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Introduction: Influenza infections result in a wide spectrum of disease
outcomes, ranging from asymptomatic cases to fatal illness. While
immunopathology contributes to an increased risk of hospitalization, the host
factors that drive predisposition to ICU admission remain poorly understood.
Methods: Here, we performed proteome analyses of sera from influenza virus-
infected patients who were experiencing moderate disease without ICU
admission or severe disease with ICU admission. A unique aspect of our study
is that we monitored expression levels of more than 6,000 proteins whereas
previous studies only analyzed a very limited number of protein markers.
Results and Discussion: Comparing the responses in infected versus healthy
individuals identified many differentially expressed proteins and related molecular
pathways involved in lipid metabolism, iron metabolism, chromatin remodeling,
and immune signaling in infected patients. These were amplified in patients with
more severe disease, where immune signaling, proliferation/differentiation, and
metabolic process pathways were increased. Our results suggest strong impacts
of macrophage- and neutrophil-related responses. A unique aspect of our
analysis is that it allowed us to relate the secreted host response in the blood
(proteome) with stimulated responses in blood cells (transcriptome) in the same
patients. Many differentially expressed proteins in the serum were not identified
as differentially expressed genes in blood cells and therefore represent a not yet
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described set of biomarkers. Furthermore, we identified many strong correlations
between blood cell transcriptomes and blood proteomes, which will allow us to
validate or generate unique hypotheses of causal relationships between serum
proteins and responses in blood cells during an influenza infection.

influenza, proteome, differentially expressed proteins, transcriptome

correlations, blood

Introduction

Seasonal influenza virus outbreaks result in substantial
morbidity and mortality each year, posing a significant burden on
public health. The clinical outcomes vary widely, ranging from no
symptoms to life-threatening disease with several contributing
factors, including the virus strain and the individual’s age, sex,
genetics, and immune system status. In the most critical cases, death
is often linked to an excessive immune response, marked by
elevated activity of neutrophils, macrophages, and inflammatory
cytokines. Mitigation of severe disease is challenging, and current
antivirals that target viral proteins have limited efficacy once the
disease has progressed to a state requiring hospitalization, where the
focus is on supportive care to manage symptoms. Host-targeted
therapies may pose an alternative strategy for these patients, where
therapies targeting host factors that contribute to
immunopathology may help abrogate progression to ICU
admission. Proteomic approaches can pinpoint key virus-induced
changes in host signaling pathways essential to disease progression
and viral replication.

Prior studies of blood proteomes from influenza-infected adult
patients identified differentially expressed proteins (DEPs) in
infected versus healthy controls and patients with severe versus
mild disease (1, 2). High levels of type II interferon (IFN-y) and
mediators of Th17 cell development were found in hospitalized
patients with respiratory insufficiency (1). Increased plasma levels
of several cytokines in patients with severe (critically ill) disease
have also been observed (2). One limitation of these earlier studies
was that they were performed using specific antibody-based Bio-
Plex assays detecting only a limited number of selected markers (up
to 27). However, performing analyses with methods that broadly
detect a large number of proteins is important to more
comprehensively understand the host response. More recently, we
and others used the SOMAscan method, which detects a much
larger number of proteins, to identify proteins in influenza-infected
children from nasal washes/aspirates (3, 4). Additional studies have
also investigated proteomes from nasopharyngeal and
oropharyngeal swabs in children infected with different
respiratory viruses (5, 6). These studies found some DEPs in
infected versus healthy children. To our knowledge, similar
studies have not been conducted in adults with influenza to
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identify large numbers of proteins differentially expressed in those
with more severe disease.

Understanding how protein levels in the blood might be linked
to gene transcription could also help improve diagnostics and
predictability of disease progression. We and others have
identified numerous cell transcripts of genes in blood cells that
are differentially expressed in influenza-infected patients ( (7) and
references therein). Many of these were related to antiviral, type I
and II interferon responses, and chemokine/cytokine activation.
Differentially-expressed genes (DEGs) increased in severe influenza
disease compared to mild/moderate infections included chemokine/
cytokine responses and neutrophil activation (7-10), suggesting
possible overlap between the proteins and cell transcripts.

This study aimed to describe the host response to influenza
infections in adults and relate it to intrinsic and external factors by
identifying changes in blood protein levels of patients infected
compared to healthy controls and by the severity of the disease.
For this, we performed large-scale proteome analyses with plasma
samples collected from healthy controls and influenza-infected
patients with differing degrees of severity. We analyzed expression
changes in 6,412 proteins, extending prior studies that monitored
only a limited number of markers (fewer than 50). The resulting
data were analyzed by bioinformatic approaches and related to
previously identified transcriptome changes in blood cells. To our
knowledge, this is the most comprehensive analysis of blood
proteomes in influenza-infected patients.

Materials and methods
Patient cohorts

The patient cohort used for the analyses was described earlier
(7). Briefly, patients with influenza infections and healthy controls
were collected at five different sites. The total number of
participants was 208, 81 were healthy controls, and 127 were
influenza-infected patients, of whom 23 were admitted to the
ICU. Healthy patients represented visitors to the hospital who
volunteered to donate blood to our study. Samples from non-ICU
infected patients were taken on the day of admission and were
considered to have moderate disease. Samples from ICU patients
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TABLE 1 Demographics of cohorts.

