
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Wei Wang,
Nanjing Medical University, China

REVIEWED BY

Shuai Chen,
Affiliated Hospital of Jining Medical University,
China
Yukui Gao,
First Affiliated Hospital of Wannan Medical
College, China

*CORRESPONDENCE

Hong Li

tjydlihong@163.com

†These authors have contributed equally to
this work

RECEIVED 27 August 2025
ACCEPTED 09 October 2025

PUBLISHED 24 October 2025

CITATION

Fang L, Wang D, Meng F, Wang Y, Feng L and
Li H (2025) Single-cell and machine learning-
based pyroptosis-related gene signature
predicts prognosis and immunotherapy
response in glioblastoma.
Front. Immunol. 16:1693940.
doi: 10.3389/fimmu.2025.1693940

COPYRIGHT

© 2025 Fang, Wang, Meng, Wang, Feng and Li.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 24 October 2025

DOI 10.3389/fimmu.2025.1693940
Single-cell and machine
learning-based pyroptosis-
related gene signature predicts
prognosis and immunotherapy
response in glioblastoma
Liren Fang1†, Desheng Wang2†, Fanlei Meng1,2, Yinzhi Wang2,
Lu Feng3 and Hong Li1*

1Neurosurgery Department, Second Hospital of Tianjin Medical University, Tianjin, China,
2Neurosurgery Department, Tianjin Hospital, Tianjin, China, 3Neurosurgery Department, Taizhou
Central Hospital (Taizhou University Hospital), Zhejiang, China
Background: Glioblastoma (GBM) is the most aggressive primary malignancy of

the central nervous system, characterized by profound heterogeneity and an

immunosuppressive microenvironment, leading to dismal prognosis. Pyroptosis,

an inflammatory form of programmed cell death, has been increasingly linked to

tumor immunity and progression; however, its molecular roles and clinical

implications in GBM remain insufficiently understood.

Methods: We integrated bulk transcriptome profiles from TCGA-GBM, CGGA,

and GEO datasets with single-cell RNA sequencing data from GSE141383 and

GSE223063. A comprehensive GBM single-cell atlas was constructed using

Seurat and Harmony, and malignant epithelial cells were inferred via inferCNV.

Pyroptosis activity was quantified by five complementary algorithms, while

Monocle2 and Slingshot were employed for pseudotime trajectory

reconstruction, and SCENIC was applied for transcription factor network

analysis. Candidate prognostic genes identified from malignant epithelial

subsets were further used to develop a Pyroptosis-Related Gene Signature

(PRGS) through a systematic evaluation of ten machine learning algorithms and

their combinations, with subsequent validation across multiple cohorts.

Functional enrichment (GSVA, GSEA), tumor microenvironment estimation

(ESTIMATE, ssGSEA), drug sensitivity prediction (GDSC2), and in vitro

experiments were performed to characterize the biological and therapeutic

relevance of PRGS, with MAP1B selected for experimental validation.

Results: Single-cell analyses revealed heterogeneous pyroptosis activity across

GBM cell populations. Distinct ligand–receptor communications were observed

between high- and low-pyroptosis groups, among which the SPP1-centered

signaling axis showed pronounced remodeling, suggesting a pivotal role in

tumor–immune crosstalk. Pseudotime and regulatory network analyses of

malignant epithelial cells further delineated differentiation trajectories and

transcriptional regulators. The PRGS, established by StepCox[both]+Ridge

modeling, demonstrated robust prognostic stratification and predictive power

across independent datasets. High PRGS scores were consistently associated

with poorer survival outcomes, higher TIDE scores, and reduced IPS values,

indicating enhanced immune evasion and attenuated immunotherapy benefit.

Enrichment analyses highlighted that high PRGS tumors were linked tometabolic
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reprogramming and DNA repair pathways, whereas low PRGS tumors exhibited

signatures of immune activation. Drug sensitivity analyses revealed distinct

therapeutic vulnerabilities between subgroups. Functional assays confirmed

that MAP1B promotes proliferation, migration, and invasion in GBM cells,

reinforcing its oncogenic role.

Conclusion: This study systematically elucidates the role of pyroptosis in GBM

and establishes PRGS as a reliable prognostic biomarker. PRGS not only refines

risk stratification and predicts immunotherapy response but also provides

molecular insights into tumor metabolism and immune regulation, thereby

offering potential avenues for targeted therapeutic strategies in GBM.
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1 Introduction

GBM is the most common and highly aggressive primary brain

tumor in adults, accounting for more than 50% of all gliomas (1). It

is characterized by marked invasiveness and profound intra- and

inter-tumoral heterogeneity, leading to rapid progression,

therapeutic resistance, and frequent recurrence (2, 3). Despite the

current standard of care consisting of maximal surgical resection

followed by radiotherapy and temozolomide chemotherapy, the

median overall survival of GBM patients remains less than 15

months, with a five-year survival rate below 7% (4, 5). Although

immunotherapies such as immune checkpoint inhibitors have

shown remarkable efficacy in several solid tumors, their benefits

in GBM have been limited, largely due to the profoundly

immunosuppressive tumor microenvironment (6, 7). These

challenges highlight the urgent need to identify novel molecular

mechanisms and biomarkers that can improve risk stratification,

therapeutic prediction, and the development of effective

treatment strategies.

Pyroptosis, a form of programmed cell death mediated by

inflammasome activation and gasdermin pore formation, is

distinguished by cell membrane rupture and the release of

proinflammatory cytokines such as IL-1b and IL-18 (8–11).

Unlike apoptosis, pyroptosis elicits a robust inflammatory

response that can reshape the tumor microenvironment (12, 13).

Previous studies have indicated its dual role in cancer biology: on

the one hand, pyroptosis can suppress tumor progression by

enhancing immune infiltration and antitumor immunity; on the

other hand, excessive or dysregulated pyroptosis may drive chronic

inflammation, immune evasion, and malignant progression (14–

16). While pyroptosis has been investigated in breast, colorectal,

and hepatocellular carcinomas, its activity patterns, regulatory

mechanisms, and prognostic significance in GBM remain

poorly understood.

The advent of single-cell RNA sequencing (scRNA-seq) has

greatly advanced our understanding of tumor complexity (17, 18).
02
Unlike bulk RNA-seq, which provides averaged gene expression

across populations, scRNA-seq enables the dissection of cellular

heterogeneity at single-cell resolution, allowing the identification of

key subpopulations, intercellular communication networks, and

developmental trajectories (19). Recent studies have applied

scRNA-seq to GBM and revealed distinct immune cell subsets as

well as glial cell states associated with therapeutic resistance and

invasion, underscoring its value in uncovering novel biological

mechanisms and potential therapeutic targets (20, 21). At the

same time, integrating large-scale transcriptomic data with

machine learning–based modeling has emerged as a powerful

strategy in cancer research, offering robust tools for biomarker

discovery and prognostic assessment across multiple cohorts (22).

