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Serum proteomics and
machine learning identify
PSMD11 as a prognostic
biomarker in severe fever with
thrombocytopenia syndrome
Chenxi Zhao1†, Ziruo Ge1†, Ranran Wang1†, Yanli Xu2,
Tingyu Zhang1, Zhouling Jiang1, Lu Liu1, Ling Lin2*

and Zhihai Chen1*

1National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan
Hospital, Capital Medical University, Beijing, China, 2Department of Infectious Diseases, Yantai Qishan
Hospital, Yantai, Shandong, China
Background: Severe fever with thrombocytopenia syndrome (SFTS) is an

emerging tick-borne viral disease associated with high mortality. This study

aimed to characterize serum proteomic signatures linked to adverse outcomes

and to identify prognostic biomarkers with potential translational value for

patient management.

Methods: Serum samples from 55 survivors, 32 non-survivors, and 10 healthy

controls were analyzed by data-independent acquisition–based proteomics.

Differential abundance analysis, Gene Ontology (GO) enrichment, Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and protein–

protein interaction (PPI) network analyses with Markov clustering were

conducted to characterize disease-associated proteins. XGBoost and Random

Forest machine learning models were applied to prioritize candidate biomarkers,

and discriminative performance was evaluated by the receiver operating

characteristic (ROC) curve. Spearman correlation analyses were further used to

examine associations between candidate proteins, clinical laboratory indicators,

and viral load.

Results: Non-survivors exhibited 642 differentially abundant proteins (DAPs)

compared with survivors. Functional enrichment and PPI network analyses

revealed a proteasome-centered module overrepresented in non-survivors.

XGBoost and Random Forest consistently prioritized four candidate biomarkers

(PSMD11, IL1RL1, PSMC4, and IFIH1) with areas under the ROC curve of 0.847,

0.847, 0.843, and 0.791, respectively. PSMD11 emerged as the strongest

predictor of adverse outcome and showed strong correlations with markers of

organ injury and dysfunction such as lactate dehydrogenase (r = 0.77), thrombin

time (r = 0.76), aspartate aminotransferase (r = 0.75), hydroxybutyrate

dehydrogenase (r = 0.74), viral load (r = 0.63), and platelet count (r = −0.57)

(all p < 0.001).
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Conclusions: This study identified a proteasome-centered signature associated

with adverse outcomes in SFTS, with PSMD11 emerging as a key prognostic

biomarker. Its strong correlations with viral load and multi-organ injury support

potential utility for early risk stratification and prognostic prediction, while also

providing mechanistic insights into disease progression and a foundation for

future translational research and therapeutic development.
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Introduction

Severe Fever with Thrombocytopenia Syndrome (SFTS) is an

emerging tick-borne infectious disease caused by Bandavirus

dabieense (family Phenuiviridae) (1), commonly known as SFTS

virus (SFTSV), which was first identified in China in 2009 (2). Since

then, SFTS has been increasingly reported across East and Southeast

Asia, including South Korea, Japan, Vietnam, Thailand, and

Pakistan, with both annual cases and geographic range continuing

expand (3–7). SFTS is characterized by acute high fever,

thrombocytopenia, leukopenia, hemorrhagic manifestations, and

gastrointestinal symptoms, and can progress to multiorgan

dysfunction and death in severe cases (8). According to a recent

meta-analysis, the overall pooled case-fatality rate was 7.80% (95%

CI, 7.01–8.69%) (9), emphasizing the considerable mortality burden

that persists despite improvements in supportive care. Favipiravir

was approved for the treatment of SFTS for the first time in Japan in

June 2024 (10). However, randomized evidence remains limited and

there are still no globally licensed vaccines or widely accessible

targeted antivirals for SFTS (11). The WHO’s 2024 prioritization

classified Phenuiviridae as high risk for Public Health Emergency of

International Concern (PHEIC) and identified Bandavirus

dabieense as a priority pathogen for research and development

(12). These underscore the urgency of elucidating SFTS

pathogenesis and accelerating biomarker-informed strategies for

prognosis and therapeutic development.