Healthy
controls

Infected -

Infected non-ICU

Category

10.3389/fimmu.2025.1693728

Gender (males/

females) 21F/2M 32F/29M
sum 23 61
Genfj::; agrer:;les/ 17F/18M
sum 35
Age
’(\riee/dylj;r; 44 56 60
Agelyears (range) (24 -56) (21 - 90) (24 - 90)
Age range 18-30 2F/0M 4F/IM 2F/0M
Age range 30-65 19F/2M 20F/14M 10F/9M
Age range > 65 OF/0M 8F/14M 5F/9M

Infected - P-values HC versus P-values ICU versus
ICU infected non-ICU
< 0.01
15F/11M 0.66
26
46 <0.01 0.64
(21 - 76)
2F/IM
10E/5M
3F/5M

Number of participants stratified by gender, age, infection (infected: influenza infected, HC: healthy controls), and severity of disease (ICU: intensive care unit patients, non-ICU: patients not in

intensive care). F: female, M: male. P-values were calculated by chi-square tests.

were taken during their ICU stay (no specific time point).
Additional six samples from ICU patients were taken at
subsequent times during their stay. We selected a subgroup of 84
individuals that included 23 healthy controls and 61 influenza-
infected patients. From three sites (Baptist Memorial Hospital
(Memphis, TN USA), Otto-von-Gericke University (Magdeburg,
Germany), University of North Carolina (Chapel Hill, NC USA).
The selection of this subgroup was done manually to ensure equal
representations for all groups where possible and to adhere to
funding restrictions. Of the patients who reported to the hospitals
with influenza, 26 were admitted to the ICU (Table 1). The number
of females and males differed within groups. There were 21 females
and 2 males in the healthy group (Table 1). In the influenza-infected
groups, there were 32 females, 15 of whom were admitted to the
ICU, and 29 males, 11 of whom were admitted to the ICU. The
median age of the healthy controls was 44 years while the median
age of the infected patients was 56 years (non-ICU: 60 years; ICU 46
years; Table 1). The full details of patient recruitment of the cohort
have been described elsewhere (7).

Somascan proteome analyses

EDTA blood samples were collected from participants, cells
were centrifuged, and supernatants and pellets were stored at -80°C
until analysis. Plasma was centrifuged for 15 min at 2200 x g, and 60
UL of supernatant was used for the SOMAscan assay performed by
SomaLogic, Boulder, CO as described previously (11-14). The
SOMA panel used here contained aptamers for a total of 7,596
analytes/proteins. For some proteins, more than one aptamer was
present, resulting in a total of 6,412 unique proteins that could be
detected using this panel. Raw signals were then normalized as
described (11, 12). The preprocessing steps included hybridization
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normalization, plate scaling and calibration, and the adaptive
normalization by maximum likelihood (ANML), which
normalized SomaScan EDTA plasma measurements to a healthy
U.S. population reference, and values were then log, transformed.
Records with no gene symbol and duplicated gene symbols were
removed (Data file: Normalized Somalogic proteome expression
values, Data file: Descriptor Somalogic proteome expression). Of
note, many non-secreted proteins were covered by the panel and
were also detected in the blood of patients, most likely because some
cell lysis occurred in infected lungs and during the preparation of
the blood plasma.

Mass spectrometry proteome analyses

For mass spectrometry analyses, blood samples were depleted of
highly abundant blood proteins using the High Select Topl4
Abundant Protein Depletion Mini Spin Columns (Thermo
Scientific, catalog no A36369) as described by the manufacturer.
Then the sample protein concentrations were determined using the
Pierce' " BCA Protein Assay (Thermo Fisher Scientific, catalog no
23225). For mass spectrometry analysis, each sample contained 25 ug
of protein in 150 pl of plasma depletion buffer (10 mM PBS)
supplemented with 1% SDS and 100 mM ammonium bicarbonate,
pH 8.1. The sample proteins were reduced with 6.25 mM DTT for 45
min at 50 °C, alkylated with 25 mM iodoacetamide for 20 min at RT
in the dark, incubated with 20 mM DTT, and precipitated with 5
volumes of cold acetone. Proteins were sedimented at 16,000 xg at
4°C for 10 min. Protein pellets were washed with 100 ul of cold
(-20°C) 90% acetone, air dried for 4 min, and re-dissolved in 50 pl of
digestion buffer (100 mM HEPES, pH 8.3) containing 0.8 pg of Pierce
Trypsin/Lys-C mixture (A40007, Thermo Fisher); the proteins were
digested overnight at 37°C. A reference sample was generated by
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combining 2.5 pg aliquots of each digested sample. A set of 16
samples, each containing 22.5 pg of peptides in 45 pl of digestion
buffer (100 mm HEPES pH 8.3), was labeled using a commercial
TMTpro-16plex Mass Tag Labeling reagent kit (A44521, Thermo
Fisher) according to the manufacturer’s protocol scaled to 45 pl. The
total number of samples was analyzed in four separate runs. The four
sets were labeled, and each set of labeled 16 samples included the
same reference sample labeled with TMTpro-126 reagent. A set of
labeled 16 samples was combined, vacuum dried, and reconstituted in
0.1% TFA at 0.3 pg/ul for further fractionation. 300 pl (90 ug) of the
reconstituted mixture of labeled peptides was fractionated using
Pierce High pH Reversed-Phase Peptide Fractionation kit (84868,
Thermo Fisher) according to the manufacturer’s protocol - 8-step
fractions (consecutively eluted with 10.0, 12.5, 15.0, 17.5, 20.0, 22.5,
25.0, and 50.0% acetonitrile) were collected. The collected peptide
fractions were vacuum-dried and dissolved in 65 pl of loading buffer
(3% acetonitrile with 0.1% TFA acid), and 5 ul aliquots were analyzed
by LC-MS for peptide/protein identification and quantification.
Acquisition of raw MS data was performed on an Orbitrap Fusion
Lumos mass spectrometer (Thermo Fisher) operating in line with the
Ultimate 3000RSLCnano UHPLS system (Thermo Fisher) using MS3
Synchronous Precursor Selection (SPS) method for TMTpro-16plex
labeled samples with 160 min LC gradient. Post-acquisition analysis
of raw mass spectrometry data was performed within a mass
informatics platform Proteome Discoverer 2.4 (Thermo Fisher)
using the Sequest HT search algorithm and human protein
database (SwissProt, Homo sapiens, TaxID 9606, v.2022-10-12,
42315 entries). The reversed target database was used as a decoy
database. The raw mass spectrometry data acquired for a set of 8
fractions (derived from the same mixture of labeled samples) were
treated as ‘Fractions’ for post-acquisition analysis. Raw mass
spectrometry data were then normalized as follows: the abundances
of every peptide found in each sample were summed to determine
total peptide abundance/amount. Normalization was performed by
bringing the total peptide amounts in each sample to the same value
by multiplication of individual peptide abundances of a given sample
by the same factor specific to that sample. The resulting values were
log, transformed, missing values were set to zero, and then batch
corrected for the runs using the function removeBatchEffect from the
package limma [version 3.52.4, (15, 16)]. Proteins ALB, IGH, IGK,
and IGL, which were depleted as described above, were set to a value
of 1 (Data file: Normalized MassSpec proteome expression values,
Data file: Data Descriptor MassSpec proteome expression). In total,
935 proteins were detected by this method. The analysis was
performed at the Proteomics and Metabolomics Core (PMC)
at UTHSC.

