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Sepsis-induced multiple organ dysfunction syndrome is the leading cause of

mortality among patients with sepsis. Its pathophysiological mechanisms

encompass various factors, including dysregulated inflammatory responses,

endothelial injury and microcirculatory disturbances, abnormal activation of

cell death pathways, as well as metabolic reprogramming and immune

interactions. The central nervous system (CNS) is one of the earliest and most

susceptible organs affected during the septic process. This involvement not only

results in brain dysfunction due to neuronal damage, excessive activation of

microglia, and neuroinflammatory responses but also contributes to systemic

organ damage through diverse neural regulatory mechanisms. Specifically, the

CNS influences the function of distant organs via the autonomic nervous system

—comprising inhibition of the vagus nerve cholinergic anti-inflammatory

pathway and excessive activation of sympathetic nerve pathways—the

neuroimmune regulatory network, central trained immunity regulation,

extravasation of brain-derived inflammatory factors, and exosome transport.

This paper provides a systematic review of key pathogenic mechanisms

underlying sepsis-related organ damage while emphasizing the pivotal

regulatory role played by the central nervous system in this pathological

process along with its potential therapeutic implications.
KEYWORDS

sepsis, neuroimmune regulation, autonomic nerve function, inflammation, sepsis-
associated encephalopathy
1 Introduction

Sepsis is a life-threatening syndrome characterized by organ dysfunction resulting from

a dysregulated host response to infection (1). This condition can lead to multi-organ system

damage, primarily affecting vital organs such as the brain, heart, lungs, liver, and kidneys

(2, 3). However, current clinical practice for treating sepsis-related organ damage

predominantly relies on antibiotics and supportive care, with a notable absence of
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specific targeted therapeutic agents. Importantly, the central

nervous system (CNS), recognized as one of the earliest and most

vulnerable target organs (4), plays a critical role in the

pathophysiology of sepsis. Clinical studies indicate that up to 70%

of patients with sepsis develop sepsis-associated encephalopathy

(SAE), which is characterized by diffuse brain dysfunction without

direct evidence of central nervous system infection (5). his acute

brain injury not only elevates the acute mortality rate among sepsis

patients (ranging from 9% to 76%) (6) but also contributes to long-

term cognitive impairment that severely impacts patients’ quality

of life (7). Moreover, recent research has revealed that the CNS

serves as a key driver in both the onset and progression of

peripheral organ dysfunction and its long-term sequelae by

modulating autonomic neural pathways and neuroinflammatory

responses (8, 9). An experimental study have demonstrated that

protective interventions targeting the nervous system—such as

cholinergic pathway-targeted therapies—can effectively reverse

multi-organ damage (10). These significant findings underscore

the CNS’s central regulatory role in sepsis-related multi-organ

dysfunction; however, elucidation of its regulatory mechanisms

remains elusive. Therefore, an in-depth investigation into how the

CNS influences sepsis-related organ damage will provide essential

theoretical foundations and therapeutic targets for developing novel

intervention strategies aimed at mitigating multi-organ damage

associated with sepsis.
2 The core mechanism of sepsis-
induced organ damage

The fundamental mechanism underlying sepsis-induced

mult iple organ damage arises from the dysregulated

inflammatory response of the host to infection, which initiates a

cascade of interrelated pathophysiological processes (Figure 1).

The resultant excessive cytokine storm leads to endothelial cell

injury and aberrant activation, subsequently promoting an

overactivation of the coagulation system (11, 12). This series of

events culminates in microcirculatory thrombosis, tissue ischemia

and hypoxia, as well as cellular apoptosis, thereby resulting in

multiple organ dysfunction (13). This core process is frequently

accompanied by an immunosuppressive state and metabolic

reprogramming (14–16), both of which further intensify disease

progression. Such alterations increase the risk of immune

paralysis and secondary infections, ultimately exacerbating

patient prognosis.
Abbreviations: CNS: central nervous system; SAE: sepsis-associated

encephalopathy; TNF-a: tumor necrosis factor-a; IL-1b: lnterleukin-1b; LPS:

lipopolysaccharides; BBB: blood-brain barrier; Ab: amyloid-b; CAP: cholinergic

anti-inflammatory pathway; M1AChR: M1 muscarinic acetylcholine receptors;

