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Background: Glioblastoma (GBM) is the most aggressive primary malignancy of
the central nervous system, characterized by profound heterogeneity and an
immunosuppressive microenvironment, leading to dismal prognosis. Pyroptosis,
an inflammatory form of programmed cell death, has been increasingly linked to
tumor immunity and progression; however, its molecular roles and clinical
implications in GBM remain insufficiently understood.

Methods: We integrated bulk transcriptome profiles from TCGA-GBM, CGGA,
and GEO datasets with single-cell RNA sequencing data from GSE141383 and
GSE223063. A comprehensive GBM single-cell atlas was constructed using
Seurat and Harmony, and malignant epithelial cells were inferred via inferCNV.
Pyroptosis activity was quantified by five complementary algorithms, while
Monocle2 and Slingshot were employed for pseudotime trajectory
reconstruction, and SCENIC was applied for transcription factor network
analysis. Candidate prognostic genes identified from malignant epithelial
subsets were further used to develop a Pyroptosis-Related Gene Signature
(PRGS) through a systematic evaluation of ten machine learning algorithms and
their combinations, with subsequent validation across multiple cohorts.
Functional enrichment (GSVA, GSEA), tumor microenvironment estimation
(ESTIMATE, ssGSEA), drug sensitivity prediction (GDSC2), and in vitro
experiments were performed to characterize the biological and therapeutic
relevance of PRGS, with MAP1B selected for experimental validation.

Results: Single-cell analyses revealed heterogeneous pyroptosis activity across
GBM cell populations. Distinct ligand—receptor communications were observed
between high- and low-pyroptosis groups, among which the SPP1-centered
signaling axis showed pronounced remodeling, suggesting a pivotal role in
tumor—immune crosstalk. Pseudotime and regulatory network analyses of
malignant epithelial cells further delineated differentiation trajectories and
transcriptional regulators. The PRGS, established by StepCox[both]+Ridge
modeling, demonstrated robust prognostic stratification and predictive power
across independent datasets. High PRGS scores were consistently associated
with poorer survival outcomes, higher TIDE scores, and reduced IPS values,
indicating enhanced immune evasion and attenuated immunotherapy benefit.
Enrichment analyses highlighted that high PRGS tumors were linked to metabolic
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reprogramming and DNA repair pathways, whereas low PRGS tumors exhibited
signatures of immune activation. Drug sensitivity analyses revealed distinct
therapeutic vulnerabilities between subgroups. Functional assays confirmed
that MAP1B promotes proliferation, migration, and invasion in GBM cells,
reinforcing its oncogenic role.

Conclusion: This study systematically elucidates the role of pyroptosis in GBM
and establishes PRGS as a reliable prognostic biomarker. PRGS not only refines
risk stratification and predicts immunotherapy response but also provides
molecular insights into tumor metabolism and immune regulation, thereby

offering potential avenues for targeted therapeutic strategies in GBM.

glioblastoma, pyroptosis, machine learning, prognostic signature, SPP1 signaling

1 Introduction

GBM is the most common and highly aggressive primary brain
tumor in adults, accounting for more than 50% of all gliomas (1). It
is characterized by marked invasiveness and profound intra- and
inter-tumoral heterogeneity, leading to rapid progression,
therapeutic resistance, and frequent recurrence (2, 3). Despite the
current standard of care consisting of maximal surgical resection
followed by radiotherapy and temozolomide chemotherapy, the
median overall survival of GBM patients remains less than 15
months, with a five-year survival rate below 7% (4, 5). Although
immunotherapies such as immune checkpoint inhibitors have
shown remarkable efficacy in several solid tumors, their benefits
in GBM have been limited, largely due to the profoundly
immunosuppressive tumor microenvironment (6, 7). These
challenges highlight the urgent need to identify novel molecular
mechanisms and biomarkers that can improve risk stratification,
therapeutic prediction, and the development of effective
treatment strategies.

Pyroptosis, a form of programmed cell death mediated by
inflammasome activation and gasdermin pore formation, is
distinguished by cell membrane rupture and the release of
proinflammatory cytokines such as IL-18 and IL-18 (8-11).
Unlike apoptosis, pyroptosis elicits a robust inflammatory
response that can reshape the tumor microenvironment (12, 13).
Previous studies have indicated its dual role in cancer biology: on
the one hand, pyroptosis can suppress tumor progression by
enhancing immune infiltration and antitumor immunity; on the
other hand, excessive or dysregulated pyroptosis may drive chronic
inflammation, immune evasion, and malignant progression (14-
16). While pyroptosis has been investigated in breast, colorectal,
and hepatocellular carcinomas, its activity patterns, regulatory
mechanisms, and prognostic significance in GBM remain
poorly understood.

The advent of single-cell RNA sequencing (scRNA-seq) has
greatly advanced our understanding of tumor complexity (17, 18).
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Unlike bulk RNA-seq, which provides averaged gene expression
across populations, scRNA-seq enables the dissection of cellular
heterogeneity at single-cell resolution, allowing the identification of
key subpopulations, intercellular communication networks, and
developmental trajectories (19). Recent studies have applied
scRNA-seq to GBM and revealed distinct immune cell subsets as
well as glial cell states associated with therapeutic resistance and
invasion, underscoring its value in uncovering novel biological
mechanisms and potential therapeutic targets (20, 21). At the
same time, integrating large-scale transcriptomic data with
machine learning-based modeling has emerged as a powerful
strategy in cancer research, offering robust tools for biomarker
discovery and prognostic assessment across multiple cohorts (22).

In this study, we integrated scRNA-seq and bulk RNA-seq
datasets of GBM to comprehensively evaluate pyroptosis activity
and its influence on malignant epithelial cell differentiation and
signaling pathways. Building upon these findings, we developed and
validated a PRGS using a systematic machine learning framework
and assessed its prognostic value and predictive potential for
immunotherapy response and drug sensitivity. Furthermore, we
experimentally validated the role of a key gene, MAPIB, in GBM
cell lines. Collectively, our work provides novel insights into the
biological functions of pyroptosis in GBM and establishes PRGS as
a promising tool for risk stratification and precision therapy.