Bioinformatic analyses of proteome data

Normalized Somalogic protein expression data were further
analyzed using the R software (version 4.2.1 and 4.4.3, (17) and
RStudio [version 2022.07.2 and 2024.12.1 (18)]. Multi-group
comparisons and identification of differentially expressed proteins
were performed with the package limma [version 3.52.4, (15, 16)]
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using the model design <- model.matrix(~ 0 + group); with group =
healthy controls (HC) and infected patients (INF), or healthy controls
(HC), infected patients not at ICU (non-ICU) and infected patients at
ICU (ICU). Differentially expressed proteins were identified using the
different contrasts from the model (INF versus HC, non-ICU versus
HC, ICU versus HC, and ICU versus non-ICU) based on an adjusted
P <0.05 (Benjamini and Hochberg correction for multiple testing) and
[log,| > 0.58 difference in expression levels. Volcano plots were
generated with the package EnhancedVolcano, version 1.14.0 (19).
Functional analyses of DEGs were performed using the R software
package EnrichR (version 3.4, (20-22). For beeswarm graphs of
expression levels, package beeswarm (23) (version 0.2.3.) was used.
VENN diagrams were generated with the function vennPlot (http://
faculty.ucr.edu/~tgirke/Documents/R_BioCond/My_R_Scripts/
overLapper.R). For STRING network analysis, we used the STRING
interactive website (https://string-db.org/cgi/input?
sessionld=bZa9VJumLnb8&input_page_show_search=on), using
basic settings: full STRING network, and evidence = true. Mass
spectrometry normalized values were further analyzed using the R
software (version 4.2.1 and 4.4.3, (17) and RStudio (version
2022.07.2 and 2024.12.1 (18)) with the packages and parameters
described above.

Analysis of correlations between proteome
and gene expression data

Of the 78 patients used in the proteome study, 71 patients had
previously been analyzed for gene expression in the blood by
RNAseq (7). The remaining had insufficient RNA quality to
perform transcriptomic analyses. For the 71 overlapping samples,
we had proteome and transcriptome data from the same patients
taken at the same time. We selected the proteome and
transcriptome data from these patient samplings (Data file:
Proteome overlapping samples and Data file: Transcriptome
overlapping samples) and repeated the identification of DEPs and
DEGs as described above. To determine correlations between the
proteome and transcriptome, we combined all DEPs and all DEGs
from the contrasts of non-ICU vs HC, ICU vs HC, and ICU vs non-
ICU, and used Spearman correlation and BH (24) adjusted multiple
testing P values to report significant results.

Statistics

For the comparison of two groups, a two-way ¢t test (numeric
data) or chi-square test (categorical data) was used and performed
in R. P < 0.05 was considered significant. Multiple testing adjusted P
values were calculated according to Benjamini and Hochberg (24).

Availability of data and materials

The original contributions presented in the study are publicly
available. This data can be found here: https://doi.org/10.6084/
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m9.figshare.27826857 (Normalized Somalogic proteome expression
values); https://doi.org/10.6084/m9.figshare.27827013 (Normalized
MassSpec proteome expression values); https://doi.org/10.6084/
m9.figshare.27852273 (Descriptor Somalogic proteome
expression); https://doi.org/10.6084/m9.figshare.27852306
(Descriptor MassSpec proteome expression); https://doi.org/
10.6084/m9.figshare.29882222.v1 (Proteome overlapping samples;
and https://doi.org/10.6084/m9.figshare.29882255.v1
(Transcriptome overlapping samples). For additional data, see
supplement tables. Supplementary figures are available as
Supplementary 11.

