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Crosstalk between cancer cells and the nervous system establishes the so-called

“innervated niche”. This component of the tumor microenvironment (TME)

influences tumor progression and variably regulates the genesis and

maintenance of cancer-related pain. Senescence is a cellular stress response

emerging as a hallmark of cancer and aging. Through the inflammatory

secretome referred to as the senescence-associated secretory phenotype

(SASP), senescent cells execute immunomodulation and tissue remodeling,

participating in many physio-pathological processes. As inflammation is a key

determinant of the TME as well as of neuropathies, in this review article we try to

outline the possible role of senescence in the innervated niche. We argue that

senescence can contribute to neuroinflammation, which is nowadays

recognized as the initial factor triggering both cancer and non-cancer pain, by

boosting local inflammation in the TME. At the same time, senescent cells can

become targetable elements of the innervated niche to control cancer pain. We

describe how the immune system supports the resolution of pain, and we

suggest the possibility of harnessing natural killer (NK) cells, the prototype of

innate immunity lymphocytes, for therapeutic approaches aimed at pain relief.
KEYWORDS
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Introduction

The innervated niche

Even if the concept of tumormicroenvironment (TME) dates back to Virchow’s findings on

leukocyte infiltration in solid tumors and Paget’s theory of “seed and soil” for metastatic

dissemination in the XIX century, only in the last decades cancer research has moved from a

tumor cell-centric view based on oncogenes and tumor suppressor genes to a TME-centric
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perspective (1). Nowadays, the TME is recognized as a key determinant

for cancer initiation, progression, and therapy response. TME, which is

represented by the biological network of cancer, stromal, endothelial,

and immune cells including extracellular metabolites, can be

functionally subdivided into different specialized TMEs, such as

immune microenvironment, hypoxic microenvironment, cancer stem

cell niche and so on (2). Local interaction between nerves and cancer

cells has long been observed and is now emerging as an additional

peculiar TME that impinges on tumor progression, giving rise to the

notion of “innervated niche” (3–5). The innervated niche has been

explored so far in the context of neural-cancer interactions focusing on

tumor growth and spreading, and cancer-therapy effects on the

nervous system. The implementation of new technologies has

integrated in the innervated niche the neuroimmune circuits, also

facing the role of immune cells in pain processes. Here, we want to add

a further player in this liaison: cellular senescence (see Box 1). To this

aim, after a brief introduction to the innervated niche, how tumors

generate chronic pain will be summarized. Then, senescence of tumor

and stromal cells as well as of neurons and glial cells will be discussed

considering its inflammatory contribution to neuropathy and thus to

cancer-associated pain. Finally, how the immune system participates in

the processes of pain promotion and control will be outlined, and, in

this frame, a specific role of NK cells in targeting senescent cells and

hence in senescence-driven pain attenuation will be proposed. We

believe that a better understanding of the senescent drivers of cancer

pain will be instrumental in the development of novel approaches

in analgesia.

Tumors can be innervated by sympathetic, parasympathetic, or

sensory nerves depending on cancer types (6). Neural-cancer

communication is bidirectional and can occur via electrochemical,

paracrine, systemic, and cancer therapy-mediated interactions (7).

Increase of sympathetic innervation in solid tumors is mostly

correlated with cancer progression, while parasympathetic signals

have both tumor-suppressing and tumor-promoting properties (8, 9).

Tumor-promoting action of sympathetic nerves has been ascribed to

the adrenergic signaling, as many cancer cells express both the b1- and
b2-adrenergic receptors (ARs), and high-grade tumors show higher
Abbreviations: ADCC, antibody-dependent cellular cytotoxicity; AR, adrenergic

receptor; ASIC, acid-sensing ion channel; ATP, adenosine triphosphate; b-Gal,

beta-galactosidase; BDNF, brain-derived neurotrophic factor; CGRP, calcitonin-

gene related peptide; CIPN, chemotherapy-induced peripheral neuropathy; DR,

dopamine receptor; DRASIC, dorsal-root acid-sensing ion channel; DRG, dorsal

root ganglia; G-CSF, granulocyte colony stimulating factor; Glu, glutamate; GM-

CSF, granulocyte-macrophage colony stimulating factor; IFN-g, interferon-g;

KIR, killer cell immunoglobulin-like receptor; MF, macrophage; M-CSF,

macrophage colony stimulating factor; MDSC, myeloid-derived suppressor cell;

NGF, nerve growth factor; NK, natural killer; NMDAR; N-methyl-D-aspartate

receptor; NO, nitric oxide; OIH, opioid-induced hyperalgesia; OIS, oncogene-

induced senescence; PNI, perineural invasion; ROS, reactive oxygen species;

SASP, senescence-associated secretory phenotype; SP, substance P; TAM, tumor-

associated macrophage; TIS, therapy-induced senescence; TME, tumor

microenvironment; TNF-a, tumor necrosis factor-a; TRPA1, transient

receptor potential ankyrin-1; TRPV1, transient receptor potential vanilloid-1;

UPR, unfolded protein response; VEGF, vascular endothelial growth factor.
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levels of b-ARs compared to lower-stage diseases (10–12).

Catecholamines sustain survival and proliferation of cancer cells by

regulating BCL-2 level and BAD phosphorylation, factors implicated in

apoptosis, and cyclin D1 expression, an important regulator of cell

cycle progression (13–16). Furthermore, catecholamines promote

tumor angiogenesis by stimulating the production of the vascular

endothelial growth factor (VEGF) (17, 18). The role of cholinergic

signaling from parasympathetic innervation is less defined and

opposite effects on tumor progression have been reported (19–21).

