling pathways (Table 2). However, further researches are

needed to confirm these effects.

2.1.3 Role of IL in liver diseases
NAFLD has emerged as a prevalent liver disorder worldwide

(91). The expression levels of IL-1b, IL-18, procaspase-1 and

nucleotide-binding oligomerization domain (NOD)-like receptor

family - pyrin domain (NLRP3) are markedly increased in NAFLD.

Hepatic stellate cells have the capability to engulf the NLRP3

particles, potentially enhancing IL-1b expression. This, in turn,

leading to the pyroptosis and inflammasome release, finally causing

the liver injury and fibrosis (63). As is known to all, IL-6 plays a

pivotal role in immune responses at early stage of cancers. Current

researches indicate that IL-6 impacts tumor cell renewal and

metastasis by modulating downstream target named osteopontin

(OPN), making it a prognostic risk factor of HCC (92).

Surgical resection is a primary treatment for HCC. However, the

phenomenon of postoperative recurrence and metastasis is common

in clinical practice, contributing to poor prognosis. The efficacy of

current drug treatment for HCC is deemed unsatisfactory. Therefore,

it’s urgent to explore novel therapies to improve the prognosis of

patients and prevent the recurrence and metastasis of liver cancer

after surgery. Moreover, rational approaches to prevention,

surveillance, early detection, comprehensive diagnosis and

treatments can increase the overall survival time of patients with

HCC (93). Virus infection, especially hepatitis B virus (HBV)

infection, is the leading cause of HCC (94, 95). So antiviral

therapy is critical throughout the treatment process of HCC.

Wang et al. (96) selected 92 HBeAg-positive patients with chronic

hepatitis B (CHB) who received one year of standard long-acting

interferon named IFN-a2b. Patients who did not respond to IFN

therapy were treated with sequential low-dose IL-2 for 6 months.
TABLE 2 Categories, receptors and mechanisms of ILs.

Cytokines Signaling pathway Effect Receptor Reference

IL-1
(IL-1a, IL-1b)

NF-kB pathway proinflammatory effect IL-1R (72)

IL-6 NF-kB pathway proinflammatory or anti-inflammatory effect IL-6R (73)

IL-10 JAK-STAT3 pathway anti-inflammatory effect IL-10R (74)

IL-17 ERK/NF-kB pathway proinflammatory effect IL-17R (76)

IL-18 NF-kB pathway proinflammatory effect IL-18R (62)

IL-27 STAT1 anti-inflammatory effect WSX-1/gp130 (48)

IL-33 ST2+Foxp3+/MyD88 proinflammatory effect ST2 (81, 83)

IL-36 MAPKs and NF-kB pathway proinflammatory or anti-inflammatory effect IL-36R (88)

IL-37 Rac1/NF-kB/MMP2 pathway anti-inflammatory effect IL-18R (86, 87)

IL-38 MAPKs and NF-kB pathway
anti-inflammatory effect, similar to IL-1
receptor antagonist (IL-1Ra) and IL-36Ra

IL-1Rrp2, IL-36R (69)
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The regulatory T cells (Treg cells) number and programmed cell

death protein 1 (PD-1) expression were reduced in non-responders.

Sequential administration of IL-2 restored effective immune

function, including signal transducers and transcriptional activator

1 (STAT1) activation. In addition, IL-2 therapy enhanced the

frequency and function of HBV-specific CD8+ T cells, thereby

improving the prognosis of patients. The constrain of IL-11-

STAT3 signaling could effectively prevent the postoperative

recurrence of HCC. Overall, this study suggested that sequential

IL-2 therapy could be a promising approach to effectively save the

immune function in patients with CHB who didn’t not respond to

standard IFN therapy.

The liver expresses IL-1a, IL-33 and IL-18 in steady state, while

under pathological conditions, IL-1 family members are up-

regulated. Acute liver failure (ALF) is a life-threatening clinical

syndrome with rapid hepatocyte injury and hepatic encephalopathy

(97). Studies observed that IL-1a and IL-1b were related to the NF-

kB signaling activation and liver damage, playing a central role

inALF pathogenesis (98). Anakinra, a recombinant IL-1Ra, was

verified to improve survival of patients with acute liver injury by

regulating inflammatory response (99). It was confirmed that IL-33

served as an “alarmin” released by stressed hepatocytes, which

could bind to the receptor termed suppressor of tumorigenicity 2

(ST2), then activated NF-kB and mitogenactivated protein kinases

(MAPKs) pathways, ultimately promoting the formation of liver

fibrosis (100, 101).

IL-36 exerts effects on cells and tissue by activating NF-kB,

MAPKs, JNK, and ERK1/2 kinase cascades (102). Hu et al. (103)

found that higher expression of IL-36 indicated better prognosis and

longer survival of HCC. IL-37, an anti-inflammatory and

antineoplastic cytokine, blocking the effects of IL-1a/b and IL-18,

thereby inducing the autophagia and facilitating hepatocytes apoptosis

in HCC through inhibiting the PI3K/Akt/mTOR signaling pathway

(104). The interaction between pro-inflammatory and anti-

inflammatory cytokines is a significant factor in host protection

against the HCC progression. However, further researches are

essential to investigate the complicated mechanisms involved and

therapeutic potential of targeting these cytokines in HCC.
2.2 Interferon

2.2.1 Classification of IFN
IFNs are important immune mediators in the natural defense

against infectious agents and they’ re classified into types I, II and III

based on the receptors they bind to (105). Type I IFNs are expressed

in placental mammals, including IFN-a, IFN-b and IFN-e. While

IFN-d and IFN-t are found in non-primate and non-rodent

mammals. IFNs exert anti-viral effects due to pro-inflammatory

and anti-inflammatory properties (106, 107). Type III IFN (IFN-l)
has a limited action spectrum, with its primary function of providing

an effective first defense line for mucosal surfaces (108, 109).