2 Methods
2.1 Collection and integration of data

Transcriptomic profiles and clinical annotations were obtained
from publicly accessible repositories. Bulk RNA-seq data included
the glioblastoma cohort from The Cancer Genome Atlas (TCGA-
GBM, expression values transformed into TPM format) and the
Chinese Glioma Genome Atlas (CGGA, http://www.cgga.org.cn/).
Additional validation cohorts were retrieved from the Gene
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Expression Omnibus (GEO, https://www.ncbinlm.nih.gov/geo/),
including GSE13041, GSE74187, and GSE83300. To minimize
technical heterogeneity among datasets, batch effects were
corrected using the sva package in R (23). scRNA-seq data were
also collected from GEO. The GSE141383 dataset comprises nine
human glioma surgical specimens, whereas GSE223063 includes six
glioblastoma samples from three patients. For immunotherapy
response evaluation, the immunophenoscore (IPS) was obtained
from The Cancer Immunome Atlas (TCIA, https://tcia.at/home)
(24).Furthermore, publicly available immunotherapy-related gene
sets curated from prior studies were integrated for downstream
analyses. Detailed dataset-level metadata (source/accession,
pathological type, and sample size) are summarized in
Supplementary Table S1.

All datasets were publicly available, and thus no additional
ethical approval was required.

2.2 ldentification and functional profiling of
single-cell populations

After importing raw scRNA-seq profiles from multiple samples,
the data were merged into a combined matrix. During quality
assessment, cells suspected to be doublets as well as those exhibiting
disproportionately high mitochondrial content were removed to
ensure reliability.

The Seurat workflow was applied for downstream processing
(25, 26). Prior to normalization, quality control (QC) filters were
applied: cells with a mitochondrial gene percentage > 40% were
removed; genes detected in fewer than three cells were excluded;
and outlier cells by nFeature_ RNA/nCount_ RNA were filtered
using a robust median absolute deviation (MAD) criterion.
Putative doublets were identified and removed with
DoubletFinder (integrated with the Seurat workflow), with the
expected doublet rate estimated from capture loading and the
classification parameter (pK) selected via a standard parameter-
sweep procedure. Following normalization and identification of
variable features, dimensionality reduction was performed with
principal component analysis. To mitigate inter-sample variation,
Harmony (27) was employed for batch correction. Clustering and
visualization were subsequently conducted using UMAP/t-SNE.
Marker genes specific to each cluster were determined, and cell
identities were annotated by integrating canonical references.

Functional characteristics of each cluster were further
investigated using the SCP package, which enabled enrichment
analyses to delineate potential biological roles of
distinct subpopulations.

2.3 Pyroptosis scoring and stratification

To assess the activity of pyroptosis at the single-cell level, a
curated gene set was compiled based on previous studies (25).
Multiple computational strategies were applied to the integrated
scRNA-seq object, including AUCell, UCell, singscore, ssGSEA, and
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AddModuleScore. AUCell estimated enrichment through area
under the curve (AUC) values derived from ranked gene
expression; UCell and singscore generated rank-based scores for
each cell; ssGSEA was implemented via the GSVA framework to
compute pathway enrichment; and AddModuleScore from Seurat
provided additional module-level scoring. Scores obtained from
these five approaches were standardized (z-score normalization and
min-max scaling) and combined into a composite index termed
Scoring, representing the overall pyroptosis activity of each cell.
This score was appended to the Seurat metadata for subsequent
visualization and downstream analyses.

Distribution of pyroptosis scores was illustrated using UMAP
and dot plots, while violin plots highlighted inter-cluster differences.
Cells were stratified into Pyroptosis_high and Pyroptosis_low
groups according to the median Scoring value, which served as
the basis for subsequent cell-cell communication analysis.

2.4 Ligand-receptor network analysis

Cell-cell communication was investigated using the CellChat
framework on the scRNA-seq dataset (28). Annotated cell identities
were incorporated into the workflow, and a curated human ligand-
receptor database was used as the reference. Overexpressed ligands
and receptors were identified within each cell group and projected
onto a protein-protein interaction network to infer possible
intercellular communication. For each ligand-receptor pair,
CellChat estimated communication probabilities and applied
permutation testing to assess statistical significance. These results
were subsequently aggregated to construct pathway-level signaling
networks, with network centrality measures used to evaluate the
relative contributions of distinct cell populations. Communication
networks were established separately for Pyroptosis_high and
Pyroptosis_low groups, followed by integrative comparison to
detect differences in both the number and the strength of
signaling interactions.

2.5 Determination of malignant epithelial
cells

To identify malignant epithelial cells, copy number variations
(CNVs) were inferred from scRNA-seq profiles using inferCNV
(29). Endothelial cells were designated as the reference group,
against which tumor cells were compared. Genes were ordered by
chromosomal position, and hierarchical clustering was applied to
visualize CNV patterns through heatmaps. Based on the inferred
CNV matrix, k-means clustering was employed to group cells
exhibiting pronounced copy number alterations. A CNV score
was then calculated for each cell to quantify the degree of
genomic abnormality. This score, in combination with clustering
outcomes, enabled the classification of malignant versus non-
malignant subpopulations. Cells identified as malignant were
subsequently extracted and saved for downstream analyses, such
as subclustering and exploration of transcriptional heterogeneity.
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2.6 Dynamics and transcriptional
regulation of malignant epithelial cells

To delineate the developmental dynamics of malignant
epithelial cells, two complementary pseudotime approaches were
applied. Monocle2 (30) was first used to reconstruct cell state
transition trees, inferring temporal progression based on
differentially expressed genes and dimensionality reduction. In
parallel, Slingshot (31) was employed to fit smooth trajectories
across clusters, enabling the identification of branching events and
differentiation directions. The integration of these two algorithms
provided consistent and robust insights into the evolutionary
patterns of malignant epithelial populations. For transcriptional
regulation, the SCENIC (32) workflow was implemented to
reconstruct gene regulatory networks. This framework integrates
co-expression analysis with cis-regulatory motif information to
define regulons and assess their activity at single-cell resolution.
To reduce computational complexity while maintaining
representativeness, 100 cells were randomly sampled from each
malignant epithelial cluster for SCENIC analysis. The results
highlighted transcription factors with pivotal roles in cell fate
determination and functional heterogeneity.

