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Analysis of blood proteome
in influenza-infected patients
reveals new insights into the
host response signatures
distinguishing mild
severe infections
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Introduction: Influenza infections result in a wide spectrum of disease

outcomes, ranging from asymptomatic cases to fatal illness. While

immunopathology contributes to an increased risk of hospitalization, the host

factors that drive predisposition to ICU admission remain poorly understood.

Methods: Here, we performed proteome analyses of sera from influenza virus-

infected patients who were experiencing moderate disease without ICU

admission or severe disease with ICU admission. A unique aspect of our study

is that we monitored expression levels of more than 6,000 proteins whereas

previous studies only analyzed a very limited number of protein markers.

Results and Discussion: Comparing the responses in infected versus healthy

individuals identifiedmany differentially expressed proteins and relatedmolecular

pathways involved in lipid metabolism, iron metabolism, chromatin remodeling,

and immune signaling in infected patients. These were amplified in patients with

more severe disease, where immune signaling, proliferation/differentiation, and

metabolic process pathways were increased. Our results suggest strong impacts

of macrophage- and neutrophil-related responses. A unique aspect of our

analysis is that it allowed us to relate the secreted host response in the blood

(proteome) with stimulated responses in blood cells (transcriptome) in the same

patients. Many differentially expressed proteins in the serum were not identified

as differentially expressed genes in blood cells and therefore represent a not yet
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described set of biomarkers. Furthermore, we identifiedmany strong correlations

between blood cell transcriptomes and blood proteomes, which will allow us to

validate or generate unique hypotheses of causal relationships between serum

proteins and responses in blood cells during an influenza infection.
KEYWORDS

influenza, proteome, di fferent ia l ly expressed proteins , transcr iptome
correlations, blood
Introduction

Seasonal influenza virus outbreaks result in substantial

morbidity and mortality each year, posing a significant burden on

public health. The clinical outcomes vary widely, ranging from no

symptoms to life-threatening disease with several contributing

factors, including the virus strain and the individual’s age, sex,

genetics, and immune system status. In the most critical cases, death

is often linked to an excessive immune response, marked by

elevated activity of neutrophils, macrophages, and inflammatory

cytokines. Mitigation of severe disease is challenging, and current

antivirals that target viral proteins have limited efficacy once the

disease has progressed to a state requiring hospitalization, where the

focus is on supportive care to manage symptoms. Host-targeted

therapies may pose an alternative strategy for these patients, where

therap ie s ta rge t ing hos t fac tor s tha t cont r ibu te to

immunopathology may help abrogate progression to ICU

admission. Proteomic approaches can pinpoint key virus-induced

changes in host signaling pathways essential to disease progression

and viral replication.

Prior studies of blood proteomes from influenza-infected adult

patients identified differentially expressed proteins (DEPs) in

infected versus healthy controls and patients with severe versus

mild disease (1, 2). High levels of type II interferon (IFN-g) and
mediators of Th17 cell development were found in hospitalized

patients with respiratory insufficiency (1). Increased plasma levels

of several cytokines in patients with severe (critically ill) disease

have also been observed (2). One limitation of these earlier studies

was that they were performed using specific antibody-based Bio-

Plex assays detecting only a limited number of selected markers (up

to 27). However, performing analyses with methods that broadly

detect a large number of proteins is important to more

comprehensively understand the host response. More recently, we

and others used the SOMAscan method, which detects a much

larger number of proteins, to identify proteins in influenza-infected

children from nasal washes/aspirates (3, 4). Additional studies have

also investigated proteomes from nasopharyngeal and

oropharyngeal swabs in children infected with different

respiratory viruses (5, 6). These studies found some DEPs in

infected versus healthy children. To our knowledge, similar

studies have not been conducted in adults with influenza to
02
identify large numbers of proteins differentially expressed in those

with more severe disease.

Understanding how protein levels in the blood might be linked

to gene transcription could also help improve diagnostics and

predictability of disease progression. We and others have

identified numerous cell transcripts of genes in blood cells that

are differentially expressed in influenza-infected patients ( (7) and

references therein). Many of these were related to antiviral, type I

and II interferon responses, and chemokine/cytokine activation.

Differentially-expressed genes (DEGs) increased in severe influenza

disease compared to mild/moderate infections included chemokine/

cytokine responses and neutrophil activation (7–10), suggesting

possible overlap between the proteins and cell transcripts.

This study aimed to describe the host response to influenza

infections in adults and relate it to intrinsic and external factors by

identifying changes in blood protein levels of patients infected

compared to healthy controls and by the severity of the disease.

For this, we performed large-scale proteome analyses with plasma

samples collected from healthy controls and influenza-infected

patients with differing degrees of severity. We analyzed expression

changes in 6,412 proteins, extending prior studies that monitored

only a limited number of markers (fewer than 50). The resulting

data were analyzed by bioinformatic approaches and related to

previously identified transcriptome changes in blood cells. To our

knowledge, this is the most comprehensive analysis of blood

proteomes in influenza-infected patients.
Materials and methods

Patient cohorts

The patient cohort used for the analyses was described earlier

(7). Briefly, patients with influenza infections and healthy controls

were collected at five different sites. The total number of

participants was 208, 81 were healthy controls, and 127 were

influenza-infected patients, of whom 23 were admitted to the

ICU. Healthy patients represented visitors to the hospital who

volunteered to donate blood to our study. Samples from non-ICU

infected patients were taken on the day of admission and were

considered to have moderate disease. Samples from ICU patients
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1693728
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Schughart et al. 10.3389/fimmu.2025.1693728
were taken during their ICU stay (no specific time point).

Additional six samples from ICU patients were taken at

subsequent times during their stay. We selected a subgroup of 84

individuals that included 23 healthy controls and 61 influenza-

infected patients. From three sites (Baptist Memorial Hospital

(Memphis, TN USA), Otto-von-Gericke University (Magdeburg,

Germany), University of North Carolina (Chapel Hill, NC USA).