GABA: g-aminobutyric acid; GAT2: GABA transporters; HPA: hypothalamic-

pituitary-adrenal; IL-6: interleukin-6; HMGB1: high mobility group protein B1.
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2.1 Uncontrolled inflammatory response
and immune suppression

Sepsis is characterized by an exaggerated inflammatory

response in its early stages (17). The infection by pathogens

activates immune cells, such as macrophages and neutrophils,

prompting them to release substantial quantities of pro-

inflammatory mediators, including tumor necrosis factor-a
(TNF-a) and lnterleukin-1b (IL-1b), which in turn initiates a

systemic inflammatory response (17). Among these immune cells,

the abnormal activation of macrophages—particularly through M1

polarization—plays a pivotal role in driving the inflammatory

cascade. The inflammatory mediators released can directly inflict

damage on endothelial cells and parenchymal organs (18, 19).

Furthermore, pathogen-associated molecular patterns, such as

lipopolysaccharides (LPS), further intensify this uncontrolled

systemic inflammatory response by continuously activating

signaling pathways associated with inflammation, notably TLR4/

NF-kB (20, 21). Significantly, the body may concurrently enter or

swiftly transition into an immune-suppressed state marked by

lymphocyte depletion and monocyte dysfunction (22). This

condition elevates the risk for secondary infections. In summary,

heightened inflammation and immune suppression frequently

coexist within sepsis patients, creating an “immune paradox” that

contributes to multiple organ dysfunction.
2.2 Endothelial injury and microcirculation
disorder

Under septic conditions, the heparan sulfate glycocalyx

structure on the surface of endothelial cells is compromised,

leading to impaired vascular barrier function and an abnormal

increase in permeability (23, 24). Consequently, this results in

tissue edema and insufficient microcirculatory perfusion,

ultimately causing ischemic injury to various organs (23, 24).

Simultaneously, endothelial cel l apoptosis intensifies,

accompanied by a marked upregulation of adhesion molecules

such as ICAM-1 and VCAM-1 (25, 26). This promotes aberrant

leukocyte-endothelial cell adhesion and microthrombosis (25, 26).

These pathological alterations further exacerbate microcirculatory

disorders, creating a positive feedback loop of tissue hypoxia-

inflammation-coagulation that ultimately leads to ischemic

hypoxic injury across multiple organs.
2.3 Activation of cell death pathways

Apoptosis in sepsis exhibits a cell type-specific activation pattern.

The excessive apoptosis of immune cells, such as dendritic cells,

results in a reduction of their numbers and functional impairments,

thereby promoting an immunosuppressive state that heightens the

risk of secondary infections (16). Conversely, the inhibition of

neutrophil apoptosis may lead to alternative death pathways,

including necroptosis or pyroptosis, which can further aggravate
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organ damage (27). Necroptosis plays a pivotal role during both the

early and progressive stages of sepsis by mediating the release of

substantial quantities of damage-associated molecular patterns (28).

This process continuously amplifies the inflammatory cascade and is

closely associated with sepsis-related organ dysfunction (28).

Furthermore, excessive activation of pyroptosis—driven by

Gasdermin D-induced membrane perforation and subsequent

release of inflammatory mediators such as IL-1b—exacerbates

oxidative stress, endothelial dysfunction, and thrombosis,

particularly in cases involving septic cardiomyopathy (29, 30). For

instance, the activation of the NLRP3 inflammasome and subsequent

caspase-1 activation lead to the release of IL-1b and pyroptosis, which
can directly result in myocardial injury and lesions in other organs