Type I and type III IFNs have unique ability to activate the

STAT. leading to STAT1/STAT2 heterodimer formation, then

interacting with IFN regulatory factor 9 (IRF9) to assemble into
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IFN-stimulated gene factor 3 (ISGF3) (110). NAFLD and non-

alcoholic steatohepatitis (NASH) are significant challenges

threatening human health due to their increasing incidence and

prevalence. Studies have demonstrated that IRFs are important

molecules involved in triggering IFN transcription, which play a

critical role in the pathogenesis of NAFLD/NASH (111).

Type II IFNs, specifically IFN-g, produced by T helper (Th)

cells, which is associated with adaptive immune system. IFN-g, a
pleiotropic cytokine, exhibiting essential effects on mediating Th1

immune responses, enhancing antiviral activity, modulating Th1/

Th2 balance and regulating cancer cells apoptosis and proliferation

(Figure 3). These diverse functions of IFN-g highlight its significant
and potential therapeutic implications in infections, inflammation,

and cancers (112).

IFN-a and IFN-l respectively activate STAT1 and STAT2 to

form into STAT1/STAT2 heterodimer, which can interact with

IRF9 to assemble ISGF3 complex, so as to exert antiviral and anti-

inflammatory effects. IFN-l possesses the abilities of promoting

macrophage activation, controlling the Th1/Th2 balance, regulating

cell apoptosis and proliferation to play important roles in pathogen

clearance, anti-virus and anti-inflammation effects.

2.2.2 IFN-mediated signaling pathway
Among the IFNs, IFN-g plays a critical role in mediating

immune and inflammation responses through activating the JAK-

STAT signaling pathway. IFN-g/STAT1 pathway is promptly

activated responding to infections or inflammatory signals and

then being deactivated once the threat is resolved, assisting to

maintain the immune balance (113). Moreover, IFN-g/STAT1
pathway is regulated by facilitating the non-cytolytic virus

clearance and modulating the neuronal excitability within

neurons, thus contributing to enhance the immune surveillance

(114). The stimulator of interferon genes (STING) is emerging

as a novel role with pleiotropic effects in the immune system. The

applications of STING agonists manifest their importance in cancer

immunotherapy. STING signaling is involved in promoting tumor

metastasis (115, 116). The STING pathway have prominent effects

in detecting the pathogens and self-DNA released from tumor cells,

then the antiviral immunity is triggered by activating NF-kB

signaling and inducing immune-stimulated genes (ISG) and type

I IFN expression (117, 118).

2.2.3 Role of IFN in liver diseases
Currently, main treatments for CHB are IFNs and nucleotide

analogues. These reagents are utilized to suppress HBV replication,

reduce liver inflammation and prevent disease progression. IFNs exert

effects by boosting the immune response against the virus, while

nucleotide analogues can interfere with the process of viral replication.

Hackstein et al. (119) revealed that IFNs signalings stimulated the

myeloid-derived IL-10 expression, presenting a novel avenue for

enhancing the T-cell immunity in patients with chronic liver disorders.

Previous studies indicate that Interferon regulatory factor 1

(IRF-1) is crucial in occurrence and evolution of liver diseases,

which can inhibit hepatitis virus (A/B/C/E) replication, alleviate

liver fibrosis progression, making it a potential mediator for
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predicting the prognosis and recurrence of liver cancer (120). IRF-1

binds to the promoter of programmed cell death protein ligand 1

(PDL1) in tumor cells and triggers immune escape in HCC. Besides,

IRF-1 can promote malignant phenotype of HCC by activating

mTOR/STAT3/AKT signal pathway (121). STING is important to

maintain the liver homeostasis. When STING pathway is

stimulated, IFNs and pro-inflammatory cytokines are produced

via downstream IRF3 and NF-kB pathways to inhibit hepatitis virus

replication, initiate the immune response, facilitate the oncogenesis

and metastasis of HCC (122).
2.3 Tumor necrosis factor

TNF-a was first cloned in 1984 followed by the cloning of its

receptors TNFR1 and TNFR2 after 1990 (123, 124). Early studies
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suggested that TNF-a exhibited anti-neoplastic properties (125).

With increasing researches on TNF, some experiments have revealed

that TNF-a can directly impact on tumor cells and trigger the pro-

metastatic property by fostering cancer stem cells (CSCs) generation,

promoting epithelial cells transit to mesenchymal cells, enhancing

the invasion capability and inducing the metabolic alterations (126).

The inflammatory responses play a key role in innate and

adaptive immune systems, which is a protective immune response

that maintains tissue homeostasis by eliminating harmful stimuli,

including damaged cells, irritants, pathogens and sterile lesions

(32). Studies have shown that TNF and its receptors TNFR1 and

TNFR2 can be used as therapeutic targets for certain diseases (127).

TNF is a pleiotropic cytokine involved in a variety of inflammatory

and autoimmune diseases, such as rheumatoid arthritis (RA),

psoriasis, Alzheimer’s disease (AD) and multiple sclerosis (MS).