In this study, we integrated scRNA-seq and bulk RNA-seq

datasets of GBM to comprehensively evaluate pyroptosis activity

and its influence on malignant epithelial cell differentiation and

signaling pathways. Building upon these findings, we developed and

validated a PRGS using a systematic machine learning framework

and assessed its prognostic value and predictive potential for

immunotherapy response and drug sensitivity. Furthermore, we

experimentally validated the role of a key gene, MAP1B, in GBM

cell lines. Collectively, our work provides novel insights into the

biological functions of pyroptosis in GBM and establishes PRGS as

a promising tool for risk stratification and precision therapy.
2 Methods

2.1 Collection and integration of data

Transcriptomic profiles and clinical annotations were obtained

from publicly accessible repositories. Bulk RNA-seq data included

the glioblastoma cohort from The Cancer Genome Atlas (TCGA-

GBM, expression values transformed into TPM format) and the

Chinese Glioma Genome Atlas (CGGA, http://www.cgga.org.cn/).

Additional validation cohorts were retrieved from the Gene
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Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/),

including GSE13041, GSE74187, and GSE83300. To minimize

technical heterogeneity among datasets, batch effects were

corrected using the sva package in R (23). scRNA-seq data were

also collected from GEO. The GSE141383 dataset comprises nine

human glioma surgical specimens, whereas GSE223063 includes six

glioblastoma samples from three patients. For immunotherapy

response evaluation, the immunophenoscore (IPS) was obtained

from The Cancer Immunome Atlas (TCIA, https://tcia.at/home)

(24).Furthermore, publicly available immunotherapy-related gene

sets curated from prior studies were integrated for downstream

analyses. Detailed dataset-level metadata (source/accession,

pathological type, and sample size) are summarized in

Supplementary Table S1.

All datasets were publicly available, and thus no additional

ethical approval was required.
2.2 Identification and functional profiling of
single-cell populations

After importing raw scRNA-seq profiles from multiple samples,

the data were merged into a combined matrix. During quality

assessment, cells suspected to be doublets as well as those exhibiting

disproportionately high mitochondrial content were removed to

ensure reliability.

The Seurat workflow was applied for downstream processing

(25, 26). Prior to normalization, quality control (QC) filters were

applied: cells with a mitochondrial gene percentage > 40% were

removed; genes detected in fewer than three cells were excluded;

and outlier cells by nFeature_RNA/nCount_RNA were filtered

using a robust median absolute deviation (MAD) criterion.

Putat ive doublets were ident ified and removed with

DoubletFinder (integrated with the Seurat workflow), with the

expected doublet rate estimated from capture loading and the

classification parameter (pK) selected via a standard parameter-

sweep procedure. Following normalization and identification of

variable features, dimensionality reduction was performed with

principal component analysis. To mitigate inter-sample variation,

Harmony (27) was employed for batch correction. Clustering and

visualization were subsequently conducted using UMAP/t-SNE.

Marker genes specific to each cluster were determined, and cell

identities were annotated by integrating canonical references.

Functional characteristics of each cluster were further

investigated using the SCP package, which enabled enrichment

ana l y s e s to de l inea t e po t en t i a l b io log i c a l ro l e s o f

distinct subpopulations.
2.3 Pyroptosis scoring and stratification

To assess the activity of pyroptosis at the single-cell level, a

curated gene set was compiled based on previous studies (25).

Multiple computational strategies were applied to the integrated

scRNA-seq object, including AUCell, UCell, singscore, ssGSEA, and
Frontiers in Immunology 03
AddModuleScore. AUCell estimated enrichment through area

under the curve (AUC) values derived from ranked gene

expression; UCell and singscore generated rank-based scores for

each cell; ssGSEA was implemented via the GSVA framework to

compute pathway enrichment; and AddModuleScore from Seurat

provided additional module-level scoring. Scores obtained from

these five approaches were standardized (z-score normalization and

min–max scaling) and combined into a composite index termed

Scoring, representing the overall pyroptosis activity of each cell.

This score was appended to the Seurat metadata for subsequent

visualization and downstream analyses.

Distribution of pyroptosis scores was illustrated using UMAP

and dot plots, while violin plots highlighted inter-cluster differences.

Cells were stratified into Pyroptosis_high and Pyroptosis_low

groups according to the median Scoring value, which served as

the basis for subsequent cell–cell communication analysis.
2.4 Ligand–receptor network analysis

Cell–cell communication was investigated using the CellChat

framework on the scRNA-seq dataset (28). Annotated cell identities

were incorporated into the workflow, and a curated human ligand–

receptor database was used as the reference. Overexpressed ligands

and receptors were identified within each cell group and projected

onto a protein–protein interaction network to infer possible

intercellular communication. For each ligand–receptor pair,

CellChat estimated communication probabilities and applied

permutation testing to assess statistical significance. These results

were subsequently aggregated to construct pathway-level signaling

networks, with network centrality measures used to evaluate the

relative contributions of distinct cell populations. Communication

networks were established separately for Pyroptosis_high and

Pyroptosis_low groups, followed by integrative comparison to

detect differences in both the number and the strength of

signaling interactions.
2.5 Determination of malignant epithelial
cells

To identify malignant epithelial cells, copy number variations

(CNVs) were inferred from scRNA-seq profiles using inferCNV

(29). Endothelial cells were designated as the reference group,

against which tumor cells were compared. Genes were ordered by

chromosomal position, and hierarchical clustering was applied to

visualize CNV patterns through heatmaps. Based on the inferred

CNV matrix, k-means clustering was employed to group cells

exhibiting pronounced copy number alterations. A CNV score

was then calculated for each cell to quantify the degree of

genomic abnormality. This score, in combination with clustering

outcomes, enabled the classification of malignant versus non-

malignant subpopulations. Cells identified as malignant were

subsequently extracted and saved for downstream analyses, such

as subclustering and exploration of transcriptional heterogeneity.
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2.6 Dynamics and transcriptional
regulation of malignant epithelial cells

To delineate the developmental dynamics of malignant

epithelial cells, two complementary pseudotime approaches were

applied. Monocle2 (30) was first used to reconstruct cell state

transition trees, inferring temporal progression based on

differentially expressed genes and dimensionality reduction. In

parallel, Slingshot (31) was employed to fit smooth trajectories

across clusters, enabling the identification of branching events and

differentiation directions. The integration of these two algorithms

provided consistent and robust insights into the evolutionary

patterns of malignant epithelial populations. For transcriptional

regulation, the SCENIC (32) workflow was implemented to

reconstruct gene regulatory networks. This framework integrates

co-expression analysis with cis-regulatory motif information to

define regulons and assess their activity at single-cell resolution.