(31, 32). Ferroptosis, characterized as a form of iron-dependent lipid

peroxidation-driven cell death, is significantly implicated in the

pathological processes associated with sepsis-induced brain injury,

cardiomyopathy, acute kidney injury, lung damage, and liver

dysfunction (1, 33). This type of cell death can aggravate the

inflammatory cascade during sepsis by promoting the release of

inflammatory mediators and contributing to multi-organ damage

(34). Notably, ferroptosis inhibitors exhibit organ-protective effects

(35). Furthermore, dysregulation of autophagy within endothelial

cells and parenchymal cells—such as obstruction of autophagic flux

—can intensify cellular damage and is closely linked to both the onset

and progression of sepsis-related organ dysfunction (31). In all, sepsis
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has the capacity to activatemultiple pathways leading to programmed

cell death; this not only results in direct cellular demise but also

exacerbates multi-organ dysfunction through mechanisms such as

amplification of inflammatory cascades and disruption of immune

homeostasis. However, further exploration is required to elucidate the

inter-regulatory network relationships among these pathways.
2.4 Metabolic-immune interactions

Metabolic disorders serve as a critical molecular foundation for

the onset of sepsis and subsequent organ dysfunction (36).

Throughout the progression of sepsis, host cells undergo

metabolic reprogramming, which is primarily characterized by a

shift in energy metabolism from oxidative phosphorylation to

glycolysis (37). This metabolic transition is essential for the

activation and pro-inflammatory function of immune cells,

particularly macrophages (38). Enhanced glycolysis during the

acute phase not only supports the pro-inflammatory response

necessary to combat infection (39), but also partially mitigates the

“energy crisis” induced by sepsis (37). Persistent metabolic

reprogramming fosters a transformation in immune status from

pro-inflammatory to immunosuppressive, thus increasing

susceptibility to secondary infections (40). The metabolites

derived from glycolysis exhibit dual roles: they serve as energy
FIGURE 1

The core mechanism of sepsis-induced organ damage. Sepsis can lead to excessive activation of immune cells, such as macrophages and
neutrophils, resulting in the release of high levels of pro-inflammatory factors like TNF-a and IL-1b. This cytokine storm damages endothelial cells,
increases adhesion molecules, promotes microcirculation thrombosis, and causes ischemia and hypoxia, which can trigger multiple organ
dysfunction. The inflammatory response also inhibits monocyte, T cell, and B cell functions, leading to immunosuppression that exacerbates sepsis.
Additionally, sepsis activates cell death pathways that further increase inflammatory cytokine production. It also stimulates the glycolytic pathway to
enhance lactate production, promoting macrophage activation via MCT1 transport.
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substrates while also acting as crucial regulatory signaling molecules

within the immune system (41). For instance, lactate—a product of

metabolism—can influence immune cell functionality through

specific transporters (such as MCT1 and MCT4) and receptors

like GPR81 (42). Distinct patterns of immune dysfunction are

associated with specific metabolic disorder profiles (43, 44). The

immunosuppressive state observed in sepsis is accompanied by

significant metabolic disturbances (45, 46). These manifest as

enrichments across multiple pathways along with distinct

variations in metabolites (notably involving amino acid and lipid

metabolism disorders) (45, 46). This indicates that metabolic

reprogramming drives the immune response from an initial pro-

inflammatory phase to later immunosuppression, while being

intricately regulated by underlying immune dysfunctions.
3 Key pathophysiological mechanisms
of sepsis-associated CNS injury

SAE represents the primary clinical manifestation of CNS injury

in patients suffering from sepsis (47–49). The pathophysiological

underpinnings of SAE encompass four critical components

(Figure 2): neuronal injury (50), aberrant activation of microglia

(51), neuroinflammation and dysfunction of the blood-brain barrier

(BBB) (52). Activated microglia initiate neuroinflammatory
Frontiers in Immunology 04
cascades and oxidative stress, leading to neuronal damage (48,

