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Serum proteomics and
machine learning identify
PSMD11 as a prognostic
biomarker in severe fever with
thrombocytopenia syndrome
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Background: Severe fever with thrombocytopenia syndrome (SFTS) is an
emerging tick-borne viral disease associated with high mortality. This study
aimed to characterize serum proteomic signatures linked to adverse outcomes
and to identify prognostic biomarkers with potential translational value for
patient management.

Methods: Serum samples from 55 survivors, 32 non-survivors, and 10 healthy
controls were analyzed by data-independent acquisition—based proteomics.
Differential abundance analysis, Gene Ontology (GO) enrichment, Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and protein—
protein interaction (PPI) network analyses with Markov clustering were
conducted to characterize disease-associated proteins. XGBoost and Random
Forest machine learning models were applied to prioritize candidate biomarkers,
and discriminative performance was evaluated by the receiver operating
characteristic (ROC) curve. Spearman correlation analyses were further used to
examine associations between candidate proteins, clinical laboratory indicators,
and viral load.

Results: Non-survivors exhibited 642 differentially abundant proteins (DAPs)
compared with survivors. Functional enrichment and PPl network analyses
revealed a proteasome-centered module overrepresented in non-survivors.
XGBoost and Random Forest consistently prioritized four candidate biomarkers
(PSMD11, IL1IRL1, PSMC4, and IFIH1) with areas under the ROC curve of 0.847,
0.847, 0.843, and 0.791, respectively. PSMD11 emerged as the strongest
predictor of adverse outcome and showed strong correlations with markers of
organ injury and dysfunction such as lactate dehydrogenase (r = 0.77), thrombin
time (r = 0.76), aspartate aminotransferase (r = 0.75), hydroxybutyrate
dehydrogenase (r = 0.74), viral load (r = 0.63), and platelet count (r = -0.57)
(allp < 0.001).
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Conclusions: This study identified a proteasome-centered signature associated
with adverse outcomes in SFTS, with PSMD11 emerging as a key prognostic
biomarker. Its strong correlations with viral load and multi-organ injury support
potential utility for early risk stratification and prognostic prediction, while also
providing mechanistic insights into disease progression and a foundation for
future translational research and therapeutic development.

severe fever with thrombocytopenia syndrome, proteomics, machine learning,

PSMD11, SHAP

Introduction

Severe Fever with Thrombocytopenia Syndrome (SFTS) is an
emerging tick-borne infectious disease caused by Bandavirus
dabieense (family Phenuiviridae) (1), commonly known as SFTS
virus (SFTSV), which was first identified in China in 2009 (2). Since
then, SFTS has been increasingly reported across East and Southeast
Asia, including South Korea, Japan, Vietnam, Thailand, and
Pakistan, with both annual cases and geographic range continuing
expand (3-7). SFTS is characterized by acute high fever,
thrombocytopenia, leukopenia, hemorrhagic manifestations, and
gastrointestinal symptoms, and can progress to multiorgan
dysfunction and death in severe cases (8). According to a recent
meta-analysis, the overall pooled case-fatality rate was 7.80% (95%
CI, 7.01-8.69%) (9), emphasizing the considerable mortality burden
that persists despite improvements in supportive care. Favipiravir
was approved for the treatment of SFTS for the first time in Japan in
June 2024 (10). However, randomized evidence remains limited and
there are still no globally licensed vaccines or widely accessible
targeted antivirals for SFTS (11). The WHO’s 2024 prioritization
classified Phenuiviridae as high risk for Public Health Emergency of
International Concern (PHEIC) and identified Bandavirus
dabieense as a priority pathogen for research and development
(12). These underscore the urgency of elucidating SFTS
pathogenesis and accelerating biomarker-informed strategies for
prognosis and therapeutic development.