TNF-a serves as a soluble toxic medium produced by liver Kuff cells
FIGURE 3

Classification and role of IFNs in inflammation and immune response. IFN-a and IFN-g respectively activate STAT1 and STAT2 to form into STAT1/
STAT2 heterodimer, which can interact with IRF9 to assemble ISGF3 complex, so as to exert antiviral and anti-inflammatory effects. IFN-g possesses
the abilities of promoting macrophage activation, controlling the Th1/Th2 balance, regulating cell apoptosis and proliferation to play important roles
in pathogen clearance, anti-virus and anti-inflammation effects.
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(KC), mediating the inflammation, tumor cell proliferation

and apoptosis.

2.3.1 TNF-mediated signaling pathway
TNF was initially identified and named for its anti-tumor

properties. Both forms of TNF have biological roles, with sizes of 26

kDa and 17 KDa respectively. TNF can exert its actions in paracrine or

autocrine manner by binding to one of two cell surface receptors, TNF

receptors 1 and 2 (TNFR1 and TNFR2, named p55 and p75,

respectively). Among them, the cytoplasmic region of TNFR1

contains a characteristic death domain (DD) comprised of 80 amino

acids, which is utilized to assemble the signaling complex, hence earning

it the designation of a death receptor (128). Receptor-interacting protein

kinase 1 (RIPK1) binds to TNFR1 to activate NF-kB pathway. TNFR1

signaling can also induce the apoptosis and necrosis through the

phosphorylation of receptor interacting protein kinase 3 (RIPK3) and

changes of mixed lineage kinase domain-like (MLKL) (129). Guo et al.

(130) found that TNF was related to TNFAIP1, TNFAIP3, TNFAIP5,

TNFAIP6, TNFAIP8 and TNFAIP9, which could directly participate in

TNFAIP1, TNFAIP5, TNFAIP8 and TNFAIP9 activation. The results

confirmed that TNFAIP1, TNFAIP2 and TNFAIP3 induced the tumor

progression by mediating NF-kB pathway.

2.3.2 Role of TNF in liver diseases
Alcohol metabolism produces toxic metabolites by releasing

cytokines, chemokines, and ROS (131). Long-term chronic alcohol

abuse can lead to liver injury, hepatitis, fibrosis and HCC. The

development of alcoholic liver disease (ALD) can be influenced by

TNF and IFN-g. ALD is a multimodal disease that encompasses

alcoholic steatohepatitis (ASH) and alcoholic fatty liver disease

(AFLD), ultimately giving rise to liver fibrosis and cirrhosis. IL-6

and IL-10 act as protective cytokines in the liver, which are

correlated with ALD progression. NASH is an inflammatory

subtype of NAFLD characterized with significantly elevated pro-

inflammatory cytokines. TNF-a expression is relevant to the degree

of liver damage in ALD and NASH (132). Alcohol consumption

may bring about liver inflammation through inducing the

translocation of enterogenic endotoxins circulate to portal vein.

Moreover, alcohol consumption triggers KCs activation via the

lipopolysaccharide/toll-like receptor 4 (LPS/TLR4) pathway,

further promoting liver inflammation. HSCs exert a dramatic

influence in liver fibrosis angiogenesis. By exploring anti-

angiogenic therapy, we’re making efforts to pursue therapeutic

approaches to address the alcoholic liver fibrosis (ALF) (133).

Researchers have confirmed that TNF-a is important in the

pathogenesis of NAFLD (30). TNF-a is originally discovered to

prevent HCC development, it exhibits a gradual increase tendency

from normal controls to patients with NAFLD and HCC (134).

TNF-a triggers hepatocyte apoptosis, necrosis, liver inflammation

and regeneration, autoimmune hepatitis and HCC, making it a

promising diagnostic biomarker and appealing therapeutic target

for NAFLD-associated HCC (27). Han et al. (135) demonstrated

that TNF- inducible gene 6 protein and its derived peptide could

ameliorate the liver fibrosis in mice with ALD by restraining CD44
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activation, so as to be a treatment approach for ALF. NF-kB
signaling plays a dual role in the advancement of liver diseases. It

exerts a protective effect and maintains normal liver function

under physiological conditions; while under pathological

conditions, the excessive activation of NF-kB may promote the

hepatocarcinogenesis and tumor progression (136–138). TNF-a
can facilitate the occurrence and development of HCC by

activating the NF-kB or JNK pathway. It may also hinder the

HCC progression through inhibiting hepatocyte apoptosis (139).

Hepatic encephalopathy (HE) refers to a combination of mental

and neurological disorders of central nervous system secondary to

serious liver diseases. HE is commonly observed in patients

suffering from acute or subacute liver injury (severe viral

hepatitis, poisoning), cirrhosis and advanced liver cancer, as well

as some patients after the operation of transjugular intrahepatic

portosystemic stent shunt (TIPS). When liver function is severely

impaired, toxic metabolites in the blood cannot be eliminated. The

secretion of TNF-a, IL-1b and IL-6 can disrupt neurotransmission,

leading to dysfunction of cognitive and motion (140, 141).
2.4 Colony stimulating factor

Colony stimulating factor 1 (CSF-1) is involved in recruiting the

monocytes from peripheral blood to TME and promoting their

differentiation into macrophages. CSF-1 can restain the

tumorigenesis of tumor-associated macrophages (TAMs), making

it a key regulator of survival and proliferation. The phenotypes of

TAMs are categorized into type M1 and M2. M1-type macrophages

are generated in response to granulocyte macrophage colony

stimulating factors (GM-CSF or CSF2) and stimulated by IFN-g,
lipopolysaccharide, TNF-a, which share the same properties of

anti-tumor and pro-inflammation. M2-type macrophages possess

biological functions of anti-inflammatory property, regulating

immune response, promoting tumor growth, angiogenesis,

invasion and metastasis, as well as resisting to cancer treatments.

