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therapeutic implications
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Department of Endocrinology and Metabolism, The First Affiliated Hospital of China Medical
University, Shenyang, Liaoning, China
Diabetes mellitus is primarily categorized into type 1 diabetes mellitus (T1DM) and

type 2 diabetes mellitus (T2DM), which exhibit distinct pathogenic mechanisms.

T1DM is characterized by an absolute deficiency of insulin secretion,

predominantly resulting from the autoimmune-mediated destruction of

pancreatic beta cells. In contrast, T2DM arises from a combination of insulin

resistance in peripheral tissues and a compensatory insulin secretory response

that ultimately becomes inadequate. The pathogenesis of diabetes mellitus is

orchestrated through bidirectional crosstalk between autoimmune aggression

and metabolic derangement. gd T cells, innate-like lymphocytes bridging innate

and adaptive immunity, play pivotal roles in tissue homeostasis, inflammation,

and immunity through cytokine production and cytotoxicity. This review

comprehensively examines the dual roles of gd T cells across diabetes mellitus

types. Furthermore, gd T cells contribute to diabetic complications and are

profoundly affected by the diabetic milieu, leading to defective anti-infection

and anti-tumor immunity. We discuss emerging therapeutic strategies targeting

gd T cells or their effector pathways and highlight key knowledge gaps regarding

subset-specific functions, dynamic changes during disease progression, and

tissue-resident gd T cell roles. Elucidating these mechanisms may provide a

strong foundation for developing novel gd T cell-based immunotherapies for

diabetes mellitus and its complications.
KEYWORDS

gamma delta T cells, cytokines, diabetes mellitus, autoimmunity, insulin resistance,
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1 Introduction

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by persistent

hyperglycemia. DM embodies a paradigm of autoimmune-metabolic crosstalk. Type 1

diabetes mellitus (T1DM) is defined by autoimmune destruction of pancreatic b-cells,
while type 2 diabetes mellitus (T2DM) features metabolism-triggered autoinflammation.

According to the 2021 Global Burden of Disease analysis, approximately 591 million

individuals worldwide live with diabetes, a figure projected to reach 1.031 billion by 2050

(1). This escalating prevalence underscores DM’s status as a critical public health challenge.
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Suboptimal glycemic control predisposes patients to multi-system

complications affecting ocular, renal, integumentary, and other

organ systems (2, 3). Furthermore, DM significantly elevates

mortality risks from infections and malignancies (4), with this

systemic vulnerability linked to immune dysregulation. The

innate immune system is involved in the pathogenesis of DM and

its chronic complications (5). Within this context, gd T cells emerge

as unexplored arbiters of diabetic autoimmunity in T1DM and as

drivers of obesity-related inflammation in T2DM. Serving as a

bridge between innate and adaptive immunity (6), gd T cells exert

unique functions in tissue immunosurveillance and inflammatory

modulation through major histocompatibility complex (MHC)

-unrestricted activation and cytokine secretion, thereby regulating

ab T cells and other immune effectors (7). Notably, the diabetic

milieu may reciprocally impair gd T cell function.