Accumulating evidence indicates that dynamic changes in
circulating biomarkers—including interleukin-6 (IL-6), IL-10,
interferon-o. (IFN-o), lactate dehydrogenase (LDH), ferritin, and
C-C motif chemokine 20 (CCL20)—track with disease severity and
mortality risk, reflecting the importance of host-pathogen
interactions (13-15). High-throughput proteomics has accelerated
both fundamental and applied research on emerging and re-emerging
viral pathogens (16). By enabling quantitative assessment of protein
abundance, proteomics provides direct insights into disease
progression (17). Serum and plasma proteomic profiling has been
widely applied to SARS-CoV-2, revealing host-pathogen
interactions, elucidating the molecular mechanisms underlying
COVID-19 pathology, and identifying candidate biomarkers for
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risk stratification and therapeutic development (18-20). Machine
learning (ML) has become an essential tool in clinical and
translational research, facilitating the identification of diagnostic,
prognostic, and predictive biomarkers (21). A recent study
developed a machine learning model based on circulating protein
signatures that accurately predicted COVID-19 severity, highlighting
the value of proteomics-driven ML strategies for clinical risk
assessment (22). Integrating proteomics with ML approaches offers
a promising strategy to generate clinically relevant insights into
emerging infectious diseases (23). Nevertheless, applications of such
integrative analyses to SFTS remain scarce.

In this study, our objective was to integrate serum proteomics
with interpretable ML to delineate molecular signatures of SFTS,
identify candidate biomarkers with translational potential, and
illuminate disease-relevant pathways. By providing a systems-level
view of host-pathogen interactions, our work aims to improve risk
stratification and inform the development of targeted interventions,
thereby contributing to better clinical management of SFTS.

Methods
Study design and patients

This prospective cohort study was conducted at Yantai Qishan
Hospital between May and September 2024. A total of 87 patients
with laboratory-confirmed SFTS were enrolled at admission,
comprising 55 survivors and 32 non-survivors. SFTS diagnosis
was confirmed by real-time quantitative reverse transcription
polymerase chain reaction (RT-qPCR) detection of SFTSV RNA.
Inclusion criteria were age > 18 years and admission within 7 days
of symptom onset. Exclusion criteria were: co-infection with other
acute or chronic infections; receipt of antitumor therapy; inability to
obtain required samples; or incomplete essential clinical data. Ten
age- and sex- matched healthy controls (HC) with negative SFTSV
tests were included. The primary endpoint was defined as either
recovery with discharge or in-hospital death.

The study was conducted in accordance with the principles of
the Declaration of Helsinki and was approved by the Ethics
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Committee of Beijing Ditan Hospital, Capital Medical University
(No. DTEC-KY2022-022). Written informed consent was obtained
from all participants or their relatives.

Clinical sample collection and definitions

For patients with SFTS, peripheral venous blood was collected
within 24 hours of hospital admission using silica-coated clot
activator tubes without gel separators. A total of 97 serum
samples were obtained from 87 patients with SFTS and 10
healthy donors. Samples were centrifuged at 2,000 x g for 10
minutes within 2 hours of collection to ensure complete serum
separation. The resulting serum was aliquoted and stored at —80°C
until analysis. Serum viral load was measured using a commercial
RT-qPCR kit (Daan, Guangzhou, China) according to the
manufacturer’s instructions.

The acute phase, characterized by high fever and systemic
symptoms, was defined as days 1-7 from symptom onset (24).

Data-independent acquisition proteomics

Serum samples were processed using a standardized DIA
proteomics workflow. Briefly, 15 uL of serum was used as the
starting volume and combined with 75 uL of Buffer 2 from the
OmniProt Kit (OmniProt, China), followed by centrifugation at
4,000 rpm for 2 minutes at room temperature. The supernatant was
incubated with 90 UL of depletion reagent at 32°C for 1 hour with
gentle agitation (220 rpm) to remove high-abundance proteins,
followed by centrifugation at 17,000 x g for 10 minutes. The pellet
was washed twice with Buffer 3 and re-centrifuged under the same
conditions. The resulting proteins were solubilized in lysis buffer (6
M urea, 2 M thiourea), reduced with tris (2-carboxyethyl)
phosphine (0.2 M, 4 uL, 32°C, 30 minutes), and alkylated with
iodoacetamide (0.8 M, 4 pL, 32°C, 30 minutes). Proteins were
digested overnight with sequencing-grade trypsin at 32°C with
gentle shaking (220 rpm). The reaction was quenched with 30 puL
of 10% trifluoroacetic acid, and peptides were centrifuged at 17,000
x g for 10 minutes. The supernatant was transferred to a new tube,
and the pH was adjusted to 2. Peptides were desalted using SOLAN
solid-phase extraction plates (Thermo Fisher Scientific, San Jose,
USA) according to the manufacturer’s instructions. The eluates
were vacuum dried at 40°C, reconstituted in 0.1% formic acid, and
quantified at 280 nm using a NanoDrop spectrophotometer.
Peptide concentrations were adjusted to 0.2 pg/uUL to ensure
equal loading across all samples. For DIA analysis, 1 uL of each
digest (equivalent to 200 ng of peptides) was injected into a
Vanquish Neo UHPLC system coupled to an Orbitrap Astral
mass spectrometer (Thermo Fisher Scientific, San Jose, USA).
Peptides were separated using a 24-minute liquid
chromatography gradient. Raw DIA data were processed with
DIA-NN (version 1.8.1) in single-pass (library-free) mode for
protein identification and quantification.
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Samples were analyzed in 11 experimental batches under
strictly standardized procedures, including identical reagent lots,
uniform sample preparation, and consistent instrument calibration.
Each batch contained one pooled quality control (QC) sample and
one biological replicate sample to monitor intra- and inter-batch
consistency. The pooled QC sample was prepared by mixing equal
aliquots from all experimental samples.