Accumulating evidence indicates that dynamic changes in

circulating biomarkers—including interleukin-6 (IL-6), IL-10,

interferon-a (IFN-a), lactate dehydrogenase (LDH), ferritin, and

C-C motif chemokine 20 (CCL20)—track with disease severity and

mortality risk, reflecting the importance of host–pathogen

interactions (13–15). High-throughput proteomics has accelerated

both fundamental and applied research on emerging and re-emerging

viral pathogens (16). By enabling quantitative assessment of protein

abundance, proteomics provides direct insights into disease

progression (17). Serum and plasma proteomic profiling has been

widely applied to SARS-CoV-2, revealing host–pathogen

interactions, elucidating the molecular mechanisms underlying

COVID-19 pathology, and identifying candidate biomarkers for
02
risk stratification and therapeutic development (18–20). Machine

learning (ML) has become an essential tool in clinical and

translational research, facilitating the identification of diagnostic,

prognostic, and predictive biomarkers (21). A recent study

developed a machine learning model based on circulating protein

signatures that accurately predicted COVID-19 severity, highlighting

the value of proteomics-driven ML strategies for clinical risk

assessment (22). Integrating proteomics with ML approaches offers

a promising strategy to generate clinically relevant insights into

emerging infectious diseases (23). Nevertheless, applications of such

integrative analyses to SFTS remain scarce.

In this study, our objective was to integrate serum proteomics

with interpretable ML to delineate molecular signatures of SFTS,

identify candidate biomarkers with translational potential, and

illuminate disease-relevant pathways. By providing a systems-level

view of host–pathogen interactions, our work aims to improve risk

stratification and inform the development of targeted interventions,

thereby contributing to better clinical management of SFTS.
Methods

Study design and patients

This prospective cohort study was conducted at Yantai Qishan

Hospital between May and September 2024. A total of 87 patients

with laboratory-confirmed SFTS were enrolled at admission,

comprising 55 survivors and 32 non-survivors. SFTS diagnosis

was confirmed by real-time quantitative reverse transcription

polymerase chain reaction (RT-qPCR) detection of SFTSV RNA.

Inclusion criteria were age ≥ 18 years and admission within 7 days

of symptom onset. Exclusion criteria were: co-infection with other

acute or chronic infections; receipt of antitumor therapy; inability to

obtain required samples; or incomplete essential clinical data. Ten

age- and sex- matched healthy controls (HC) with negative SFTSV

tests were included. The primary endpoint was defined as either

recovery with discharge or in-hospital death.

The study was conducted in accordance with the principles of

the Declaration of Helsinki and was approved by the Ethics
frontiersin.org
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Committee of Beijing Ditan Hospital, Capital Medical University

(No. DTEC-KY2022-022). Written informed consent was obtained

from all participants or their relatives.
Clinical sample collection and definitions

For patients with SFTS, peripheral venous blood was collected

within 24 hours of hospital admission using silica-coated clot

activator tubes without gel separators. A total of 97 serum

samples were obtained from 87 patients with SFTS and 10

healthy donors. Samples were centrifuged at 2,000 × g for 10

minutes within 2 hours of collection to ensure complete serum

separation. The resulting serum was aliquoted and stored at −80°C

until analysis. Serum viral load was measured using a commercial

RT-qPCR kit (Daan, Guangzhou, China) according to the

manufacturer’s instructions.

The acute phase, characterized by high fever and systemic

symptoms, was defined as days 1–7 from symptom onset (24).
Data-independent acquisition proteomics

Serum samples were processed using a standardized DIA

proteomics workflow. Briefly, 15 mL of serum was used as the

starting volume and combined with 75 mL of Buffer 2 from the

OmniProt Kit (OmniProt, China), followed by centrifugation at

4,000 rpm for 2 minutes at room temperature. The supernatant was

incubated with 90 mL of depletion reagent at 32°C for 1 hour with

gentle agitation (220 rpm) to remove high-abundance proteins,

followed by centrifugation at 17,000 × g for 10 minutes. The pellet

was washed twice with Buffer 3 and re-centrifuged under the same

conditions. The resulting proteins were solubilized in lysis buffer (6

M urea, 2 M thiourea), reduced with tris (2-carboxyethyl)

phosphine (0.2 M, 4 mL, 32°C, 30 minutes), and alkylated with

iodoacetamide (0.8 M, 4 mL, 32°C, 30 minutes). Proteins were

digested overnight with sequencing-grade trypsin at 32°C with

gentle shaking (220 rpm). The reaction was quenched with 30 mL
of 10% trifluoroacetic acid, and peptides were centrifuged at 17,000

× g for 10 minutes. The supernatant was transferred to a new tube,

and the pH was adjusted to 2. Peptides were desalted using SOLAm
solid-phase extraction plates (Thermo Fisher Scientific, San Jose,

USA) according to the manufacturer’s instructions. The eluates

were vacuum dried at 40°C, reconstituted in 0.1% formic acid, and

quantified at 280 nm using a NanoDrop spectrophotometer.