As an endocrine-metabolic disease driven primarily by

autoimmunity, gd T cells may mediate either protective or

destructive effects on pancreatic b-cells in T1DM. gd T cells also

critically interact with obesity-induced insulin resistance, which is

the fundamental mechanism in T2DM development. Visceral

adipose tissue (AT) in obese individuals shows marked gd T cell

expansion, accounting for over 95% of tissue-resident immune cells

(8), highlighting their dominance in the adipose niche. IL-17, a key

cytokine secreted by gd T cells in AT (9, 10), suppresses glucose

uptake in skeletal muscle and impairs insulin sensitivity in

hepatocytes (11), positioning gd T cells as drivers of obesity-

related inflammation in T2DM. Additionally, gd T cells

participate in diabetic complications through epithelial repair

mechanisms in lung and skin tissues (6), potentially influencing

infection susceptibility and wound healing in DM. While gd T cells

exhibit context-dependent pro- or anti-inflammatory roles in DM,

their subset-specific functions, temporal dynamics, and therapeutic

targeting potential remain incompletely defined. Elucidating these

mechanisms may provide a critical foundation for novel

immunomodulatory strategies against DM.
2 Gamma delta T cell

2.1 Origin and development

gd T cells are innate-like lymphocytes that fundamentally differ

from conventional ab T cells in developmental origin and

activation mechanisms. T cell development broadly follows a

sequential process. Initially, hematopoietic stem cells differentiate

into lymphoid stem cells within the bone marrow hematopoietic

inductive microenvironment. These lymphoid stem cells further

develop into pro-T cells, which then migrate via the bloodstream to

the thymus (12). Within the thymic microenvironment, pro-T cells

differentiate sequentially through the double-negative (DN),

double-positive (DP), and single-positive (SP) stages, ultimately

maturing into functional T cells (13). The pro-T cell stage

represents the branch point at which ab T cells and gd T cells

begin to diverge into distinct lineages. During differentiation, bone

marrow-derived progenitor T cells migrate to the thymus where
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they undergo TCR gene rearrangement at the pro-T cell stage. In

the thymus, ab T cells constitute over 95% of the total T cell

population, whereas gd T cells account for less than 5%. gd T cells

arise from DN thymocytes and undergo TCRg and TCRd
rearrangement prior to TCRb recombination, subsequently

expressing the gdTCR/CD3 complex on their plasma membrane

(14). Notably, rare thymocytes co-express both gd and ab TCRs

(15). Their antigen recognition mechanisms differ significantly

from those of ab T cells. gd T cells directly recognize diverse

antigens in an MHC-independent manner. This non-classical

recognition stems from unique TCR diversity generation

mechanisms. Functionally, gd T cells rapidly secrete cytokines or

directly lyse target cells via the NKG2D–ligand pathway, playing

pivotal roles in anti-pathogen defense, tumor immunosurveillance

and tissue repair (16). The high conservation of TCR repertoires,

tissue distribution, and functional subsets between human and

murine gd T cells establishes mice as essential model organisms

for mechanistic studies.
2.2 Subsets

Human gd T cells are classified into Vd1, Vd2, and Vd3 subsets
based on d chain usage. From embryonic stages to childhood, the

relative frequencies of the two primary human gd T cell subsets

(Vd1 and Vd2) undergo dynamic shifts (Figure 1A). The earliest

rearrangements in the gamma/delta T cell lineage involve the Vg9
and Vd2 gene segments. Evidence of this process appears in the fetal

liver during gestational 5–6 weeks and in the fetal thymus from the

8th week onward (17). Following this early development, Vg9Vd2+

T cells expand to constitute the majority of the gamma/delta

repertoire by midgestation (20–30 weeks) (17). From birth to

approximately 10 years of age, the peripheral gd T cell

compartment undergoes substantial maturation, marked not only

by an increase in total numbers but also by a dramatic

reconstitution of its subset composition, wherein the Vg9Vd2
population expands from a small fraction to a majority (>75%

circulating gd T cells) (18). In contrast to their minority status in

adults, Vd1 T cells represent the dominant gd T cell subset in

umbilical cord blood at birth (18). Vd1 T cells, which account for

only a minority in peripheral blood, are enriched in barrier tissues

such as the skin and mucosa-associated lymphoid tissue (MALT),

and recognize antigens presented by CD1 molecules; Vd2 T cells,

which dominate in peripheral blood and lymphoid organs, are

primarily recognize phosphoantigens derived from microbial

metabolism (e.g., HMBPP) (6, 19, 20). Zoledronate is a

b isphosphonate . Vd1 T ce l l s are non-respons ive to

bisphosphonates or phosphoantigens. Culturing gd T cells under

high-glucose conditions requires an initial in vitro expansion step

(Figure 1B). The established method of expanding Vd2 T cells in

vitro with zoledronate and IL-2 has made this subset a major subject

of study in diabetic autoimmunity research (21). This subset-

specific distribution and functional specialization underscore the

need to avoid overgeneralization when studying gd T cells in

diabetic complications.
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FIGURE 1