53). Importantly, this neuroimmune activation extends beyond

the confines of brain tissue; it can also have systemic effects by

releasing pro-inflammatory factors (such as TNF-a and IL-1b),
thereby contributing to the onset and progression of dysfunction in

peripheral organs (2, 48, 51, 52).
3.1 BBB dysfunction and
neuroinflammation

The systemic inflammatory response initiated by sepsis serves

as the primary catalyst for SAE (54). This pathological process

results in significant damage to both the structure and function of

the BBB, characterized by a down-regulation of tight junction

proteins and an abnormal increase in permeability (55, 56). Such

alterations facilitate the translocation of peripheral inflammatory

mediators across the BBB into the central nervous system,

ultimately disrupting neural microenvironment homeostasis (55,

56). Once the integrity of the BBB is compromised, microglia

become markedly activated and adopt a pro-inflammatory

phenotype (48).These activated microglia may cause damage to

the structural integrity of neurons, impair synaptic plasticity, and

disrupt neurotransmitter transmission by releasing pro-

inflammatory factors (49, 57).
FIGURE 2

Key pathophysiological mechanisms of sepsis-related CNS injury. Sepsis activates immune cells, leading to systemic inflammation and damage to
the BBB. This disruption allows inflammation into the brain, causing cerebral ischemia and hypoxia. Activated microglia release pro-inflammatory
factors, resulting in neuroinflammation, axonal damage, neuronal death, and impaired neurotransmitter transmission, which contributes to brain
dysfunction and SAE. Over time, survivors may experience long-term neurological sequelae. Furthermore, neuronal death can worsen
neuroinflammation and brain dysfunction in a reciprocal manner.
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3.2 Abnormal cerebral perfusion and
ischemic injury

Sepsis-induced BBB dysfunction and impaired cerebral

autoregulation lead to cerebral hypoperfusion (58). The

inflammatory response from sepsis facilitates the abnormal

transfer of peripheral inflammatory molecules to the CNS,

causing pathological accumulation of amyloid-b (Ab) and tau

proteins, which are linked to neurodegenerative diseases (59, 60).

Clinical studies indicate that this accumulation in SAE patients not

only worsens neurodegenerative conditions but is also associated

with cerebrovascular diseases (59). Pathological evidence shows

characteristic edema changes, ischemic injury, and infarction foci in

the brain tissue of SAE patients, all closely related to

microcirculation disorders (61).
3.3 Axonal injury and neuronal death

Sepsis can lead to axonal injury and neuronal death (62). In

sepsis mouse models, axonal damage has been noted particularly

in the cerebral cortex, thalamus, and hippocampus (57). This

occurs due to a significant release of pro-inflammatory cytokines

from the systemic inflammatory response triggered by sepsis (48).

These cytokines activate microglia, which then release toxic

mediators that harm neurons and axons directly (48).

Furthermore, activated microglia may promote synaptic

pruning, resulting in synaptic loss and neuronal death, which

further exacerbates inflammation (63). Such changes may be

causally linked to long-term cognitive dysfunction in patients

with SAE (57).
3.4 Mechanism of long-term neurological
sequelae

Survivors of SAE frequently experience what is known as

“post-sepsis syndrome,” a condition characterized by persistent

cognitive deficits, abnormal emotional regulation, and functional

disabilities, among other symptoms (64, 65). These phenomena

are associated with disrupted neural circuits and sustained

neuroinflammation, which propagate systemic effects through

the neuroimmune axis, ultimately impacting the functionality of

various organ systems and perpetuating a detrimental cycle

(65, 66).
4 CNS as a core driver of organ
damage in sepsis

In sepsis, the CNS regulates peripheral immune responses and

organ functions through complex interactions within the neuro-

immune-endocrine network (8, 67). The mechanisms can be

summarized into the below core pathways (Figure 3, Table 1).
Frontiers in Immunology 05
4.1 Autonomic nerve dysfunction

4.1.1 Damage to the vagus nerve cholinergic
anti-inflammatory pathway

In animal models of sepsis, stimulation of the vagus nerve has

been demonstrated to inhibit the synthesis of inflammatory

cytokines, the recruitment of white blood cells, and the activation

of endothelial cells (68, 69). The efferent fibers of the vagus nerve

release acetylcholine, which interacts with nicotinic receptors on

macrophages’ surface to suppress the production of pro-

inflammatory cytokines (70, 71). Sepsis can induce inflammation

in the brainstem, leading to damage in cholinergic anti-

inflammatory pathway (CAP) function. This results in diminished

efferent signals from the vagus nerve and a compromised ability to

effectively mitigate peripheral inflammatory responses (9).