Peptide concentrations were adjusted to 0.2 mg/mL to ensure

equal loading across all samples. For DIA analysis, 1 mL of each

digest (equivalent to 200 ng of peptides) was injected into a

Vanquish Neo UHPLC system coupled to an Orbitrap Astral

mass spectrometer (Thermo Fisher Scientific, San Jose, USA).

Pep t ide s were s epara t ed us ing a 24-minu t e l i qu id

chromatography gradient. Raw DIA data were processed with

DIA-NN (version 1.8.1) in single-pass (library-free) mode for

protein identification and quantification.
Frontiers in Immunology 03
Samples were analyzed in 11 experimental batches under

strictly standardized procedures, including identical reagent lots,

uniform sample preparation, and consistent instrument calibration.

Each batch contained one pooled quality control (QC) sample and

one biological replicate sample to monitor intra- and inter-batch

consistency. The pooled QC sample was prepared by mixing equal

aliquots from all experimental samples.
Proteomic data analysis

Proteins were identified and quantified using library-free DIA-

NN searches against a human reference database. Proteins with more

than 70% missing values across all samples were excluded prior to

downstream analysis, and the remaining missing values were

imputed using the k-nearest neighbors (KNN) algorithm after

quality control. Outliers were defined as values exceeding three

times the interquartile range (IQR) above the upper quartile or

below the lower quartile. Protein intensities were log2-transformed

and Z-score normalized. Differential protein abundance was analyzed

using the limma package in R, applying moderated t-statistics with

empirical Bayes shrinkage. p-values were adjusted using the

Benjamini-Hochberg method to control the false discovery rate

(FDR). Differentially abundant proteins (DAPs) were defined as

FDR < 0.05 and a fold change (FC) > 2 or < 0.5 (i.e., absolute

log2FC > 1). Gene Ontology (GO) annotation categorized DAPs into

biological process (BP), cellular component (CC), and molecular

function (MF). Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment was performed to identify significantly enriched

pathways among DAPs. Protein–protein interaction (PPI) networks

via the search tool for retrieval of interacting genes/proteins

(STRING) database (version 12.0) to explore interactions among

proteins, a combined score > 0.7 was applied to ensure a high-

confidence interaction threshold in the identified interactions and

visualized in Cytoscape (version 3.10.3).
Machine learning algorithms

Discriminative proteins among the DAPs were identified using

two supervised machine learning algorithms, eXtreme Gradient

Boosting (XGBoost) and Random Forest. The XGBoost model was

trained using a 10-fold cross-validation procedure with a fixed

random seed to ensure reproducibility. The model was optimized

for binary classification based on the log-loss objective function,

and hyperparameters were tuned to balance model complexity and

mitigate overfitting. Feature importance was evaluated using

SHapley Additive exPlanations (SHAP), with the mean absolute

SHAP value was used to rank the relative importance of DAPs. The

Random Forest model was trained using the caret framework with

10-fold cross-validation and a fixed random seed to ensure

reproducibility. Variable importance for each protein was

determined by the mean decrease in the Gini index, averaged

over folds and normalized for comparison across features.
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Statistical analysis

Clinical continuous variables were summarized as mean ±

standard deviation (SD) or median (IQR) and compared with

Student’s t-test or Mann–Whitney U test. Categorical variables

were presented as counts (percentages) and compared using the

c² test or Fisher’s exact test. Multivariate patterns in proteomic data

were explored by principal component analysis (PCA). Predictive

performance of selected proteins was evaluated using receiver

operating characteristic (ROC) and precision-recall (PR) analyses,

reporting the area under the ROC curve (AUC) and the area under

the PR curve (AUPRC) with 95% confidence intervals (CI).

Additional performance metrics, including sensitivity, specificity,

precision, accuracy, and F1 score, were visualized using radar

charts. Correlations between selected DAPs and clinical

laboratory parameters were analyzed using Spearman’s rank

correlation and partial Spearman correlation controlling for age.

All statistical analyses were performed in R software (version 4.4.2)

using the following packages: limma, xgboost, SHAPforxgboost,

randomForest, caret, pROC, PRROC, clusterProfiler, and ggplot2.