(A) Dynamic reconstitution of human gd T cell subsets from fetal development to childhood. The earliest rearrangements involve the Vg9 and Vd2
gene segments. Although Vg9Vd2 T cells expand to form a major subset by mid-gestation, Vd1 T cells are the dominant population in umbilical cord
blood at birth. During postnatal development, the peripheral gd T cell compartment undergoes a substantial reconstitution, characterized by a
marked expansion of the Vg9Vd2 population, which becomes the predominant subset (>75% of circulating gd T cells) by approximately 10 years of
age. (B) Isolation, in vitro expansion, and high-glucose treatment of gd T cells from diabetic models. Peripheral blood mononuclear cells (PBMCs)
are isolated from peripheral venous blood via density-gradient centrifugation. Cultures are stimulated with zoledronate and recombinant human
IL-2 to promote gd T cell activation and proliferation. After 10–14 days of expansion, gd T cells display robust proliferation, whereas other immune
cell subsets progressively undergo apoptosis. Finally, the expanded gd T cells are exposed to high-glucose conditions to mimic the diabetic
microenvironment and assess their functional responses. (C). Spatiotemporal ontogeny and tissue distribution of murine gd T cell subsets. During
embryogenesis, the first wave of gd T cells expresses monoclonal Vg5Vd1 TCRs, which migrate to and establish permanent residency within the
epidermis. Subsequent Vg6+ subsets traffic to the dermis, peritoneal cavity, and adipose tissue, while Vg4+ subsets emerge concurrently and localize
to the lung, skin dermis, and lymph nodes. In the perinatal period, Vg7+ subsets colonize the intestinal tract, whereas polyclonal Vg1+ and Vg4+

subsets distribute broadly across peripheral lymphoid organs.
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Murine gd T cell subsets are primarily classified according to Vg
chain usage. Developmentally, gd T cells represent the earliest T cell

population emerging in the embryonic mouse thymus. During

embryogenesis, the first wave expresses monoclonal Vg5Vd1
TCRs that home to and permanently reside in the skin epidermis

(17). Subsequently, additional subsets develop and localize to

specific niches (Figure 1C). The skin epidermis harbors a

specialized subset termed dendritic epidermal T cells (DETC),

originating from embryonic Vg3Vd1 precursors (22). Postnatally,

polyclonal CD27+ Vg1 and CD27+ Vg4 subsets mature

predominantly in the liver and lymph nodes (16). Functional

specialization of murine gd T cells is governed by Vg chains,

establishing mice as essential experimental models (17, 23).

Despite conserved tissue distribution and phenotypic functions

between human and murine gd T cells, no strict subset

equivalency exists. Researchers must judiciously select models and

subsets based on target tissue microenvironments and specific

biological questions (Table 1).

Beyond the aforementioned major subtype classification based

on TCR chains, gd T cells can also be categorized into distinct

subsets according to their cluster of differentiation (CD) profiles.

Fundamentally, the T-cell receptor (TCR) complex consists of

receptor subunits (either TCRab or TCRgd) and the associated

CD3 subunits (CD3g, d, e, and z) (31). Consequently, like all mature

T cells, gd T cells uniformly express the CD3 complex. gd T cells

predominantly exhibit a CD4-CD8- double-negative phenotype,

with a minor subset expressing CD8+ (32). A single-cell RNA

sequencing study in NOD mice revealed an abnormal expansion

of double-negative T cells (33), although the specific role of gd T

cells within this population requires further investigation.

Furthermore, Different functional gd cell subsets can be classified

by CD27. Mature TCRab+ thymocytes homogeneously express

CD27, while gd T cells represent only a small subset of the

CD27+ thymocyte population. Human Vd2 T cells can be

functionally subdivided into naïve (CD45RA+CD27+), central

memory (CD45RA-CD27+), effector memory (CD45RA-CD27-),
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and terminally differentiated effector (often CD45RA-CD27- or