Results

Blood proteomic signature in influenza-
infected patients revealed unique DEPs

To identify the differentially expressed proteins (DEPs) in the
blood of influenza-infected individuals, we performed proteomic
analyses using a SOMAscan assay with samples from 61 influenza-
infected patients and 23 healthy controls (Data file Normalized
Somalogic proteome expression values, Data file Descriptor
Somalogic proteome expression). Analysis of all proteins detected
in the SomaLogic analysis by the GO-Cellular Component
(GO-CC) ontology showed involvement of components from the
extracellular matrix, vesicles, and granules, demonstrating that
mainly secreted proteins were detected by this method.

A principal component analysis (PCA) of the proteins
demonstrated separation between infected patients and healthy
controls as well as between samples from infected patients who
were in the ICU and those who were not in the ICU (Figure 1A).

An ANOVA analysis showed the strongest effect for infection
status (PC1, p = 2.130693x10e-15) and smaller effects of sex,
collection date, and age group (old: > 65 years; Supplementary
Table SI). Analysis of interaction with infection status and age
group was significant (P = 0.04), whereas interactions with sex and
collection date were not. The effect of the collection site could not be
analyzed because all healthy samples were collected at the Baptist
Memorial Hospital. Virus type was not recorded.

Therefore, we only analyzed the contrasts for the different
infection status (healthy controls, ICU, and non-ICU) and the
influence of age on the responses for non-ICU and ICU patients
(further below).

Comparing infected patients (both non-ICU and ICU cases)
with healthy controls, 453 DEPs were upregulated while 143 were
downregulated (Figures 1B, C: volcano plots showing the top 20
regulated DEPs and heatmap showing all DEPs; Supplementary
Table S2). The top 10 upregulated DEPs included proteins involved
in immune responses (SAA1, SAA2, H2BC21, MX1), iron transport
(FTHI1, FTL), and histones (H2BU1, H2AW, H2BC12, H2BC21;
Supplementary Table S3). The top 10 down-regulated DEPs
represented a more diverse group of proteins with functions in
immune responses (PF4, HPGDS), differentiation/development/
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hormone activities (PZP, COL11A2, ANTXR2, CHAD), and
neuronal functions (MDGA2, BDNF; Supplementary Table S3).
Pathway analyses for the upregulated DEPs revealed responses
that were mainly related to host immune defenses and metabolic
pathways (Figure 2A). Downregulated DEPs response pathways
were related to neuron guidance, response to toxins, and various
signaling pathways (Figure 2B). The protein interactions of the top
200 DEPs (by absolute log, change [LFC] using STRING network
analyses) identified by the SOMAscan method showed prominent
nodes for, e.g., GAPDH, STAT3, CXCL10 (Supplementary Figure
S1A), suggesting interplay between metabolic reprogramming,
humoral immune response, and acute phase response limiting
excessive inflammation and oxidative damage (25). STRING
network analyses of the top 6 upregulated DEPs (SAA1/SAA2,
H2BUI1 (as only representative for H2B proteins), FTL, MX1,
C1QC, and HAMP), revealed significant interactions with key
proteins involved in inflammation and lipid metabolism,
chromatin remodeling, interferon responses, iron metabolism,
and complement (Supplementary Figure S1B-G), respectively,
demonstrating that these DEPs are involved in key regulatory
pathways of the host defense to pathogens. We then evaluated the
predictive value of the DEPs by ROC analysis. Seventy-seven DEPs
exhibited a very good AUC > 0.9 (Supplementary Table S4; Figure 3
shows the top four DEPs with the highest predictive values).

Validation of SOMAscan results by liquid
chromatography mass spectrometry

Because many proteome studies use liquid chromatography
mass spectrometry (LC-MS), we also performed LC-MS analyses
for a subset of samples (9 healthy controls, 18 non-ICU patients,
and 22 ICU patients). The PCA for expression levels obtained by
LC-MS shows good separation between infected patients and
healthy controls (Supplementary Figure S2A). The LC-MS studies
detected fewer proteins compared to the SOMAscan analysis above
(175 by LC-MS compared to 1314 for SOMAscan (combining DEPs
for all three contrasts of non-ICU versus healthy controls, plus ICU
versus healthy controls, plus ICU versus non-ICU; Supplementary
Figure S2B, Data file Normalized MassSpec proteome expression
values, Data file Descriptor MassSpec proteome expression
Supplementary Table S5). About four times fewer DEPs were
found to be significantly upregulated (118 by LC-MS versus 453
by SOMAscan for the contrast of infected versus healthy controls)
or downregulated (36 by LC-MS versus 143 by SOMAscan; Volcano
plot in Supplementary Figure S2C showing the top 20 up- and
downregulated DEPs). This finding was most likely due to the lower
number of samples in the LC-MS and the lower number of proteins
detected in the LC-MS study (6,412 versus 935, respectively).

Of the 671 proteins that overlapped between the two assays, 365
were significantly correlated (P < 0.05) between SOMAscan and
LC-MS. Of these, 184 were correlated with a coefficient > 0.6 and P <
0.05 (Supplementary Table S6; see Supplementary Figure S2D for
examples). In conclusion, the LC-MS analysis confirmed our results
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FIGURE 1

Principal component analysis and DEPs of infected versus healthy controls. (A) Principal Component Analysis (PCA) plot for protein expression values
of healthy controls (black) and infected participants not in ICU (orange) and in ICU (red). (B) Volcano plot of DEPs for infected patients versus healthy
controls. Y-axis: -log;o BH multiple testing adjusted P values, x-axis: log, change. DEPs are colored red; the top 20 up- and downregulated (by log,
change) DEPs are labeled. Blue: not significant proteins with an adjusted P < 0.05. Orange: not significant proteins with an absolute log, change > 1.
(C) Heatmap of DEPs regulated in infected patients versus healthy controls for healthy controls (grey), patients not in ICU (yellow) and in ICU
(magenta). Expression levels are scaled by row, red: higher relative levels, blue: lower relative expression levels.

obtained with the SOMAscan method. The remaining analyses
below use only the results obtained from the SOMAscan assay.