Cancer cells actively promote tumor innervation by different

mechanisms: i) axonogenesis; ii) neurogenesis; iii) reprogramming;

iv) perineural invasion. During axonogenesis, neurotrophins, such

as the nerve growth factor (NGF) and brain-derived neurotrophic

factor (BDNF), semaphorins (axonal guidance molecules), and

ephrinB1-containing exosomes secreted by tumor cells drive

neuron morphogenesis causing a local increase in nerve density

(22). New neurogenesis can originate from cancer stem cells trans-

differentiation or neural progenitor cells recruited from the

bloodstream (23–26). Reprogramming toward an adrenergic

phenotype has been observed in tumor-associated sensory fibers

in head and neck cancer (27, 28). In perineural invasion (PNI),

cancer cells grow around and invade nerve fibers spreading into the

perinerium space. This process provides a facilitated route for

metastases and cancer-related pain (29, 30). Although PNI has

variable rates in different tumors, PNI invariably correlates with

poor prognosis and low survival (31, 32).
Tumor inflammatory environment is
modulated by the innervated niche

A description of the multifold mechanisms by which the nervous

system affects tumor growth and regulates immune response in cancer

is behind the scope of the present article and we refer to other

publications (33, 34). Here, we briefly describe how local

inflammation and immunosuppression in the TME, two hallmarks

of cancer (35), are influenced by tumor innervation. This is possible

because the majority of immune cells express the b2-AR, and cells of

the innate immunity express also the a1 and a2 subtypes (36). For

example, catecholamines from the sympathetic nervous system

influence the function of NK cells, which are lymphocytes of

the innate immune system deeply involved in anti-cancer activity

(see Box 2). NK cells express the D1-like and D2-like dopamine

receptors (DRs), which seem to have opposite effect on cytotoxicity

and interferon-g (IFN-g) production. The D1- and D5-DRs activate the
adenylate cyclase signaling, while the D2-, D3-, and D4-DRs inhibit the

adenylate cyclase signaling, thereby enhancing and attenuating

the effector functions of NK cells, respectively. Also the ARs belong

to the G protein-coupled receptor family. NK cells express the a1-AR,
the a2-AR, and high levels of the b2-AR but not the b1-AR.
Noradrenaline preferentially activates the a-ARs, while adrenaline is

an effective stimulator of the b2-AR. In general, adrenaline and

noradrenaline, which rapidly increase during acute stress or exercise,

seem to inhibit NK cell cytotoxicity and cytokine production as well as

mobilize NK cells into the peripheral blood (37).
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The inflammatory reflex represents a well characterized

neuroimmune circuity based on the control that the vagus nerve

executes on macrophage-dependent production of tumor necrosis

factor-a (TNF-a) (33). Following proinflammatory cytokine

stimulation of afferent vagus nerves, vagal efferent fibers trigger

adrenergic splenic nerves to release noradrenaline that in turn acts

on b2-AR-expressing memory T cells in the white pulp. This way

stimulated T lymphocytes produce acetylcholine which has

inhibitory effect on activated macrophages expressing the a7-
nicotinic acetylcholine receptor with the consequence of reducing

TNF-a secretion and thus dampening inflammation (38, 39). In

addition to this general mechanism, autonomic innervation directly

influences the immune cells in the innervated niche.

Catecholamines drive a b2-AR-mediated polarization of tumor-

associated macrophages (TAMs) toward a pro-tumorigenic M2

phenotype (40, 41). Signaling from the a2- and b2-ARs reduces

maturation and migration of dendritic cells to lymph nodes,

impairing T cell priming (42, 43). Moreover, the b2-AR signaling

mediates direct immunosuppression on tumor antigen-specific

CD8 T cells by reducing their proliferation, IFN-g production,

cytolytic effector functions, and glucose metabolism (44, 45).

Accordingly, inhibition of the b2-AR signaling elicits an

antitumoral microenvironment characterized by an elevated IFN-

g+CD8+:Treg ratio and reduced expression of the immune

checkpoint PD-1 (46).
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More in general, adrenergic innervation of lymphoid organs

restrains T cell egression from the lymph nodes and bone marrow

through CCR7 and CXCR4, while promotes myeloid-derived

suppressor cell (MDSC) expansion via the b2-ARs and myeloid

cell maturation via the a-ARs in the spleen (47–49). On the

contrary, splenic parasympathetic innervation stimulates memory

T cells to produce the anti-inflammatory peptide TFF2, which

suppresses MDSC expansion in colorectal cancer (50). Regarding

sensory fibers, it has been observed that their stimulation by

melanoma tumor cells induces the expression of proinflammatory

cytokines, such as CCL2, CCL3, CCL5, which speed up MDSC

recruitment and tumor growth (51).

Within TME, inflammatory cytokines, in particular IL-6 and

IL-8 (CXCL8), contribute to different tumor-promoting

mechanisms, such as cancer cell plasticity, angiogenesis, and

immunosuppression (52, 53). High levels of IL-6 and IL-8 in the

innervated niche are generated upon the engagement of the b-ARs
on tumor and immune cells by both noradrenaline from local

sympathetic nerves and adrenaline from the blood (54).
Cancer-associated pain

Pain is a harmful sign and debilitating symptom of advanced

cancer. Nociception (the physiological process of perceiving pain)
BOX 2 NK cells: mechanisms of activation and cytotoxicity

NK cells are large granular lymphocytes belonging to the family of the innate lymphoid cells. They show cytolytic activity against virus-infected and tumor cells without
needing a somatic rearrangement of the activating receptors as instead lymphocytes of the adaptive immunity (T and B cells) require (217). Their activation is based on a
balance between inhibitory and activating germline-encoded receptors that recognize MHC class I and class I-like molecules that act as signs of cellular stress in cells
experiencing different types of insult. Activating receptors encompass the C-type lectin-like receptor NKG2D, the natural cytotoxic receptors NKp30, NKp44, and NKp46,
and the co-receptors DNAM-1 and NKp80. Among the activating receptors, NKG2D and DNAM-1 are of great relevance for the immunosurveillance of senescent cells as
their ligands are strongly induced in response to senescence (84). In humans, the ligands of NKG2D are MICA, MICB, and ULBP1-6, while mouse NKG2D ligands include
RAE-1 (five different isoforms), MULT-1, and H60 (three different isoforms). The ligands of DNAM-1 are PVR (CD155) and Nectin-2 (CD112). Inhibitory receptors
include the C-type lectin-like receptor NKG2A, members of the killer cell immunoglobulin-like receptor (KIR) family in humans, and the immune checkpoints TIGIT,
LAG3, TIM3, and PD-1 (191). By the tuning of these receptors, NK cells target cells that appear to be missing self or stressed. Furthermore, NK cells are the principal
effector cells performing the antibody-dependent cellular cytotoxicity (ADCC) through the CD16 receptor. NK cells are endowed with cytotoxic and immunomodulatory
functions. Once activated, NK cells produce large amounts of CCL5, IFN-g, TNF-a, and hence orchestrate the immune response of other immune cells. The cytolytic
effects are carried out through different mechanisms, such as the expression of the death receptor ligands FASL and TRAIL and the release of cytotoxic granules containing
pore-forming perforins and granzymes (serine proteases) (218). Different subsets of NK cells exist with only partially overlapping effector functions. In humans, CD56dim