Proteomic data analysis

Proteins were identified and quantified using library-free DIA-
NN searches against a human reference database. Proteins with more
than 70% missing values across all samples were excluded prior to
downstream analysis, and the remaining missing values were
imputed using the k-nearest neighbors (KNN) algorithm after
quality control. Outliers were defined as values exceeding three
times the interquartile range (IQR) above the upper quartile or
below the lower quartile. Protein intensities were log,-transformed
and Z-score normalized. Differential protein abundance was analyzed
using the limma package in R, applying moderated t-statistics with
empirical Bayes shrinkage. p-values were adjusted using the
Benjamini-Hochberg method to control the false discovery rate
(FDR). Differentially abundant proteins (DAPs) were defined as
FDR < 0.05 and a fold change (FC) > 2 or < 0.5 (i.e., absolute
log,FC > 1). Gene Ontology (GO) annotation categorized DAPs into
biological process (BP), cellular component (CC), and molecular
function (MF). Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment was performed to identify significantly enriched
pathways among DAPs. Protein-protein interaction (PPI) networks
via the search tool for retrieval of interacting genes/proteins
(STRING) database (version 12.0) to explore interactions among
proteins, a combined score > 0.7 was applied to ensure a high-
confidence interaction threshold in the identified interactions and
visualized in Cytoscape (version 3.10.3).

Machine learning algorithms

Discriminative proteins among the DAPs were identified using
two supervised machine learning algorithms, eXtreme Gradient
Boosting (XGBoost) and Random Forest. The XGBoost model was
trained using a 10-fold cross-validation procedure with a fixed
random seed to ensure reproducibility. The model was optimized
for binary classification based on the log-loss objective function,
and hyperparameters were tuned to balance model complexity and
mitigate overfitting. Feature importance was evaluated using
SHapley Additive exPlanations (SHAP), with the mean absolute
SHAP value was used to rank the relative importance of DAPs. The
Random Forest model was trained using the caret framework with
10-fold cross-validation and a fixed random seed to ensure
reproducibility. Variable importance for each protein was
determined by the mean decrease in the Gini index, averaged
over folds and normalized for comparison across features.
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Statistical analysis

Clinical continuous variables were summarized as mean *
standard deviation (SD) or median (IQR) and compared with
Student’s t-test or Mann-Whitney U test. Categorical variables
were presented as counts (percentages) and compared using the
X’ test or Fisher’s exact test. Multivariate patterns in proteomic data
were explored by principal component analysis (PCA). Predictive
performance of selected proteins was evaluated using receiver
operating characteristic (ROC) and precision-recall (PR) analyses,
reporting the area under the ROC curve (AUC) and the area under
the PR curve (AUPRC) with 95% confidence intervals (CI).
Additional performance metrics, including sensitivity, specificity,
precision, accuracy, and F1 score, were visualized using radar
charts. Correlations between selected DAPs and clinical
laboratory parameters were analyzed using Spearman’s rank
correlation and partial Spearman correlation controlling for age.
All statistical analyses were performed in R software (version 4.4.2)
using the following packages: limma, xgboost, SHAPforxgboost,
randomForest, caret, pPROC, PRROC, clusterProfiler, and ggplot2.
Statistical significance was defined as p value (or FDR) < 0.05.