The selection of this subgroup was done manually to ensure equal

representations for all groups where possible and to adhere to

funding restrictions. Of the patients who reported to the hospitals

with influenza, 26 were admitted to the ICU (Table 1). The number

of females and males differed within groups. There were 21 females

and 2 males in the healthy group (Table 1). In the influenza-infected

groups, there were 32 females, 15 of whom were admitted to the

ICU, and 29 males, 11 of whom were admitted to the ICU. The

median age of the healthy controls was 44 years while the median

age of the infected patients was 56 years (non-ICU: 60 years; ICU 46

years; Table 1). The full details of patient recruitment of the cohort

have been described elsewhere (7).
Somascan proteome analyses

EDTA blood samples were collected from participants, cells

were centrifuged, and supernatants and pellets were stored at -80°C

until analysis. Plasma was centrifuged for 15 min at 2200 x g, and 60

mL of supernatant was used for the SOMAscan assay performed by

SomaLogic, Boulder, CO as described previously (11–14). The

SOMA panel used here contained aptamers for a total of 7,596

analytes/proteins. For some proteins, more than one aptamer was

present, resulting in a total of 6,412 unique proteins that could be

detected using this panel. Raw signals were then normalized as

described (11, 12). The preprocessing steps included hybridization
Frontiers in Immunology 03
normalization, plate scaling and calibration, and the adaptive

normalization by maximum likelihood (ANML), which

normalized SomaScan EDTA plasma measurements to a healthy

U.S. population reference, and values were then log2 transformed.

Records with no gene symbol and duplicated gene symbols were

removed (Data file: Normalized Somalogic proteome expression

values, Data file: Descriptor Somalogic proteome expression). Of

note, many non-secreted proteins were covered by the panel and

were also detected in the blood of patients, most likely because some

cell lysis occurred in infected lungs and during the preparation of

the blood plasma.
Mass spectrometry proteome analyses

For mass spectrometry analyses, blood samples were depleted of

highly abundant blood proteins using the High Select Top14

Abundant Protein Depletion Mini Spin Columns (Thermo

Scientific, catalog no A36369) as described by the manufacturer.

Then the sample protein concentrations were determined using the

Pierce™ BCA Protein Assay (Thermo Fisher Scientific, catalog no

23225). For mass spectrometry analysis, each sample contained 25 mg
of protein in 150 µl of plasma depletion buffer (10 mM PBS)

supplemented with 1% SDS and 100 mM ammonium bicarbonate,

pH 8.1. The sample proteins were reduced with 6.25 mMDTT for 45

min at 50 °C, alkylated with 25 mM iodoacetamide for 20 min at RT

in the dark, incubated with 20 mM DTT, and precipitated with 5

volumes of cold acetone. Proteins were sedimented at 16,000 xg at

4°C for 10 min. Protein pellets were washed with 100 µl of cold

(-20°C) 90% acetone, air dried for 4 min, and re-dissolved in 50 µl of

digestion buffer (100 mMHEPES, pH 8.3) containing 0.8 µg of Pierce

Trypsin/Lys-C mixture (A40007, Thermo Fisher); the proteins were

digested overnight at 37°C. A reference sample was generated by
TABLE 1 Demographics of cohorts.

Category
Healthy
controls

Infected
Infected -
non-ICU

Infected -
ICU

P-values HC versus
infected

P-values ICU versus
non-ICU

Gender (males/
females)

21F/2M 32F/29M < 0.01

sum 23 61

Gender (males/
females)

17F/18M 15F/11M 0.66

sum 35 26

Age

Age/years
(median)

44 56 60 46 < 0.01 0.64

Age/years (range) (24 -56) (21 - 90) (24 - 90) (21 - 76)

Age range 18-30 2F/0M 4F/1M 2F/0M 2F/1M

Age range 30-65 19F/2M 20F/14M 10F/9M 10F/5M

Age range > 65 0F/0M 8F/14M 5F/9M 3F/5M
Number of participants stratified by gender, age, infection (infected: influenza infected, HC: healthy controls), and severity of disease (ICU: intensive care unit patients, non-ICU: patients not in
intensive care). F: female, M: male. P-values were calculated by chi-square tests.
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combining 2.5 µg aliquots of each digested sample. A set of 16

samples, each containing 22.5 µg of peptides in 45 µl of digestion

buffer (100 mm HEPES pH 8.3), was labeled using a commercial

TMTpro-16plex Mass Tag Labeling reagent kit (A44521, Thermo

Fisher) according to the manufacturer’s protocol scaled to 45 µl. The

total number of samples was analyzed in four separate runs. The four

sets were labeled, and each set of labeled 16 samples included the

same reference sample labeled with TMTpro-126 reagent. A set of

labeled 16 samples was combined, vacuum dried, and reconstituted in

0.1% TFA at 0.3 µg/µl for further fractionation. 300 µl (90 µg) of the

reconstituted mixture of labeled peptides was fractionated using

Pierce High pH Reversed-Phase Peptide Fractionation kit (84868,

Thermo Fisher) according to the manufacturer’s protocol - 8-step

fractions (consecutively eluted with 10.0, 12.5, 15.0, 17.5, 20.0, 22.5,

25.0, and 50.0% acetonitrile) were collected. The collected peptide

fractions were vacuum-dried and dissolved in 65 µl of loading buffer

(3% acetonitrile with 0.1% TFA acid), and 5 µl aliquots were analyzed

by LC-MS for peptide/protein identification and quantification.