CD16+ NK cells (paralleled by CD27- CD11b+ in mice) are more cytotoxic than regulatory CD56bright CD16- NK cells (murine CD27+ CD11b-). Uterine and decidual NK
cells contribute to vascular remodeling, embryo implantation and fetal growth during pregnancy (219).
BOX 1 Senescence at a glance.

Senescence is an alternative response to regulated cell death in case of cellular stress. Senescent cells stop proliferating while remaining viable and metabolically active. They
display specific morphological and biochemical traits including cellular flattening and enlargement, intracellular vacuolization, increased lysosomal beta-galactosidase (b-
Gal) activity, epigenetic and metabolic reprogramming, release of bioactive molecules and inflammatory factors within a massive secretome called senescence-associated
secretory phenotype (SASP) (77). Through the SASP, which is rich in proteases (MMP-1, MMP-3), angiogenic factors (VEGF), and cytokines/chemokines (IL-1a, IL-6, IL-
8, CCL2), senescent cells perform tissue remodeling and alert the immune system promoting a reparative microenvironment (88, 202). However, if not promptly removed
by the immune system, senescent cells accumulate in neoplastic lesions and aging tissues strongly supporting chronic inflammation (203). The SASP is driven by the
transcription factors NF-kB, C/EBPb, and GATA4 and needs activation of the cGAS/STING pathway (204–206). Both innate and adaptive immunity participate in the
immunosurveillance of senescent cells, with a pivotal role of natural killer (NK) cells, the prototype of innate immunity lymphocytes (84, 207, 208). Beneficial immune-
mediated elimination of senescent cells by NK cells has been observed in tumors, during the resolution of liver fibrosis after damage, and endometrium decidualization
(175, 177, 209–211). Macrophages have been reported to be involved in the clearance of senescent cells during embryogenesis and reproductive processes (212, 213).
Antitumor activity of CD4 and CD8 T cells has been shown to be enhanced by senescent cell-mediated priming of dendritic cells, suggesting the high potential of
senescence as immunogenic process (214–216).
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starts through the activation of peripheral pain receptors

(nociceptors) represented by the median diameter myelinated Ad-
fibers and small diameter unmyelinated C-fibers, whose cell bodies

are located in the dorsal root ganglia (DRG) and trigeminal

ganglion (55). From an evolutionary point of view, acute pain has

arisen to prevent and protect from tissue damage. Conversely, pain

persistence when the original cause is exhausted (chronic pain) or

without a detectable cause (sine materia) represents a pathological

response (maladaptive) with no protective purpose, resulting from

the shift of peripheral neuroinflammation into central

neuroinflammation (pain centralization). This response

characterized by altered spinal cord and brain neuroplasticity is

frequently observed in cancer survivors who have undergone

chronic pain triggered by cancer itself or by cancer treatments.

Several mechanisms related to cancer contribute to the

generation of persistent pain: i) mechanical injury to peripheral

nerves induced by tumor growth (56); ii) tumor-mediated tissue

acidosis (57); iii) proteolytic activity by tumor cells which leads to

neuroactive peptides or direct injury to sensory and sympathetic

fibers (58); iv) direct effects of factors released by cancer and stromal

cells on nociceptors innervating the tumor-bearing organ (Figure 1)

(59, 60). Furthermore, cancer-derived inflammation in the

innervated niche strongly sensitizes nociceptive nerves leading to

allodynia (pain from normally innocuous stimuli) and hyperalgesia

(exaggerated response to stimuli of poor intensity) by lowering the

action potential threshold or elevating the firing frequency (55).
Frontiers in Immunology 04
Inflammation is the pathophysiological response of stromal,

vascular, nervous, and immune cells to pathogens and tissue

damage aimed at removing the noxious stimulus, promoting the

healing process, and restoring tissue integrity (61). Many mediators

of inflammation are known to impact on nociceptors enhancing

their excitability: histamine, bradykinin, leukotrienes, and

prostaglandins from mast cells; adenosine, ATP, and protons

from damaged tissues; IL-1b, IL-6, TNF-a, and NGF from

macrophages (62); endothelin-1 and NGF from cancer cells.

These factors act directly on nociceptors by binding to specific

cell surface receptors, leading also to increased sensitivity to

temperature and touch (55). For instance, endothelins are

detected by the endothelin-A receptor, while ATP binds to the

purinergic P2X3 receptor. Activation of these receptors, as well as

the sensing of the mechanical distension of sensory fibers caused by

tumor growth detected by the dorsal-root acid-sensing ion channel

(DRASIC), lowers the threshold of nociceptor excitability by

inducing the phosphorylation of the 1.8 and/or 1.9 sodium

channels (Na+ channels) (58). Chemokines are other important

mediators of cancer-associated pain by recruiting immune

cells (63).