Results
Clinical characteristics of participants

The study enrolled 87 patients with SFTS, comprising 55
survivors (SA) and 32 non-survivors (NS), along with 10 age- and
sex-matched HC. The SA had an average age of 65.38 + 9.55 years,
while the NS had significantly higher age of 70.6 + 10.3 years (p =
0.023). No significant differences in sex distribution were observed
between SA and NS (p = 0.868), or between SFTS patients and HC
(p = 0.690). Compared with HC, patients with SFTS had
significantly lower white blood cell (WBC) counts (p < 0.001),
platelet counts(p < 0.001), and albumin levels(p < 0.001), as well as
higher alanine aminotransferase (ALT) (P < 0.001), aspartate
aminotransferase (AST) (p < 0.001), and creatinine levels (p <
0.001). Within the SFTS cohort, NS exhibited significantly lower
platelet counts (p < 0.001) and albumin levels (p < 0.001), and
higher AST (p < 0.001) and creatinine (p < 0.001) compared with
SA. No significant differences were found in WBC counts
(p = 0.403), hemoglobin (p = 0.758), mean platelet volume
(MPV) (p = 0.867), or total bilirubin (TBil) (p = 0.060) between
the survivor and non-survivor groups (Table 1).

Identification of differentially abundant
proteins

A total of 97 serum samples were collected from 87 patients
with SFTS and 10 HC. DIA proteomics quantified 5,541 proteins.
PCA demonstrated distinct clustering among SA, NS, and HC
(Figure la). Venn analysis identified 108 DAPs shared across NS
vs SA, SA vs HC, and NS vs HC comparisons (Figure 1b).
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Hierarchical clustering of DAPs revealed a clear pattern, with
upregulated proteins enriched in NS and downregulated proteins
more prevalent in HC (Figure 1lc). In total, 642 DAPs were
identified between NS and SA, comprising 617 upregulated and
25 downregulated proteins. The top five upregulated DAPs in the
volcano plot are CCL20, CDKN1A interacting zinc finger protein 1
(CIZ1), proteasome 26S subunit, ATPase 4 (PSMC4), proteasome
26S subunit, non-ATPase 11 (PSMD11), and nuclear receptor
corepressor 1 (NCORL1) (Figure 1d). The HC group had a total of
1316 DAPs, including 1234 upregulated and 82 downregulated
proteins, compared with the NS and SA groups (Figure le).

GO enrichment and KEGG pathway
analysis

To explore the potential biological functions and pathways
associated with the observed protein abundance differences, GO
and KEGG enrichment analyses were performed. DAPs between NS
and SA were significantly enriched for BP terms related to
ribonucleoprotein complex and ribosome biogenesis, and for CC
terms including the preribosome and proteasome accessory
complex (Figure 2a; Supplementary Table S1). KEGG analysis
highlighted several pathways, with amyotrophic lateral sclerosis
(ALS) ranking highest by gene ratio(Figure 2b; Supplementary
Table S2). These findings implicate perturbations in protein
homeostasis and RNA/protein biogenesis in poor outcomes.

Network-based clustering and KEGG
pathway enrichment of candidate proteins

We constructed a STRING PPI network by integrating the top
50 proteins ranked by SHAP values from the XGBoost model and
the top 50 proteins ranked by feature importance from the Random
Forest classifier, yielding 85 nodes and 178 edges (clustering
coefficient = 0.379; PPI enrichment p < 1.0 x 10'°). The resulting
PPI network was clustered using the Markov Clustering (MCL)
algorithm implemented in Cytoscape, revealing 11 distinct protein
clusters (Supplementary Table S3). The most prominent cluster
contained PSMDI11 and multiple 26S proteasome subunits
(PSMC4, PSMC2, PSMC3, PSMC6, PSMD?7), pointing to
coordinated proteasome involvement (Figure 3a). A Sankey plot
mapped clusters to significantly enriched KEGG pathways, with
several PSMD-containing clusters converging on the proteasome
pathway (Figure 3b). These results suggest proteasome-associated
pathways may play a central role in SFTS pathogenesis.

Screening proteomic biomarkers via
machine learning

To explore potential prognostic biomarkers associated with

poor outcomes in patients with SFTS, we trained XGBoost and
Random Forest models using DAPs between the NS and SA. The
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TABLE 1 The baseline clinical and laboratory characteristics of the participants.