Acquisition of raw MS data was performed on an Orbitrap Fusion

Lumos mass spectrometer (Thermo Fisher) operating in line with the

Ultimate 3000RSLCnano UHPLS system (Thermo Fisher) using MS3

Synchronous Precursor Selection (SPS) method for TMTpro-16plex

labeled samples with 160 min LC gradient. Post-acquisition analysis

of raw mass spectrometry data was performed within a mass

informatics platform Proteome Discoverer 2.4 (Thermo Fisher)

using the Sequest HT search algorithm and human protein

database (SwissProt, Homo sapiens, TaxID 9606, v.2022-10-12,

42315 entries). The reversed target database was used as a decoy

database. The raw mass spectrometry data acquired for a set of 8

fractions (derived from the same mixture of labeled samples) were

treated as ‘Fractions’ for post-acquisition analysis. Raw mass

spectrometry data were then normalized as follows: the abundances

of every peptide found in each sample were summed to determine

total peptide abundance/amount. Normalization was performed by

bringing the total peptide amounts in each sample to the same value

by multiplication of individual peptide abundances of a given sample

by the same factor specific to that sample. The resulting values were

log2 transformed, missing values were set to zero, and then batch

corrected for the runs using the function removeBatchEffect from the

package limma [version 3.52.4, (15, 16)]. Proteins ALB, IGH, IGK,

and IGL, which were depleted as described above, were set to a value

of 1 (Data file: Normalized MassSpec proteome expression values,

Data file: Data Descriptor MassSpec proteome expression). In total,

935 proteins were detected by this method. The analysis was

performed at the Proteomics and Metabolomics Core (PMC)

at UTHSC.
Bioinformatic analyses of proteome data

Normalized Somalogic protein expression data were further

analyzed using the R software (version 4.2.1 and 4.4.3, (17) and

RStudio [version 2022.07.2 and 2024.12.1 (18)]. Multi-group

comparisons and identification of differentially expressed proteins

were performed with the package limma [version 3.52.4, (15, 16)]
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using the model design <- model.matrix(~ 0 + group); with group =

healthy controls (HC) and infected patients (INF), or healthy controls

(HC), infected patients not at ICU (non-ICU) and infected patients at

ICU (ICU). Differentially expressed proteins were identified using the

different contrasts from the model (INF versus HC, non-ICU versus

HC, ICU versus HC, and ICU versus non-ICU) based on an adjusted

P < 0.05 (Benjamini andHochberg correction for multiple testing) and

|log2| > 0.58 difference in expression levels. Volcano plots were

generated with the package EnhancedVolcano, version 1.14.0 (19).

Functional analyses of DEGs were performed using the R software

package EnrichR (version 3.4, (20–22). For beeswarm graphs of

expression levels, package beeswarm (23) (version 0.2.3.) was used.

VENN diagrams were generated with the function vennPlot (http://

faculty.ucr.edu/~tgirke/Documents/R_BioCond/My_R_Scripts/

overLapper.R). For STRING network analysis, we used the STRING

interac t ive webs i t e (h t tps : / / s t r ing-db .org /cg i / input?

sessionId=bZa9VJumLnb8&input_page_show_search=on), using

basic settings: full STRING network, and evidence = true. Mass

spectrometry normalized values were further analyzed using the R

software (version 4.2.1 and 4.4.3, (17) and RStudio (version

2022.07.2 and 2024.12.1 (18)) with the packages and parameters

described above.
Analysis of correlations between proteome
and gene expression data

Of the 78 patients used in the proteome study, 71 patients had

previously been analyzed for gene expression in the blood by

RNAseq (7). The remaining had insufficient RNA quality to

perform transcriptomic analyses. For the 71 overlapping samples,

we had proteome and transcriptome data from the same patients

taken at the same time. We selected the proteome and

transcriptome data from these patient samplings (Data file:

Proteome overlapping samples and Data file: Transcriptome

overlapping samples) and repeated the identification of DEPs and

DEGs as described above. To determine correlations between the

proteome and transcriptome, we combined all DEPs and all DEGs

from the contrasts of non-ICU vs HC, ICU vs HC, and ICU vs non-

ICU, and used Spearman correlation and BH (24) adjusted multiple

testing P values to report significant results.
Statistics

For the comparison of two groups, a two-way t test (numeric

data) or chi-square test (categorical data) was used and performed

in R. P < 0.05 was considered significant. Multiple testing adjusted P

values were calculated according to Benjamini and Hochberg (24).
Availability of data and materials

The original contributions presented in the study are publicly

available. This data can be found here: https://doi.org/10.6084/
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m9.figshare.27826857 (Normalized Somalogic proteome expression

values); https://doi.org/10.6084/m9.figshare.27827013 (Normalized

MassSpec proteome expression values); https://doi.org/10.6084/

m9.figshare.27852273 (Descriptor Somalogic proteome

expression); https://doi.org/10.6084/m9.figshare.27852306

(Descriptor MassSpec proteome expression); https://doi.org/

10.6084/m9.figshare.29882222.v1 (Proteome overlapping samples;

and ht tps : / /do i .org /10 .6084/m9.figshare .29882255 .v1

(Transcriptome overlapping samples). For additional data, see

supplement tables. Supplementary figures are available as

Supplementary 11.
Results

Blood proteomic signature in influenza-
infected patients revealed unique DEPs

To identify the differentially expressed proteins (DEPs) in the

blood of influenza-infected individuals, we performed proteomic

analyses using a SOMAscan assay with samples from 61 influenza-

infected patients and 23 healthy controls (Data file Normalized

Somalogic proteome expression values, Data file Descriptor

Somalogic proteome expression). Analysis of all proteins detected

in the SomaLogic analysis by the GO-Cellular Component

(GO-CC) ontology showed involvement of components from the

extracellular matrix, vesicles, and granules, demonstrating that

mainly secreted proteins were detected by this method.

A principal component analysis (PCA) of the proteins

demonstrated separation between infected patients and healthy

controls as well as between samples from infected patients who

were in the ICU and those who were not in the ICU (Figure 1A).