Prolonged activation of peripheral fibers contributes to central

sensitization through the continuous release of glutamate, substance

P (SP), calcitonin-gene related peptide (CGRP), and ATP into the

synaptic space, which increases the responsiveness of second order

neurons expressing the N-methyl-D-aspartate receptor (NMDAR)
FIGURE 1

Mechanism of pain sensing at the tumor-nociceptor interface. The unmyelinated C and thinly-myelinated Ad fibers which represent the primary
afferent sensory nerves (known as nociceptors) detect many types of noxious stimuli from tumor cells (orange box). Protons (H+) are sensed by the
transient receptor potential vanilloid-1 (TRPV1) channel and the acid-sensing ion channel-3 (ASIC3), adenosine triphosphate (ATP) by the purinergic
P2X3 receptor, endothelins by the endothelin-A receptor, whereas the dorsal-root acid-sensing ion channel (DRASIC) detects the mechanical
distension of sensory fibers caused by tumor growth. Activation of nociceptors, whose cell bodies lie in the dorsal root ganglia (DRG), results in the
release of neurotransmitters (pink box), such as glutamate (Glu), substance P (SP), calcitonin gene-related peptide (CGRP), and ATP, which transmit
the painful signal in the spinal cord to the second order neurons expressing the N-methyl-D-aspartate receptor (NMDAR), leading to spinal cord and
brain sensitization with altered pain responsiveness (gray boxes).
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in the spinal cord to painful stimuli (Figure 1). Central sensitization

can also derive from neuroinflammation mediated by glial cell

activation, or from the loss of physiological inhibition by

inhibitory neurons secreting GABA and glycine, which can lead

to perceive pain from non-nociceptive myelinated Ab primary

afferent fibers after innocuous mechanosensitive stimuli

(mechanical allodynia) (64). Microglia cells play a pivotal role in

speeding up neuroinflammation and pain centralization by

triggering astrocyte activation that sensitizes first- and second-

order neurons through the release of inflammatory mediators

such as TNF-a (65). It should be noted that immune cells, in the

effort of a homeostatic mechanism, upon corticotrophin-releasing

hormone and noradrenaline stimulation can release b-endorphins
which are able to attenuate pain through the engagement of the

opioid receptors on sensory nerves (66). This immuno-mediated

peripheral analgesia occurs only in the event of an inflammatory

response, linking inflammation to both pain-gain and pain-

resolution after tissue injury (65, 67). The relationship between

opioids and analgesia is ambiguous as opioid-mediated

neuroinflammation has emerged. Indeed, morphine and other

opioids used for the attenuation of cancer-associated pain can

bind the Toll-like receptor 4 accessory protein MD-2 on both

microglia and astrocytes eliciting the release of nitric oxide (NO)

and production of inflammatory cytokines (68–70). This discovery

accounts for the paradoxical consequences of long-lasting opioid

treatment, the opioid-induced hyperalgesia (OIH), and marks

neuroinflammation as the pathological and pharmacological

driving mechanism of chronic pain (71–73).

NGF, besides its role in neuronal development and

consequently in the formation of the innervated niche as

previously described, is involved in inflammatory hyperalgesia

and cancer-associated pain. NGF binds to the neurotrophic high-

affinity tyrosine kinase receptor TrkA and the low-affinity receptor

p75 expressed on sensory nerves modulating the expression and

function of neurotransmitters (SP and CGRP), receptors

(bradykinin R), and channels (P2X3, TRPV1, ASIC3 and sodium

channels) (60). The transient receptor potential vanilloid-1

(TRPV1) channel is a key component of the pain sensing system

being activated by different stimuli including heat, acid, and

protons. TRPV1 and the acid-sensing ion channels (ASICs) are

responsible for the generation of pain in the acidic milieu that

characterizes the TME and the persistent pain occurring in the bone

metastases due to the massive tissue acidosis operated by

osteoclastic activity (74).

Cancer patients often face chemotherapeutic treatments and

several antitumor drugs, including taxanes, the vinca alkaloids, and

platinum-based compounds, can induce pain and/or sensory

neuropathy, the so-called chemotherapy-induced peripheral

neuropathy (CIPN). The mechanisms are poorly understood as these

agents have been primarily selected to target dividing cells, but in the

case of microtubule-affecting drugs it is reasonable that they impair

axonal transport of nerves. Increasing findings also suggest a link

between CIPN and a bioenergetic imbalance in sensory neurons caused

by drug-induced mitochondrial dysfunction (75). Drug-mediated

injury to C and Ad sensory fibers can lead to myalgia, tingling, cold
Frontiers in Immunology 05
allodynia, and burning pain in the fingers, whereas damage to Aa and

Ab fibers can result in paresthesias and dysesthesias (60).
Senescence and cancer pain

Senescence of tumor and stromal cells

Senescence is a complex cellular program characterized by

halted cell cycle and the production of a massive inflammatory

secretome called SASP (76). Senescence is triggered by a variety of

exogenous and endogenous stressful stimuli including telomere

shortening, DNA damage by genotoxic drug, and oxidative stress

(77). Cancer cells can undergo senescence due to oncogenic

proliferative stress (the so-called oncogene-induced senescence or

OIS) or therapy-induced insult (the the so-called therapy-induced

senescence or TIS). Senescent tumor cells have both tumor-

suppressing and tumor-promoting properties, depending on the

context (premalignant lesion or neoplastic tissue) and TME (cold

versus hot tumors) (78, 79). A further layer of complexity is

provided by the induction of senescence in stromal cells (80–83).

Senescent cells are in close connection with the immune system as

the SASP drives the recruitment and activation of immune cells and,

in turn, immune cells recognize and target senescent cells (84, 85).

Consequently, senescence deeply modifies cancer immune

landscape (86). In addition, SASP factors impact on tissue

homeostasis performing tissue remodeling and repair (87–89).

Cancer cells and cells of the immune system have a continuous

dialog conceptualized in the cancer immunoediting theory (90). In

this scenario, senescence affects the three phases of cancer

immunoediting, i.e. elimination, equilibrium, escape. For a

comprehensive review on the topic see (91). Here we want to

highlight how senescent cells within the innervated niche can

influence cancer-associated pain.

SASP composition is extremely heterogeneous and dynamic,

depending on cell type and cause of senescence (92–94).