ICU admission is associated with shifts in
genes involved in immune signaling,
proliferation/differentiation, and metabolic
processes

We then sought to identify the DEPs in the SOMAscan data
between patients in the ICU and those who did not require ICU
admission (non-ICU) by directly contrasting protein expression
levels. The analyses identified 257 upregulated (higher in ICU) and
290 downregulated (higher in non-ICU; the volcano plot in
Figure 4A shows the top 20 up- and downregulated DEPs;
Figure 4B shows a heatmap of all DEPs; Supplementary Table
S2). The top 10 DEPs expressed higher in ICU patients
(Supplementary Table S3) included proteins involved in host
immune response (ILIRL1, MDK), differentiation/proliferation
(NTN1, FGFBP1, SFRP5), and DNA binding/histones (H2BC12,
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H2BU1, H2AC1, H2AW). The top 10 DEPs expressed higher in
non-ICU patients (Supplementary Table S3) included proteins
involved in host immune responses (LRRC15, TAPBPL, CLEC4C,
IL36RN), negative cell proliferation/apoptosis (TP53111, ASNS),
and cell signaling/protein maturation (DNMIL, LTOI).

Pathway analyses for the DEPs higher in ICU patients
(Figure 5A) revealed mainly pathways involved in metabolic
processes (e.g., amino acid metabolism, pyruvate metabolism) and
pathways related to host immune responses (e.g., signaling by
interleukins). Pathways for DEPs higher in non-ICU patients
were also related to metabolic processes (e.g., aspartate
metabolism, protein metabolic process) and host immune
responses (e.g., antimicrobial response, cytokine-mediated
signaling pathway) (Figure 5B). These findings showed that
similar pathways were activated in all contrasts, which is not
surprising because the main host response is directed towards a
defense against the pathogen.

We then evaluated the predictive value of the DEPs by ROC
analysis. No DEPs were identified with an AUC > 0.9. However, 75
DEPs exhibited a good AUC > 0.8; (Supplementary Table S4;
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Figure 6 shows the top four DEPs with the highest
predictive values).

Age affects the responses in ICU patients

We then analyzed the effect of age in ICU patients. We
contrasted old (> 65 years) to young (<= 65 years) patients in the
ICU (8 old and 18 young cases) and identified 7 DEPs (1 up- and 6
down-regulated, Supplementary Figure S3 Volcano; Supplementary
Table S2). One of these DEPs (KNG1) overlapped with DEPs found
for the contrast of ICU versus non-ICU cases.

ICU patients have signatures of
hyperinflammation and dysregulated
cytokine regulation

When comparing the responses in non-ICU and ICU patients
to healthy controls, we identified many more DEPs in ICU patients
(1213 in ICU versus 301 in non-ICU, Supplementary Figure S4A).
The functional analyses of these DEPs revealed similar pathways for
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both contrasts (Supplementary Figures S4B, C). However, DEPs
identified in both non-ICU and ICU patients (261 overlapping
DEGs; Supplementary Figure S4D) showed a stronger response in
ICU patients for both up- and downregulated DEPs (Figure 7). The
functional analyses of these 261 overlapping DEPs also revealed
immune response pathways (e.g., acute phase response, response to
virus, inflammatory response, cytokine signaling, innate immune
response, neutrophil degranulation, neutrophil extracellular trap
formation) as a major response (Supplementary Figure S4E). In
summary, these findings showed an increased immune response in
ICU patients compared to non-ICU patients, which suggests a
hyperinflammatory response in patients with severe disease. In
addition, higher levels of histones were detected in the blood of
ICU versus non-ICU patients (Figure 4A). This finding may
indicate that ICU patients exhibit a stronger granulocyte response
and release neutrophil extracellular traps (NETs) as a host defense
in the lung composed of DNA, histones, and antimicrobial proteins.
Components of these NETs may then appear in the
peripheral blood.

We then investigated whether proteins from major innate
immune response pathways were differently regulated between
patients in the ICU and patients not in the ICU (non-ICU). For
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with the highest predictive values (AUC: area under the curve).

this, we used the interferon gene sets and chemokine/cytokine
proteins listed in the human gene nomenclature (26). Most
remarkably, most type I and II interferons were downregulated
(7/13 reached statistical significance) in ICU versus non-ICU
patients, whereas IFNL proteins were upregulated (Figure 8A).
This was accompanied by nine cytokine/chemokine proteins
being significantly upregulated (CCL13, CCL20, CCL24, CCL26,
CCL7, CXCL14, CXCL16 and XCL2) and seven proteins
significantly downregulated (CCL1, CCL11, CCL3L1, CX3CL1,
CXCL2, CXCL3, and CXCL6) in ICU patients (Figure 8B), many
of which are involved in macrophage and neutrophil recruitment.