An ANOVA analysis showed the strongest effect for infection

status (PC1, p = 2.130693x10e-15) and smaller effects of sex,

collection date, and age group (old: > 65 years; Supplementary

Table S1). Analysis of interaction with infection status and age

group was significant (P = 0.04), whereas interactions with sex and

collection date were not. The effect of the collection site could not be

analyzed because all healthy samples were collected at the Baptist

Memorial Hospital. Virus type was not recorded.

Therefore, we only analyzed the contrasts for the different

infection status (healthy controls, ICU, and non-ICU) and the

influence of age on the responses for non-ICU and ICU patients

(further below).

Comparing infected patients (both non-ICU and ICU cases)

with healthy controls, 453 DEPs were upregulated while 143 were

downregulated (Figures 1B, C: volcano plots showing the top 20

regulated DEPs and heatmap showing all DEPs; Supplementary

Table S2). The top 10 upregulated DEPs included proteins involved

in immune responses (SAA1, SAA2, H2BC21, MX1), iron transport

(FTH1, FTL), and histones (H2BU1, H2AW, H2BC12, H2BC21;

Supplementary Table S3). The top 10 down-regulated DEPs

represented a more diverse group of proteins with functions in

immune responses (PF4, HPGDS), differentiation/development/
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hormone activities (PZP, COL11A2, ANTXR2, CHAD), and

neuronal functions (MDGA2, BDNF; Supplementary Table S3).

Pathway analyses for the upregulated DEPs revealed responses

that were mainly related to host immune defenses and metabolic

pathways (Figure 2A). Downregulated DEPs response pathways

were related to neuron guidance, response to toxins, and various

signaling pathways (Figure 2B). The protein interactions of the top

200 DEPs (by absolute log2 change [LFC] using STRING network

analyses) identified by the SOMAscan method showed prominent

nodes for, e.g., GAPDH, STAT3, CXCL10 (Supplementary Figure

S1A), suggesting interplay between metabolic reprogramming,

humoral immune response, and acute phase response limiting

excessive inflammation and oxidative damage (25). STRING

network analyses of the top 6 upregulated DEPs (SAA1/SAA2,

H2BU1 (as only representative for H2B proteins), FTL, MX1,

C1QC, and HAMP), revealed significant interactions with key

proteins involved in inflammation and lipid metabolism,

chromatin remodeling, interferon responses, iron metabolism,

and complement (Supplementary Figure S1B-G), respectively,

demonstrating that these DEPs are involved in key regulatory

pathways of the host defense to pathogens. We then evaluated the

predictive value of the DEPs by ROC analysis. Seventy-seven DEPs

exhibited a very good AUC > 0.9 (Supplementary Table S4; Figure 3

shows the top four DEPs with the highest predictive values).
Validation of SOMAscan results by liquid
chromatography mass spectrometry

Because many proteome studies use liquid chromatography

mass spectrometry (LC-MS), we also performed LC-MS analyses

for a subset of samples (9 healthy controls, 18 non-ICU patients,

and 22 ICU patients). The PCA for expression levels obtained by

LC-MS shows good separation between infected patients and

healthy controls (Supplementary Figure S2A). The LC-MS studies

detected fewer proteins compared to the SOMAscan analysis above

(175 by LC-MS compared to 1314 for SOMAscan (combining DEPs

for all three contrasts of non-ICU versus healthy controls, plus ICU

versus healthy controls, plus ICU versus non-ICU; Supplementary

Figure S2B, Data file Normalized MassSpec proteome expression

values, Data file Descriptor MassSpec proteome expression

Supplementary Table S5). About four times fewer DEPs were

found to be significantly upregulated (118 by LC-MS versus 453

by SOMAscan for the contrast of infected versus healthy controls)

or downregulated (36 by LC-MS versus 143 by SOMAscan; Volcano

plot in Supplementary Figure S2C showing the top 20 up- and

downregulated DEPs). This finding was most likely due to the lower

number of samples in the LC-MS and the lower number of proteins

detected in the LC-MS study (6,412 versus 935, respectively).

Of the 671 proteins that overlapped between the two assays, 365

were significantly correlated (P < 0.05) between SOMAscan and

LC-MS. Of these, 184 were correlated with a coefficient > 0.6 and P <

0.05 (Supplementary Table S6; see Supplementary Figure S2D for

examples). In conclusion, the LC-MS analysis confirmed our results
frontiersin.org
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obtained with the SOMAscan method. The remaining analyses

below use only the results obtained from the SOMAscan assay.
ICU admission is associated with shifts in
genes involved in immune signaling,
proliferation/differentiation, and metabolic
processes

We then sought to identify the DEPs in the SOMAscan data

between patients in the ICU and those who did not require ICU

admission (non-ICU) by directly contrasting protein expression

levels. The analyses identified 257 upregulated (higher in ICU) and

290 downregulated (higher in non-ICU; the volcano plot in

Figure 4A shows the top 20 up- and downregulated DEPs;

Figure 4B shows a heatmap of all DEPs; Supplementary Table

S2). The top 10 DEPs expressed higher in ICU patients

(Supplementary Table S3) included proteins involved in host

immune response (IL1RL1, MDK), differentiation/proliferation

(NTN1, FGFBP1, SFRP5), and DNA binding/histones (H2BC12,
Frontiers in Immunology 06
H2BU1, H2AC1, H2AW). The top 10 DEPs expressed higher in

non-ICU patients (Supplementary Table S3) included proteins

involved in host immune responses (LRRC15, TAPBPL, CLEC4C,

IL36RN), negative cell proliferation/apoptosis (TP53I11, ASNS),

and cell signaling/protein maturation (DNM1L, LTO1).