2.7 Multi-algorithm modeling and
performance validation

Differentially expressed genes were first identified between
pyroptosis-high and pyroptosis-low malignant epithelial cells, and
those significantly associated with GBM patient survival were
selected through univariate Cox regression as candidate variables.

Model development was conducted within a machine learning
framework that incorporated ten algorithms: stepwise Cox
regression, Lasso, Ridge, partial least squares regression for Cox
(plsRcox), CoxBoost, random survival forest (RSF), generalized
boosted regression modeling (GBM), elastic net (Enet), supervised
principal components (SuperPC), and survival support vector
machine (survival-SVM). Algorithmic combinations were
systematically tested under 10-fold cross-validation, and models
containing fewer than five genes after selection were excluded from
comparison. Algorithmic combinations were evaluated under cross-
validation; per a pre-specified rule, models with fewer than five
genes were not retained.

For each cohort, risk scores were computed based on the final
model, and patients were dichotomized into high- and low-risk
groups according to the median value. Kaplan-Meier analysis was
applied to assess survival differences between groups. Model
performance was further evaluated using the receiver operating
characteristic (ROC) curve and concordance index (C-index). In
addition, principal component analysis (PCA) was performed to
visualize patient distribution patterns, providing an intuitive
validation of the model’s discriminative ability between
risk categories.
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2.8 Functional annotation via GSVA and
GSEA

To characterize the biological differences between risk groups,
two complementary enrichment approaches were employed. Gene
set variation analysis (GSVA) was first applied to calculate
enrichment scores for hallmark pathways across all GBM samples
(33). Differential pathway activity between high- and low-risk
groups was then assessed using the limma framework.

In parallel, gene set enrichment analysis (GSEA) was performed
to capture global expression-level trends (34). Genes were ranked by
log2 fold change between groups, and enrichment was tested against
curated KEGG and GO gene sets. Normalized enrichment scores
(NES) were computed to determine functional programs
preferentially activated in either the high- or low-risk cohort.

Together, GSVA and GSEA provided complementary evidence
on pathway alterations associated with the prognostic model.

2.9 Assessment of immune infiltration and
function

To characterize the tumor microenvironment (TME) across
risk groups, the ESTIMATE algorithm was first applied to derive
stromal scores, immune scores, and tumor purity for each sample.
Immune infiltration was quantified using the ssGSEA approach, in
which curated immune cell-related gene sets were used to calculate
enrichment scores for various immune populations, including T
cells, NK cells, dendritic cells, and macrophages. Comparisons
between high- and low-risk groups were then performed to
uncover immune contexture differences associated with the
prognostic model. In addition, immune function-related
signatures (e.g., antigen presentation, chemokine receptor
pathways, cytolytic activity, inflammatory response, and type I/II
interferon signaling) were evaluated by ssGSEA to estimate
functional activity scores. Statistical testing was used to assess
functional discrepancies between groups. Finally, the expression
of immune checkpoints and other immune modulatory genes was
examined, providing further insights into the association between
risk stratification and potential immunotherapeutic responsiveness.

2.10 Drug response prediction using GDSC2

To investigate the potential therapeutic implications of the
prognostic model, drug response prediction was performed using
the Genomics of Drug Sensitivity in Cancer (GDSC2) database (35).
Transcriptomic profiles of tumor samples were integrated with
pharmacogenomic data to estimate the half-maximal inhibitory
concentration (IC50) for a panel of anticancer agents. IC50
represents the drug concentration required to suppress 50% of
cell proliferation in vitro, with lower values generally indicating
higher drug sensitivity. Patients were subsequently stratified into
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high- and low-risk groups, and differences in predicted drug
responses were compared. This analysis provided insight into the
association between risk classification and potential
treatment responsiveness.

2.11 Culture and knockdown experiments
of NHA, SF-295, and HS-683

Glioblastoma cell lines SF-295 and HS-683 were purchased
from the Cell Bank of the Chinese Academy of Sciences (Shanghai,
CBTCCCAS). All cells were cultured in high-glucose DMEM
supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin-streptomycin, under standard conditions of 37 °C and
5% CO,. For gene silencing, siRNAs targeting the candidate gene
(sequences listed in Supplementary Table 2) were transfected into
cells at 50-60% confluence using a commercial reagent according to
the manufacturer’s protocol. Cells were incubated for 24-48 h post-
transfection, and knockdown efficiency was verified by qRT-PCR,
which measured relative expression of the target gene before and
after siRNA treatment.

2.12 Proliferation analysis using EdU

Cell proliferation was assessed using a 5-ethynyl-2’-
deoxyuridine (EdU) incorporation assay kit purchased from a
commercial supplier. Cells were seeded in 24-well plates and
incubated until reaching appropriate confluence, after which they
were exposed to EdU-containing medium for 2 hours, allowing
incorporation into newly synthesized DNA during the S phase.
Following incubation, cells were fixed, permeabilized, and stained
according to the manufacturer’s protocol. Fluorescence microscopy
was used to visualize EdU-positive cells under the channel with an
excitation wavelength of 550 nm. Proliferation was quantified as the
percentage of EdU-positive cells relative to total nuclei, and
compared between experimental and control groups.

2.13 Assessment of migratory and invasive
capacities

Cell migration and invasion abilities were evaluated using
Transwell chamber assays.

For the migration assay, serum-starved cells were resuspended
in serum-free medium and seeded into the upper chamber inserts (8
pum pore size) without Matrigel coating. The lower chamber was
filled with medium containing 10% FBS as a chemoattractant. After
24 hours of incubation, cells remaining on the upper surface were
removed with a cotton swab, while migrated cells on the lower
surface were fixed, stained with crystal violet, and counted under a
microscope in five randomly selected fields.