Many more DEPs identified compared to
previous studies

In our study, many more not yet described set DEPs were
detected compared to previous reports. Most previous studies only
analyzed a few proteins using various antibodies as probes. Only
two studies performed a comparable broad-coverage proteome
analysis (1, 2). Both studies categorized patients in the ICU as
having severe disease. The first study used the Bio-Plex Protein
Array System with blood samples from 20 healthy controls, 26
patients with mild disease, and 15 patients with severe disease. They
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identified 16 DEPs that were significantly regulated in any group of
infected, severe, and non-severe patients compared to healthy
controls (see Table 2 in (2)). The second study used a multiplex
Biorad 27-plex assay to compare 10 patients with severe disease
versus 15 healthy controls and identified eight DEPs (1). The list of
proteins from these studies is summarized in Supplementary Table
S7. A set of 19 proteins was significantly regulated in mildly affected
patients versus healthy controls in both studies. Of the 19 proteins,
13 were analyzed in our Somalogic panel. Two proteins, CXCL8 and
CXCL10, were also significantly regulated for the contrast of non-
ICU patients versus healthy controls in our study (Supplementary
Figure S5A), with the direction (up or down) being the same. A set
of 19 proteins was significantly regulated in severe patients versus
healthy controls by both studies, of which 13 were also analyzed in
our Somalogic panel for the ICU versus healthy controls contrast.
Five of these 13 proteins, CXCL8, IFNG, IL13, IL6, and TNFSF10,
were also significantly regulated in our study (Supplementary
Figure S5B); the direction was the same for CXCL8, IL6, and
TNFSF10. A set of 8 proteins was significantly regulated in severe
versus mild patients by both studies, of which 6 were also analyzed
in our Somalogic panel for ICU versus healthy controls. Two
proteins, IL12B and IL6, were also significantly regulated for this
contrast in our study (Supplementary Figure S5C); the direction was
the same for IL6.
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Correlation between blood proteome and
cell transcriptome revealed new
associations and crosstalk

We previously published transcriptomic analyses from the
blood of the same patients (7) who were analyzed here for
proteome changes (71 overlapping patients, details see M&M).
Comparing the proteome to transcriptome expression levels
identified fewer DEPs compared to DEGs for almost all contrasts
(Supplementary Table S8, Figure 9A), which may be due to the
methodology allowing us to detect many more transcripts than
proteins. The VENN diagram comparing all DEPs with all DEGs
(using non-ICU versus healthy controls + ICU versus healthy
controls + ICU versus non-ICU contrasts) showed that 145 DEPs
were found as DEGs in the transcriptome, whereas 929 were not
(Figure 9B). This is an important finding because it demonstrates
that the analysis of proteins in the serum detects unique biomarkers
that are distinct from the blood cell transcriptome biomarkers.

Frontiers in Immunology 0

Because proteomes and transcriptomes were studied in the
same patient, we also looked for correlations between DEPs and
related transcriptome gene expression levels. These results may
allow for the generation or confirmation of causal hypotheses for
proteins and genes, e.g., the increased expression levels of a given
interferon or cytokine in the serum may trigger a change in gene
expression in blood cells. Using an adjusted P < 0.05 and a
correlation coefficient of abs(> 0.6), we identified 597 DEPs
showing significant correlation with at least one DEG
(Supplementary Table S9). Using a higher correlation coefficient
of abs(> 0.8) reduced this number to 27 DEPs with a significant
correlation with at least one DEG (Supplementary Table S9).

The top 5 of these 27 DEPs with the highest number of correlated
proteins were IFNL1 (15 correlated DEGs; Supplementary Table
§10), CXCL10 (10 correlated DEGs; Supplementary Table S10),
CDK2.CCNA2 (9 correlated DEGs; Supplementary Table S10),
OIT3 (9 correlated DEGs; Supplementary Table S10), CLSTN3 (5
correlated DEGs; Supplementary Table S10). Scatter plots of the
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expression levels for these top DEPs and their most strongly
correlated four top DEGs show tight correlation (Figures 10A-E).
We also determined the correlations for the top five DEPs identified
in the proteome contrast between infected versus healthy controls
(considering only one histone: SAA1, SAA2, H2BU1, FTL, MX1)
(Figures 10F-J, Supplementary Table S10). These results also
demonstrate excellent correlations between the responses in the
serum (proteome) and blood cells (transcriptome).

Discussion

Understanding proteomic shifts during influenza virus
infection, their correlation to cell transcriptomics, and the risk of
ICU admission may provide new prognostic biomarkers and
therapeutic targets. This study comprehensively examined the
proteome in the blood of influenza-infected patients, some of
whom had severe disease that required ICU admission.

Our analyses identified several DEPs in influenza-infected
patients, when contrasting severity, most of which did not overlap
with differentially expressed genes (DEGs) found in blood cell
transcriptome studies (7, 9). Although some DEPs were
correlated to DEGs, many more DEPs had not yet been
described. Most of these changes were related to the host immune
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responses, metabolic reprogramming, chromatin remodeling, and
iron metabolism.

Many DEPs exhibited very good (infected versus healthy
controls) or good (ICU versus non-ICU) predictive values in the
ROC analyses. Thus, our analyses identified many new potential
biomarkers that distinguish responses in healthy versus infected
and in ICU versus non-ICU patients, which likely reflect systemic
changes and suggest several new signatures that may help predict
severe disease and ICU admission. It should, however, be noted that
our analysis only analyzed patients who were already in the ICU.
Therefore, the markers that we identified will have to be tested in
during progression of from moderate to severe disease to evaluate
their clinical predictive value.