Dysfunction within CAP contributes to an excessive release of

pro-inflammatory factors, thereby exacerbating inflammatory

damage to vital organs including the heart, lungs, and liver (72).

Furthermore, downregulation of central cholinergic signaling

mediated by M1 muscarinic acetylcholine receptors (M1AChR)

may intensify peripheral inflammation (73–76). Experimental

evidence also indicates that septic mice exhibit impaired

functionality in vagus nerve preganglionic neurons located in the

brainstem; this impairment weakens their capacity to regulate

immune responses in peripheral organs such as the spleen (9).

4.1.2 Excessive sympathetic nerve activation
Peripheral infection activates the brainstem’s sympathetic nerve

via humoral or neural pathways, resulting in increased sympathetic

output (8). In an Escherichia coli sepsis model, brainstem

inflammation leads to sustained sympathetic hyperactivity and a

massive release of catecholamines (8). This hyperactivity directly

harms the myocardium (e.g., causing arrhythmias) (77) and

worsens renal ischemic injury through vasoconstriction (8).

Inhibition of the sympathetic nerve and the suppression of

catecholamine release can mitigate myocardial dysfunction

associated with sepsis (78–81). Catecholamines also promote

neutrophil infiltration and oxidative stress, further aggravating

lung (82) and liver injuries (83).
4.2 The neuro-immune regulatory network

The CNS not only responds to peripheral inflammation in sepsis

but also regulates immune cell migration and inflammatory factor

production, creating a “brain-peripheral organ” feedback loop (6).

Sepsis can induce intestinal immune cells (e.g., IL-7R CD8 gd T17

cells) to migrate to the CNS, altering local immunity and amplifying

systemic inflammation, which exacerbates oxidative stress and tissue

damage in organs like the liver, lungs, and heart (84). In addition,

sepsis-induced neurotransmitter disorders can contribute to

peripheral organ damage by influencing immune metabolism. For

example, dopamine imbalance can affect immune metabolism via the

dopamine-tyrosine decarboxylase 1 axis, resulting in inflammation-

related immunosuppression during sepsis (85). Central
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neurotransmitters (like acetylcholine and g-aminobutyric acid

(GABA)) and cytokines (such as IL-1b) regulate peripheral

immunity bidirectionally (86). Acetylcholine released from the vagal

nucleus inhibits the inflammatory response of splenic macrophages;

reduced acetylcholine transmission in the hippocampus during sepsis

weakens this immunoinhibition (86). GABA influences macrophage

maturation and inflammatory responses through GABA transporters

(GAT2), with GAT2 deficiency leading to decreased IL-1b production
Frontiers in Immunology 06
in pro-inflammatory macrophages, thus alleviating inflammation

(87). The activation of a2A adrenergic receptors in spinal astrocytes

mitigates sepsis-induced cardiac injury by inhibiting the necroptosis of

GABAergic neurons (80).Notably, uncontrolled peripheral immunity

due to neurotransmitter disorders may worsen damage chains like the

brain-liver and brain-gut axes (88, 89). The hypothalamic-pituitary-

adrenal (HPA) axis is a key part of the neuroendocrine system that

regulates peripheral immune responses through hormones such as
TABLE 1 The key experimental findings supporting CNS-mediated regulation of peripheral organs.