Health control

SFTS patients

(n=10)

Total (n=87)

Survivor group
(n=55)

Non-survivor group
(n=32)

Age (years) 614 + 8.6 67.3 +10.1 65.38 + 9.55 70.6 + 10.3 0.023 0.068
Male, n (%) 5 (50) 33 (37.9) 20 (36.4) 13 (40.6) 0.868 0.690
WBC (A10°/L) 5.8 (5.2, 6.3) 2.1 (1.6, 3.1) 2.0 (1.5,2.8) 2.1(1.7,3.1) 0.403 <0.001
) 143.0 (133.0,
Hemoglobin (g/L) 135.5 (130.0, 137.0) 152.0) 141.0 (133.0, 152.0) 144.5 (133.0, 151.8) 0.758 0.034
Platelet (A10°/L) 271.5 (237.5, 290.0) 65.0 (5.0, 82.0)  74.0 (61.0, 88.0) 51.5 (43.8, 65.8) <0.001 <0.001
MPV(fL) 9.83 + 0.66 10.46 + 1.05 1047 + 1.13 10.44 + 0.90 0.867 0.018
ALT (U/L) 14.0 (112, 25.1) 522 (34.2,98.1) 433 (33.2,90.2) 66.9 (46.0, 137.5) 0.059 <0.001
122.3 (555,
AST (U/L) 17.9 (152, 24.0) s 7)( 71.0 (49.1, 141.5) 170.2 (114.9, 456.9) <0.001 <0.001
Albumin (g/L) 46.6 (45.6, 48.1) 349 (30.8,37.4) | 358 +42 318 + 44 <0.001 <0.001
TBil (umol/L) 12.3 (110, 15.2) 9.3 (82, 11.3) 9.0 (7.9, 10.9) 10.5 (8.5, 14.7) 0.060 0.040
Creatinine (umol/L) = 50.4 (47.0, 53.0) 74.0 (60.5,94.2)  65.1 (57.0, 78.7) 99.9 (75.8, 152.8) <0.001 <0.001

P Comparisons between healthy controls and patients with SFTS.
pP: Comparisons between survivors and non-survivors among patients with SFTS.

WBC, white blood cell. ALT, alanine aminotransferase. AST, aspartate aminotransferase. TBil, total bilirubin. MPV, mean platelet volume.

XGBoost model interpreted via SHAP ranked IL1RL1, CA3,
PSMDI11, EIF2B5, IFIH1, SRSF3, SAA2, PSMC6, PSMC4, and
NFKBI as the top features (Figure 4a), while the Random Forest
model highlighted ILIRL1, PSMD11, PSMCé, IFIH1, ATP6V1D,
CCL20, PSMD13, SRSF3, BMP2K and LECT2 (Figure 4b). ROC
analysis of four candidates (ILIRL1, PSMD11, PSMC4, IFIH1)
showed AUCs of 0.847 (95% CI: 0.761-0.932), 0.847 (95% CI:
0.766-0.928), 0.843 (95% CI: 0.763-0.924), and 0.791 (95% CI:
0.681-0.902), respectively (Figure 4c). PR curves yielded AUPRCs
of 0.771 (95% CI: 0.721-0.821), 0.731 (95% CI: 0.681-0.781), 0.747
(95% CI: 0.697-0.797), and 0.762 (95% CI: 0.712-0.812),
respectively (Figure 4d). Comprehensive metric comparisons
including AUC, AUPRC, sensitivity, specificity, precision,
accuracy, and F1 score are shown in a radar chart (Figure 4e).
Furthermore, violin plots demonstrated significantly elevated
abundant of all four proteins in NS compared with SA
(Figures 4f-i, p < 0.0001). Age-adjusted logistic regression
analysis was performed to verify the robustness of these
associations (Supplementary Figure S1).

Correlation of candidate proteins with
clinical indicators

Age-adjusted partial Spearman correlation analysis was performed
to assess associations between candidate protein levels and clinical
laboratory parameters. Correlation heatmaps revealed broad
associations of the four candidates (PSMD11, IL1RL1, IFIH1,
PSMC4) with clinical laboratory parameters (Figure 5a). PSMDI11
showed the strongest and most consistent relationships with hepatic
dysfunction, myocardial injury, coagulation dysfunction,
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inflammation, and viral load. The strongest positive correlations
were observed with LDH (r = 0.77), thrombin time (TT; r = 0.76),
AST (r = 0.75), and hydroxybutyrate dehydrogenase (HBDH;
r = 0.74). PSMD11 showed moderate to strong positive correlations
with viral load (r = 0.63), alpha-L-fucosidase (AFU; r = 0.63),
adenosine deaminase (ADA; r = 0.62), high-sensitivity cardiac
troponin I (hs-cTnl; = 0.61), IL-10 (r = 0.59), ALT (r = 0.59),
creatine kinase (CK; r = 0.57), activated partial thromboplastin time
(APTT; r = 0.56), and D-dimer (r = 0.53). Conversely, PSMD11
showed significant negative correlations with platelet count (r = —0.57),
prealbumin (r = -0.55), and albumin (r = -0.52) (all p < 0.001;
Figure 5b). These findings support a close linkage between PSMD11
and disease severity and multisystem pathophysiology in SFTS.
Moreover, we performed a multivariable logistic regression model
including age and these laboratory indicators, PSMDI11 remained
significantly associated with the outcome (OR = 4.20, 95%
CI = 1.19-19.5, p = 0.039; Supplementary Table S4).