To reduce computational complexity while maintaining

representativeness, 100 cells were randomly sampled from each

malignant epithelial cluster for SCENIC analysis. The results

highlighted transcription factors with pivotal roles in cell fate

determination and functional heterogeneity.
2.7 Multi-algorithm modeling and
performance validation

Differentially expressed genes were first identified between

pyroptosis-high and pyroptosis-low malignant epithelial cells, and

those significantly associated with GBM patient survival were

selected through univariate Cox regression as candidate variables.

Model development was conducted within a machine learning

framework that incorporated ten algorithms: stepwise Cox

regression, Lasso, Ridge, partial least squares regression for Cox

(plsRcox), CoxBoost, random survival forest (RSF), generalized

boosted regression modeling (GBM), elastic net (Enet), supervised

principal components (SuperPC), and survival support vector

machine (survival-SVM). Algorithmic combinations were

systematically tested under 10-fold cross-validation, and models

containing fewer than five genes after selection were excluded from

comparison. Algorithmic combinations were evaluated under cross-

validation; per a pre-specified rule, models with fewer than five

genes were not retained.

For each cohort, risk scores were computed based on the final

model, and patients were dichotomized into high- and low-risk

groups according to the median value. Kaplan–Meier analysis was

applied to assess survival differences between groups. Model

performance was further evaluated using the receiver operating

characteristic (ROC) curve and concordance index (C-index). In

addition, principal component analysis (PCA) was performed to

visualize patient distribution patterns, providing an intuitive

validation of the model’s discriminative ability between

risk categories.
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2.8 Functional annotation via GSVA and
GSEA

To characterize the biological differences between risk groups,

two complementary enrichment approaches were employed. Gene

set variation analysis (GSVA) was first applied to calculate

enrichment scores for hallmark pathways across all GBM samples

(33). Differential pathway activity between high- and low-risk

groups was then assessed using the limma framework.

In parallel, gene set enrichment analysis (GSEA) was performed

to capture global expression-level trends (34). Genes were ranked by

log2 fold change between groups, and enrichment was tested against

curated KEGG and GO gene sets. Normalized enrichment scores

(NES) were computed to determine functional programs

preferentially activated in either the high- or low-risk cohort.

Together, GSVA and GSEA provided complementary evidence

on pathway alterations associated with the prognostic model.
2.9 Assessment of immune infiltration and
function

To characterize the tumor microenvironment (TME) across

risk groups, the ESTIMATE algorithm was first applied to derive

stromal scores, immune scores, and tumor purity for each sample.

Immune infiltration was quantified using the ssGSEA approach, in

which curated immune cell–related gene sets were used to calculate

enrichment scores for various immune populations, including T

cells, NK cells, dendritic cells, and macrophages. Comparisons

between high- and low-risk groups were then performed to

uncover immune contexture differences associated with the

prognostic model. In addition, immune function–related

signatures (e.g., antigen presentation, chemokine receptor

pathways, cytolytic activity, inflammatory response, and type I/II

interferon signaling) were evaluated by ssGSEA to estimate

functional activity scores. Statistical testing was used to assess

functional discrepancies between groups. Finally, the expression

of immune checkpoints and other immune modulatory genes was

examined, providing further insights into the association between

risk stratification and potential immunotherapeutic responsiveness.
2.10 Drug response prediction using GDSC2

To investigate the potential therapeutic implications of the

prognostic model, drug response prediction was performed using

the Genomics of Drug Sensitivity in Cancer (GDSC2) database (35).

Transcriptomic profiles of tumor samples were integrated with

pharmacogenomic data to estimate the half-maximal inhibitory

concentration (IC50) for a panel of anticancer agents. IC50

represents the drug concentration required to suppress 50% of

cell proliferation in vitro, with lower values generally indicating

higher drug sensitivity. Patients were subsequently stratified into
frontiersin.org
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high- and low-risk groups, and differences in predicted drug

responses were compared. This analysis provided insight into the

associat ion between risk class ificat ion and potent ia l

treatment responsiveness.
2.11 Culture and knockdown experiments
of NHA, SF-295, and HS-683

Glioblastoma cell lines SF-295 and HS-683 were purchased

from the Cell Bank of the Chinese Academy of Sciences (Shanghai,

CBTCCCAS). All cells were cultured in high-glucose DMEM

supplemented with 10% fetal bovine serum (FBS) and 1%

penicillin–streptomycin, under standard conditions of 37 °C and

5% CO2. For gene silencing, siRNAs targeting the candidate gene

(sequences listed in Supplementary Table 2) were transfected into

cells at 50–60% confluence using a commercial reagent according to

the manufacturer’s protocol. Cells were incubated for 24–48 h post-

transfection, and knockdown efficiency was verified by qRT-PCR,

which measured relative expression of the target gene before and

after siRNA treatment.
2.12 Proliferation analysis using EdU

Cell proliferation was assessed using a 5-ethynyl-2’-

deoxyuridine (EdU) incorporation assay kit purchased from a

commercial supplier. Cells were seeded in 24-well plates and

incubated until reaching appropriate confluence, after which they

were exposed to EdU-containing medium for 2 hours, allowing

incorporation into newly synthesized DNA during the S phase.

Following incubation, cells were fixed, permeabilized, and stained

according to the manufacturer’s protocol. Fluorescence microscopy

was used to visualize EdU-positive cells under the channel with an

excitation wavelength of 550 nm. Proliferation was quantified as the

percentage of EdU-positive cells relative to total nuclei, and

compared between experimental and control groups.
2.13 Assessment of migratory and invasive
capacities

Cell migration and invasion abilities were evaluated using

Transwell chamber assays.

For the migration assay, serum-starved cells were resuspended

in serum-free medium and seeded into the upper chamber inserts (8

mm pore size) without Matrigel coating. The lower chamber was

filled with medium containing 10% FBS as a chemoattractant. After

24 hours of incubation, cells remaining on the upper surface were

removed with a cotton swab, while migrated cells on the lower

surface were fixed, stained with crystal violet, and counted under a

microscope in five randomly selected fields.

For the invasion assay, the procedure was similar except that the

upper chamber membrane was pre-coated with Matrigel to mimic

the extracellular matrix barrier. After 24–48 hours of incubation,
Frontiers in Immunology 05
cells that invaded through the Matrigel to the lower surface were

fixed, stained, and quantified. Migration and invasion capacities

were expressed as the average number of cells per field.
2.14 Statistical analysis

Two-sided tests were used with P < 0.05 considered significant

unless stated otherwise, and multiple testing was controlled by the

Benjamini–Hochberg false discovery rate (FDR). Group

comparisons used Student’s t-test or Welch’s t-test (parametric)

and Wilcoxon rank-sum test (non-parametric) for two groups, and

one-way ANOVA or Kruskal–Wallis test for multiple groups.