2.4.1 CSF-mediated signaling pathway
In recent years, CSF1/CSF1R axis has attracted more attention

in clinical applications. Fujiwara et al. (142) confirmed that CSF1R

inhibitor Pexidartinib (PLX3397) could effectively inhibit the

activation of pERK1/2 signaling molecules by CSF-1, resulting in

decreased polarization, survival and chemotaxis of TAMs. This

pathway could induce the simultaneous depletion of TAMs and

Forkhead protein/transcription factor (FOXP3+) Treg cells, hinder

the primary tumor growth and distant metastasis, improve the

metastasis-free survival, which made a new breakthrough in

cancer immunotherapy.

2.4.2 Role of CSF in liver diseases
It’s reported that more than one million people die from

advanced chronic liver diseases worldwide every year, and liver

surgery remains a crucial treatment option to achieve long-term

survival for patients with HCC. Granulocyte colony-stimulating
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factor (G-CSF) is secreted by fibroblasts, monocytes, macrophages,

endothelial cells, stromal cells and bone marrow cells, which can

promote the maturation and release of granulocytes, and induce the

synthesis of macrophages and eosinophils. Previous researches have

shown that G-CSF can regulate the inflammatory response, enhance

the liver regenerative capacity, and improve the survival rates of

patients with advanced chronic liver disorders. In 2023, Colli et al.

(143) conducted 20 experiments involving 1,419 participants

from different countries. The intervention measures of this

research included administering G-CSF alone or combination

with any of following factors: growth hormone, erythropoietin,

N-acetylcysteine, infusion of CD133-positive hematopoietic stem

cells or autologous bone marrow monocytes. The results

demonstrated that utilizing G-CSF alone or combination with

above factors was beneficial for participants who experienced one

or more liver disease-related complications, such as HE,

hepatorenal syndrome and esophageal varices rupture bleeding.

Moreover, G-CSF reduced the mortality and development of

infections like sepsis in patients with decompensated chronic

liver diseases.

In 2019, Zhu et al. (144) isolated chemical-induced liver tumors

from wild-type mice and OPN- knockout mice, tumor infiltrating

cells and inflammatory immunoprofiles in the two groups were

analyzed respectively, and then they conducted a cell co-culture

experiment in vitro. The results indicated that OPN/CSF1/CSF1R

axis exhibited immunosuppress property in HCC. Furthermore,

TAMs migration could be impeded by blocking the CSF1/CSF1R

axis, thereby enhancing the efficacy of immune checkpoint

inhibitors in treating HCC. This provides a new method for HCC

clinical treatment.
2.5 Chemokines

CKs, secreted by leukocytes and stromal cells, possessing the

characteristics of chemotaxis and activation. Based on the

arrangement position of first two cysteine residues near the amino

terminal, CKs are divided into four subfamilies, including CXC,

CC, CXXXC and C subfamily (145). After binding to specific

receptors, CKs activate the phosphatidyl creatine kinase or

phosphatase pathway to trigger leukocyte adhesion and regulate

liver inflammation by controlling the migration of hepatocytes,

KCs, HSCs and immune cells.

2.5.1 CK-mediated signaling pathway
CKs are crucial in promoting tumor cell invasion with tumor

infiltrating lymphocytes (TILs), and recruiting TAMs (146). There

are 14 typical chemokine receptors that recognize multiple ligands,

which can bind to multiple receptors in a similar manner (147). CKs

and their receptors regulate tumor cells proliferation and metastasis

through various signaling pathways (148). Leukocyte-derived

chemotaxin-2 (LECT2), secreted by hepatocytes, which is

involved in pathogen clearance, inflammation and immune

response, tumor metastasis in NASH (149).
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IL-8 has two receptors, IL-8RA and IL-8RB, also known as

CXCR1 and CXCR2, the sequence homology of which is up to 77%

(150). CXCL8 plays an important role in inflammatory diseases and

tumors (151). Zhai et al. (152) found that CXCL8 might cause the

chemotherapy resistance of gastric cancer through activating the

NF-kB signaling and up-regulating the ATP-binding cassette

subfamily B member 1 (ABCB1). CXCR1 only binds to CXCL6

and CXCL8, while CXCR2 is a typical G protein-coupled receptor

responding to CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7

and CXCL8 (153). CK receptors and ligands have a profound effect

on the occurrence, angiogenesis, metastasis, proliferation and

invasion of lung cancer, colorectal cancer, gastric cancer and

HCC, making them promising targets for immunotherapy, which

impact the prognosis and treatment outcomes of patients with

tumors (154, 155).

By modulating the pathways mediated by CKs and their

receptors, TME immunophenotype can be reshaped to improve

the immunotherapy efficacy. Desurmont et al. (156) discovered that

CXCR2 and CXCL7 overexpression shortened the overall survival

(OS) and disease-free survival (DFS) of colorectal cancer patients

with liver metastasis, which could be recognized as a predictor of

poor prognosis in metastatic colorectal cancer. Hermitte et al. (157)

demonstrated that LECT2 low expression in HCC was relevant with

advanced tumor grade and immune invasion, which makes it a

promising biomarker in HCC immunotherapy.

CCL28, a ligand of CCR3/CCR10, makes some effects on the

growth, metastasis and spread of breast cancer. CCR10/CCL27

signaling is associated with the adherence and survival of

melanoma cells during the metastatic process (158). CXCR5/

CXCL13 is related to bone metastasis of prostate cancer (159).