For the invasion assay, the procedure was similar except that the
upper chamber membrane was pre-coated with Matrigel to mimic
the extracellular matrix barrier. After 24-48 hours of incubation,
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cells that invaded through the Matrigel to the lower surface were
fixed, stained, and quantified. Migration and invasion capacities
were expressed as the average number of cells per field.

2.14 Statistical analysis

Two-sided tests were used with P <0.05 considered significant
unless stated otherwise, and multiple testing was controlled by the
Benjamini-Hochberg false discovery rate (FDR). Group
comparisons used Student’s t-test or Welch’s t-test (parametric)
and Wilcoxon rank-sum test (non-parametric) for two groups, and
one-way ANOVA or Kruskal-Wallis test for multiple groups.
Associations were assessed by Pearson or Spearman correlation as
appropriate. Categorical variables were compared by Chi-square or
Fisher’s exact test. Survival analyses included Kaplan-Meier curves
with log-rank tests and Cox proportional hazards models (HR and
95% CI; proportional-hazards assumption checked by Schoenfeld
residuals). Model performance was evaluated by time-dependent
ROC/AUC and Harrell’s C-index, with bootstrap resampling for
internal validation and calibration where applicable.

3 Results

3.1 Identification and functional profiling of
single-cell populations

Comprehensive single-cell transcriptomic analysis yielded
31,960 cells in total. UMAP projection revealed 16 well-separated
clusters, underscoring the remarkable cellular heterogeneity within
GBM (Figure 1A). Based on canonical marker expression, these
clusters were annotated as tumor cells, macrophages,
oligodendrocytes, endothelial cells, T/B lymphocytes, and
fibroblasts (Figure 1B), reflecting the intricate cellular ecosystem
of glioblastoma. When cells from different samples were mapped
into the same low-dimensional space, they exhibited an even
distribution without clear sample-specific aggregation, indicating
that the Harmony algorithm effectively minimized batch effects and
ensured robust cross-sample integration (Figure 1C). This
integrative quality provided a solid foundation for downstream
analyses. Differentially expressed gene analysis further delineated
the transcriptional identities of each population (Figure 1D).
Notably, enrichment analysis highlighted distinct biological
programs: tumor cells were enriched in oxidative phosphorylation
and ATP synthesis coupled electron transport, suggesting enhanced
metabolic activity; macrophages showed enrichment in positive
regulation of cell activation and leukocyte cell-cell adhesion,
pointing to their role in immune regulation and intercellular
communication; oligodendrocytes were enriched in glial cell
differentiation and cell adhesion molecules, consistent with their
function in neural development and myelination (Figure 1E).
Finally, representative marker genes provided additional
validation of the annotation (Figure 1F). EGFR and IDH1 were
highly expressed in tumor cells, FAP and COL1A1 were confined to
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FIGURE 1

Single-cell transcriptomic landscape of glioblastoma. (A) Clustering results of 31,960 cells, grouped into 16 clusters. (B) Annotation of major cell

types, including tumor cells, macrophages, oligodendrocytes, endothelial ce

lls, T/B cells, and fibroblasts. (C) Distribution of cells across different

patient samples. (D) Visualization of differentially expressed genes across cell clusters. (E) Functional enrichment analysis of cluster-specific marker
genes. (F) Expression patterns of representative marker genes (EGFR, IDH1, FAP, COL1A1, CD68, ITGAM, OLIG2, MOG, PECAM1, CDH5, CD4, and

CD3D).

fibroblasts, CD68 and ITGAM marked macrophages, PECAM1 and
CDH5 identified endothelial cells, OLIG2 and MOG were specific to
oligodendrocytes, while CD4 and CD3D defined T-cell subsets.
Together, these marker distributions and functional enrichments
converged to confirm the biological accuracy of our
clustering strategy.
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3.2 Evaluation of pyroptosis activity at the
single-cell level

To comprehensively evaluate the activity of the pyroptosis-

related gene set across cell types, five independent scoring methods
—AUCell, UCell, singscore, ssGSEA, and AddModuleScore—were
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applied. The bubble plot revealed consistent patterns across
methods: macrophages and T/B cells displayed the highest
pyroptosis activity, tumor, endothelial cells, and oligodendrocytes
exhibited the lowest, and fibroblasts showed intermediate levels
(Supplementary Figure 1A). When integrating the results into an
average score, the UMAP projection demonstrated clear spatial
heterogeneity of pyroptosis activity, with specific tumor cell clusters
exhibiting notably elevated scores (Supplementary Figure 1B).
Violin plot comparisons further confirmed that pyroptosis
activity was significantly higher in tumor cells and macrophages
compared to other cell types, suggesting that these populations may
play pivotal roles in pyroptosis-associated signaling (Supplementary
Figure 1C). Collectively, these findings validate the robustness of the
multi-method scoring approach and establish a reliable foundation
for subsequent functional analyses.

3.3 Pyroptosis-based stratification reveals
remodeling of cell-cell communication

Based on the integrated scoring from five algorithms, all cells
were stratified into pyroptosis-high and pyroptosis-low groups for
communication network analysis.

In the pyroptosis-low group, T/B cells primarily functioned as
incoming receivers, while tumor cells and oligodendrocytes acted
mainly as outgoing signal senders. With elevated pyroptosis activity,
fibroblasts and endothelial cells further enhanced their dual roles in
sending and receiving, suggesting substantial remodeling of the
communication landscape (Figure 2A). Quantitative analysis
confirmed that both the total number of interactions and overall
communication strength were significantly higher in the
pyroptosis-high group (Figure 2B). At the ligand-receptor level,
several SPP1-associated axes were strengthened in the high group,
including SPP1-CD44, SPP1-(ITGAV+ITGB5), SPP1-(ITGAS8
+ITGB1), SPP1-(ITGA5+ITGB1), and SPP1-(ITGA4+ITGB1)
(Figure 2C), while SPP1-(ITGAV+ITGB1) was weakened
(Figure 2D). Given that SPP1 was involved in both strengthened
and diminished interactions, a more detailed analysis was
performed. Circle plot comparisons revealed denser intercellular
communication in the pyroptosis-high group, particularly increased
crosstalk between tumor cells and immune populations such as
macrophages and T/B cells, with fibroblasts and endothelial cells
gaining additional importance (Figure 2E). Focusing on the SPP1
pathway, its network visualization highlighted specific interaction
directions among cell populations, with macrophages and T/B cells
as dominant contributors, while tumor cells played a limited role
(Figure 2F). Role analysis further demonstrated that macrophages
mainly functioned as Senders and Influencers, whereas T/B cells
exhibited multiple roles as Receivers, Mediators, and Influencers; in
contrast, tumor cells showed minimal involvement (Figure 2G).
Collectively, these results indicate that the SPP1 pathway is strongly
activated under heightened pyroptosis activity, predominantly
orchestrated by immune cells.
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3.4 Reclustering highlights functional
heterogeneity of malignant epithelial cells