The hyperinflammatory response of ICU patients was
accompanied by mixed cytokine signatures, possibly suggestive of
a battle between inflammation and wound healing. There was an
eosinophilic and fibrotic profile (increased CCL13 (MCP-4), CCL24
[Eotaxin-2], CCL26 [Eotaxin-3], CCL7 [MCP-3]; decreased CCL11
[Eotaxin-1]) and mixed T cell and macrophage recruitment
(increased CCL20 [MIP-30, CXCL14 [BRAK], CXCL16, XCL2;
decreased CCL1, CCL3L1 [MIP-1o variant], and CX3CL1
[Fractalkine]), and suppressed neutrophil recruitment (decreased
CXCL2 [MIP-20], CXCL3, and CXCL6). These mixed Th2 and
Th17 signatures may relate to SAA1 and SAA2, which display
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immunomodulatory functions in Th1l7 differentiation and
macrophage polarization (27) in addition to having an important
role in wound healing through FPR2-dependent epithelial
migration (28). In addition, IL1IRL1, which is involved in the
IL-33-mediated signaling pathway (29, 30), was significantly
different between ICU and non-ICU patients. Other studies have
found similar proinflammatory signatures in patients with severe
influenza, including elevated IL-8 (CXCL8), MCP-1 (CCL2), IP-10
(CXCL10), MIG (CXCL9), and MIP-1o. (CCL3), and CD177
(10, 31). However, another study reported that HIN1 pandemic
cases displayed suppressed adaptive cytokines (e.g., IP-10 and MIG)
(32), which may be due to differences in study design, cohort,
and/or definition of case severity. Future studies will be needed to
obtain more consistent data for the potential use of cytokines
as biomarkers.

We also observed reduced levels of most type I and II interferon
proteins in ICU patients compared to non-ICU patients, which
aligns with an interferon response gene, MXI1, being a top DEP.
MX1 can negatively regulate viral genome replication (reviewed in
(33)) and has a role in wound healing. The levels of IFNL proteins
were increased in ICU patients, where IFNL2 was significantly
higher, while IFNL1 and IFNL3 were higher but not significant. The
latter observation could be indicative of higher viral loads as IFNL
proteins represent a specific response to lung inflammation (34-36).
Of note, IFNLs are thought to contribute to balancing tissue
tolerance and conferring resistance to pathogen invasion (37, 38).
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Numerous histones (H2BC12, H2BU1, H2AC1, and H2AW)
were elevated in ICU patients compared to non-ICU patients. This
may be a consequence of neutrophil extracellular traps (NETSs),
which are composed of DNA, histones, and antimicrobial proteins
(39). An enhanced neutrophil response has been observed in
transcriptome studies and shown to be correlated with severe
outcomes (7-10, 40). Elevated levels of NET production have
been observed in plasma from patients with severe influenza
infections by measuring cell-free deoxyribonucleic acid (DNA)
and myeloperoxidase (MPO)-DNA (41). SAA1 and SAA2, which
are closely related to neutrophil responses (Supplementary Figure
S6), were not significantly different between non-ICU and ICU
patients, but they were most strongly expressed in infected patients
compared to healthy controls. These proteins are also closely tied to
apolipoproteins, which can influence the formation of NETs.

Proteins more highly expressed in non-ICU cases included
mainly host immune responses. LRRC15 regulates protein
localization to the plasma membrane. It is involved in the
negative regulation of viral entry into host cells and receptor-
mediated virion attachment to host cells (42, 43). TAPBPL is
involved in the regulation of antigen processing and presentation
of peptide antigen via MHC class I (44). CLECA4C is predicted to be
involved in the innate immune response (45). IL36RN is involved in
antifungal humoral response, negative regulation of cytokine
production, and negative regulation of cytokine-mediated
signaling pathways (46). The reduced expression of these proteins
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Comparison of DEPs from ICU and non-ICU patients versus controls. Scatter plot of DEPs from contrasts of ICU patients versus healthy controls and
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top 20 proteins (by absolute expression levels in non-ICU) are labeled blue.

in ICU patients may indicate some compromised host responses
that could lead to higher virus spread and then cause severe disease.
These proteins may serve as biomarkers to diagnose or even to
predict severe influenza infections. However, their usefulness and
the best combinations will have to be further validated and
confirmed in clinical settings.

We also analyzed the effect of age in ICU patients because an
ANOVA analysis revealed an interaction of age and infection.
CD177 was the only up-regulated DEP in patients older than 65
years. In our previous transcriptome analysis (10), we identified
CD177 as the strongest up-regulated gene in blood cells of severe
infections. The findings here confirm that the corresponding
protein is also up-regulated in the serum of severe cases,
especially in the elderly.

Many of the DEPs that we identified between infected and
healthy controls have known functions related to immune
responses, iron transport, and histones/chromatin modeling. The
observed changes in metabolic pathways are similar to findings in
pediatric studies, where an increase in glucose metabolism has been
observed (47). Less is known about the influence of influenza
infections on iron metabolism, where this study identified FTH1
and FTL as top DEPs, but it could be reflective of macrophage and/
or IL-6 responses (48). However, a recent study in mice suggested
that reducing iron availability may reduce viral replication, and
influenza hemagglutinin has also been shown to trigger
ferritinophagy, leading to iron-dependent cell death (49). It has
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been shown that influenza infection reduces the expression of genes
for iron uptake proteins and decreases the expression of genes for
iron storage proteins such as ferritin light (FTL) and heavy (FTH)
chains (50).