Statistical significance was defined as p value (or FDR) < 0.05.
Results

Clinical characteristics of participants

The study enrolled 87 patients with SFTS, comprising 55

survivors (SA) and 32 non-survivors (NS), along with 10 age- and

sex-matched HC. The SA had an average age of 65.38 ± 9.55 years,

while the NS had significantly higher age of 70.6 ± 10.3 years (p =

0.023). No significant differences in sex distribution were observed

between SA and NS (p = 0.868), or between SFTS patients and HC

(p = 0.690). Compared with HC, patients with SFTS had

significantly lower white blood cell (WBC) counts (p < 0.001),

platelet counts(p < 0.001), and albumin levels(p < 0.001), as well as

higher alanine aminotransferase (ALT) (P < 0.001), aspartate

aminotransferase (AST) (p < 0.001), and creatinine levels (p <

0.001). Within the SFTS cohort, NS exhibited significantly lower

platelet counts (p < 0.001) and albumin levels (p < 0.001), and

higher AST (p < 0.001) and creatinine (p < 0.001) compared with

SA. No significant differences were found in WBC counts

(p = 0.403), hemoglobin (p = 0.758), mean platelet volume

(MPV) (p = 0.867), or total bilirubin (TBil) (p = 0.060) between

the survivor and non-survivor groups (Table 1).
Identification of differentially abundant
proteins

A total of 97 serum samples were collected from 87 patients

with SFTS and 10 HC. DIA proteomics quantified 5,541 proteins.

PCA demonstrated distinct clustering among SA, NS, and HC

(Figure 1a). Venn analysis identified 108 DAPs shared across NS

vs SA, SA vs HC, and NS vs HC comparisons (Figure 1b).
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Hierarchical clustering of DAPs revealed a clear pattern, with

upregulated proteins enriched in NS and downregulated proteins

more prevalent in HC (Figure 1c). In total, 642 DAPs were

identified between NS and SA, comprising 617 upregulated and

25 downregulated proteins. The top five upregulated DAPs in the

volcano plot are CCL20, CDKN1A interacting zinc finger protein 1

(CIZ1), proteasome 26S subunit, ATPase 4 (PSMC4), proteasome

26S subunit, non-ATPase 11 (PSMD11), and nuclear receptor

corepressor 1 (NCOR1) (Figure 1d). The HC group had a total of

1316 DAPs, including 1234 upregulated and 82 downregulated

proteins, compared with the NS and SA groups (Figure 1e).
GO enrichment and KEGG pathway
analysis

To explore the potential biological functions and pathways

associated with the observed protein abundance differences, GO

and KEGG enrichment analyses were performed. DAPs between NS

and SA were significantly enriched for BP terms related to

ribonucleoprotein complex and ribosome biogenesis, and for CC

terms including the preribosome and proteasome accessory

complex (Figure 2a; Supplementary Table S1). KEGG analysis

highlighted several pathways, with amyotrophic lateral sclerosis

(ALS) ranking highest by gene ratio(Figure 2b; Supplementary

Table S2). These findings implicate perturbations in protein

homeostasis and RNA/protein biogenesis in poor outcomes.
Network-based clustering and KEGG
pathway enrichment of candidate proteins

We constructed a STRING PPI network by integrating the top

50 proteins ranked by SHAP values from the XGBoost model and

the top 50 proteins ranked by feature importance from the Random

Forest classifier, yielding 85 nodes and 178 edges (clustering

coefficient = 0.379; PPI enrichment p < 1.0 × 10-¹6). The resulting

PPI network was clustered using the Markov Clustering (MCL)

algorithm implemented in Cytoscape, revealing 11 distinct protein

clusters (Supplementary Table S3). The most prominent cluster

contained PSMD11 and multiple 26S proteasome subunits

(PSMC4, PSMC2, PSMC3, PSMC6, PSMD7), pointing to

coordinated proteasome involvement (Figure 3a). A Sankey plot

mapped clusters to significantly enriched KEGG pathways, with

several PSMD-containing clusters converging on the proteasome

pathway (Figure 3b). These results suggest proteasome-associated

pathways may play a central role in SFTS pathogenesis.
Screening proteomic biomarkers via
machine learning

To explore potential prognostic biomarkers associated with

poor outcomes in patients with SFTS, we trained XGBoost and

Random Forest models using DAPs between the NS and SA. The
frontiersin.org
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XGBoost model interpreted via SHAP ranked IL1RL1, CA3,