Pathway analyses for the DEPs higher in ICU patients

(Figure 5A) revealed mainly pathways involved in metabolic

processes (e.g., amino acid metabolism, pyruvate metabolism) and

pathways related to host immune responses (e.g., signaling by

interleukins). Pathways for DEPs higher in non-ICU patients

were also related to metabolic processes (e.g., aspartate

metabolism, protein metabolic process) and host immune

responses (e.g., antimicrobial response, cytokine-mediated

signaling pathway) (Figure 5B). These findings showed that

similar pathways were activated in all contrasts, which is not

surprising because the main host response is directed towards a

defense against the pathogen.

We then evaluated the predictive value of the DEPs by ROC

analysis. No DEPs were identified with an AUC > 0.9. However, 75

DEPs exhibited a good AUC > 0.8; (Supplementary Table S4;
FIGURE 1

Principal component analysis and DEPs of infected versus healthy controls. (A) Principal Component Analysis (PCA) plot for protein expression values
of healthy controls (black) and infected participants not in ICU (orange) and in ICU (red). (B) Volcano plot of DEPs for infected patients versus healthy
controls. Y-axis: -log10 BH multiple testing adjusted P values, x-axis: log2 change. DEPs are colored red; the top 20 up- and downregulated (by log2
change) DEPs are labeled. Blue: not significant proteins with an adjusted P < 0.05. Orange: not significant proteins with an absolute log2 change > 1.
(C) Heatmap of DEPs regulated in infected patients versus healthy controls for healthy controls (grey), patients not in ICU (yellow) and in ICU
(magenta). Expression levels are scaled by row, red: higher relative levels, blue: lower relative expression levels.
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Figure 6 shows the top four DEPs with the highest

predictive values).
Age affects the responses in ICU patients

We then analyzed the effect of age in ICU patients. We

contrasted old (> 65 years) to young (<= 65 years) patients in the

ICU (8 old and 18 young cases) and identified 7 DEPs (1 up- and 6

down-regulated, Supplementary Figure S3 Volcano; Supplementary

Table S2). One of these DEPs (KNG1) overlapped with DEPs found

for the contrast of ICU versus non-ICU cases.
ICU patients have signatures of
hyperinflammation and dysregulated
cytokine regulation

When comparing the responses in non-ICU and ICU patients

to healthy controls, we identified many more DEPs in ICU patients

(1213 in ICU versus 301 in non-ICU, Supplementary Figure S4A).

The functional analyses of these DEPs revealed similar pathways for
Frontiers in Immunology 07
both contrasts (Supplementary Figures S4B, C). However, DEPs

identified in both non-ICU and ICU patients (261 overlapping

DEGs; Supplementary Figure S4D) showed a stronger response in

ICU patients for both up- and downregulated DEPs (Figure 7). The

functional analyses of these 261 overlapping DEPs also revealed

immune response pathways (e.g., acute phase response, response to

virus, inflammatory response, cytokine signaling, innate immune

response, neutrophil degranulation, neutrophil extracellular trap

formation) as a major response (Supplementary Figure S4E). In

summary, these findings showed an increased immune response in

ICU patients compared to non-ICU patients, which suggests a

hyperinflammatory response in patients with severe disease. In

addition, higher levels of histones were detected in the blood of

ICU versus non-ICU patients (Figure 4A). This finding may

indicate that ICU patients exhibit a stronger granulocyte response

and release neutrophil extracellular traps (NETs) as a host defense

in the lung composed of DNA, histones, and antimicrobial proteins.

Components of these NETs may then appear in the

peripheral blood.

We then investigated whether proteins from major innate

immune response pathways were differently regulated between

patients in the ICU and patients not in the ICU (non-ICU). For
FIGURE 2

Pathway analysis of DEPs from the contrast of infected patients versus controls. (A) Functional analysis of up-regulated and (B) down-regulated
DEPs from the contrast of infected patients versus healthy controls. Bars represent the top 10 (by P value) pathway hits of EnrichR analysis (Y-axis for
gene ratios and color for P values) from databases "Reactome_2022", "GO_Biological_Process_2025", and "KEGG_2021_Human".
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this, we used the interferon gene sets and chemokine/cytokine

proteins listed in the human gene nomenclature (26). Most

remarkably, most type I and II interferons were downregulated

(7/13 reached statistical significance) in ICU versus non-ICU

patients, whereas IFNL proteins were upregulated (Figure 8A).

This was accompanied by nine cytokine/chemokine proteins

being significantly upregulated (CCL13, CCL20, CCL24, CCL26,

CCL7, CXCL14, CXCL16 and XCL2) and seven proteins

significantly downregulated (CCL1, CCL11, CCL3L1, CX3CL1,

CXCL2, CXCL3, and CXCL6) in ICU patients (Figure 8B), many

of which are involved in macrophage and neutrophil recruitment.
Many more DEPs identified compared to
previous studies

In our study, many more not yet described set DEPs were

detected compared to previous reports. Most previous studies only

analyzed a few proteins using various antibodies as probes. Only

two studies performed a comparable broad-coverage proteome

analysis (1, 2). Both studies categorized patients in the ICU as

having severe disease. The first study used the Bio-Plex Protein

Array System with blood samples from 20 healthy controls, 26

patients with mild disease, and 15 patients with severe disease. They
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identified 16 DEPs that were significantly regulated in any group of

infected, severe, and non-severe patients compared to healthy

controls (see Table 2 in (2)). The second study used a multiplex

Biorad 27-plex assay to compare 10 patients with severe disease

versus 15 healthy controls and identified eight DEPs (1). The list of

proteins from these studies is summarized in Supplementary Table

S7. A set of 19 proteins was significantly regulated in mildly affected

patients versus healthy controls in both studies. Of the 19 proteins,

13 were analyzed in our Somalogic panel. Two proteins, CXCL8 and

CXCL10, were also significantly regulated for the contrast of non-

ICU patients versus healthy controls in our study (Supplementary

Figure S5A), with the direction (up or down) being the same. A set

of 19 proteins was significantly regulated in severe patients versus

healthy controls by both studies, of which 13 were also analyzed in

our Somalogic panel for the ICU versus healthy controls contrast.