Nevertheless, some factors are shared among the conditions and

are discussed below regarding their capacity to affect cancer-evoked

pain (Table 1).

Hematopoietic colony stimulating factors. Signaling generated

from the granulocyte colony stimulating factor (G-CSF) and

granulocyte-macrophage colony stimulating factor (GM-CSF) has

been linked to pancreatic adenocarcinoma and bone cancer pain.

Starting from the finding that receptors for both cytokines are

expressed on pancreatic nerves in biopsy from healthy individuals

and individuals with pancreatic tumors showing hypertrophic

nerves, the signal transduction investigated in a mouse sarcoma

model of bone tumor–induced pain has been shown to be mediated

by the JAK-STAT3 pathway and to lead to the upregulation of the

sodium channel NaV1.8 and the heat-activated channel TRPV1

(95). This nociceptor sensitization is accompanied by an increased

release of the pain-related peptide CGRP upon nociceptive

stimulation. In this way, G-CSF and GM-CSF are responsible for

thermal and mechanical hyperalgesia in bone metastases (Figure 2).

It should be noted that G-CSF and GM-CSF in the TME also
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contribute to the formation of the innervated niche by promoting

both cancer cell proliferation and the branching of tumor

innervating fibers (95). As G-CSF and GM-CSF are two factors of

the SASP, it is expected that senescence in the TME can strongly

enhance pain perception by increasing the local level of G-CSF and

GM-CSF. Even if the actual levels have been reported to be

regulated by the states of senescence, namely p53 status

(functional or mutated), both senescent tumor cells and senescent

stromal cells, such as fibroblasts, produce high amount of GM-CSF

and, in some cases, of G-CSF (96, 97).
Frontiers in Immunology 06
IL-6. IL-6 is a well-known SASP factor involved in autocrine and

paracrine senescence. It regulates immune response and drives

somatic cell reprogramming. Being a potent inflammatory cytokine,

in the TME it is associated with tumorigenesis by promoting cell

proliferation, migration, metastasis, angiogenesis, and immune

evasion (88). Regarding pain experience, high levels of IL-6 have

been observed in the DRG and spinal cord of different rat models of

pathological pain where an IL-6/JAK/PI3K/TRPV1 signaling cascade

has been characterized (98, 99). Administration of IL-6 provokes

mechanical allodynia and thermal hyperalgesia (100). Accordingly,
FIGURE 2

The complex dialog among the actors of the innervated niche: focus on how cellular senescence impacts on cancer-associated pain. 1) Senescent
tumor and stromal cells secrete large amount of granulocyte colony stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating
factor (GM-CSF) which upregulate the expression of the sodium channel NaV1.8 and the heat-activated channel TRPV1 on primary afferent
nociceptors leading to enhanced pain perception upon nociceptive stimulation. 2) Senescent cells are a robust source of inflammatory cytokines
(e.g. IL-6) and chemokines (e.g. CCL2) and actively recruit immune cells, such as macrophages (MF) and natural killer (NK) cells, in the innervated
niche. Macrophage-promoted inflammation and oxidative stress strongly sensitize nociceptive nerves leading to enhanced nociception. 3) Senescent
Schwann cells contribute to the recruitment and proliferation of the macrophage population in the innervated niche by producing the macrophage
colony stimulating factor (M-CSF). 4) Senescence of sensory neurons following chemotherapy can participate in the pathogenesis of chemotherapy-
induced peripheral neuropathy (CIPN). 5) Senescence-attracted NK cells target both tumoral and neuronal senescent cells through NKG2D/NKG2D
ligand interaction providing an immune cell-mediated mechanism of pain control.
TABLE 1 SASP factors for which a cascade to enhanced nociception is known.

SASP factor Target cell/pathway Downstream target Reference

G-CSF, GM-CSF Nerve/JAK-STAT3 ↑NaV1.8, ↑TRPV1, ↑CGRP (95)

IL-6 DRG/JAK-PI3K ↑TRPV1 (98, 99)

IL-1b Spinal cord ↑NMDAR (119)

M-CSF Macrophage ↑TRPA1 (142, 143)
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IL-6 knockout mice show reduced mechano-allodynia following

spinal nerve lesion (101). IL-6 mediates nociceptive plasticity

in part by enhancing protein translation in sensory neurons

(102, 103). Patients with painful peripheral neuropathy have been

shown to have elevated local levels of IL-6 and IL-8 in the affected

skin (104). IL-6 has also been implicated in CIPN, even if with

conflicting findings. A protective role has been reported in three

animal models of paclitaxel, cisplatin and vincristine-induced

neuropathies, while a reduced incidence of vincristine-induced

mechanical allodynia has been found in IL-6 knockout mice (105,

106). It should be noted that different animals were used (rat versus

mouse), possibly accounting for the discrepancies. Supporting a

positive correlation, two clinical studies, one in women with breast

cancer after chemotherapy (taxanes) and one in patients with

metastatic prostate cancer who received chemotherapy (docetaxel),

point to an association of high plasma levels of IL-6 and soluble IL-6

receptor with CIPN intensity (107, 108). Nevertheless, caution should

be taken before drawing conclusions as different bias could affect

studies involving cancer patients experiencing chronic pain. IL-6 is

also involved in the processes of inflammaging, and it is now well

recognized that senescent cells that accumulate in aged tissues are

great producers of systemic IL-6 (109, 110). A similar role can be

assumed for senescent cells in the TME. It is reasonable that

senescent cell-derived IL-6 can contribute both systemically and

locally to the establishment of chronic inflammation paving the

way to persistent pain. However, this scenario still needs to be

experimentally validated.

CCL2. CCL2 is the most representative chemokine of the SASP

involved in the recruitment of monocytes/macrophages, MDSCs,

and NK cells (78, 111). It has been reported that CCL2 can be

produced by neurons of the DRG in rodents and that mice lacking

the chemokine receptor CCR2 abrogate the development of

mechanical allodynia, suggesting that CCL2 can contribute to

pain generation by a direct action on neurons (an intracellular

Ca2+ signaling has been observed in DRG cells treated with CCL2)

or by indirect inflammatory effects mediated by the immune system

(112–114). In this context, senescent tumor cells can be a robust

source of CCL2 and possibly participate in neuropathic

pain (Figure 2).