other combinations) phenotypes (17). CD27- thymocytes

(approximately 10% of all gd thymocytes) preferentially

differentiate into IL-17A–secreting cells and CD27+ subsets

primarily generate IFN-g (34).
2.3 Effector functions

gd T cells can be activated by specific cytokines to produce

effector cytokines. While essential for tissue homeostasis at

physiological levels, excessive concentrations of pro-inflammatory

cytokines, such as TNF-a and IL-17, drive chronic inflammation

(6). IFN-g production requires synergistic IL-12 and IL-18

signaling, and IL-17A secretion is induced by IL-23 and IL-1b
(19). Notably, single cytokine stimulation fails to elicit robust

responses (24). Although Th17 cells are primary IL-17A

producers, gd T cells serve as significant contributors, particularly

during early mucosal immune defense. Murine gd T cell

development critically depends on IL-7 and IL-15 (35). IL-15 and

IL-2 drive IFN-g+ subsets (Vg5+ DETC, Vg7+, Vg1+), and IL-7

promotes IL-17A+ gd T cells (predominantly CD27-Vg6+) (17) (25).
gd T cells have several activation pathways (Figure 2). The

JAK2/STAT3/RORgt axis implicated in inflammatory and fibrotic

diseases operates in immune cells (36–38). However, previous

studies on this pathway have mostly focused on Th17 cells, with

relatively few studies on gd T cells that secrete IL-17. When

pathogen-associated molecular patterns (PAMP) bind to

pathogen recognition receptors(PRRs), DCs or macrophages

release IL-23 and IL-1b directly triggers gd T cell IL-17A

secretion without TCR involvement (39). In addition, the TCR

signaling pathway can also regulate the secretion of cytokines by gd
T cells. According to some research findings, gd T cells may utilize

molecular mechanisms during TCR signaling activation that differ

from those of ab T cells (40, 41). Although this pathway has not

been fully elucidated, the signaling mechanisms of ab TCR are
TABLE 1 Human and mice gd T cell subsets: tissue localization and dominant cytokine profiles.

Human Mice Major tissue distribution Predominant cytokine Reference

Vd1

Vg6 Mucosal tissue/Lung IL-17

(16, 17, 20, 24–29)

Vg7 Intestinal epithelium IFN-g, TNF-a

Vg5+ (DETC) Epidermis IFN-g, TNF-a,

Vg1 Lamina propria of the intestine IFN-g

Vg1 Inflammatory tissue/Brain(Traumatic brain injury) IL-10, TGF-b

Vd2 (Vg9Vd2)
Vg1 Spleen/Lymph nodes/Liver IFN-g

(17, 19, 20)
Vg4 Peripheral blood/Liver/Secondary lymphoid organs IFN-g/TNF-a/IL-17

Vd3+ (Rare) – Liver/Intestine IL-17/IFN-g (17, 20, 30)
This table summarizes the predominant subsets, their major tissue localization, and key effector cytokines based on the literature. DETC, dendritic epidermal T cells. Cytokines listed (e.g., IFN-g/
IL-17) indicate the predominant ones produced by the subset, with multiple cytokines indicating potential co-production or context-dependent expression. The murine Vg nomenclature is
provided as the functional counterpart to the human subsets where applicable.
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considered largely similar to those of gd TCR (14). Therefore, the gd
TCR signaling pathway can be understood within the framework

established for ab TCR signaling. Kinases act as critical drivers of

TCR signaling. ZAP-70, a member of the Syk family kinases, is

recruited to the TCR complex and the transmembrane adaptor

protein LAT upon TCR activation, where it undergoes

phosphorylation (42, 43). Phosphorylated LAT then provides

docking sites for signaling enzymes such as PLCg1. Subsequently,
PLCg1 hydrolyzes phosphatidylinositol-4,5-bisphosphate (PIP2)

into inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG).