Modeling method Animal Intervention Outcome Reference

CLP Mouse Inhibit the apoptosis of cholinergic neurons Reduce lung injury (9)

LPS Mouse Specifically activate a7nAChR (GTS-21) Reduce kidney damage (74)

LPS Mouse Specifically activate a7nAChR(GTS-21) Reduce myocardial injury (75)

CLP Mouse Specifically activate a7nAChR(GTS-21) Reduce liver damage (76)

CLP Rat Inhibit sympathetic activation Reduce myocardial injury (79)

Microbial peritonitis Rat Promote sympathetic activation Impair respiratory function (8)

LPS Rat Inhibit sympathetic activation Reduce myocardial injury (81)

CLP Mouse Inhibit necroptosis of GABAergic neurons Reduce myocardial injury (80)

CLP Mouse b-glucan-activated training immunity Reduce liver and lung damage (103)
FIGURE 3

The mechanism of CNS as a core driver of organ damage in sepsis. Sepsis can worsen central nervous system (CNS) injury, which in turn
exacerbates peripheral inflammation and organ damage. CNS injury may overactivated the sympathetic nervous system by disrupting autonomic
nerve function, leading to excessive catecholamine release and impairing the vagal anti-cholinergic pathway, thus worsening peripheral
inflammation. It also disrupts the neuroimmune regulatory network, hyperactivates the hypothalamic-pituitary-adrenal (HPA) axis, causes
neurotransmitter transmission disorders, and promotes immune cell migration, further impacting peripheral immunity. Additionally, CNS injury can
enhance peripheral inflammation by regulating central trained immunity and causing immune homeostasis imbalance. It may aggravate inflammation
through the extravasation of brain-derived inflammatory factors and their transport via exosomes. Long-term CNS injury can lead to neurological
sequelae and further intensify peripheral organ damage.
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glucocorticoids (e.g., cortisol), primarily exerting anti-inflammatory

effects (90). HPA axis activation commonly occurs in acute sepsis

phases, characterized by significantly elevated circulating cortisol

levels (91, 92). Persistent hyperactivity of the HPA axis can disrupt

negative feedback mechanisms (e.g., a1-adrenergic receptor

desensitization), leading to excessive glucocorticoid exposure and

worsening multi-organ damage (93, 94). This imbalance in

communication may lead to persistent organ dysfunction (5, 95,

96). The aforementioned evidence suggests that CNS damage in

sepsis plays a crucial role in the associated peripheral organ

dysfunction by influencing immune cell migration, neurotransmitter

transmission, and the HPA axis. However, the potential interactions

among these factors require further investigation.
4.3 The regulatory role of central training
immunity

Central training immunity refers to the immune memory

established by progenitor cells in the bone marrow through

metabolic and epigenetic reprogramming (e.g., histone modification)

in response to specific stimuli (e.g., microorganisms), which enhances

reactions to subsequent stimuli (97). Research indicates that sepsis can

create persistent innate immune memory in the mouse brain, termed

“trained innate immunity,” independent of peripheral immune

systems (98). Specifically, microglia in the hippocampus of sepsis-

surviving mice undergo epigenetic changes, entering a long-term

high-responsiveness state (like pro-inflammatory M1 polarization)

that increases vulnerability to neurotoxins and causes cognitive

dysfunction and neural damage (98). Central trained immunity

enhances the body’s defense against sepsis by boosting bone

marrow progenitor cells’ response to pathogens (99). However,

abnormal immune responses can lead to excessive inflammation

and autoimmune damage (99). For example, immune memory in

the brain may increase vulnerability to neurodegenerative diseases,

contributing to cognitive dysfunction in sepsis survivors (98). Notably,

specific stimuli like b-glucan can induce “trained immunity” in central

immune cells, allowing for a stronger anti-inflammatory response

upon secondary stimulation (100–102). Research indicates that central

trained immunity may reduce organ damage from sepsis—such as in

the liver and lung (103)—by regulating peripheral monocyte/

macrophage phenotypic transformation (e.g., promoting conversion

from pro-inflammatoryM1 to anti-inflammatoryM2) (100, 101, 104).