Zanetti et al. (160) proved that recombinant CXCL13 could increase

cell proliferation of pAKT and B-cell acute lymphoblastic leukemia

(B-ALL), CXCR5/CXCL13 axis might be considered as a prognostic

marker and promising target for treating the prostate cancer and

B-ALL.

2.5.2 Role of CK in liver diseases
ALD is mainly correlated with excessive alcohol consumption.

If ALD isn’t well controlled, it may evolve into liver fibrosis,

cirrhosis, eventually HCC with fatal property and poor prognosis.

There is substantial evidence showing that therapeutic agents

targeted to oxidative stress or gut-liver axis are considered as

crucial treatments for ALD by suppressing inflammatory response

and enhancing liver regeneration (161–163). Alcohol consumption

promotes hepatocytes to secrete CKs, in turn triggering the

inflammatory cells to recruit to liver and increasing micro

ribonucleic acid (miRNA)-155 expression through NF-kB
pathway, then stimulating the lipopolysaccharids-triggered KCs to

secrete TNF, ultimately facilitating liver inflammation (164, 165).

Therefore, it’s essential to search for therapeutic strategies to block

the CK-mediated pathway for treating ALD and HCC.

NAFLD is the third leading cause of HCC worldwide and

characterized by steatosis, liver inflammation, liver cell damage

and progressive fibrosis, which can be divided into nonalcoholic
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fatty liver disease (NAFL) and NASH (166). Several cellular

components or molecular pathways of NASH can be targeted

simultaneously to achieve anticipative therapeutic goals (167–

171). CCL2/CCR2 is utilized as therapeutic targets for treating

NASH (172). The gut-liver axis is critical in NAFLD pathogenesis.

The intestinal flora of patients with NAFLD, cirrhosis and HCC are

significantly associated with systemic inflammation. The contents

of IL-8/13, CCL3/4/5 are higher in HCC than those in normal

subjects (173). Immune cells mainly include macrophages,

monocytes and neutrophils, derived from hematopoietic stem

cells of bone marrow, which are responsible for immune defense,

stabilization and immune surveillance (174). Macrophages and

hepatocytes can release CKs, and immune cells are attracted into

the injured position to promote collaborative recruitment (175).

CXCL16 can promote cell proliferation, invasion and migration by

mediating PI3K/AKT/PKB and ERK/MAPK pathway, which plays

a key role in the progression of NAFLD, cancer, atherosclerosis,

renal fibrosis (176).

Excessive alcohol consumption, a high-fat diet, and chronic

hepatitis virus infection can lead to liver inflammation, eventually

cause portal hypertension, liver fibrosis, cirrhosis, HCC. Endothelial

p300 is a regulator of gene transcription with the properties of

activating NF-kB pathway, promoting CCR2+ monocytes/

macrophages accumulation and increasing CCL2 expression in

the damaged liver, ultimately resulting in portal hypertension and

liver fibrosis (177). Guo et al. (178) discovered that cenicriviroc

could inhibit liver fibrosis and cirrhosis by inactivating CCR2-

STAT1/NF-kB/ERK pathway. Puengel et al. (179) demonstrated

that CCR2/5 signaling ameliorated liver fibrosis through inhibiting

the monocytes and macrophages. Dudek et al. (180) showed that

CXCR6+ CD8 T cells were abundant in NASH, characterized by

low-activity transcription factor forkhead box O1(FOXO1). Fas and

its ligand FasL were related to cell apoptosis. Blocking the FasL

could prevent self-attack of CD8 in vitro and T cells after adoptive

transfer in vivo, which further improved the liver injury in NASH.

HCC, one of the common solid malignancies, the key factors of

which are alcohol intake, sex, age, lipid, obesity, type 2 diabetes,

dysregulation of gut microbial and genetic variation. Previous

experiments and theories have confirmed that CXCR1/2 axis

activated immunosuppressive cells, and CXCR3/4 axis increased

the recruitment of effector cells. TME immunophenotype might be

reshaped to improve the efficacy of tumor immunotherapy by

regulating CKs and CK receptor-related pathways (181). As is

known to all, forkhead frame transcription factor C1 (FOXC1) is

closely related to blood vessels maturation through interacting with

Notch and VEGF pathway. Hang et al. (182) found that CXCR1 and

CCL2 could target to FOXC1, making them predictors of

postoperative recurrence and OS in HCC.

CCL20, expressed in liver, colon, skin, the specific receptor of

which is CCR6. CCL20/CCR6 axis can facilitate cell proliferation

and migration by modulating immune cells to reshape TME, so as

to be utilized as a target for immunotherapy in HCC, colorectal

cancer, breast cancer, pancreatic cancer, cervical cancer and kidney

cancer (183). In 2023, Xie et al. (184) found that the overexpression
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of E-26 specific sequence variant 4 (ETV4) in hepatocytes

transactivated the expression of PD-L1 and CCL2, consequently

inhibited CD8+T cell accumulation. Knockout the CCL2 gene with

lentivirus or CCR2 inhibitor CCX872 could compromise the

infiltration of TAM and MDSC induced by ETV4 and HCC

metastasis, which provided a theoretical basis for developing a

novel combined immunotherapy strategy for HCC. We

summarize the mechanisms and clinical applications of

chemokine receptors or ligands in Table 3.
2.6 Growth factor

2.6.1 GF-mediated signaling pathway
As a potential signaling molecule, GF plays a dramatic role in

the repair of tissue and the regeneration of vascular through

regulating the cell growth, stem cell differentiation and tissue

healing. Llopis-Hernández et al. (186) proved that fibronectin

(FN) was utilized to make the GF interacting with the

extracellular matrix (ECM) proteins, which could offer a new

substrate for efficient and low dose delivery to local lesions. The

polymer system might reduce the dose of GF and locally delivered

GF to the site where regeneration was needed. By targeting the

integrins and GF receptors, the synergistic effect might be

maximized. The integrin/GF signaling contributed to the

differentiation of stem cell and the repair of tissue.