In the single-cell landscape of GBM, epithelial cells represent
the primary tumor-derived population. However, not all epithelial
cells display uniform malignant features, as some may resemble
normal counterparts. To distinguish malignant from non-
malignant populations, inferCNV analysis was performed using
endothelial cells as the reference. The results revealed widespread
chromosomal copy number variations across epithelial cells, while
reference cells maintained stable profiles, indicating pronounced
tumor-associated genomic alterations (Figure 3A). Subsequent k-
means clustering divided the cells into five groups, with clusters 2, 3,
4, and 5 showing elevated CNV burdens and classified as malignant
epithelial cells, whereas cluster 1 was closer to the reference profile
(Figures 3B-C).

Reclustering of the malignant epithelial cells identified four distinct
subclusters (clusters 0, 1, 2, and 3) in UMAP visualization (Figure 3D).
Differential expression analysis highlighted unique transcriptional
programs in each subgroup (Figure 3E). Functional enrichment
based on HALLMARK gene sets suggested that cluster 1 was broadly
correlated with multiple hallmark pathways, reflecting a globally
activated state. Cluster 0 was associated with
OXIDATIVE_PHOSPHORYLATION, MYC_TARGETS_V2, and
FATTY_ACID_METABOLISM, implicating metabolic
reprogramming and energy supply in supporting rapid tumor
proliferation. Cluster 3 was enriched in G2M_CHECKPOINT and
REACTIVE_OXYGEN_SPECIES_PATHWAY, suggesting potential
roles in cell cycle regulation and oxidative stress responses
(Figure 3F). These findings indicate that malignant epithelial cells,
despite sharing tumor origin, display functional divergence that may
represent different states of tumor progression.

Furthermore, pyroptosis enrichment analysis revealed distinct
heterogeneity across the malignant subclusters. Cluster 1 exhibited
the highest pyroptosis activity, whereas cluster 0 showed the lowest,
with other clusters displaying intermediate levels (Figure 3G). This
highlights the diverse regulation of pyroptosis among malignant
populations, adding another layer of functional heterogeneity in
GBM epithelial cells.

3.5 Pseudotime trajectories and
transcriptional regulatory features of
malignant epithelial cells

To further characterize the dynamic evolution of malignant
epithelial cells, we first applied Monocle2 for pseudotime analysis
(Figure 4). The trajectory heatmap (Figure 4A) demonstrated a
continuous distribution of malignant clusters across pseudotime,
indicating a progressive differentiation pattern. When examining
pyroptosis activity (Figure 4B), we observed that cells with high
pyroptosis activity were predominantly located at both the
beginning and the end of the trajectory, whereas low-activity cells
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were enriched in the middle phase, suggesting a potential role of
pyroptosis in both initiation and terminal differentiation.

Overall, cells were divided into three states: state 1 represented
early differentiation, while states 2 and 3 corresponded to distinct
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late-stage branches (Figure 4C). Reclustering revealed that cluster 2
was largely distributed in the intermediate stage, whereas clusters 0,
1, and 3 were detected at both the beginning and the endpoints of
the trajectory (Figure 4D). Regarding gene expression dynamics,
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Identification and reclustering of malignant epithelial cells. (A) Results of inferCNV analysis using endothelial cells as the reference population. The upper
panel represents reference cells with relatively stable copy number patterns, while the lower panel shows tumor cells with extensive chromosomal
alterations, indicating malignant properties. (B) k-means clustering based on the inferCNV expression matrix, where distinct colors represent different CNV-
defined cell populations. (C) Violin plots showing the distribution of CNV scores across each malignant cluster. (D) UMAP visualization of reclustered
malignant epithelial cells, identifying four major subclusters. (E) Differentially expressed genes (DEGs) across the four subclusters. (F) Functional enrichment
analysis using HALLMARK gene sets, highlighting distinct biological processes in each malignant subcluster. (G) Pyroptosis enrichment scores of malignant
cells calculated using five different algorithms: AUCell, UCell, singscore, ssGSEA, and AddModuleScore.

genes upregulated along pseudotime were enriched in hypoxia-
related and oxygen-response pathways, while downregulated genes
were mainly involved in mitochondrial ATP synthesis coupled
electron transport (Figure 4E). Branch analysis further showed
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that branch 2 was associated with miRNA catabolism and bone
mineralization regulation, whereas branch 1 was enriched in
pyrimidine and purine biosynthesis (Figure 4F). Collectively,
these findings suggest that GBM malignant epithelial cells
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undergo metabolic and stress-related remodeling during
differentiation and display distinct functional programs along
different branches.

To validate and complement these observations, we next
reconstructed trajectories using the Slingshot algorithm. Two
major lineages were identified (Supplementary Figure 2A). In the
UMAP embedding, cluster 0 cells were positioned at the beginning
of the trajectory, cluster 1 cells at the intermediate stage, while
clusters 2 and 3 occupied the terminal branches (Supplementary
Figure 2B). Functional enrichment analysis revealed that Lineage 1
(cluster 0 — 1 — 2) was associated with regulation of trans-synaptic
signaling, long-term synaptic potentiation, and glucocorticoid
responses, while the other lineage showed distinct functional
orientations (Supplementary Figure 2C). At the regulatory level,
SCENIC analysis indicated that cluster 0 was strongly linked to
transcription factors such as SIX5, E2F6, POLR3G, and TP53
(Supplementary Figure 2D), highlighting their potential roles in
early differentiation and cell fate specification.