The above explanation indicates that central training immunity has a

dual role in sepsis: it enhances immune memory for protection while

potentially increasing long-term vulnerability of the nervous and

immune systems post-sepsis.
4.4 Brain-derived inflammatory factor
extravasation

Sepsis can disrupt the BBB, resulting in an elevation of

inflammatory factors within the brain, such as interleukin-6 (IL-

6) and high mobility group box 1 (HMGB1) (48, 54). Radioactive
Frontiers in Immunology 07
labeling experiments have demonstrated that HMGB1 is capable of

bidirectional translocation across the BBB—moving from blood to

brain tissue and vice versa. Moreover, inflammation induced by

lipopolysaccharides can accelerate its transport rate into peripheral

circulation (105). Additionally, research indicates a significant

increase in IL-6 expression within the brains of septic mice, with

BBB dysfunction facilitating cytokine infiltration from brain tissue

into peripheral regions (106). Furthermore, factors derived from the

brain may indirectly influence vascular endothelial cell injury and

contribute to damage in organs such as the lungs and kidneys

through mechanisms related to neuroinflammation (47, 54, 107). It

has also been established that exosomes containing inflammatory

factors are capable of traversing the BBB and entering cerebral

tissues to promote neuronal damage (108, 109). However, whether

inflammatory factors produced in the brain can be transmitted via

exosomes to affect peripheral organ integrity remains an area

requiring further investigation. In summary, these findings

suggest that sepsis compromises the integrity of the BBB through

various mechanisms including HMGB1 nuclear translocation,

receptor activation, and immune cell infiltration; this leads to

leakage of inflammatory mediators like HMGB1. This process

may involve structural damage that establishes a positive feedback

loop for “brain-peripheral” inflammatory dissemination; however,

additional studies are necessary for a comprehensive understanding

of these underlying mechanisms.
4.5 Others

In addition, the SAE resulting from nervous system injury not

only causes acute cognitive impairment but also has long-term

effects on autonomic nerve regulation of organs. This is closely

linked to “post-sepsis syndrome,” characterized by abnormalities in

cardiovascular and renal functions observed in survivors (110, 111).
5 Intervention strategies targeting the
core role of the CNS

Based on the core role of the CNS, current treatment strategies

mainly focus on regulating CNS inflammation and immune imbalance

(112, 113). First, direct neuroinflammation inhibition: 1) Selective

elimination of reactive oxygen species, such as hydroxyl radicals,

significantly reduces oxidative stress and neuroinflammation in the

CNS, improving cognitive dysfunction related to sepsis (114); 2)

Ferroptosis inhibitors like Liproxstatin-1 reduce neuronal lipid

peroxidation while enhancing SAE outcomes and multi-organ

function (1, 115); 3)Regulation of TLR4 signaling involves targeted

inhibition of the microglial TLR4/NF-kB pathway to prevent

neuroinflammation from spreading peripherally (116). Second,

regulation of the neuro-immune axis: 1) Adenosine-lidocaine-

magnesium therapy balances autonomic nerve activity, alleviating

hyperactivity in sympathetic nerves and reducing organ

inflammation (113); 2) Enhancing cholinergic pathways with

a7nAChR agonists restores vagus nerve anti-inflammatory functions
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(9, 72). Third, BBB protection and repair: Glycoprotein modulation

and APOH protein application improve BBB integrity while decreasing

neuroinflammation and systemic inflammation (23, 117).; Vitamin C

therapy offers antioxidant benefits that protect BBB structure and limit

neuroinflammatory overflow (118). However, these intervention

strategies remain in research stages requiring further clinical

translation (119). Further optimization is essential. Current research

indicates a discrepancy between the outcomes of animal experiments

and human clinical trials regarding sepsis treatment drugs (120).