PSMD11, EIF2B5, IFIH1, SRSF3, SAA2, PSMC6, PSMC4, and

NFKB1 as the top features (Figure 4a), while the Random Forest

model highlighted IL1RL1, PSMD11, PSMC6, IFIH1, ATP6V1D,

CCL20, PSMD13, SRSF3, BMP2K and LECT2 (Figure 4b). ROC

analysis of four candidates (IL1RL1, PSMD11, PSMC4, IFIH1)

showed AUCs of 0.847 (95% CI: 0.761–0.932), 0.847 (95% CI:

0.766–0.928), 0.843 (95% CI: 0.763–0.924), and 0.791 (95% CI:

0.681–0.902), respectively (Figure 4c). PR curves yielded AUPRCs

of 0.771 (95% CI: 0.721–0.821), 0.731 (95% CI: 0.681–0.781), 0.747

(95% CI: 0.697–0.797), and 0.762 (95% CI: 0.712–0.812),

respectively (Figure 4d). Comprehensive metric comparisons

including AUC, AUPRC, sensitivity, specificity, precision,

accuracy, and F1 score are shown in a radar chart (Figure 4e).

Furthermore, violin plots demonstrated significantly elevated

abundant of all four proteins in NS compared with SA

(Figures 4f–i, p < 0.0001). Age-adjusted logistic regression

analysis was performed to verify the robustness of these

associations (Supplementary Figure S1).
Correlation of candidate proteins with
clinical indicators

Age-adjusted partial Spearman correlation analysis was performed

to assess associations between candidate protein levels and clinical

laboratory parameters. Correlation heatmaps revealed broad

associations of the four candidates (PSMD11, IL1RL1, IFIH1,

PSMC4) with clinical laboratory parameters (Figure 5a). PSMD11

showed the strongest and most consistent relationships with hepatic

dysfunction, myocardial injury, coagulation dysfunction,
Frontiers in Immunology 05
inflammation, and viral load. The strongest positive correlations

were observed with LDH (r = 0.77), thrombin time (TT; r = 0.76),

AST (r = 0.75), and hydroxybutyrate dehydrogenase (HBDH;

r = 0.74). PSMD11 showed moderate to strong positive correlations

with viral load (r = 0.63), alpha-L-fucosidase (AFU; r = 0.63),

adenosine deaminase (ADA; r = 0.62), high-sensitivity cardiac

troponin I (hs-cTnI; r = 0.61), IL-10 (r = 0.59), ALT (r = 0.59),

creatine kinase (CK; r = 0.57), activated partial thromboplastin time

(APTT; r = 0.56), and D-dimer (r = 0.53). Conversely, PSMD11

showed significant negative correlations with platelet count (r = −0.57),

prealbumin (r = −0.55), and albumin (r = −0.52) (all p < 0.001;

Figure 5b). These findings support a close linkage between PSMD11

and disease severity and multisystem pathophysiology in SFTS.

Moreover, we performed a multivariable logistic regression model

including age and these laboratory indicators, PSMD11 remained

significantly associated with the outcome (OR = 4.20, 95%

CI = 1.19–19.5, p = 0.039; Supplementary Table S4).
Discussion

In this prospective clinical cohort, we employed DIA-based

serum proteomics and integrated network-based analyses. By

combining PPI mapping with MCL clustering, we delineated a

coherent proteasome-associated module enriched in DAPs.

Multiple lines of evidence from differential abundance,

enrichment analyses, model explainability, and network mapping

implicated a proteasome−centered axis as the dominant correlate of

adverse outcomes in SFTS. This finding provides important

mechanistic insight into how proteasome dysregulation may

contribute to disease progression. To mitigate potential bias from
TABLE 1 The baseline clinical and laboratory characteristics of the participants.