Associations were assessed by Pearson or Spearman correlation as

appropriate. Categorical variables were compared by Chi-square or

Fisher’s exact test. Survival analyses included Kaplan–Meier curves

with log-rank tests and Cox proportional hazards models (HR and

95% CI; proportional-hazards assumption checked by Schoenfeld

residuals). Model performance was evaluated by time-dependent

ROC/AUC and Harrell’s C-index, with bootstrap resampling for

internal validation and calibration where applicable.
3 Results

3.1 Identification and functional profiling of
single-cell populations

Comprehensive single-cell transcriptomic analysis yielded

31,960 cells in total. UMAP projection revealed 16 well-separated

clusters, underscoring the remarkable cellular heterogeneity within

GBM (Figure 1A). Based on canonical marker expression, these

clusters were annotated as tumor cells , macrophages,

oligodendrocytes, endothelial cells, T/B lymphocytes, and

fibroblasts (Figure 1B), reflecting the intricate cellular ecosystem

of glioblastoma. When cells from different samples were mapped

into the same low-dimensional space, they exhibited an even

distribution without clear sample-specific aggregation, indicating

that the Harmony algorithm effectively minimized batch effects and

ensured robust cross-sample integration (Figure 1C). This

integrative quality provided a solid foundation for downstream

analyses. Differentially expressed gene analysis further delineated

the transcriptional identities of each population (Figure 1D).

Notably, enrichment analysis highlighted distinct biological

programs: tumor cells were enriched in oxidative phosphorylation

and ATP synthesis coupled electron transport, suggesting enhanced

metabolic activity; macrophages showed enrichment in positive

regulation of cell activation and leukocyte cell–cell adhesion,

pointing to their role in immune regulation and intercellular

communication; oligodendrocytes were enriched in glial cell

differentiation and cell adhesion molecules, consistent with their

function in neural development and myelination (Figure 1E).

Finally, representative marker genes provided additional

validation of the annotation (Figure 1F). EGFR and IDH1 were

highly expressed in tumor cells, FAP and COL1A1 were confined to
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fibroblasts, CD68 and ITGAMmarked macrophages, PECAM1 and

CDH5 identified endothelial cells, OLIG2 andMOGwere specific to

oligodendrocytes, while CD4 and CD3D defined T-cell subsets.

Together, these marker distributions and functional enrichments

converged to confirm the biological accuracy of our

clustering strategy.
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3.2 Evaluation of pyroptosis activity at the
single-cell level

To comprehensively evaluate the activity of the pyroptosis-

related gene set across cell types, five independent scoring methods

—AUCell, UCell, singscore, ssGSEA, and AddModuleScore—were
FIGURE 1

Single-cell transcriptomic landscape of glioblastoma. (A) Clustering results of 31,960 cells, grouped into 16 clusters. (B) Annotation of major cell
types, including tumor cells, macrophages, oligodendrocytes, endothelial cells, T/B cells, and fibroblasts. (C) Distribution of cells across different
patient samples. (D) Visualization of differentially expressed genes across cell clusters. (E) Functional enrichment analysis of cluster-specific marker
genes. (F) Expression patterns of representative marker genes (EGFR, IDH1, FAP, COL1A1, CD68, ITGAM, OLIG2, MOG, PECAM1, CDH5, CD4, and
CD3D).
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applied. The bubble plot revealed consistent patterns across

methods: macrophages and T/B cells displayed the highest

pyroptosis activity, tumor, endothelial cells, and oligodendrocytes

exhibited the lowest, and fibroblasts showed intermediate levels

(Supplementary Figure 1A). When integrating the results into an

average score, the UMAP projection demonstrated clear spatial

heterogeneity of pyroptosis activity, with specific tumor cell clusters

exhibiting notably elevated scores (Supplementary Figure 1B).

Violin plot comparisons further confirmed that pyroptosis

activity was significantly higher in tumor cells and macrophages

compared to other cell types, suggesting that these populations may

play pivotal roles in pyroptosis-associated signaling (Supplementary

Figure 1C). Collectively, these findings validate the robustness of the

multi-method scoring approach and establish a reliable foundation

for subsequent functional analyses.
3.3 Pyroptosis-based stratification reveals
remodeling of cell–cell communication

Based on the integrated scoring from five algorithms, all cells

were stratified into pyroptosis-high and pyroptosis-low groups for

communication network analysis.

In the pyroptosis-low group, T/B cells primarily functioned as

incoming receivers, while tumor cells and oligodendrocytes acted

mainly as outgoing signal senders. With elevated pyroptosis activity,

fibroblasts and endothelial cells further enhanced their dual roles in

sending and receiving, suggesting substantial remodeling of the

communication landscape (Figure 2A). Quantitative analysis

confirmed that both the total number of interactions and overall

communication strength were significantly higher in the

pyroptosis-high group (Figure 2B). At the ligand–receptor level,

several SPP1-associated axes were strengthened in the high group,

including SPP1–CD44, SPP1–(ITGAV+ITGB5), SPP1–(ITGA8

+ITGB1), SPP1–(ITGA5+ITGB1), and SPP1–(ITGA4+ITGB1)

(Figure 2C), while SPP1–(ITGAV+ITGB1) was weakened

(Figure 2D). Given that SPP1 was involved in both strengthened

and diminished interactions, a more detailed analysis was

performed. Circle plot comparisons revealed denser intercellular

communication in the pyroptosis-high group, particularly increased

crosstalk between tumor cells and immune populations such as

macrophages and T/B cells, with fibroblasts and endothelial cells

gaining additional importance (Figure 2E). Focusing on the SPP1

pathway, its network visualization highlighted specific interaction

directions among cell populations, with macrophages and T/B cells

as dominant contributors, while tumor cells played a limited role

(Figure 2F). Role analysis further demonstrated that macrophages

mainly functioned as Senders and Influencers, whereas T/B cells

exhibited multiple roles as Receivers, Mediators, and Influencers; in

contrast, tumor cells showed minimal involvement (Figure 2G).

Collectively, these results indicate that the SPP1 pathway is strongly

activated under heightened pyroptosis activity, predominantly

orchestrated by immune cells.
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3.4 Reclustering highlights functional
heterogeneity of malignant epithelial cells

In the single-cell landscape of GBM, epithelial cells represent

the primary tumor-derived population. However, not all epithelial

cells display uniform malignant features, as some may resemble

normal counterparts. To distinguish malignant from non-

malignant populations, inferCNV analysis was performed using

endothelial cells as the reference. The results revealed widespread

chromosomal copy number variations across epithelial cells, while

reference cells maintained stable profiles, indicating pronounced

tumor-associated genomic alterations (Figure 3A). Subsequent k-

means clustering divided the cells into five groups, with clusters 2, 3,

4, and 5 showing elevated CNV burdens and classified as malignant

epithelial cells, whereas cluster 1 was closer to the reference profile

(Figures 3B–C).

Reclustering of the malignant epithelial cells identified four distinct

subclusters (clusters 0, 1, 2, and 3) in UMAP visualization (Figure 3D).