In summary, these findings depict both the temporal
progression and branch-specific divergence of GBM malignant
epithelial cells, underscoring the importance of transcriptional
networks in orchestrating early-stage transitions.

3.6 Development of a pyroptosis-related
gene signature for risk stratification and
therapeutic prediction

Before model construction, differentially expressed genes
between malignant epithelial cells with distinct pyroptosis activity
levels were identified and subjected to univariate Cox regression. A
considerable number of these genes were significantly associated
with overall survival (Supplementary Figure 3A). PCA across the
CGGA, GSE13041, GSE74187, GSE83300, and TCGA-GBM
cohorts revealed substantial batch effects prior to correction
(Supplementary Figure 3B). After adjustment with the SVA
algorithm, the distribution of samples became more
homogeneous across datasets (Supplementary Figure 3C),
confirming that batch effects were effectively removed and that
the integrated dataset was suitable for downstream modeling.

Based on the adjusted data, ten machine learning algorithms
and their combinations were systematically applied to construct
prognostic models, with performance ranked by C-index
(Figure 5A). After identifying StepCox[both]+Ridge as the
optimal modeling approach, we further examined the expression
patterns of PRGS component genes in the integrated GBM single-
cell dataset (Supplementary Figure 4). These genes displayed
distinct expression distributions across cellular populations, with
several showing elevated expression in malignant epithelial cells.
This observation not only supports the biological plausibility of
PRGS from a single-cell perspective but also provides additional
evidence for the potential roles of these genes in glioblastoma
progression. The optimal strategy was identified as StepCox[both]
+Ridge, which was subsequently used to establish the Pyroptosis-
Related Gene Signature (PRGS). Patients were stratified into high-
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and low-risk groups using the median PRGS score, and Kaplan-
Meier analysis revealed significantly worse survival in the high
PRGS group (Figure 5B). Immunological evaluation further
demonstrated that high-risk patients exhibited elevated TIDE
scores (Figure 5C), suggesting greater immune evasion potential.
In addition, across four distinct immunogenic states, IPS
comparisons consistently indicated lower scores in the low-risk
group, implying a higher likelihood of benefiting from
immunotherapy (Figure 5D).

The robustness of PRGS was then assessed across multiple
independent validation cohorts. Risk curves, survival distributions,
and heatmaps of gene expression consistently indicated unfavorable
outcomes in the high-risk group (Figure 6A). Most PRGS genes
were positively correlated, with the strongest correlation observed
between MYL12A and MGP (rho = 0.73, FDR = 0) (Figure 6B).
ROC analysis demonstrated that PRGS maintained strong
predictive performance at 1-, 3-, and 5-year survival endpoints
across diverse cohorts (Figure 6C). PCA plots further confirmed
that PRGS clearly separated high- and low-risk patients across
datasets (Figure 6D). Taken together, these findings highlight PRGS
as a robust and generalizable prognostic signature with potential
utility in guiding risk stratification and predicting immunotherapy
response in GBM.

3.7 Metabolic and immune pathway
differences driven by PRGS stratification

In the preceding analyses, PRGS was shown to hold significant
value for prognostic prediction and immunotherapy response
assessment. To further elucidate the biological basis underlying
these findings, we conducted functional enrichment analyses to
compare transcriptional characteristics between the high- and low-
risk groups. The GSVA results (Figure 7A) demonstrated that the
high-PRGS group was enriched in pathways such as
MYOGENESIS, APICAL_JUNCTION, and P53_PATHWAY,
whereas the low-PRGS group was predominantly enriched in
REACTIVE_OXYGEN_SPECIES_PATHWAY,
XENOBIOTIC_METABOLISM, and GLYCOLYSIS, highlighting
divergent stress and metabolic processes. GO-based GSEA
(Figures 7B, C) further revealed that the high-PRGS group
exhibited strong associations with energy metabolism pathways,
including Oxidative Phosphorylation and ATP Synthesis Coupled
Electron Transport, while the low-PRGS group was more closely
linked to RNA regulatory functions such as RNA Binding Involved
in Posttranscriptional Gene Silencing. KEGG enrichment
(Figures 7D, E) indicated that high-PRGS tumors were primarily
associated with Parkinson’s Disease and Ribosome, whereas the
low-PRGS group was enriched in immune- and signaling-related
pathways, including Systemic Lupus Erythematosus and
Taste Transduction.

Taken together, these analyses highlight the multidimensional
molecular characteristics reflected by PRGS stratification: tumors
with high PRGS scores tend to exhibit greater metabolic demands
and stress adaptation, while those with low PRGS scores rely more
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across different PRGS risk groups.

heavily on metabolic flexibility and immune-related processes.
These distinctions not only provide mechanistic support for the
predictive capacity of PRGS but also suggest its potential role in

response

driving metabolic reprogramming, shaping the tumor immune

microenvironment, and modulating therapeutic sensitivity,
thereby offering a biological rationale for future translational
research and precision treatment strategies in GBM.
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3.8 Systematic evaluation of PRGS in the
tumor microenvironment and drug

To further elucidate the role of the PRGS in shaping the tumor
microenvironment and influencing therapeutic responses, we
performed a comprehensive analysis across different risk groups.
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FIGURE 6

Validation of the PRGS and prognostic stratification. (A) Distribution of risk scores, overall survival status, and the corresponding heatmap of PRGS
gene expression in glioblastoma patients. (B) Pairwise correlation analysis among the genes included in the PRGS model. (C) Time-dependent ROC
curves evaluating the predictive performance of the PRGS at 1-, 3-, and 5-year survival across multiple cohorts. (D) Principal component analysis
(PCA) plots illustrating the separation between high- and low-PRGS groups in independent datasets.