Health control
(n=10)

SFTS patients

pa value
Total (n=87)

Survivor group
(n=55)

Non-survivor group
(n=32)

pb value

Age (years) 61.4 ± 8.6 67.3 ± 10.1 65.38 ± 9.55 70.6 ± 10.3 0.023 0.068

Male, n (%) 5 (50) 33 (37.9) 20 (36.4) 13 (40.6) 0.868 0.690

WBC (^109/L) 5.8 (5.2, 6.3) 2.1 (1.6, 3.1) 2.0 (1.5, 2.8) 2.1 (1.7, 3.1) 0.403 <0.001

Hemoglobin (g/L) 135.5 (130.0, 137.0)
143.0 (133.0,
152.0)

141.0 (133.0, 152.0) 144.5 (133.0, 151.8) 0.758 0.034

Platelet (^109/L) 271.5 (237.5, 290.0) 65.0 (51.0, 82.0) 74.0 (61.0, 88.0) 51.5 (43.8, 65.8) <0.001 <0.001

MPV(fL) 9.83 ± 0.66 10.46 ± 1.05 10.47 ± 1.13 10.44 ± 0.90 0.867 0.018

ALT (U/L) 14.0 (11.2, 25.1) 52.2 (34.2, 98.1) 43.3 (33.2, 90.2) 66.9 (46.0, 137.5) 0.059 <0.001

AST (U/L) 17.9 (15.2, 24.0)
122.3 (55.5,
213.7)

71.0 (49.1, 141.5) 170.2 (114.9, 456.9) <0.001 <0.001

Albumin (g/L) 46.6 (45.6, 48.1) 34.9 (30.8, 37.4) 35.8 ± 4.2 31.8 ± 4.4 <0.001 <0.001

TBil (umol/L) 12.3 (11.0, 15.2) 9.3 (8.2, 11.3) 9.0 (7.9, 10.9) 10.5 (8.5, 14.7) 0.060 0.040

Creatinine (umol/L) 50.4 (47.0, 53.0) 74.0 (60.5, 94.2) 65.1 (57.0, 78.7) 99.9 (75.8, 152.8) <0.001 <0.001
fr
pa: Comparisons between healthy controls and patients with SFTS.
pb: Comparisons between survivors and non-survivors among patients with SFTS.
WBC, white blood cell. ALT, alanine aminotransferase. AST, aspartate aminotransferase. TBil, total bilirubin. MPV, mean platelet volume.
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FIGURE 1

Differential protein abundance analysis. (a) Principal component analysis (PCA) plot of SA, NS, and HC based on proteomic profiles. Each dot
represents a serum sample. (b) Venn diagram showing the overlap of DAPs among the three comparisons: NS vs SA, SA vs HC, and NS vs HC.
(c) Heatmap showing the top 300 DAPs across the three groups. Higher and lower relative abundance levels are indicated in red and blue,
respectively. (d, e) Volcano plot showing significant DAPs between NS and SA (d) or patients with SFTS and HC (e). Red and blue dots represent
significantly upregulated and downregulated proteins, respectively; the top five of each are labeled. Proteins with FDR (Benjamini-Hochberg
adjusted) < 0.05 and absolute log2 (fold change) > 1 were considered significantly differentially. SA, survivors. NS, non-survivors. HC, healthy controls.
DAPs, differentially abundant proteins.
FIGURE 2

GO and KEGG enrichment analysis of DAPs between non-survivors and survivors. (a) GO enrichment of DAPs categorized by ontology. Bar plot showing
the top 15 significantly enriched GO terms among DAPs. For each term, the top five associated DAPs are displayed in parentheses. (b) KEGG pathway
enrichment analysis of DAPs. Bubble size indicates the number of genes enriched in each pathway, and color intensity reflects statistical significance
(−log10 FDR). DAPs, differentially abundant proteins.
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the modest sample size and to reduce model overfitting, we further

applied two complementary supervised ML algorithms-XGBoost

and Random Forest for feature prioritization within DAPs and used

interpretable feature-attribution metrics to rank their importance

(25). Because age differed significantly between survivors and non-
Frontiers in Immunology 07
survivors, we further performed sensitivity analyses to account for

this potential confounder. Four proteins (PSMD11, IL1RL1, IFIH1,

and PSMC4) consistently exhibited the most pronounced and

outcome-relevant alterations, with PSMD11 emerging as the most

robust and stable signal. These results link proteomic alterations to
FIGURE 3

PPI network of candidate biomarkers. (a) PPI network revealing 11 protein clusters via MCL algorithm. Nodes represent proteins, and edges indicate
predicted functional associations. Edge thickness corresponds to the STRING combined confidence score, with thicker edges reflecting higher
confidence in PPIs. Each cluster is depicted in a distinct color. Unconnected nodes were excluded from the final visualization. (b) KEGG enrichment
analysis by Sankey and bubble plots. Each flow represents the association between a specific protein cluster (left) and its significantly enriched KEGG
pathway (right). Bubble size indicating the number of enriched proteins and color intensity reflecting enrichment significance. PPI, protein–protein
interaction. MCL, Markov Clustering.
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clinical outcomes in SFTS and highlight PSMD11 and the