Further, additional wound healing signatures were identified,
including the DEPs MDK, which functions in the negative
regulation of apoptotic processes, positive regulation of cell
migration, and regulation of leukocyte cell-cell adhesion (51, 52),
NTNI1, which is involved in CDC42 protein signal transduction,
plasma membrane-bounded cell projection organization, and
positive regulation of axon extension (53-55), and FGFBPI,
which represents a growth factor binding activity involved in
positive regulation of blood vessel endothelial cell proliferation,
sprouting angiogenesis, and positive regulation of cell migration
(56). NTN1 is particularly interesting given its expression may
indicate possible macrophage-related neuroinflammation (57).

A unique aspect of this study is that we analyzed the proteome
and transcriptome of the same patients, which allowed us to
perform correlations between proteins in the blood and gene
expression in blood cells. The highest number of correlations was
observed for IFNLI, an interferon that is strongly induced in the
infected lung. Many studies have established that the activation of
interferons, especially of type III, represents the major host response
to viral infections, especially in the lung (34-37, 58-61). The genes
highly correlated with the expression of IFNL1 protein included
genes involved in interferon regulation (IRF7, IFI6, IFI44), anti-
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not significant (grey).

viral defense (TRIM6, PLSCRI, LY6E, EIF3L), host immune
response (IRF7, IFI6, IFI44, EIF3L, EIF2AK2), and ubiquitination
processes (FBXO6, TRIM6, FBX039). Other genes were involved in
various cellular processes not yet linked to the host response or anti-
viral activities, like peptidase activity (STI14), mRNA binding
activity (TDRD?), and translational elongation (GTPBP2) (46).
Another hallmark of a respiratory infection observed both in
animal models and human studies is the expression of CXCL10 at
both the transcriptome and the proteome level. CXCL10 stimulates
monocyte, natural killer cell, and T cell migration, as well as
modulation of adhesion molecule expression. It is thought to be a
key regulator of the ‘cytokine storm’ induced after SARS-CoV-2
infection (62-66), and the same could be true for influenza. The
genes highly correlated with the expression of CXCL10 protein (10
DEGs with coefficient > 0.8) in the host response to infections
(CCRL2, IFI6, IRF7, LY6E) were genes involved in ubiquitination
processes (FBXO6), and genes involved in various cellular processes
not yet linked to the host response or anti-viral activities, like
insertase activity (TIMM]I0), potassium:chloride symporter activity
(SLCI12A8), acetyl-CoA hydrolase activity (ACOT9). Of note,
several of these DEGs overlapped with the IFNL1-correlated DEGs.
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Our correlation analysis can also be used to identify DEPs that
were correlated with specific DEGs or any protein with any gene. In
our previous transcriptome analysis, we identified MMP6 as the
most strongly up-regulated DEG between ICU and non-ICU cases
(7). Using a coefficient greater than 0.7 (no hits with a coefficient of
0.8), we found 15 DEPs correlated with the expression of this gene.

In conclusion, the DEPs identified in both non-ICU and ICU
patients typically showed a stronger response in IUC patients for
both up- and downregulated proteins, indicating that ICU patients
exhibit a stronger inflammatory response than observed in non-
ICU patients. Such hyperinflammatory immunopathogenic innate
host immune responses have been described for severe courses
following respiratory infections (67-69). The proteins identified
here may serve as biomarkers, most likely if used in combinations,
but their usefulness and the best combinations must be further
validated and confirmed in clinical settings.

It should be noted that our study has several limitations. In
human studies, there are always unknown confounding factors and
differences in experimental outlines that may influence the results
and conclusions, such as genetic and lifestyle heterogeneities in
patient groups, collection methods and timing within clinics, and
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DEPs and DEGs for proteomes and transcriptomes from different contrasts. For patients from whom both transcriptome and proteome data were
available, various contrasts for the identification of DEPs and DEGs were performed. (A) Bar plot representing the numbers of up- (red) and down-
regulated (blue) DEPs and DEGs for the individual contrasts. (B) Venn diagram of overlapping DEPs (all_prot) and DEGs (all_transcr) using results
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FIGURE 10

Scatter plots for proteins and their corresponding top four most strongly correlated DEGs. (A) IFNL1, (B) CXCL10, (C) CDK2 / CCNA2, (D) OIT3,
(E) CLSTN3, (F) SAAL (G) SAA2, (H) H2BUL, (1) FTL, and (J) MX1 proteins respectively, and their top four correlated genes. Dots represent
transcriptome expression levels (Y-axis) and proteome expression levels (X-axis). Black: healthy controls, orange: non-ICU, and red: ICU cases.
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processing of samples. Therefore, results from subsequent studies
should be compared to conclude whether our findings are consistent,
and potential biomarkers must be validated. Nevertheless, we
observed overlaps with other published studies, suggesting several
prime candidates are worth evaluating further. Another limitation
was that the effect of the collection site could not be analyzed because
all healthy samples were collected at the Baptist Memorial Hospital.
In addition, the influenza virus strain was not recorded. Many DEPs
exhibited predictive values in ROC analyses. However, our analysis
only analyzed patients who were already in the ICU. Therefore, the
markers that we identified will have to be tested during the
progression from moderate to severe disease. In summary, we
identified many DEPs that may represent potential biomarkers.
However, at this stage, we cannot suggest the best ones that would
be suitable in clinical settings. Defining a short list will require more
clinical testing and validation by additional methods (e.g., ELISA).
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