As shown in Figure 8A, the ESTIMATE algorithm revealed that
patients in the high-PRGS group exhibited higher tumor purity,
while StromalScore, ImmuneScore, and the overall
ESTIMATEScore were comparatively lower. This indicates that
non-tumor components account for a smaller fraction of the
tumor tissue in the high-risk group. The analysis of immune cell
infiltration demonstrated that the low-PRGS group displayed
higher levels of infiltration across multiple immune cell subsets
(Figure 8B). Consistently, immune-related functional activities,
including antigen presentation, cytolytic activity, and
inflammatory responses, were more active in the low-risk group,
whereas these processes were relatively weaker in the high-risk

Frontiers in Immunology

13

group (Figure 8C). These findings suggest that the low-PRGS group
may be characterized by enhanced immune surveillance and
effector activity. When examining immune regulatory factors,
integration of gene expression, methylation, and copy number
variation data revealed notable differences between the two
groups (Figure 8D). These differences involved a wide range of
molecules, including immune co-stimulatory and co-inhibitory
factors, ligand-receptor interactions, cell adhesion molecules, and
antigen-presenting pathways, highlighting the multidimensional
association between PRGS and immune regulatory networks.
Drug sensitivity prediction further revealed significant
differences in the half-maximal inhibitory concentration (IC50)
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GSEA. (D) KEGG-based enrichment analysis indicated pathways characteristic of the high-PRGS population. (E) Distinct KEGG programs were identified

in the low-PRGS population.

values of multiple compounds between the two groups (p < 0.001),
with representative drugs shown in Figure 8E. Since IC50 values are
inversely correlated with drug sensitivity, these findings imply that
patients with different PRGS levels may respond differentially to
specific therapies, underscoring the potential value of PRGS in
guiding personalized treatment strategies.
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Taken together, these results demonstrate that PRGS is closely
associated with tumor purity, immune infiltration, functional
immune activity, and drug sensitivity. This not only provides
further biological insights into the clinical utility of PRGS but also
highlights its promise for precision oncology and
immunotherapeutic interventions.
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3.9 Mutation landscape and genomic
alterations associated with PRGS

After establishing the strong association of the PRGS with
prognosis and immune characteristics, we next investigated its
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genomic underpinnings. Comparison of somatic mutation
landscapes between the high- and low-PRGS groups revealed
widespread genetic alterations across both cohorts, with canonical
driver genes such as TP53, PTEN, and EGFR showing high
mutation frequencies (Figure 9A). These findings suggest that
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FIGURE 9

Mutation landscape and genomic alterations associated with PRGS. (A) Oncoplot showing the somatic mutation profiles of the high- and low-PRGS groups.
The upper panel depicts the overall mutation frequency, while the side bar indicates the proportion of different mutation types across groups. (B) Violin plot
comparing tumor mutational burden (TMB) levels between high- and low-PRGS groups. (C) Scatter plot illustrating the correlation between TMB and PRGS
risk score. (D) Kaplan—Meier curves of overall survival in patients stratified by both PRGS and TMB subgroups. (E, F) Copy number variation (CNV) landscapes
inferred by GISTIC2.0, showing chromosomal amplification (red) and deletion (blue) events in low- (E) and high-PRGS (F) groups.

alterations in core oncogenic pathways are central to glioblastoma  association between PRGS scores and TMB (R = 0.42, p < 0.001;
pathogenesis. We then examined tumor mutational burden (TMB)  Figure 9C), reinforcing the capacity of PRGS to reflect the
across PRGS-defined subgroups (Figure 9B). The high-PRGS group ~ mutational background of tumors. To assess the joint prognostic
exhibited significantly elevated TMB compared with the low-PRGS  implications of PRGS and TMB, we performed stratified survival
group, indicating greater genomic instability among high-risk  analysis (Figure 9D). Patients harboring both high PRGS and high
patients. Correlation analysis further confirmed a positive =~ TMB exhibited the worst overall survival, whereas those with low
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PRGS and low TMB displayed the most favorable outcomes. This
highlights the added value of integrating PRGS and TMB for
survival stratification in glioblastoma. Finally, copy number
variation (CNV) profiles were assessed using GISTIC2.0
(Figures 9E, F). Both subgroups demonstrated extensive
chromosomal amplifications and deletions; however, the
magnitude of CNV alterations was more pronounced in the high-
PRGS group, with large-scale aberrations observed in multiple
chromosomal regions. These findings suggest that PRGS is closely
linked to genomic instability.

Taken together, these analyses indicate that the PRGS not only
correlates with clinical outcomes and immune states but also
captures the mutational and CNV landscape of glioblastoma,
underscoring its potential as a multidimensional biomarker for
biological and clinical characterization.

3.10 Functional validation of MAP1B as an
oncogenic driver in GBM cells

As demonstrated in our previous analyses, the PRGS was
constructed using multiple machine-learning combinations and
validated across independent cohorts, showing robust prognostic
value (Figures 5, 6). Among the genes included in the signature,
MAPIB was prioritized for further functional investigation due to
its relatively high hazard ratio in univariate Cox regression and
previous reports implicating its role in neural development and
tumor progression.

In vitro experiments confirmed the oncogenic function of
MAPIB in GBM cells. CCK-8 assays indicated that MAPIB
silencing markedly reduced the proliferative capacity of SF295
and HS683 cells (Figures 10A, B). EdU incorporation assays
further confirmed its contribution to DNA synthesis and
proliferation (Figures 10C, D). Moreover, Transwell assays
demonstrated that MAPIB knockdown significantly impaired the
migratory and invasive abilities of GBM cells (Figures 10E, F).

Together, these findings not only provide experimental
validation for the PRGS model but also highlight MAPIB as a
potential therapeutic target in GBM.

4 Discussion

GBM is notorious for its aggressiveness, therapeutic resistance,
and devastating clinical outcomes (36). Although standard-of-care
regimens combining maximal safe resection, radiotherapy, and
temozolomide chemotherapy have modestly extended survival,
the median overall survival remains under 18 months (37). More
recently, novel approaches such as immune checkpoint inhibitors
and tumor-treating fields have been introduced, yet their benefits
have been limited to a small subset of patients. The principal
challenge lies in the profound intratumoral heterogeneity and
adaptive plasticity of GBM, which collectively underlie immune
evasion, metabolic reprogramming, and resistance to therapy (38,
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39). Against this backdrop, identifying robust prognostic markers
and dissecting their biological underpinnings are essential steps
toward precision medicine in GBM.