proteasome pathway as promising candidates for prognostic

assessment and potential translational research. In addition, this

study extends current strategies for prognostic biomarker discovery

in SFTS and highlights a set of novel candidate biomarkers that

warrant further investigation. These key DAPs can serve not only as

effective predictors of adverse outcomes but also as indicators of

severe-related pathological mechanisms.
Frontiers in Immunology 08
Previous studies have identified higher viral load, prolonged TT

and APTT, as well as elevated levels of D-dimer, AST, ALT, LDH,

CK, and cTnI as risk factors for adverse outcomes in patients with

SFTS (26–28). Lower platelet count and albumin have also been

linked to increased mortality (29). SFTS is characterized by multi-

organ involvement and damage (30). While individual clinical

laboratory indicators can typically reflect injury to only one or

two specific organs, they fail to capture the systemic complexity of
FIGURE 4

Identification and evaluation of potential prognostic biomarkers in patients with SFTS using machine learning. (a) Feature importance of DAPs in the
XGBoost model. Bars indicate the mean absolute SHAP values averaged over 10-fold cross-validation. (b) Variable importance of proteins ranked by
the Random Forest model. Variable importance scores were derived from a Random Forest classifier trained with 10-fold cross-validation, using
DAPs (|log2FC| > 1, FDR < 0.05) as input features. (c) ROC curves for the four proteins. (d) Precision-recall (PR) curves for the four proteins. (e) Radar
chart comparing diagnostic performance metrics of the four proteins. (f–i) Violin and box plots showing abundance levels of IL1RL1, IFIH1, PSMC4,
and PSMD11 in survivors vs. non-survivors. Statistical significance was assessed using the Wilcoxon rank-sum test; **** indicates p < 0.0001. DAPs,
differentially abundant proteins.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1693946
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


lation coefficients between four proteins (PSMD11, IL1RL1, IFIH1, and PSMC4) and clinical
g age-adjusted correlations between PSMD11 and clinical parameters. Viral load values
orrelation coefficients (r) and p-values are shown on each panel, and the red line

Z
h
ao

e
t
al.

10
.3
3
8
9
/fim

m
u
.2
0
2
5
.16

9
3
9
4
6

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

0
9

FIGURE 5

Correlation between candidate biomarkers and clinical parameters. (a) Heatmap of age-adjusted partial Spearman corre
laboratory parameters. Positive correlations are shown in red, and negative correlations in blue. (b) Scatter plots showin
were log10-transformed prior to analysis, while other variables were analyzed on their original scales. Partial Spearman c
represents the linear regression fit.

https://doi.org/10.3389/fimmu.2025.1693946
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2025.1693946
the disease. In our study, age-adjusted partial Spearman correlation

analysis revealed that PSMD11 was significantly associated with a

wide range of key clinical parameters, including markers of hepatic

and myocardial injury, coagulation dysfunction, systemic

inflammation, and viral load. These associations indicate that

PSMD11 aligns with established clinical indicators of poor

prognosis and may serve as a composite marker capturing

multiple dimensions of disease severity in patients with SFTS.

PSMD11 is a non-ATPase lid subunit of the 19S regulatory

particle that stabilizes 26S proteasome assembly and modulates

substrate engagement (31). Ectopic abundance of PSMD11

increases proteasome assembly and activity in cells with relatively

low basal proteasome function, whereas PSMD11 knockdown

reduces the number of assembled proteasomes (32). PSMD11

serves as a dynamically regulated node that enhances 26S

proteasome activity and maintains proteostasis under cellular

stress (33). A recent study demonstrated that PSMD11 loss-of-

function disrupts 26S proteasome assembly and triggers a persistent

type I interferon signature through integrated stress response

protein kinase R (34). In glomerular mesangial cells, miR-451

significantly inhibited inflammation and proliferation by

downregulating PSMD11 and NF-kB p65, and transfection of

miR-451 mimics significantly decreased levels of IL-1b, IL-6, and
IL-8 (35). Consistently, our study also revealed significantly higher