GF is a crucial component of regenerative strategies for

therapeutic repair or tissue replacement. There are some complex

signaling pathways in mediating the liver regeneration (Table 4).

Chen et al. (198) discovered that controlling the tissue development

by modulating the local availability of GF combinations would

provide a powerful tool for studying and manipulating a wide range

of developmental and regenerative process. The optimal GF

combination was delivered to the target site safely. GFs can be

classified into PDGFs, bone morphogenetic proteins (BMPs),

insulin-like growth factors (IGFs), TGF-b and VEGF, which have

good prospects in application for the bone healing and

osteogenesis (199).

Cytokines and GFs can regulate cell recruitment, migration,

adhesion, proliferation, differentiation and apoptosis. Previous

researches have demonstrated that gut microbiota can modulate

the release of IL-6, TNF-a, hepatocyte growth factor (HGF), IFN-g
and TGF-b, which are involved in liver regeneration and different

liver disorders (200, 201). Tumor cells have the ability to produce

the cytokines to facilitate cell growth and overexpress the GF

receptors. Abnormal GF signalings can improve the survival

through mediating RAS/RAF/MEK/ERK and PI3/AKT/mTOR

pathways, and some GFs may boost tumor cell growth and

metastasis by post-transcriptional mechanisms (202).

2.6.2 Role of GF in liver diseases
The liver has a satisfactory capacity of regeneration, so that it can

recover the function and size even after 70% of the liver is partially

removed. The process of liver regeneration involves a complex
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network of hepatocyte growth-promoting factors, cytokines,

signaling pathways and transcription factors. The mechanical and

chemical environment of the liver changes with the accumulation of

various GFs and the remodeling of the extracellular environment.
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Liver regeneration occurs when the liver is damaged by viruses or

drugs, as well as after partial hepatectomy or liver transplantation.

Some characteristic alterations will happen after partial hepatectomy

or partial liver transplantation, such as hemodynamic changes in
TABLE 4 Signaling pathway mechanisms in liver regeneration phase.

Signaling pathway Main mechanism Author

NO pathway
(initiation phase)

Activating soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP)/
cGMP-dependent protein kinase 1 (PKG-1) pathway, releasing NO by endothelial

cells, then initiating liver regeneration

Emily et al. (187)
Dai et al. (188)

YAP pathway
(initiation phase)

Increasing YAP nuclear level and gene expression at initial stage, resuming at the
termination stage, thereby regulating the hepatocyte proliferation

Grijalva et al. (189)

IL-6 pathway
(initiation phase)

Stimulating IL-6/JAK/STAT3 pathway; Regulating IL-6, STAT3, c-Myc and c-Jun
signaling molecules

Wen et al. (190)

TNF-a pathway
(initiation phase)

Activating NF-kB pathway Zhang et al. (191)

Notch pathway
(initiation phase)

Activating Notch- HIF-1a pathway, promoting LR by enhancing hepatocytes
proliferation

Zhang et al. (192)

Wnt/b-catenin pathway
(initiation phase)

Inducing the transformation of transitional liver progenitor cells (TLPCs) into
hepatocytes

Pu et al. (193)

HGF pathway
(initiation phase)

HGF/c-Met signaling can regulate the survival of liver progenitor cells;
Activating downstream pathways such as PI3K/AKT, JAK/STAT3 and Ras/Raf

pathways

Chiang et al. (194)
Li et al. (195)

TGF-b pathway
(termination phase)

Activating TGF-b- Smad 2/3 signaling pathway, thereby inhibiting cell cycle Li et al. (196)

PI3K/AKT/mTOR pathway
(progression phase)

Panax notoginseng saponins (PNSs) promoting LR through activating PI3K/AKT/
mTOR pathway

Zhang et al. (197)
TABLE 3 The mechanisms and clinical applications of chemokine receptors or ligands in liver disease.

Chemokine receptor
or ligand

Mechanism Disease type Author

CXCR1/CCL2 Promoting cells proliferation, migration and invasion HCC
Hang et al. (182)
Xie et al. (184)

CCR2/5

Inhibiting liver fibrosis and cirrhosis by mediating
CCR2 -STAT1/NF-kB/ERK pathway;

Restraining the circulating Ly6C+ monocytes and
macrophages derived from liver monocytes

Liver fibrosis and cirrhosis;
NASH

Guo et al. (178)
Puengel et al. (179)

CCR2/CCL2
Promoting the infiltration and metastasis of TAM and MDSC;
Recruiting the monocytes/macrophages and activating KCs;

Promoting tumor cell angiogenesis and metastasis

NASH;
HCC

Zhuang et al. (185)

CXCR6

Contacting CXCR6 CD8+ T cells with ATP led to the up-regulation of
FasL; Blocking the FasL could sustain the self-attack of CD8 in vitro and
T cells after adoptive transfer in vivo, and further ameliorated the liver

damage

NASH Dudek et al. (180)

CXCL16/CXCR6
Leading to tumor cells proliferation, migration, invasion and metastasis

by mediating the PI3K/AKT/PKB or ERK/MAPK pathway
NAFLD Korbecki et al. (176)

CCL20/CCR6
Regulating immune cells to reshape TME;
Promoting cell proliferation and migration

HCC Kadomoto et al. (183)