IL-1. IL-1a and IL-1b are highly produced within the SASP,

driving a critical function in the establishment of the senescent

phenotype (115–117). A role in pain generation can be inferred as

usage of the IL-1R antagonist anakinra has been reported to reduce

mechanical hyperalgesia in rat models of bone cancer pain by

dampening the NMDAR signaling and the PI3K-mTOR pathway

in the spinal cord and brain, respectively (118, 119).

Bioactive lipids. There is scarce information about biologically

active lipids in the SASP. Production of leukotrienes has been

documented in senescent fibroblasts in correlation with lung

fibrosis (120). Senescent dermal and prostatic fibroblasts have been

reported to secrete prostaglandin E2 due to cyclooxygenase-2

upregulation during senescence (121). Lipid biosynthetic pathways

have been shown to be orchestrated in a time-dependent manner

following the induction of senescence and have been suggested to be

implicated in the well-known role of senescent cells in wound healing
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(122, 123). Eicosanoids are important effectors of inflammation, and

this may represent a further mechanism through which senescent

cancer and stromal cells contribute to neuroinflammation-caused

pain in the innervated niche.
Senescence of neurons and glial cells

Being associated with stable growth arrest, cellular senescence is

commonly observed in proliferating cells, but recent evidence

suggests that also postmitotic and terminally differentiated cells,

such as neurons and glial cells, are able to undertake a senescence

program following appropriate stimuli (124, 125). The unfolded

protein response (UPR) is of particular importance in postmitotic

specialized cells that have limited turnover capacity. Sustained

activation of the UPR due to accumulation of stress granules and

protein aggregation may account for the establishment of the

senescent phenotype in aged neurons (126, 127). Indeed, it has

been reported in mouse models of tauopathies and postmortem

specimens from brains of patients with Alzheimer’s disease that the

affected neurons show a canonical senescence stress response with

DNA damage, aberrant cellular respiration, upregulation of cell

cycle inhibitors, resistance to cell death, and inflammation mediated

by NF-kB (128). Accordingly, treatment with senolytics (dasatinib

plus quercetin) in mice has been shown to reduce the senescence

signature (128). Senescent neurons share different phenotypic

features of senescent mitotic cells, although not all, such as

enhanced b-Gal activity, DNA damage, SASP (126). The use of

the b-Gal activity, as well as of lipofuscin accumulation, as marker

of neuronal senescence deserves particular attention due to the

positive staining occurring in normal neurons throughout the

lifespan, especially in cerebellar Purkinje neurons, hippocampal

CA2 neurons, and a subset of cortical neurons (128, 129). Likewise

primary fibroblasts, primary rat hippocampal neurons in long-term

cultures display characteristics of senescence (senescence-associated

b-Gal activity, p16 accumulation, and loss of lamin B1) after

experiencing proteostasis fai lure (130). DNA damage

accumulating in aging neurons is causative of a senescence-like

phenotype dependent on p21 (131).

Relevant to our discussion, neuronal senescence has been

described in the event of CIPN at least in mouse models.

Cisplatin-induced DNA damage in DRG neurons is not

associated with apoptotic cell death but with a senescence

response, as revealed by lysosomal b-Gal activity and p21

upregulation, accumulation of lipofuscin granules and

morphological changes (enlarged endoplasmic reticulum and

larger mitochondria), lack of caspase-3 cleavage (132).

Remarkably, the clearance of cisplatin-induced senescent DRG

neurons by a pharmacological approach with the ABT263

compound (Navitoclax, daily intraperitoneal injections at 50 mg/

kg for 2 cycles lasting 5 days with a 16-day rest period between) or

genetic deletion of p16+ senescent cells (p16-3MR transgenic

mouse) improves symptoms of CIPN as assessed by mechanical

(von Frey test) and thermal (hot plate test) stimulation at least until

three months after 2 cycles of 2.3 mg/kg cisplatin treatment (5 days
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on-5 days off-5 days on), suggesting that senescent neurons play a

role in the pathogenesis of CIPN (133). ABT263 is an inhibitor of

the anti-apoptotic proteins BCL-2 and BCL-xL and selectively

targets senescent cells, which are known to upregulate anti-

apoptotic factors (134). Usage of senolytics is currently under

investigation for the treatment of age-associated diseases (135),

leading to hypothesize also a possible application in the

management of CIPN, considering that CIPN is among the most

common dose-limiting adverse effects of anticancer drugs. Based on

encouraging results in preclinical models, first- and second-

generation senolytics have landed into clinical trials in humans.

Only mild to moderate reversible adverse events have been reported

so far but the effectiveness of senolytics for the tested pathologies

remains scant. Regarding pain, different trials (NCT03513016,

NCT04129944, NCT04210986, NCT04229225, NCT04349956,

NCT04770064) aimed at targeting senescence to reduce

osteoarthritis pain by using nutlin-3a (UBX0101) or fisetin are

still ongoing or failed to achieve the primary endpoint of improving

pain in patients with osteoarthritis of the knee (135, 136).

Interestingly, a role for cellular senescence in long-term pain has

been postulated to justify the male-specific sex-biased chronic pain

observed in a mouse model of nerve injury, where accumulation of

senescent cells in the spinal cord due to telomere shortening has

been reported only in male mice (137).

Schwann cells are the glial cells of the peripheral nervous system

designed to the myelination of nerves. Schwann cells not only are

involved in the saltatory nerve conduction but also contribute to

nerve regeneration after injury and participate in cancer-evoked

pain (138). In homeostatic conditions Schwann cells uphold pain

relief by protecting neurons and counteracting demyelination

whereas during inflammation they secrete a variety of

neurotrophic factors (NGF and BDNF) that guide axon repair but

also exacerbate pain (139). In response to nerve injury, Schwann

cells assume a non-myelinating phenotype with proliferation

capacity aimed at regulating the Wallerian degeneration of axon

and subsequent regeneration. The efficiency of this process has been

linked in mice to the duration of neuropathic pain, making

Schwann cells a promising target for the management of chronic

pain (140, 141). Schwann cells are also involved in a pain-eliciting

circuity with macrophages, demonstrated so far only mice.