NF-kB abundance in non-survivors of SFTS. Previous studies have

shown that an lncRNA, highly expressed in resting CD4+ T

lymphocytes, recruits an HIV-1 regulatory protein to a PSMD11-

containing ubiquitin–proteasome complex, thereby promoting its

degradation and potentially contributing to HIV-1 latency (36). In

addition, PSMD11 has been implicated in tumorigenesis partly

through the modulation of tumor metabolism–related pathways. In

hepatocellular carcinoma, its abundance is elevated and correlates

with pathological stage and histologic grade (37). In lung carcinoma

A549 cells, PSMD11 overexpression promotes proliferation,

migration, invasion, and xenograft growth, while also altering

immune-cell infiltration within the tumor microenvironment

(38). In pancreatic ductal adenocarcinoma, PSMD11 and its

related subunit PSMD14 are overexpressed, with higher

abundance levels correlating with increased tumor malignancy

and disease progression (39), and another study demonstrated

that PSMD11 may serve as potential prognostic and diagnostic

biomarkers in patients with early-stage disease (40). A previous

study also reported that PSMD11 may play an important role in the

metastasis of melanoma (41). Bortezomib is a potent proteasome

inhibitor that has been widely used in the treatment of hematologic

malignancies, acting through inhibition of the chymotrypsin-like

site of the 20S proteolytic core within the 26S proteasome, which in

turn induces cell-cycle arrest and apoptosis (42). Rather than being

confined to a specific disease context, the dysregulation of PSMD11

appears to reflect broader cellular and immune processes. PSMD11

may be a multifunctional protein that contributes to the multi-

organ dysfunction characteristic of severe SFTS, thereby
Frontiers in Immunology 10
underscoring its potential relevance to disease pathophysiology

and prognosis.

This study has certain limitations. First, the sample size was

relatively modest and derived from a single center, which may

restrict the generalizability of our findings. Second, the lack of an

independent external validation cohort limits the confirmation of

robustness and the reproducibility of PSMD11 as a prognostic

biomarker. Third, although PSMD11 emerged as a promising

candidate, our results are associative and require functional

validation to establish causality. Finally, only proteomic data were

analyzed without integration of other omics layers or longitudinal

sampling. Future multicenter studies with larger, externally

validated cohorts and mechanistic experiments are warranted to

confirm these findings and further elucidate the biological role of

PSMD11 in SFTS.

In conclusion, our proteomic study identified a proteasome-

centered axis associated with adverse outcomes in SFTS, with

PSMD11 emerging as a prognostic biomarker closely linked to

key clinical parameters and multi-organ dysfunction. These

findings not only extend current strategies for biomarker

discovery but also provide mechanistic insights into disease

progression, thereby providing a foundation for future

translational research and therapeutic exploration in SFTS.
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Glossary

SFTS severe fever with thrombocytopenia syndrome
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GO Gene Ontology
KEGG Kyoto Encyclopedia of Genes and Genomes
PPI protein–protein interaction
ROC receiver operating characteristic
DAPs differentially abundant proteins
SFTSV severe fever with thrombocytopenia syndrome virus
PHEIC Public Health Emergency of International Concern
IL interleukin
IFN interferon
LDH lactate dehydrogenase
CCL20 C-C motif chemokine 20
ML machine learning
HC healthy control
DIA data-independent acquisition
RT-qPCR reverse transcription quantitative polymerase chain reaction
LC-MS liquid chromatography–mass spectrometry
KNN k-nearest neighbors
IQR interquartile range
FDR false discovery rate FC, fold change
BP biological process
CC cellular component
MF molecular function
STRING search tool for retrieval of interacting genes/proteins
SD standard deviation
ogy 13
PCA principal component analysis
XGBoost eXtreme Gradient Boosting
SHAP SHapley Additive exPlanations
PR precision-recall
AUC area under the receiver operating characteristic curve
AUPRC area under the precision-recall curve
CI confidence intervals
WBC white blood cell
ALT alanine aminotransferase
AST aspartate aminotransferase
MPV mean platelet volume
TBil total bilirubin
CIZ1 CDKN1A interacting zinc finger protein 1
PSMC4 proteasome 26S subunit, ATPase 4
PSMD11 proteasome 26S subunit, non-ATPase 11
NCOR1 nuclear receptor corepressor 1
ALS amyotrophic lateral sclerosis
MCL Markov Clustering
TT thrombin time
HBDH hydroxybutyrate dehydrogenase
ADA adenosine deaminase
AFU alpha-L-fucosidase
hs-cTnI high-sensitivity cardiac troponin I
CK creatine kinase
APTT activated partial thromboplastin time.
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