Leukocyte cell-derived
chemotaxin-2

LECT2

Involved in pathogen clearance, inflammatory and immune responses,
tumor metastasis;

In HCC with low expression of LECT2, b-catenin pathway was activated
to induce epithelial cell transform into mesenchymal cell, then triggered

TME and tumor phenotype remodel, ultimately inhibited HCC
occurrence and progression

NASH;
HCC

Takata et al. (149)
Hermitte et al. (157)
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portal vein flow pressure, tissue ischemia and hypoxia, and platelet

activation (203). The process of liver regeneration is a cascade

chemical signaling pathway. Signaling molecules are delivered to

the nucleus to activate the liver regeneration, including hepatocyte

proliferation, stem cell differentiation, extracellular matrix

remodeling, and termination signals that regulate the size of the
Frontiers in Immunology 13
regenerated liver. KCs and HSCs can secrete transforming growth

factor b (TGF-b1) and HGF. The KCs can activate the Wnt signaling

pathway to act on the hepatocytes. The signal transduction

mechanisms involved in the liver regeneration mainly including

NO pathway, YAP pathway and actomyosin remodeling (204).

Moreover, following signaling pathways like IL-6, TNF-a, Notch
FIGURE 4

Pivotal role of cytokines in liver disease pathogenesis and clinical application. (A) IL-2 can activate STAT1 signaling, restore effective immune and
enhance HBV-specific CD8+ T cells. IL-6 impacts tumor cell renewal and metastasis by modulating OPN. The postoperative recurrence of HCC can
be prevented by constraining IL-11-STAT3 signaling. HSCs engulf NLRP3, enhance IL-1b expression, cause liver injury, fibrosis and HCC. (B) TNF-a
affects liver inflammation, apoptosis by activating NF-kB and JNK pathways. HE is appeared in patients with acute or subacute liver injury, cirrhosis
and advanced HCC. (C) IFNs can suppress HBV replication, reduce liver inflammation, prevent disease progression by stimulating myeloid-derived
IL-10 expression and enhancing immune response. (D) CKs promote tumor initiation, progression, angiogenesis, metastasis, proliferation and
invasion by targeting the non-immune cells and reshaping the TME. ETV4 overexpression in hepatocytes can activate PD-L1 and CCL2, increase
TAM and MDSC infiltration, inhibit CD8+T cell accumulation, then promote HCC metastasis. (E) When liver function is damaged by viruses, drugs, as
well as after partial hepatectomy or liver transplantation, Liver regeneration occurs with GFs accumulation and extracellular environment remodeling
through activating pathways including NO, YAP, actomyosin remodeling, IL-6, TNF-a, Notch, Wnt/b-catenin, HGF, TGF-b and PI3K/AKT/mTOR
pathways. (F) G-CSF is secreted by fibroblasts, monocytes, macrophages, endothelial cells, stromal cells and bone marrow cells. It can induce
macrophages and eosinophils synthesis, regulate inflammatory response and enhance liver regeneration. OPN/CSF1/CSF1R axis has
immunosuppress property in HCC microenvironment.
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pathway, Wnt/b-catenin, HGF, TGF-b pathway and PI3K/AKT/

mTOR pathway are also involved (191). During the process of liver

regeneration, HGF triggers the loss contact of cell-matrix, thus

promotes the hepatocytes proliferation.

Myelogenic growth factor is a mechanically-induced vascular

secretion signal present in the human liver endothelial cells. By

activating MAPK and STAT3 signaling, primary human

hepatocytes from different donors are induced to improve their

survival (205). The liver acts as a central immune organ that

activates the immune system in response to the circulating

antigens (206, 207). Di-Iacovo et al. (208) revealed that optimal

liver regeneration was achieved by integrating the IL-6/JAK/STAT3

and PI3K/PDK1/AKT pathways to accelerate the cell proliferation.
3 Conclusions

Cytokines are essential for biological processes including cell

proliferation, tissue repair, aging, inflammation and immunity.

Current researches have demonstrated that TNF, IL-1a/b, IL-1Ra,
IL-6, IL-18, IL-33, IL-36, IL38, CCL2 and CCR2 are closely

associated with liver disorders (209–211). The pivotal roles of

cytokines in liver diseases pathogenesis and clinical application

are elaborated respectively in the previous sections of this

review (Figure 4).

Nowadays, recombinant IL-2, IFN-a and TNF are applied into

cancer immunotherapy (212, 213). The therapeutic efficacy is

dramatically hindered by complex pleiotropy, redundancy,

toxicity, off-target effect, short half-life and narrow therapeutic

window of cytokines (214). Moreover, the therapy-induced

immune response may limit the efficacy by neutralizing

antibodies with drugs or restrict the security through inducing

inflammatory responses (215). Based on these factors above, there

are still great challenges in developing innovative drugs based on

cytokine therapy.

Supercytokines are formed into fusion proteins or bifunctional

cytokines by modifying the binding domains, enhancing the affinity

or improving the half-life of cytokines. There are also adaptor

cytokines, synplastic cytokines, nanocellular cytokines, adaptive

immune cells equipped with cytokines, and cytokine-armed

oncolytic viruses existing in the clinical applications (216).

Deckers et al. (217) developed safe and effective cytokine-

based therapies for immune-mediated diseases by means of

technological innovations in protein engineering, nanomedicine,

RNA technology and cell engineering. In addition, prodrugs of

various cytokines including IL-2, IL-12 and IFNa2b were exploited

to treat cancers (218, 219).