Differential expression analysis highlighted unique transcriptional

programs in each subgroup (Figure 3E). Functional enrichment

based on HALLMARK gene sets suggested that cluster 1 was broadly

correlated with multiple hallmark pathways, reflecting a globally

a c t i v a t e d s t a t e . C l u s t e r 0 w a s a s s o c i a t e d w i t h

OXIDATIVE_PHOSPHORYLATION, MYC_TARGETS_V2, and

FATTY_ACID_METABOLISM, impl icat ing metabol ic

reprogramming and energy supply in supporting rapid tumor

proliferation. Cluster 3 was enriched in G2M_CHECKPOINT and

REACTIVE_OXYGEN_SPECIES_PATHWAY, suggesting potential

roles in cell cycle regulation and oxidative stress responses

(Figure 3F). These findings indicate that malignant epithelial cells,

despite sharing tumor origin, display functional divergence that may

represent different states of tumor progression.

Furthermore, pyroptosis enrichment analysis revealed distinct

heterogeneity across the malignant subclusters. Cluster 1 exhibited

the highest pyroptosis activity, whereas cluster 0 showed the lowest,

with other clusters displaying intermediate levels (Figure 3G). This

highlights the diverse regulation of pyroptosis among malignant

populations, adding another layer of functional heterogeneity in

GBM epithelial cells.
3.5 Pseudotime trajectories and
transcriptional regulatory features of
malignant epithelial cells

To further characterize the dynamic evolution of malignant

epithelial cells, we first applied Monocle2 for pseudotime analysis

(Figure 4). The trajectory heatmap (Figure 4A) demonstrated a

continuous distribution of malignant clusters across pseudotime,

indicating a progressive differentiation pattern. When examining

pyroptosis activity (Figure 4B), we observed that cells with high

pyroptosis activity were predominantly located at both the

beginning and the end of the trajectory, whereas low-activity cells
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were enriched in the middle phase, suggesting a potential role of

pyroptosis in both initiation and terminal differentiation.

Overall, cells were divided into three states: state 1 represented

early differentiation, while states 2 and 3 corresponded to distinct
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late-stage branches (Figure 4C). Reclustering revealed that cluster 2

was largely distributed in the intermediate stage, whereas clusters 0,

1, and 3 were detected at both the beginning and the endpoints of

the trajectory (Figure 4D). Regarding gene expression dynamics,
FIGURE 2

Cell–cell communication analysis under different pyroptosis activity states. (A) Distribution of outgoing and incoming signaling strength among cell types in
pyroptosis-low versus pyroptosis-high groups, highlighting the distinct roles of each population in the communication network. (B) Comparison of the total
number and overall strength of intercellular communications between groups, indicating markedly enhanced interactions in the pyroptosis-high state. (C)
Ligand–receptor pairs significantly upregulated in the pyroptosis-high group, involving multiple immune-related and tumor-associated signaling pathways.
(D) Ligand–receptor interactions showing reduced activity in the pyroptosis-high group. (E) Circle plots depicting intercellular communication networks,
contrasting the interaction patterns between pyroptosis-low and pyroptosis-high groups. (F) Representative SPP1 signaling network, illustrating the source–
target relationships among different cell types. (G) Role analysis of the SPP1 pathway across cell populations, showing their functions as signal senders,
receivers, mediators, or key influencers.
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genes upregulated along pseudotime were enriched in hypoxia-

related and oxygen-response pathways, while downregulated genes

were mainly involved in mitochondrial ATP synthesis coupled

electron transport (Figure 4E). Branch analysis further showed
Frontiers in Immunology 09
that branch 2 was associated with miRNA catabolism and bone

mineralization regulation, whereas branch 1 was enriched in

pyrimidine and purine biosynthesis (Figure 4F). Collectively,

these findings suggest that GBM malignant epithelial cells
FIGURE 3

Identification and reclustering of malignant epithelial cells. (A) Results of inferCNV analysis using endothelial cells as the reference population. The upper
panel represents reference cells with relatively stable copy number patterns, while the lower panel shows tumor cells with extensive chromosomal
alterations, indicating malignant properties. (B) k-means clustering based on the inferCNV expression matrix, where distinct colors represent different CNV-
defined cell populations. (C) Violin plots showing the distribution of CNV scores across each malignant cluster. (D) UMAP visualization of reclustered
malignant epithelial cells, identifying four major subclusters. (E) Differentially expressed genes (DEGs) across the four subclusters. (F) Functional enrichment
analysis using HALLMARK gene sets, highlighting distinct biological processes in each malignant subcluster. (G) Pyroptosis enrichment scores of malignant
cells calculated using five different algorithms: AUCell, UCell, singscore, ssGSEA, and AddModuleScore.
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FIGURE 4

Pseudotime trajectory and differentiation branches of malignant epithelial cells. (A) Pseudotime analysis of malignant epithelial cells, with distinct
colors indicating cells at different pseudotime states. (B) Distribution of high- and low-pyroptosis activity groups along the pseudotime trajectory,
highlighting divergent patterns across differentiation paths. (C) State assignment of malignant cells. The upper panel shows pseudotime trajectory
colored by states, and the lower panel displays the density distribution of cells within each state. (D) Projection of RNA_snn_res.0.1 clusters onto the
pseudotime trajectory. The upper panel depicts the spatial distribution of clusters, while the lower panel illustrates density profiles of each cluster
across pseudotime. (E) Dynamic expression trends of representative genes during pseudotime progression, accompanied by functional enrichment
analyses, demonstrating sequential transcriptional changes along differentiation. (F) Functional enrichment analyses across divergent pseudotime
branches. At the bifurcation point originating from state 1, distinct branches were enriched in pathways associated with specific biological processes,
suggesting different functional fates of malignant epithelial cells during differentiation.
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undergo metabolic and stress-related remodeling during

differentiation and display distinct functional programs along

different branches.

To validate and complement these observations, we next

reconstructed trajectories using the Slingshot algorithm. Two

major lineages were identified (Supplementary Figure 2A). In the

UMAP embedding, cluster 0 cells were positioned at the beginning

of the trajectory, cluster 1 cells at the intermediate stage, while

clusters 2 and 3 occupied the terminal branches (Supplementary

Figure 2B). Functional enrichment analysis revealed that Lineage 1

(cluster 0→ 1→ 2) was associated with regulation of trans-synaptic

signaling, long-term synaptic potentiation, and glucocorticoid

responses, while the other lineage showed distinct functional

orientations (Supplementary Figure 2C). At the regulatory level,

SCENIC analysis indicated that cluster 0 was strongly linked to

transcription factors such as SIX5, E2F6, POLR3G, and TP53

(Supplementary Figure 2D), highlighting their potential roles in

early differentiation and cell fate specification.