Five of these 13 proteins, CXCL8, IFNG, IL13, IL6, and TNFSF10,

were also significantly regulated in our study (Supplementary

Figure S5B); the direction was the same for CXCL8, IL6, and

TNFSF10. A set of 8 proteins was significantly regulated in severe

versus mild patients by both studies, of which 6 were also analyzed

in our SomaLogic panel for ICU versus healthy controls. Two

proteins, IL12B and IL6, were also significantly regulated for this

contrast in our study (Supplementary Figure S5C); the direction was

the same for IL6.
FIGURE 3

ROC analysis of DEPs from contrast of infected versus healthy controls. Receiver operating characteristic (ROC) curves (blue) for the top four DEPs
with the highest predictive values (AUC: area under the curve).
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Correlation between blood proteome and
cell transcriptome revealed new
associations and crosstalk

We previously published transcriptomic analyses from the

blood of the same patients (7) who were analyzed here for

proteome changes (71 overlapping patients, details see M&M).

Comparing the proteome to transcriptome expression levels

identified fewer DEPs compared to DEGs for almost all contrasts

(Supplementary Table S8, Figure 9A), which may be due to the

methodology allowing us to detect many more transcripts than

proteins. The VENN diagram comparing all DEPs with all DEGs

(using non-ICU versus healthy controls + ICU versus healthy

controls + ICU versus non-ICU contrasts) showed that 145 DEPs

were found as DEGs in the transcriptome, whereas 929 were not

(Figure 9B). This is an important finding because it demonstrates

that the analysis of proteins in the serum detects unique biomarkers

that are distinct from the blood cell transcriptome biomarkers.
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Because proteomes and transcriptomes were studied in the

same patient, we also looked for correlations between DEPs and

related transcriptome gene expression levels. These results may

allow for the generation or confirmation of causal hypotheses for

proteins and genes, e.g., the increased expression levels of a given

interferon or cytokine in the serum may trigger a change in gene

expression in blood cells. Using an adjusted P < 0.05 and a

correlation coefficient of abs(> 0.6), we identified 597 DEPs

showing significant correlation with at least one DEG

(Supplementary Table S9). Using a higher correlation coefficient

of abs(> 0.8) reduced this number to 27 DEPs with a significant

correlation with at least one DEG (Supplementary Table S9).

The top 5 of these 27 DEPs with the highest number of correlated

proteins were IFNL1 (15 correlated DEGs; Supplementary Table

S10), CXCL10 (10 correlated DEGs; Supplementary Table S10),

CDK2.CCNA2 (9 correlated DEGs; Supplementary Table S10),

OIT3 (9 correlated DEGs; Supplementary Table S10), CLSTN3 (5

correlated DEGs; Supplementary Table S10). Scatter plots of the
FIGURE 4

DEPs from the contrast of ICU versus non-ICU patients. (A) Volcano plot of DEPs for ICU versus non-ICU patients. ‘Upregulated’: higher in ICU,
‘downregulated’: higher in non-ICU patients. Y-axis: -log10 BH multiple testing adjusted P values, x-axis: log2 change. DEPs are colored red; the top
20 up- and downregulated (by log2 change) DEPs are labeled. Blue: not significant proteins with an adjusted P < 0.05. Orange: not significant
proteins with an absolute log2 change > 1. (B) Heatmap of DEPs regulated in ICU versus non-ICU patients for healthy controls (grey), patients not in
ICU (yellow) and in ICU (magenta). Expression levels are scaled by row, red: higher relative levels, blue: lower relative expression levels.
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expression levels for these top DEPs and their most strongly

correlated four top DEGs show tight correlation (Figures 10A-E).

We also determined the correlations for the top five DEPs identified

in the proteome contrast between infected versus healthy controls

(considering only one histone: SAA1, SAA2, H2BU1, FTL, MX1)

(Figures 10F-J, Supplementary Table S10). These results also

demonstrate excellent correlations between the responses in the

serum (proteome) and blood cells (transcriptome).
Discussion

Understanding proteomic shifts during influenza virus

infection, their correlation to cell transcriptomics, and the risk of

ICU admission may provide new prognostic biomarkers and

therapeutic targets. This study comprehensively examined the

proteome in the blood of influenza-infected patients, some of

whom had severe disease that required ICU admission.

Our analyses identified several DEPs in influenza-infected

patients, when contrasting severity, most of which did not overlap

with differentially expressed genes (DEGs) found in blood cell

transcriptome studies (7, 9). Although some DEPs were

correlated to DEGs, many more DEPs had not yet been

described. Most of these changes were related to the host immune
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responses, metabolic reprogramming, chromatin remodeling, and

iron metabolism.

Many DEPs exhibited very good (infected versus healthy

controls) or good (ICU versus non-ICU) predictive values in the

ROC analyses. Thus, our analyses identified many new potential

biomarkers that distinguish responses in healthy versus infected

and in ICU versus non-ICU patients, which likely reflect systemic

changes and suggest several new signatures that may help predict

severe disease and ICU admission. It should, however, be noted that

our analysis only analyzed patients who were already in the ICU.

Therefore, the markers that we identified will have to be tested in

during progression of from moderate to severe disease to evaluate

their clinical predictive value.