Recently, immunotherapy has emerged as promising treatment

in solid cancers, such as immune checkpoint inhibitors (ICIs),

tumor vaccines, oncolytic virus immunotherapy, adoptive cell

therapy and cytokine therapy (220–222). The combination of ICI

and VEGF inhibitor is verified to be a first-line therapy for advanced

HCC (223). Meanwhile, antiviral therapy is necessary during the
Frontiers in Immunology 14
process of HCC treatment (94). The recurrence and metastasis rate

can be reduced when the surgery is combined with IFN therapy

mediated by cGAS-STING pathway (224). Moreover, cGAS-STING

signaling pathway agonists can also be combined with radiotherapy,

chimeric antigen receptor T Cell (CAR-T) therapy, oncolytic virus

therapy to enhance tumor immunity and improve efficacy (225,

226). By means of exploring the mechanisms of cytokines and

constructing the diverse combination complexes to inhibit the

process of liver diseases, we are trying to pursue more promising

targets for immunotherapy strategies in liver disorders.
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D, et al. Corrigendum to “Easl clinical practice guidelines on the management of
hepatic encephalopathy”. J Hepatol. (2023) 79:1340. doi: 10.1016/j.jhep.2023.09.004

142. Fujiwara T, Yakoub MA, Chandler A, Christ AB, Yang G, Ouerfelli O, et al.
Csf1/csf1r signaling inhibitor pexidartinib (Plx3397) reprograms tumor-associated
macrophages and stimulates T-cell infiltration in the sarcoma microenvironment.
Mol Cancer Ther. (2021) 20:1388–99. doi: 10.1158/1535-7163.Mct-20-0591

143. Colli A, Fraquelli M, Prati D, Casazza G. Granulocyte colony-stimulating factor
with or without stem or progenitor cell or growth factors infusion for people with
compensated or decompensated advanced chronic liver disease. Cochrane Database
Systematic Rev. (2023) 2023:CD013532. doi: 10.1002/14651858.CD013532.pub2

144. Zhu Y, Yang J, Xu D, Gao X-M, Zhang Z, Hsu JL, et al. Disruption of tumour-
associated macrophage trafficking by the osteopontin-induced colony-stimulating
factor-1 signalling sensitises hepatocellular carcinoma to anti-pd-L1 blockade. Gut.
(2019) 68:1653–66. doi: 10.1136/gutjnl-2019-318419

145. Mollica Poeta V, Massara M, Capucetti A, Bonecchi R. Chemokines and
chemokine receptors: new targets for cancer immunotherapy. Front Immunol. (2019)
10:379. doi: 10.3389/fimmu.2019.00379
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et al. The role of cxcl16 in the pathogenesis of cancer and other diseases. Int J Mol Sci.
(2021) 22:3490. doi: 10.3390/ijms22073490

177. Gao J, Wei B, Liu M, Hirsova P, Sehrawat TS, Cao S, et al. Endothelial P300
promotes portal hypertension and hepatic fibrosis through C-C motif chemokine
ligand 2–mediated angiocrine signaling. Hepatology. (2021) 73:2468–83. doi: 10.1002/
hep.31617

178. Guo Y, Zhao C, Dai W, Wang B, Lai E, Xiao Y, et al. C-C motif chemokine
receptor 2 inhibition reduces liver fibrosis by restoring the immune cell landscape. Int J
Biol Sci. (2023) 19:2572–87. doi: 10.7150/ijbs.83530

179. Puengel T, Lefere S, Hundertmark J, Kohlhepp M, Penners C, Van de Velde F,
et al. Combined therapy with a ccr2/ccr5 antagonist and fgf21 analogue synergizes in
Frontiers in Immunology 18
ameliorating steatohepatitis and fibrosis. Int J Mol Sci. (2022) 23:6696. doi: 10.3390/
ijms23126696

180. Dudek M, Pfister D, Donakonda S, Filpe P, Schneider A, Laschinger M, et al.
Auto-aggressive cxcr6+ Cd8 T cells cause liver immune pathology in nash. Nature.
(2021) 592:444–9. doi: 10.1038/s41586-021-03233-8

181. Susek KH, Karvouni M, Alici E, Lundqvist A. The role of cxc chemokine
receptors 1–4 on immune cells in the tumor microenvironment. Front Immunol. (2018)
9:2159. doi: 10.3389/fimmu.2018.02159

182. Huang W, Chen Z, Zhang L, Tian D, Wang D, Fan D, et al. Interleukin-8
induces expression of foxc1 to promote transactivation of cxcr1 and ccl2 in
hepatocellular carcinoma cell lines and formation of metastases in mice.
Gastroenterology. (2015) 149:1053–67.e14. doi: 10.1053/j.gastro.2015.05.058

183. Kadomoto S, Izumi K, Mizokami A. The ccl20-ccr6 axis in cancer progression.
Int J Mol Sci. (2020) 21:5186. doi: 10.3390/ijms21155186

184. Xie M, Lin Z, Ji X, Luo X, Zhang Z, Sun M, et al. Fgf19/fgfr4-mediated elevation
of etv4 facilitates hepatocellular carcinoma metastasis by upregulating pd-L1 and ccl2. J
Hepatol. (2023) 79:109–25. doi: 10.1016/j.jhep.2023.02.036

185. Zhuang H, Cao G, Kou C, Liu T. Ccl2/ccr2 axis induces hepatocellular
carcinoma:Invasion and epithelial-mesenchymal transition in vitro:through
activation of the hedgehog pathway. Oncol Rep. (2018) 39:21–30. doi: 10.3892/
or.2017.6069

186. Llopis-Hernández V, Cantini M, González-Garcıá C, Cheng ZA, Yang J,
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