In summary, these findings depict both the temporal

progression and branch-specific divergence of GBM malignant

epithelial cells, underscoring the importance of transcriptional

networks in orchestrating early-stage transitions.
3.6 Development of a pyroptosis-related
gene signature for risk stratification and
therapeutic prediction

Before model construction, differentially expressed genes

between malignant epithelial cells with distinct pyroptosis activity

levels were identified and subjected to univariate Cox regression. A

considerable number of these genes were significantly associated

with overall survival (Supplementary Figure 3A). PCA across the

CGGA, GSE13041, GSE74187, GSE83300, and TCGA-GBM

cohorts revealed substantial batch effects prior to correction

(Supplementary Figure 3B). After adjustment with the SVA

algorithm, the distr ibution of samples became more

homogeneous across datasets (Supplementary Figure 3C),

confirming that batch effects were effectively removed and that

the integrated dataset was suitable for downstream modeling.

Based on the adjusted data, ten machine learning algorithms

and their combinations were systematically applied to construct

prognostic models, with performance ranked by C-index

(Figure 5A). After identifying StepCox[both]+Ridge as the

optimal modeling approach, we further examined the expression

patterns of PRGS component genes in the integrated GBM single-

cell dataset (Supplementary Figure 4). These genes displayed

distinct expression distributions across cellular populations, with

several showing elevated expression in malignant epithelial cells.

This observation not only supports the biological plausibility of

PRGS from a single-cell perspective but also provides additional

evidence for the potential roles of these genes in glioblastoma

progression. The optimal strategy was identified as StepCox[both]

+Ridge, which was subsequently used to establish the Pyroptosis-

Related Gene Signature (PRGS). Patients were stratified into high-
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and low-risk groups using the median PRGS score, and Kaplan–

Meier analysis revealed significantly worse survival in the high

PRGS group (Figure 5B). Immunological evaluation further

demonstrated that high-risk patients exhibited elevated TIDE

scores (Figure 5C), suggesting greater immune evasion potential.

In addition, across four distinct immunogenic states, IPS

comparisons consistently indicated lower scores in the low-risk

group, implying a higher likelihood of benefiting from

immunotherapy (Figure 5D).

The robustness of PRGS was then assessed across multiple

independent validation cohorts. Risk curves, survival distributions,

and heatmaps of gene expression consistently indicated unfavorable

outcomes in the high-risk group (Figure 6A). Most PRGS genes

were positively correlated, with the strongest correlation observed

between MYL12A and MGP (rho = 0.73, FDR = 0) (Figure 6B).

ROC analysis demonstrated that PRGS maintained strong

predictive performance at 1-, 3-, and 5-year survival endpoints

across diverse cohorts (Figure 6C). PCA plots further confirmed

that PRGS clearly separated high- and low-risk patients across

datasets (Figure 6D). Taken together, these findings highlight PRGS

as a robust and generalizable prognostic signature with potential

utility in guiding risk stratification and predicting immunotherapy

response in GBM.
3.7 Metabolic and immune pathway
differences driven by PRGS stratification

In the preceding analyses, PRGS was shown to hold significant

value for prognostic prediction and immunotherapy response

assessment. To further elucidate the biological basis underlying

these findings, we conducted functional enrichment analyses to

compare transcriptional characteristics between the high- and low-

risk groups. The GSVA results (Figure 7A) demonstrated that the

high-PRGS group was enriched in pathways such as

MYOGENESIS, APICAL_JUNCTION, and P53_PATHWAY,

whereas the low-PRGS group was predominantly enriched in

R E A C T I V E _ O X Y G E N _ S P E C I E S _ P A T H W A Y ,

XENOBIOTIC_METABOLISM, and GLYCOLYSIS, highlighting

divergent stress and metabolic processes. GO-based GSEA

(Figures 7B, C) further revealed that the high-PRGS group

exhibited strong associations with energy metabolism pathways,

including Oxidative Phosphorylation and ATP Synthesis Coupled

Electron Transport, while the low-PRGS group was more closely

linked to RNA regulatory functions such as RNA Binding Involved

in Posttranscriptional Gene Silencing. KEGG enrichment

(Figures 7D, E) indicated that high-PRGS tumors were primarily

associated with Parkinson’s Disease and Ribosome, whereas the

low-PRGS group was enriched in immune- and signaling-related

pathways, including Systemic Lupus Erythematosus and

Taste Transduction.

Taken together, these analyses highlight the multidimensional

molecular characteristics reflected by PRGS stratification: tumors

with high PRGS scores tend to exhibit greater metabolic demands

and stress adaptation, while those with low PRGS scores rely more
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heavily on metabolic flexibility and immune-related processes.

These distinctions not only provide mechanistic support for the

predictive capacity of PRGS but also suggest its potential role in

driving metabolic reprogramming, shaping the tumor immune

microenvironment, and modulating therapeutic sensitivity,

thereby offering a biological rationale for future translational

research and precision treatment strategies in GBM.
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3.8 Systematic evaluation of PRGS in the
tumor microenvironment and drug
response

To further elucidate the role of the PRGS in shaping the tumor

microenvironment and influencing therapeutic responses, we

performed a comprehensive analysis across different risk groups.
FIGURE 5

Construction of PRGS and prediction of immunotherapy response. (A) PRGS was developed based on 10 machine-learning algorithms and their
combinations, ranked by C-index in the training set. (B) Patients were stratified into groups according to the median PRGS risk score, and Kaplan–
Meier survival curves are displayed. (C) Distribution of TIDE scores across different PRGS risk groups. (D) Distribution of immunophenoscores (IPS)
across different PRGS risk groups.
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As shown in Figure 8A, the ESTIMATE algorithm revealed that

patients in the high-PRGS group exhibited higher tumor purity,

whi l e S t romalScore , ImmuneScore , and the overa l l

ESTIMATEScore were comparatively lower. This indicates that

non-tumor components account for a smaller fraction of the

tumor tissue in the high-risk group. The analysis of immune cell

infiltration demonstrated that the low-PRGS group displayed

higher levels of infiltration across multiple immune cell subsets

(Figure 8B). Consistently, immune-related functional activities,

including antigen presentation, cytolytic activity, and

inflammatory responses, were more active in the low-risk group,

whereas these processes were relatively weaker in the high-risk
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group (Figure 8C). These findings suggest that the low-PRGS group

may be characterized by enhanced immune surveillance and

effector activity. When examining immune regulatory factors,

integration of gene expression, methylation, and copy number

variation data revealed notable differences between the two

groups (Figure 8D). These differences involved a wide range of

molecules, including immune co-stimulatory and co-inhibitory

factors, ligand–receptor interactions, cell adhesion molecules, and

antigen-presenting pathways, highlighting the multidimensional

association between PRGS and immune regulatory networks.