Macrophages display clear pro-algesic effects at the site of nerve

injury by feedforwarding oxidative stress. In the context of cancer,

the high levels of reactive oxygen species (ROS) that characterized

the TME trigger the transient receptor potential ankyrin 1 (TRPA1)

on Schwann cells that in turn release M-CSF promoting the

recruitment and expansion of the macrophage population which,

in a positive feedback, increases oxidative stress and overstimulates

the sensory neurons thus sustaining allodynia and spontaneous

pain (Figure 2) (142, 143). Additionally, Schwann cells have been

reported to reciprocally interact with cells of oral squamous cell

carcinoma in both mice and humans via adenosine and TNF-a,
with the result of increasing the pro-nociceptive mediators IL-6 and

NGF (144, 145). Considering that this role of Schwann cells in the

modulation of cancer-associated pain has been correlated, at least in

some circumstances, to the production of chemokines (M-CSF,
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TNF-a, and IL-6) which are abundant in the SASP of senescent

cells, the discovery that Schwann cells can undergo senescence

discloses further conceivable mechanisms of pain generation and, at

the same time, new possible opportunities for the management of

cancer-evoked pain (146–148).
Role of the immune system: the cogent
case of NK cells

The immune system is deeply involved in the processes of pain

generation and control [for a review see (149)]. As previously

outlined, immune cell-mediated neuroinflammation triggers long-

term pain by sensitization of sensory fibers. Moreover, immune cell-

executed cytotoxic effects directly damage nerves. On the other

hand, the immune system participates in several ways to the

resolution of pain (150). This seemingly contradictory role is

consistent with the functions of the immune system aimed at

tissue healing after removal of harmful stimuli. This goal is

achieved through the plasticity of immune cells which

physiologically occurs during the healing processes and can be

exploited for therapeutic interventions. Regarding pain attenuation,

immune cells promote analgesia by secreting both anti-

inflammatory cytokines (for instance IL-10 hinders the

production of TNF-a) and pro-reparative cytokines (such as IL-

4) (151). IL-10 has been shown to counteract mechanical

hypersensitivity after CIPN in DRG neurons treated with cisplatin

(152). IL-4-mediated effects are believed to be due, at least in part, to

the analgesic properties of opioids produced by M2-polarized

macrophages (153). Endogenous opioid peptides and lipidic

endocannabinoids supplied by immune cells, e.g. macrophages, T

cells, and microglia, are other important modulators of pain (151).

Among the effector functions of immune cells in the innervated

niche, cytotoxicity is critical to target cancer cells but also can lead

to painful nerve injury (154). At the same time, it is now appreciated

that cytotoxic immune cells, especially macrophages, neutrophils,

and NK cells, contribute to the neuropathic pain resolution by

clearing damaged neurons and performing phagocytic removal of

debris (155). A transient inflammatory wave driven by the

activation of neutrophils, macrophages, and mast cells has been

associated with musculoskeletal pain resolution in humans,

preventing the transition from acute to chronic pain. Accordingly,

inhibition of the inflammatory response by steroids in mice has

been shown to induce analgesia in the short term but to delay full

recovery from pain in the long run (156).

NK cells are lymphocytes of the innate immune system with

pronounced cytotoxic and immunomodulatory functions.

Involvement of NK cells in the processes of neuropathic pain is

proved by different lines of evidence. Activation of NK cells has

been observed in both humans and mice after acute painful stimuli,

electric and heat shock, respectively (157, 158). An inverse

correlation between NK cell frequency in the cerebrospinal fluid

and mechanical pain sensitivity has been reported in patients with

neuralgia, hypothesizing a role of NK cells in preventing central

sensitization (159). The analgesic effect of electroacupuncture has
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been correlated with the cytotoxic activity of splenic NK cells, at

least in rat models of pain (160, 161).

Injury to peripheral nerve is followed by the fragmentation of the

damaged axons by a neuron-intrinsic mechanism (cytoskeletal

destabilization) called Wallerian degeneration that leads to the

elimination of the nerve stump distal to the site of injury but

preserves the cell body (162). A permissive milieu for axonal

regeneration is then promoted by debris clearance and glial

reactivation. First evidence of an NK cell contribution to neuronal

degeneration derived from studies of mononuclear inflammatory cell

infiltration in athymic nude rats, which lack T lymphocytes, after

exposure to guanethidine, an adrenergic blocking agent causing the

death of sympathetic neurons resident in the superior cervical ganglia

(163, 164). Furthermore, DRG neurons can be killed directly by

syngenic IL-2-activated NK cells, but the efficiency of the process is

strictly dependent on the lack of glia cells, restricting the NK-

mediated mechanism of elimination to damaged neurons (165).

The seminal work by Davies and colleagues has further

demonstrated that in the context of peripheral nerve injury in adult

mice NK cells complement the Wallerian degeneration by targeting

damaged sensory nerves, thus participating in peripheral nerve

regeneration (166). In particular, they showed that the injured

neurons flag themselves as damaged by expressing the NKG2D

ligand RAE-1 to trigger NK cell cytotoxicity. NK cells extravasate

and infiltrate the nerves by few days from injury and promote axon

degeneration through granzyme-B. RAE-1 protein is anatomically

restricted to the peripheral axons of injured sensory neurons either by

anterogradely transport along the axon or by mRNA local translation,

indicating that NK cell-neuron cytotoxic interaction occurs at the

peripheral site saving the cell body. Strikingly, NK cell activity is

accompanied by reduced hypersensitivity to mechanical stimulation,

a surrogate marker of chronic neuropathic pain, providing a neuron-

extrinsic immune cell-mediated mechanism of pain control.