The hyperinflammatory response of ICU patients was

accompanied by mixed cytokine signatures, possibly suggestive of

a battle between inflammation and wound healing. There was an

eosinophilic and fibrotic profile (increased CCL13 (MCP-4), CCL24

[Eotaxin-2], CCL26 [Eotaxin-3], CCL7 [MCP-3]; decreased CCL11

[Eotaxin-1]) and mixed T cell and macrophage recruitment

(increased CCL20 [MIP-3a], CXCL14 [BRAK], CXCL16, XCL2;

decreased CCL1, CCL3L1 [MIP-1a variant], and CX3CL1

[Fractalkine]), and suppressed neutrophil recruitment (decreased

CXCL2 [MIP-2a], CXCL3, and CXCL6). These mixed Th2 and

Th17 signatures may relate to SAA1 and SAA2, which display
FIGURE 5

Pathway analysis of DEPs from the contrast of infected patients versus controls. (A) Functional analysis of up-regulated and (B) down-regulated DEPs
from the contrast of ICU versus non-ICU patients. Bars represent the top 10 (by P value) pathway hits of EnrichR analysis (y-axis for gene ratios and
color for P values) from databases "Reactome_2022", "GO_Biological_Process_2025", and "KEGG_2021_Human".
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immunomodulatory functions in Th17 differentiation and

macrophage polarization (27) in addition to having an important

role in wound healing through FPR2-dependent epithelial

migration (28). In addition, IL1RL1, which is involved in the

IL-33-mediated signaling pathway (29, 30), was significantly

different between ICU and non-ICU patients. Other studies have

found similar proinflammatory signatures in patients with severe

influenza, including elevated IL-8 (CXCL8), MCP-1 (CCL2), IP-10

(CXCL10), MIG (CXCL9), and MIP-1a (CCL3), and CD177

(10, 31). However, another study reported that H1N1 pandemic

cases displayed suppressed adaptive cytokines (e.g., IP-10 and MIG)

(32), which may be due to differences in study design, cohort,

and/or definition of case severity. Future studies will be needed to

obtain more consistent data for the potential use of cytokines

as biomarkers.

We also observed reduced levels of most type I and II interferon

proteins in ICU patients compared to non-ICU patients, which

aligns with an interferon response gene, MX1, being a top DEP.

MX1 can negatively regulate viral genome replication (reviewed in

(33)) and has a role in wound healing. The levels of IFNL proteins

were increased in ICU patients, where IFNL2 was significantly

higher, while IFNL1 and IFNL3 were higher but not significant. The

latter observation could be indicative of higher viral loads as IFNL

proteins represent a specific response to lung inflammation (34–36).

Of note, IFNLs are thought to contribute to balancing tissue

tolerance and conferring resistance to pathogen invasion (37, 38).
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Numerous histones (H2BC12, H2BU1, H2AC1, and H2AW)

were elevated in ICU patients compared to non-ICU patients. This

may be a consequence of neutrophil extracellular traps (NETs),

which are composed of DNA, histones, and antimicrobial proteins

(39). An enhanced neutrophil response has been observed in

transcriptome studies and shown to be correlated with severe

outcomes (7–10, 40). Elevated levels of NET production have

been observed in plasma from patients with severe influenza

infections by measuring cell-free deoxyribonucleic acid (DNA)

and myeloperoxidase (MPO)-DNA (41). SAA1 and SAA2, which

are closely related to neutrophil responses (Supplementary Figure

S6), were not significantly different between non-ICU and ICU

patients, but they were most strongly expressed in infected patients

compared to healthy controls. These proteins are also closely tied to

apolipoproteins, which can influence the formation of NETs.

Proteins more highly expressed in non-ICU cases included

mainly host immune responses. LRRC15 regulates protein

localization to the plasma membrane. It is involved in the

negative regulation of viral entry into host cells and receptor-

mediated virion attachment to host cells (42, 43). TAPBPL is

involved in the regulation of antigen processing and presentation

of peptide antigen via MHC class I (44). CLEC4C is predicted to be

involved in the innate immune response (45). IL36RN is involved in

antifungal humoral response, negative regulation of cytokine

production, and negative regulation of cytokine-mediated

signaling pathways (46). The reduced expression of these proteins
FIGURE 6

ROC analysis of DEPs from contrast of ICU versus non-ICU patients. Receiver operating characteristic (ROC) curves (blue) for the top four DEPs with
the highest predictive values (AUC: area under the curve).
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in ICU patients may indicate some compromised host responses

that could lead to higher virus spread and then cause severe disease.

These proteins may serve as biomarkers to diagnose or even to

predict severe influenza infections. However, their usefulness and

the best combinations will have to be further validated and

confirmed in clinical settings.

We also analyzed the effect of age in ICU patients because an

ANOVA analysis revealed an interaction of age and infection.

CD177 was the only up-regulated DEP in patients older than 65

years. In our previous transcriptome analysis (10), we identified

CD177 as the strongest up-regulated gene in blood cells of severe

infections. The findings here confirm that the corresponding

protein is also up-regulated in the serum of severe cases,

especially in the elderly.

Many of the DEPs that we identified between infected and

healthy controls have known functions related to immune

responses, iron transport, and histones/chromatin modeling. The

observed changes in metabolic pathways are similar to findings in

pediatric studies, where an increase in glucose metabolism has been

observed (47). Less is known about the influence of influenza

infections on iron metabolism, where this study identified FTH1

and FTL as top DEPs, but it could be reflective of macrophage and/

or IL-6 responses (48). However, a recent study in mice suggested

that reducing iron availability may reduce viral replication, and

influenza hemagglutinin has also been shown to trigger

ferritinophagy, leading to iron-dependent cell death (49). It has
Frontiers in Immunology 12
been shown that influenza infection reduces the expression of genes

for iron uptake proteins and decreases the expression of genes for

iron storage proteins such as ferritin light (FTL) and heavy (FTH)

chains (50).

Further, additional wound healing signatures were identified,

including the DEPs MDK, which functions in the negative

regulation of apoptotic processes, positive regulation of cell

migration, and regulation of leukocyte cell-cell adhesion (51, 52),

NTN1, which is involved in CDC42 protein signal transduction,

plasma membrane-bounded cell projection organization, and

positive regulation of axon extension (53–55), and FGFBP1,

which represents a growth factor binding activity involved in

positive regulation of blood vessel endothelial cell proliferation,

sprouting angiogenesis, and positive regulation of cell migration

(56). NTN1 is particularly interesting given its expression may

indicate possible macrophage-related neuroinflammation (57).