Drug sensitivity prediction further revealed significant

differences in the half-maximal inhibitory concentration (IC50)
FIGURE 6

Validation of the PRGS and prognostic stratification. (A) Distribution of risk scores, overall survival status, and the corresponding heatmap of PRGS
gene expression in glioblastoma patients. (B) Pairwise correlation analysis among the genes included in the PRGS model. (C) Time-dependent ROC
curves evaluating the predictive performance of the PRGS at 1-, 3-, and 5-year survival across multiple cohorts. (D) Principal component analysis
(PCA) plots illustrating the separation between high- and low-PRGS groups in independent datasets.
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values of multiple compounds between the two groups (p < 0.001),

with representative drugs shown in Figure 8E. Since IC50 values are

inversely correlated with drug sensitivity, these findings imply that

patients with different PRGS levels may respond differentially to

specific therapies, underscoring the potential value of PRGS in

guiding personalized treatment strategies.
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Taken together, these results demonstrate that PRGS is closely

associated with tumor purity, immune infiltration, functional

immune activity, and drug sensitivity. This not only provides

further biological insights into the clinical utility of PRGS but also

h igh l i gh t s i t s p romise for prec i s ion onco logy and

immunotherapeutic interventions.
FIGURE 7

Pathway enrichment associated with PRGS risk stratification. (A) GSVA delineated global functional differences across PRGS subgroups. (B) High-PRGS
cells were linked to specific GO processes identified through GSEA. (C) Low-PRGS cells were connected with alternative GO processes detected by
GSEA. (D) KEGG-based enrichment analysis indicated pathways characteristic of the high-PRGS population. (E) Distinct KEGG programs were identified
in the low-PRGS population.
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3.9 Mutation landscape and genomic
alterations associated with PRGS

After establishing the strong association of the PRGS with

prognosis and immune characteristics, we next investigated its
Frontiers in Immunology 15
genomic underpinnings. Comparison of somatic mutation

landscapes between the high- and low-PRGS groups revealed

widespread genetic alterations across both cohorts, with canonical

driver genes such as TP53, PTEN, and EGFR showing high

mutation frequencies (Figure 9A). These findings suggest that
FIGURE 8

Tumor microenvironment characteristics and drug sensitivity analysis. (A) StromalScore, ImmuneScore, ESTIMATEScore, and TumorPurity were
calculated between high- and low-PRGS groups using the ESTIMATE algorithm. (B) Differences in immune cell infiltration levels between high- and
low-PRGS groups. (C) Comparison of immune-related functional activities across PRGS subgroups. (D) Immune modulators showing distinct
patterns between PRGS groups, including co-stimulatory molecules (Co-stim), co-inhibitory molecules (Co-inh), ligands, receptors, cell adhesion
molecules, and antigen presentation-related factors, integrating multi-omics information such as gene expression, DNA methylation, and copy
number alterations (amplification/deletion frequency). (E) Predicted drug sensitivity analysis based on the GDSC2 database, evaluating differences in
half-maximal inhibitory concentration (IC50) between high- and low-PRGS groups, where lower IC50 values indicate greater drug sensitivity.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1693940
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fang et al. 10.3389/fimmu.2025.1693940
alterations in core oncogenic pathways are central to glioblastoma

pathogenesis. We then examined tumor mutational burden (TMB)

across PRGS-defined subgroups (Figure 9B). The high-PRGS group

exhibited significantly elevated TMB compared with the low-PRGS

group, indicating greater genomic instability among high-risk

patients. Correlation analysis further confirmed a positive
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association between PRGS scores and TMB (R = 0.42, p < 0.001;

Figure 9C), reinforcing the capacity of PRGS to reflect the

mutational background of tumors. To assess the joint prognostic

implications of PRGS and TMB, we performed stratified survival

analysis (Figure 9D). Patients harboring both high PRGS and high

TMB exhibited the worst overall survival, whereas those with low
FIGURE 9

Mutation landscape and genomic alterations associated with PRGS. (A) Oncoplot showing the somatic mutation profiles of the high- and low-PRGS groups.
The upper panel depicts the overall mutation frequency, while the side bar indicates the proportion of different mutation types across groups. (B) Violin plot
comparing tumor mutational burden (TMB) levels between high- and low-PRGS groups. (C) Scatter plot illustrating the correlation between TMB and PRGS
risk score. (D) Kaplan–Meier curves of overall survival in patients stratified by both PRGS and TMB subgroups. (E, F) Copy number variation (CNV) landscapes
inferred by GISTIC2.0, showing chromosomal amplification (red) and deletion (blue) events in low- (E) and high-PRGS (F) groups.
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PRGS and low TMB displayed the most favorable outcomes. This

highlights the added value of integrating PRGS and TMB for

survival stratification in glioblastoma. Finally, copy number

variation (CNV) profiles were assessed using GISTIC2.0

(Figures 9E, F). Both subgroups demonstrated extensive

chromosomal amplifications and deletions; however, the

magnitude of CNV alterations was more pronounced in the high-

PRGS group, with large-scale aberrations observed in multiple

chromosomal regions. These findings suggest that PRGS is closely

linked to genomic instability.

Taken together, these analyses indicate that the PRGS not only

correlates with clinical outcomes and immune states but also

captures the mutational and CNV landscape of glioblastoma,

underscoring its potential as a multidimensional biomarker for

biological and clinical characterization.
3.10 Functional validation of MAP1B as an
oncogenic driver in GBM cells

As demonstrated in our previous analyses, the PRGS was

constructed using multiple machine-learning combinations and

validated across independent cohorts, showing robust prognostic

value (Figures 5, 6). Among the genes included in the signature,

MAP1B was prioritized for further functional investigation due to

its relatively high hazard ratio in univariate Cox regression and

previous reports implicating its role in neural development and

tumor progression.

In vitro experiments confirmed the oncogenic function of

MAP1B in GBM cells. CCK-8 assays indicated that MAP1B

silencing markedly reduced the proliferative capacity of SF295

and HS683 cells (Figures 10A, B). EdU incorporation assays

further confirmed its contribution to DNA synthesis and

proliferation (Figures 10C, D). Moreover, Transwell assays

demonstrated that MAP1B knockdown significantly impaired the

migratory and invasive abilities of GBM cells (Figures 10E, F).

Together, these findings not only provide experimental

validation for the PRGS model but also highlight MAP1B as a

potential therapeutic target in GBM.
4 Discussion

GBM is notorious for its aggressiveness, therapeutic resistance,

and devastating clinical outcomes (36). Although standard-of-care

regimens combining maximal safe resection, radiotherapy, and

temozolomide chemotherapy have modestly extended survival,

the median overall survival remains under 18 months (37). More

recently, novel approaches such as immune checkpoint inhibitors

and tumor-treating fields have been introduced, yet their benefits

have been limited to a small subset of patients. The principal

challenge lies in the profound intratumoral heterogeneity and

adaptive plasticity of GBM, which collectively underlie immune

evasion, metabolic reprogramming, and resistance to therapy (38,
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39). Against this backdrop, identifying robust prognostic markers

and dissecting their biological underpinnings are essential steps

toward precision medicine in GBM.