Discussion

In this prospective clinical cohort, we employed DIA-based
serum proteomics and integrated network-based analyses. By
combining PPI mapping with MCL clustering, we delineated a
coherent proteasome-associated module enriched in DAPs.
Multiple lines of evidence from differential abundance,
enrichment analyses, model explainability, and network mapping
implicated a proteasome—centered axis as the dominant correlate of
adverse outcomes in SFTS. This finding provides important
mechanistic insight into how proteasome dysregulation may
contribute to disease progression. To mitigate potential bias from
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the modest sample size and to reduce model overfitting, we further
applied two complementary supervised ML algorithms-XGBoost
and Random Forest for feature prioritization within DAPs and used
interpretable feature-attribution metrics to rank their importance
(25). Because age differed significantly between survivors and non-
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survivors, we further performed sensitivity analyses to account for
this potential confounder. Four proteins (PSMD11, IL1RLI, IFIHI,
and PSMC4) consistently exhibited the most pronounced and
outcome-relevant alterations, with PSMD11 emerging as the most
robust and stable signal. These results link proteomic alterations to
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clinical outcomes in SFTS and highlight PSMD11 and the
proteasome pathway as promising candidates for prognostic
assessment and potential translational research. In addition, this
study extends current strategies for prognostic biomarker discovery
in SFTS and highlights a set of novel candidate biomarkers that
warrant further investigation. These key DAPs can serve not only as
effective predictors of adverse outcomes but also as indicators of
severe-related pathological mechanisms.
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Previous studies have identified higher viral load, prolonged TT
and APTT, as well as elevated levels of D-dimer, AST, ALT, LDH,
CK, and cTnl as risk factors for adverse outcomes in patients with
SFTS (26-28). Lower platelet count and albumin have also been
linked to increased mortality (29). SFTS is characterized by multi-
organ involvement and damage (30). While individual clinical
laboratory indicators can typically reflect injury to only one or
two specific organs, they fail to capture the systemic complexity of
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the disease. In our study, age-adjusted partial Spearman correlation
analysis revealed that PSMDI11 was significantly associated with a
wide range of key clinical parameters, including markers of hepatic
and myocardial injury, coagulation dysfunction, systemic
inflammation, and viral load. These associations indicate that
PSMDI11 aligns with established clinical indicators of poor
prognosis and may serve as a composite marker capturing
multiple dimensions of disease severity in patients with SFTS.
PSMDI11 is a non-ATPase lid subunit of the 19S regulatory
particle that stabilizes 26S proteasome assembly and modulates
substrate engagement (31). Ectopic abundance of PSMD11
increases proteasome assembly and activity in cells with relatively
low basal proteasome function, whereas PSMDI11 knockdown
reduces the number of assembled proteasomes (32). PSMDI1
serves as a dynamically regulated node that enhances 26S
proteasome activity and maintains proteostasis under cellular
stress (33). A recent study demonstrated that PSMD11 loss-of-
function disrupts 26S proteasome assembly and triggers a persistent
type I interferon signature through integrated stress response
protein kinase R (34). In glomerular mesangial cells, miR-451
significantly inhibited inflammation and proliferation by
downregulating PSMD11 and NF-kB p65, and transfection of
miR-451 mimics significantly decreased levels of IL-1f, IL-6, and
IL-8 (35). Consistently, our study also revealed significantly higher
NEF-xB abundance in non-survivors of SFTS. Previous studies have
shown that an IncRNA, highly expressed in resting CD4+ T
lymphocytes, recruits an HIV-1 regulatory protein to a PSMD11-
containing ubiquitin-proteasome complex, thereby promoting its
degradation and potentially contributing to HIV-1 latency (36). In
addition, PSMD11 has been implicated in tumorigenesis partly
through the modulation of tumor metabolism-related pathways. In
hepatocellular carcinoma, its abundance is elevated and correlates
with pathological stage and histologic grade (37). In lung carcinoma
A549 cells, PSMDI11 overexpression promotes proliferation,
migration, invasion, and xenograft growth, while also altering
immune-cell infiltration within the tumor microenvironment
(38). In pancreatic ductal adenocarcinoma, PSMDI1 and its
related subunit PSMD14 are overexpressed, with higher
abundance levels correlating with increased tumor malignancy
and disease progression (39), and another study demonstrated
that PSMD11 may serve as potential prognostic and diagnostic
biomarkers in patients with early-stage disease (40). A previous
study also reported that PSMD11 may play an important role in the
metastasis of melanoma (41). Bortezomib is a potent proteasome
inhibitor that has been widely used in the treatment of hematologic
malignancies, acting through inhibition of the chymotrypsin-like
site of the 20S proteolytic core within the 26S proteasome, which in
turn induces cell-cycle arrest and apoptosis (42). Rather than being
confined to a specific disease context, the dysregulation of PSMDI11
appears to reflect broader cellular and immune processes. PSMD11
may be a multifunctional protein that contributes to the multi-
organ dysfunction characteristic of severe SFTS, thereby
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underscoring its potential relevance to disease pathophysiology
and prognosis.