A unique aspect of this study is that we analyzed the proteome

and transcriptome of the same patients, which allowed us to

perform correlations between proteins in the blood and gene

expression in blood cells. The highest number of correlations was

observed for IFNL1, an interferon that is strongly induced in the

infected lung. Many studies have established that the activation of

interferons, especially of type III, represents the major host response

to viral infections, especially in the lung (34–37, 58–61). The genes

highly correlated with the expression of IFNL1 protein included

genes involved in interferon regulation (IRF7, IFI6, IFI44), anti-
FIGURE 7

Comparison of DEPs from ICU and non-ICU patients versus controls. Scatter plot of DEPs from contrasts of ICU patients versus healthy controls and
non-ICU patients versus healthy controls. Dots represent log2 differences of ICU versus controls (Y-axis) and non-ICU versus controls (x-axis). The
top 20 proteins (by absolute expression levels in non-ICU) are labeled blue.
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viral defense (TRIM6, PLSCR1, LY6E, EIF3L), host immune

response (IRF7, IFI6, IFI44, EIF3L, EIF2AK2), and ubiquitination

processes (FBXO6, TRIM6, FBXO39). Other genes were involved in

various cellular processes not yet linked to the host response or anti-

viral activities, like peptidase activity (ST14), mRNA binding

activity (TDRD7), and translational elongation (GTPBP2) (46).

Another hallmark of a respiratory infection observed both in

animal models and human studies is the expression of CXCL10 at

both the transcriptome and the proteome level. CXCL10 stimulates

monocyte, natural killer cell, and T cell migration, as well as

modulation of adhesion molecule expression. It is thought to be a

key regulator of the ‘cytokine storm’ induced after SARS-CoV-2

infection (62–66), and the same could be true for influenza. The

genes highly correlated with the expression of CXCL10 protein (10

DEGs with coefficient > 0.8) in the host response to infections

(CCRL2, IFI6, IRF7, LY6E) were genes involved in ubiquitination

processes (FBXO6), and genes involved in various cellular processes

not yet linked to the host response or anti-viral activities, like

insertase activity (TIMM10), potassium:chloride symporter activity

(SLC12A8), acetyl-CoA hydrolase activity (ACOT9). Of note,

several of these DEGs overlapped with the IFNL1-correlated DEGs.
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Our correlation analysis can also be used to identify DEPs that

were correlated with specific DEGs or any protein with any gene. In

our previous transcriptome analysis, we identified MMP6 as the

most strongly up-regulated DEG between ICU and non-ICU cases

(7). Using a coefficient greater than 0.7 (no hits with a coefficient of

0.8), we found 15 DEPs correlated with the expression of this gene.

In conclusion, the DEPs identified in both non-ICU and ICU

patients typically showed a stronger response in IUC patients for

both up- and downregulated proteins, indicating that ICU patients

exhibit a stronger inflammatory response than observed in non-

ICU patients. Such hyperinflammatory immunopathogenic innate

host immune responses have been described for severe courses

following respiratory infections (67–69). The proteins identified

here may serve as biomarkers, most likely if used in combinations,

but their usefulness and the best combinations must be further

validated and confirmed in clinical settings.

It should be noted that our study has several limitations. In

human studies, there are always unknown confounding factors and

differences in experimental outlines that may influence the results

and conclusions, such as genetic and lifestyle heterogeneities in

patient groups, collection methods and timing within clinics, and
FIGURE 8

Bar plots of protein expression levels in ICU versus non-ICU patients. (A) Bar plots representing differences in log2 changes for ICU versus non-ICU
patients for interferon proteins. (B) Bar plots representing differences in log2 changes for ICU versus non-ICU patients for chemokine and cytokine
proteins. sig (red): DEPs that were significantly different (multiple testing BH-adjusted P values) in the contrast of ICU versus non-ICU patients. ns:
not significant (grey).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1693728
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Schughart et al. 10.3389/fimmu.2025.1693728
FIGURE 9

DEPs and DEGs for proteomes and transcriptomes from different contrasts. For patients from whom both transcriptome and proteome data were
available, various contrasts for the identification of DEPs and DEGs were performed. (A) Bar plot representing the numbers of up- (red) and down-
regulated (blue) DEPs and DEGs for the individual contrasts. (B) Venn diagram of overlapping DEPs (all_prot) and DEGs (all_transcr) using results
from all contrasts.
FIGURE 10

Scatter plots for proteins and their corresponding top four most strongly correlated DEGs. (A) IFNL1, (B) CXCL10, (C) CDK2 / CCNA2, (D) OIT3,
(E) CLSTN3, (F) SAA1, (G) SAA2, (H) H2BU1, (I) FTL, and (J) MX1 proteins respectively, and their top four correlated genes. Dots represent
transcriptome expression levels (Y-axis) and proteome expression levels (X-axis). Black: healthy controls, orange: non-ICU, and red: ICU cases.
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processing of samples. Therefore, results from subsequent studies

should be compared to conclude whether our findings are consistent,

and potential biomarkers must be validated. Nevertheless, we

observed overlaps with other published studies, suggesting several

prime candidates are worth evaluating further. Another limitation

was that the effect of the collection site could not be analyzed because

all healthy samples were collected at the Baptist Memorial Hospital.

In addition, the influenza virus strain was not recorded. Many DEPs

exhibited predictive values in ROC analyses. However, our analysis

only analyzed patients who were already in the ICU. Therefore, the

markers that we identified will have to be tested during the

progression from moderate to severe disease. In summary, we

identified many DEPs that may represent potential biomarkers.

However, at this stage, we cannot suggest the best ones that would

be suitable in clinical settings. Defining a short list will require more

clinical testing and validation by additional methods (e.g., ELISA).
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