Bulk transcriptome analyses have previously yielded molecular
classifications and survival-associated signatures in GBM, but their
interpretive power is constrained by the averaging of signals across
mixed cell populations (40). scRNA-seq, in contrast, offers a
powerful lens to resolve this complexity, enabling the dissection
of malignant and non-malignant compartments, cell-cell
communication networks, and evolutionary trajectories of tumor
cells (41). By integrating scRNA-seq with bulk transcriptomes from
multiple large cohorts, our study developed and validated PRGS
that not only stratifies GBM patients into distinct risk groups but
also reflects immunological and therapeutic vulnerabilities.

Our findings revealed that PRGS reliably predicted overall
survival and provided insights into immunotherapy response.
Patients with high PRGS scores exhibited poorer prognosis and
higher TIDE scores, indicative of enhanced immune escape,
whereas low PRGS patients showed consistently lower IPS values
across immunogenic states, suggesting greater benefit from
immunotherapy. These results underscore the clinical relevance of
PRGS as both a prognostic and predictive biomarker. Importantly,
scRNA-seq-based communication analysis pinpointed the SPP1
axis as a critical signaling pathway enriched in the high-pyroptosis
group. SPP1 (osteopontin), a multifunctional extracellular matrix
protein, has been implicated in macrophage recruitment,
angiogenesis, and promotion of an immunosuppressive tumor
microenvironment in diverse cancers (42-44). In GBM, our
analysis indicated that macrophages acted as dominant senders of
SPP1 signals, while T/B cells and malignant epithelial cells
frequently served as receivers. This pattern suggests that SPP1
may function as a central mediator of immune remodeling in
pyroptosis-high tumors, reinforcing tumor-promoting
interactions between stromal and immune compartments.

Beyond immune signaling, pseudotime and transcription factor
analyses further illuminated how pyroptosis activity intersects with
tumor cell differentiation and metabolic programs. Cells with high
pyroptosis scores tended to reside at both early and terminal
branches of differentiation trajectories, indicating a role in tumor
plasticity. Moreover, trajectory-specific enrichment revealed links
to hypoxia response, oxidative phosphorylation, and nucleoside
biosynthesis, suggesting that pyroptosis may act as a modulator of
metabolic state transitions that shape malignant progression.

Among the genes included in PRGS, MAPIB emerged as a
compelling candidate for functional validation, given its strong
association with survival in univariate Cox analysis and
supportive evidence from prior studies. MAPIB encodes
microtubule-associated protein 1B, a key regulator of cytoskeletal
dynamics and neuronal development (45). Dysregulated MAPIB
expression has been reported in breast, colorectal, and brain
tumors, where it promotes proliferation, invasion, and therapeutic
resistance (46-49). Consistent with these reports, our in vitro assays
demonstrated that MAPIB knockdown suppressed proliferation,
DNA synthesis, and invasive capacity in GBM cells, highlighting its
oncogenic role. These findings position MAPIB not only as a
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the two cell lines following MAP1B knockdown, with DAPI staining used for nuclear visualization. (E, F) Transwell assays evaluating the effects of

MAPIB silencing on cell migration and invasion in SF295 and HS683 cells.

model-derived risk gene but also as a potential therapeutic target
whose inhibition may attenuate GBM aggressiveness.

Several limitations of our work warrant discussion. Although
PRGS was constructed and validated across multiple independent
datasets, prospective clinical cohorts are needed to confirm its
predictive utility in real-world settings. Our functional validation
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focused primarily on MAPIB, and additional experimental efforts
are required to explore the contributions of other PRGS genes.
Moreover, while our integrative analyses identified SPP1- and
MAPIB-related pathways as potentially central to GBM biology,
mechanistic dissection through animal models and molecular
experiments will be critical to fully elucidate their roles.
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In conclusion, this study introduces PRGS as a robust
pyroptosis-related signature with strong prognostic and
therapeutic predictive value in GBM. By leveraging scRNA-seq
and bulk transcriptomics, we not only provided a clinically
relevant biomarker but also revealed mechanistic insights into
how pyroptosis intersects with immune remodeling, metabolic
reprogramming, and malignant progression. The identification of
MAPIB as a functional driver further underscores the translational
potential of our findings. Together, these results enrich the
understanding of GBM pathogenesis and may guide the
development of novel targeted and immunotherapeutic strategies.
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SUPPLEMENTARY FIGURE 1

Pyroptosis activity scoring at the single-cell level in GBM. (A) Bubble plot
showing the distribution of pyroptosis scores across major cell types,
calculated using five independent methods: AUCell, UCell, singscore,
ssGSEA, and AddModuleScore. (B) UMAP projection illustrating the overall
average pyroptosis scores of all cells. (C) Violin plots displaying the differences
in pyroptosis activity among distinct cell populations.

SUPPLEMENTARY FIGURE 2

Slingshot pseudotime analysis and transcription factor regulatory network. (A)
Two differentiation trajectories identified by Slingshot, illustrating the
dynamic distribution of malignant epithelial cells along pseudotime. (B)
Slingshot trajectories overlaid on the UMAP space, showing the origin and
differentiation directions across four malignant clusters. (C) Functional
enrichment analysis based on the SCP package, highlighting representative
biological pathways associated with key gene sets along the two trajectories.
(D) Heatmap of transcription factor activities inferred by SCENIC,
demonstrating differential sensitivity of malignant epithelial subpopulations
to core regulatory factors.

SUPPLEMENTARY FIGURE 3

Identification of prognostic genes and batch effect correction. (A)
Differentially expressed genes between malignant epithelial cells with
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distinct pyroptosis activity were identified, followed by univariate Cox
regression to screen candidate genes significantly associated with
prognosis in GBM. Principal component analysis (PCA) plots of samples
from CGGA, TCGA, GSE13041, GSE74187, and GSE83300 cohorts before
(B) and after (C) batch effect correction using the sva package. The improved
overlap after correction indicates effective removal of batch effects
across datasets.
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