Bulk transcriptome analyses have previously yielded molecular

classifications and survival-associated signatures in GBM, but their

interpretive power is constrained by the averaging of signals across

mixed cell populations (40). scRNA-seq, in contrast, offers a

powerful lens to resolve this complexity, enabling the dissection

of malignant and non-malignant compartments, cell–cell

communication networks, and evolutionary trajectories of tumor

cells (41). By integrating scRNA-seq with bulk transcriptomes from

multiple large cohorts, our study developed and validated PRGS

that not only stratifies GBM patients into distinct risk groups but

also reflects immunological and therapeutic vulnerabilities.

Our findings revealed that PRGS reliably predicted overall

survival and provided insights into immunotherapy response.

Patients with high PRGS scores exhibited poorer prognosis and

higher TIDE scores, indicative of enhanced immune escape,

whereas low PRGS patients showed consistently lower IPS values

across immunogenic states, suggesting greater benefit from

immunotherapy. These results underscore the clinical relevance of

PRGS as both a prognostic and predictive biomarker. Importantly,

scRNA-seq–based communication analysis pinpointed the SPP1

axis as a critical signaling pathway enriched in the high-pyroptosis

group. SPP1 (osteopontin), a multifunctional extracellular matrix

protein, has been implicated in macrophage recruitment,

angiogenesis, and promotion of an immunosuppressive tumor

microenvironment in diverse cancers (42–44). In GBM, our

analysis indicated that macrophages acted as dominant senders of

SPP1 signals, while T/B cells and malignant epithelial cells

frequently served as receivers. This pattern suggests that SPP1

may function as a central mediator of immune remodeling in

pyroptosis-high tumors, reinforcing tumor-promoting

interactions between stromal and immune compartments.

Beyond immune signaling, pseudotime and transcription factor

analyses further illuminated how pyroptosis activity intersects with

tumor cell differentiation and metabolic programs. Cells with high

pyroptosis scores tended to reside at both early and terminal

branches of differentiation trajectories, indicating a role in tumor

plasticity. Moreover, trajectory-specific enrichment revealed links

to hypoxia response, oxidative phosphorylation, and nucleoside

biosynthesis, suggesting that pyroptosis may act as a modulator of

metabolic state transitions that shape malignant progression.

Among the genes included in PRGS, MAP1B emerged as a

compelling candidate for functional validation, given its strong

association with survival in univariate Cox analysis and

supportive evidence from prior studies. MAP1B encodes

microtubule-associated protein 1B, a key regulator of cytoskeletal

dynamics and neuronal development (45). Dysregulated MAP1B

expression has been reported in breast, colorectal, and brain

tumors, where it promotes proliferation, invasion, and therapeutic

resistance (46–49). Consistent with these reports, our in vitro assays

demonstrated that MAP1B knockdown suppressed proliferation,

DNA synthesis, and invasive capacity in GBM cells, highlighting its

oncogenic role. These findings position MAP1B not only as a
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model-derived risk gene but also as a potential therapeutic target

whose inhibition may attenuate GBM aggressiveness.

Several limitations of our work warrant discussion. Although

PRGS was constructed and validated across multiple independent

datasets, prospective clinical cohorts are needed to confirm its

predictive utility in real-world settings. Our functional validation
Frontiers in Immunology 18
focused primarily on MAP1B, and additional experimental efforts

are required to explore the contributions of other PRGS genes.

Moreover, while our integrative analyses identified SPP1- and

MAP1B-related pathways as potentially central to GBM biology,

mechanistic dissection through animal models and molecular

experiments will be critical to fully elucidate their roles.
FIGURE 10

Functional validation of MAP1B in glioblastoma cell lines. (A, B) CCK-8 assay showing the proliferative capacity of SF295 and HS683 cells after
transfection with control siRNA (siNC) or MAP1B-targeting siRNAs (siMAP1B-1, siMAP1B-2). (C, D) EdU incorporation assay assessing DNA synthesis in
the two cell lines following MAP1B knockdown, with DAPI staining used for nuclear visualization. (E, F) Transwell assays evaluating the effects of
MAP1B silencing on cell migration and invasion in SF295 and HS683 cells.
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In conclusion, this study introduces PRGS as a robust

pyroptosis-related signature with strong prognostic and

therapeutic predictive value in GBM. By leveraging scRNA-seq

and bulk transcriptomics, we not only provided a clinically

relevant biomarker but also revealed mechanistic insights into

how pyroptosis intersects with immune remodeling, metabolic

reprogramming, and malignant progression. The identification of

MAP1B as a functional driver further underscores the translational

potential of our findings. Together, these results enrich the

understanding of GBM pathogenesis and may guide the

development of novel targeted and immunotherapeutic strategies.
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SUPPLEMENTARY FIGURE 1

Pyroptosis activity scoring at the single-cell level in GBM. (A) Bubble plot
showing the distribution of pyroptosis scores across major cell types,

calculated using five independent methods: AUCell, UCell, singscore,
ssGSEA, and AddModuleScore. (B) UMAP projection illustrating the overall

average pyroptosis scores of all cells. (C) Violin plots displaying the differences

in pyroptosis activity among distinct cell populations.

SUPPLEMENTARY FIGURE 2

Slingshot pseudotime analysis and transcription factor regulatory network. (A)
Two differentiation trajectories identified by Slingshot, illustrating the
dynamic distribution of malignant epithelial cells along pseudotime. (B)
Slingshot trajectories overlaid on the UMAP space, showing the origin and

differentiation directions across four malignant clusters. (C) Functional
enrichment analysis based on the SCP package, highlighting representative

biological pathways associated with key gene sets along the two trajectories.
(D) Heatmap of transcription factor activities inferred by SCENIC,

demonstrating differential sensitivity of malignant epithelial subpopulations
to core regulatory factors.

SUPPLEMENTARY FIGURE 3

Identification of prognostic genes and batch effect correction. (A)
Differentially expressed genes between malignant epithelial cells with
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distinct pyroptosis activity were identified, followed by univariate Cox
regression to screen candidate genes significantly associated with

prognosis in GBM. Principal component analysis (PCA) plots of samples
from CGGA, TCGA, GSE13041, GSE74187, and GSE83300 cohorts before

(B) and after (C) batch effect correction using the sva package. The improved

overlap after correction indicates effective removal of batch effects
across datasets.
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SUPPLEMENTARY FIGURE 4

Expression patterns of PRGS genes at the single-cell level.In the integrated
GBM single-cell dataset, expression of the PRGS component genes (PDLIM4,

MAP1B, MGP, POSTN, LGALS1, CCL2, ANXA1, MYL12A, CLIC1, and GSN) is
shown. Each panel displays a UMAP visualization, where color intensity

represents expression levels, confirming the distribution of signature genes

across distinct cellular populations.
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