Abolishing NK cell activity by anti-NK cell antibody leads to

reduced degenerating fibers but more remaining abnormal fibers, as

assessed by myelin and axoplasm integrity, which likely conduct the

painful sensory response. Indeed, it is reasonable that an efficient

clearance of the injured fibers is required to avoid the aberrant sensing

of pain that characterizes damaged but functionally active sensory

axons or mistargeted re-innervating neurons (167, 168). It is tempting

to speculate that NK cells could work as “cellular microsurgeons” to

pruning the mis-wired endings of sensory nerve (169). Genetic and

chemical approaches to target nociceptors and cope with acute and

chronic pain have been already proposed in clinical veterinary and

human pain states (e.g. with resiniferatoxin to target TRPV1-

expressing small-diameter sensory neurons) (170–172).

Senescent cells are a preferential target of NK cells (84). Not only

senescent cells actively recruit NK cells by secreting a plethora of

chemokines (CCL2, CCL4, CCL5, CXCL10, CX3CL1), but also

sustain and trigger NK cell activity through cytokine production

(IL-15, IL-18, TNF-a) and by expressing on the cell surface the

ligands of the NK cell activating receptors (111, 173–177). The stress-

induced ligands of the receptors NKG2D and DNAM-1 are strongly

up-regulated by tumor cells followingOIS and TIS and senescent cells

are targeted by NK cells through cytotoxic granule exocytosis and not
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death receptor signaling (178, 179). This mechanism promotes the

immune surveillance of senescent cells in different physio-

pathological settings and may be relevant also for the resolution of

the senescence-driven pain in the innervated niche (Figure 2).

Supporting this view, the capacity of NK cells to target DRG

neurons via RAE-1/NKG2D interaction has been demonstrated at

least in vitro (180). Transient senescence has pro-regenerative

functions, and a senescence signature has been observed after

peripheral nerve injury which declines over time, suggesting a

reprogramming of the senescent phenotype or an immune-

mediated clearance of the induced senescent cells (181). It should

be noted that the capacity of senescent cells of attracting NK cells

within the TME can also affect the non-senescent cell compartment,

as not senescent tumor cells are targeted by NK cells, and activated T

cells can become susceptible to autologous NK lysis via NKG2D/

NKG2D ligand interaction through granule exocytosis leading to

inflammation quenching (182). Senescent cell accumulation and gut

dysbiosis are two shared features of aging and cancer (183–185). It

has been shown in different mouse models that gut microbiota

modulates NK cell effector functions against tumor cells and there

is also a similar functional correlation in analyses from humans (186–

189). As a speculative hypothesis, adoption of a healthy diet or a diet

supplemented with probiotics and prebiotics to enhance NK cell

activity could be part of a strategy to target senescent tumor cells and

thus promote cancer-associated pain relief. The therapeutic

opportunity of NK cells for the treatment of neuropathic pain is

not new [see (169)], but the disclosure of the role of senescence in the

innervated niche could extend the field of application.
Future directions

Cancer, nervous and immune systems are deeply interweaved,

demanding holistic approaches for the management of cancer-

associated pain. As neuropathic pain shows features of chronic

neuroinflammation and the TME is characterized by an

inflammatory milieu, we are in need to pinpoint the role of

cellular senescence in the innervated niche and map the precise

source of inflammatory factors to weigh the contribution of

senescent cells. Cellular senescence is a powerful driver of

inflammation but at the same time is becoming a targetable

element offering an innovative line of intervention (135, 190).

Approaches currently under investigation for the targeting of

senescent cells in cancer and aging diseases could be explored to

treat cancer-evoked pain. Senolytic strategies are attractive but still

have concerns: i) on- and off-target effects have not been fully

addressed; ii) senescent cell markers are not univocal leading to

misleading interpretations about senescence burden and more

reliable biomarkers are essential to evaluate treatment efficacy; iii)

heterogeneity of senescent cells makes difficult to weigh up

beneficial and detrimental effects; iv) more studies devoted to

treatment regimen and frequency are needed. Along with

senolytics, strategies aimed at harnessing the immune system to

tackle senescent cells are promising. These include: i) adoptive

transfer of boosted NK cells (191); ii) improved NK cell cytotoxicity
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1694567
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Antonangeli et al. 10.3389/fimmu.2025.1694567
by targeting the CD94/NKG2A inhibitory receptor using anti-

NKG2A therapeutic mAb (i.e. monalizumab) (192, 193); iii)

ADCC triggered by anti-senescent cell-specific mAb (i.e. anti-

DDP4 mAb) (194); iv) CAR-T cells specific for senescent cells,

namely CAR-T cells that recognize the surface senescence-specific

marker urokinase-type plasminogen activator receptor (uPAR) or

NKG2D-CAR-T cells (195, 196); v) anti-PD-L1 or anti-PD-L2

immune checkpoint inhibitory therapies that enhance the killing

capacity of cytotoxic lymphocytes against PD-L1- and PD-L2-

expressing senescent cells (197, 198). Among these options,

therapies based on anti-NKG2D and anti-PD-L1 monoclonal

antibodies are already in clinical use with a favorable safety

profile (199, 200). Compared to CAR-T cells, NK cells are

emerging as a valid alternative with a safer profile, opening the

possibility of an “off-the shelf” therapy (201). Senescence has

undoubted immune-stimulating features, but as there is now

evidence that senescence can arise not only in tumor cells but

also in neurons and glial cells, due to cellular stress conditions or

because of anticancer therapy-mediated effects, NK cell-based

therapies against senescent cells should be carefully calibrated to

the right targets to avoid unwanted and unpredictable side effects.

For example, NK cell-killing of senescent neuroblasts in the dentate

gyrus of hippocampus has been associated to impaired neurogenesis

and loss of cognitive functions. Immunotherapies have

revolutionized cancer treatment, disclosing the inherent power of

the immune system plasticity. This finding should encourage the

exploration of immune-mediated analgesia, a new burgeoning field

across cancer neuroscience and algology.
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