Considering the pivotal role of the central nervous system in the

pathophysiological processes associated with sepsis, future drug

development should explore the integration of neuroprotective

strategies alongside systemic anti-inflammatory treatments. This

approach holds promise for disrupting the detrimental cycle

characteristic of sepsis.
5.1 Limitations and challenges of current
research

Although existing evidence suggests that a comprehensive

treatment strategy centered on the CNS may pave the way for

new clinical intervention pathways for patients with sepsis, several

key scientific issues remain unresolved. First, the pathogenesis of

sepsis is complex, and patients exhibit highly heterogeneous clinical

manifestations. Current animal models still fail to fully replicate the

disease process observed in humans. While some studies have

compared cellular changes in brain tissue samples from patients

with SAE and murine models, revealing certain similarities in

immune microenvironment signaling (121), there is also evidence

indicating that humans, mice, and other species display

fundamental differences in blood immune characteristics due to

varying sensitivities to inflammation (122). Furthermore, during

bacteremia, significant disparities exist between humans and mouse

models regarding bacterial clearance ability, phagocytic function,

and cytokine induction levels in the bloodstream (123). These

differences limit the reliability of current animal models in

simulating human neuroimmune responses and consequently

constrain the clinical translational value of related research and

drug development. Second, current research predominantly relies

on single-organ studies conducted within animal models;

systematic multi-organ comparative analyses are lacking.

Moreover, data derived from human tissue samples remains

scarce. Third, the pathogenesis and intervention strategies for

systemic inflammatory response syndrome (SIRS) differ between

the acute and chronic phases. Currently, the specific mechanisms

and dynamic changes regarding neuroimmune regulation in

peripheral organ damage at various stages remain poorly

understood. Fourth, the regulatory interactions among multiple

organs present a highly complex network. In sepsis, the central

nervous system modulates peripheral organ function through

several mechanisms; concurrently, intestinal microbiota can

influence brain inflammatory responses via the gut-brain axis.

The extent to which other organs—such as the lungs, liver, and
Frontiers in Immunology 08
kidneys—may exacerbate central nervous system injury through

analogous feedback loops warrants further investigation. Fifth,

conclusive evidence demonstrating that brain-derived

inflammatory factors directly induce peripheral organ damage is

still lacking. Additionally, whether these brain inflammatory factors

contribute to further harm in other organs through carriers such as

exosomes needs to be thoroughly examined. Sixth, the dynamic

regulatory mechanisms of the neuro-immune-organ axis are not yet

fully elucidated. For instance, it remains unclear how specific

interactions between neuroendocrine factors (including HPA axis

hormones and catecholamines) and the immune system mediate

peripheral organ injury.

Given the aforementioned research limitations and challenges,

future investigations should prioritize the development of sepsis

models that more closely mimic the characteristics of human

disease, such as organoids or organ-on-a-chip systems, to

effectively simulate the neuro-immune-organ regulatory

network. Furthermore, it is essential to integrate multi-modal

data—including clinical parameters, imaging information, and

biomarkers—to construct predictive models for sepsis neuro-

immune regulation, thereby facilitating individualized treatment

approaches. Moreover, adopting a longitudinal research strategy

that combines single-cell sequencing with spatial transcriptomics

techniques is recommended to systematically illustrate the

dynamic evolution of the neuro-immune-organ network

throughout the disease course and analyze its regulatory

patterns. The utilization of multi-organ chip or organoid co-

culture systems to emulate neuro-organ interactions under

septic conditions can also provide valuable insights into

molecular mechanisms at play.
5.2 Prospects

Overall, the CNS plays a crucial role in the pathogenesis and

prognosis of sepsis, acting as both an early target for damage and a

key regulator driving multi-organ dysfunction through

neuroinflammation, neuroimmune dysregulation, and autonomic

dysfunction. A comprehensive understanding of the CNS’s

fundamental role in sepsis is essential for elucidating its

underlying pathophysiology and provides a theoretical foundation

for developing an integrative treatment strategy focused on

neuroimmune regulation. Ultimately, this approach aims to

enhance clinical outcomes for patients suffering from sepsis.
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