This study has certain limitations. First, the sample size was
relatively modest and derived from a single center, which may
restrict the generalizability of our findings. Second, the lack of an
independent external validation cohort limits the confirmation of
robustness and the reproducibility of PSMDI11 as a prognostic
biomarker. Third, although PSMDI11 emerged as a promising
candidate, our results are associative and require functional
validation to establish causality. Finally, only proteomic data were
analyzed without integration of other omics layers or longitudinal
sampling. Future multicenter studies with larger, externally
validated cohorts and mechanistic experiments are warranted to
confirm these findings and further elucidate the biological role of
PSMD11 in SFTS.

In conclusion, our proteomic study identified a proteasome-
centered axis associated with adverse outcomes in SFTS, with
PSMD11 emerging as a prognostic biomarker closely linked to
key clinical parameters and multi-organ dysfunction. These
findings not only extend current strategies for biomarker
discovery but also provide mechanistic insights into disease
progression, thereby providing a foundation for future
translational research and therapeutic exploration in SFTS.
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SFTS

GO

KEGG

PPI

ROC

DAPs

SFTSV

PHEIC

IFN
LDH
CCL20
ML

HC

DIA
RT-qPCR
LC-MS
KNN
IQR
FDR

BP

cC

MF
STRING

SD

severe fever with thrombocytopenia syndrome
Gene Ontology

Kyoto Encyclopedia of Genes and Genomes
protein—protein interaction

receiver operating characteristic

differentially abundant proteins

severe fever with thrombocytopenia syndrome virus
Public Health Emergency of International Concern
interleukin

interferon

lactate dehydrogenase

C-C motif chemokine 20

machine learning

healthy control

data-independent acquisition

reverse transcription quantitative polymerase chain reaction
liquid chromatography-mass spectrometry
k-nearest neighbors

interquartile range

false discovery rate FC, fold change

biological process

cellular component

molecular function

search tool for retrieval of interacting genes/proteins

standard deviation
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PCA
XGBoost
SHAP
PR
AUC
AUPRC
CI
WBC
ALT
AST
MPV
TBil
CIZ1
PSMC4
PSMD11
NCOR1
ALS
MCL
TT
HBDH
ADA
AFU
hs-cTnl
CK

APTT
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principal component analysis
eXtreme Gradient Boosting
SHapley Additive exPlanations

precision-recall

area under the receiver operating characteristic curve

area under the precision-recall curve
confidence intervals

white blood cell

alanine aminotransferase

aspartate aminotransferase

mean platelet volume

total bilirubin

CDKNIA interacting zinc finger protein 1
proteasome 26S subunit, ATPase 4
proteasome 26S subunit, non-ATPase 11
nuclear receptor corepressor 1
amyotrophic lateral sclerosis

Markov Clustering

thrombin time

hydroxybutyrate dehydrogenase
adenosine deaminase

alpha-L-fucosidase

high-sensitivity cardiac troponin I
creatine kinase

activated partial thromboplastin time.
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