DAG recruits Ras guanine nucleotide-releasing protein 1

(RasGRP1) to the plasma membrane, leading to activation of the

Ras-ERK pathway (14). In gd T cells, the main transcription factors

regulating the expression of IL-17 or IFN-g downstream of the TCR

signaling pathway are RORgt or Tbx21(T-bet), which are partially

transduced through the extracellular-signal related kinases/

mitogen-activated protein kinases (ERK/MAPK) pathway

(25).Functional ly constrained by their developmental

programming, gd T cell effector fates remain largely unaltered in

response to exogenous cytokines. Physiological cytokine secretion

maintains tissue homeostasis, whereas pathological overproduction

contributes to skin inflammation, atopic dermatitis, and

autoimmune arthritis (44, 45). Therapeutic IL-17 blockade

attenuates such inflammation (46), highlighting gd T cell subset

modulation as a promising, though still investigational,

intervention strategy.
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3 Gamma delta T cells in diabetes
mellitus pathogenesis

3.1 The dual role and therapeutic potential
of gd T cells in T1DM

Several clinical studies suggest a potential association between

gd T cells and T1DM. Newly diagnosed T1DM patients exhibit a

reduced mean proportion of peripheral blood gd T cells, with

further depletion observed after one year of insulin therapy (47).

In islet cell antibody (ICA)-positive relatives of T1DM probands,

who represent a high-risk group for future diabetes development, a

high percentage of gd T cells is associated with ICA positivity (48,

49), potentially reflecting stage-specific immune alterations. In

T1DM animal models, distinct gd T cell subsets have been

specifically investigated. The non-obese diabetic (NOD) mouse

serves as an ideal model for studying the immune basis and

treatment of T1DM (50). Research indicates that Vg4+ gd T cells

in NODmice can suppress T1DM development by producing IL-17

and facilitating the differentiation of regulatory CD4+ ab T cells in

pancreatic lymph nodes; Vg1+ cells, biased toward IFN-g
p roduc t i on , t h e r e b y p r omo t e a p r o - i nfl amma to r y

microenvironment conducive to T1DM pathogenesis (51). Within

NOD mouse islets, the majority of infiltrating gd T cells are IL-17-

producing CD27- cells, while the IFN-g-producing subset expresses
CD27 (34, 52). Although the proportion of peripheral gd T cells
FIGURE 2

Unique activation pathways of gd T cells. Pathogen-sensing route (TCR-independent): Engagement of PAMPs with PRRs on dendritic cells (DCs) and
macrophages induces IL-23 and IL-1b release, directly stimulating gd T cells to secrete IL-17A without TCR involvement. TCR-dependent route: Antigen
recognition via the gd TCR activates the ERK/MAPK signaling cascade, driving transcriptional polarization toward RORgt in IL-17–producing subsets.
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increases in NOD mice, predominantly IL-17-producing cells, they

do not exacerbate diabetes; instead, they confer protection by

upregulating TGF-b production (53). A gluten-free diet enriches

splenic naïve CD27+ gd T cells in mice, potentially reducing type 1

diabetes susceptibility by preventing their differentiation into pro-

autoreactive effector cells (54). Collectively, these findings

demonstrate a dual role for gd T cells in T1DM pathogenesis,

primarily governed by their effector cytokine profile. IL-17-

producing gd T cells appear primarily protective, suppressing islet

inflammation. In contrast, the IFN-g-producing subset promotes

disease progression. Notably, gd T cells coordinate with ab T cells to

drive T1DM development but are insufficient to independently

cause disease (52). The role of IL-17 remains particularly

challenging to define, as studies using IL-17 blockade have

reported either protective effects or no significant impact, while in

diabetic complications it demonstrates a dual nature (55). These

discrepancies appear to depend on the experimental animal model

employed, the timing of intervention, and the specific cytokine

microenvironment, highlighting the need for further investigation

in future studies.

Insulin therapy remains a cornerstone treatment for T1DM and

has been shown to possess immunomodulatory properties. T1DM

patients show a significant increase in peripheral blood CD8+gd T

cells after 3–6 months of insulin treatment (56), suggesting the

expansion of a potential regulatory subset induced by exogenous

insulin. This concept is strongly supported by animals studies in

which mucosal insulin administration promotes immune tolerance.

Aerosol insulin induces autoimmune tolerance mediated by

regulatory CD8+ gd T cells, preventing T1DM in mice (57).

Similarly, naso-respiratory insulin administration in NOD mice

increases IL-10-producing CD8+ gd T cells in pancreatic lymph

nodes (58). The underlying mechanism may involve the unique

antigen-recognition capability of gd T cells. The TCRs of NOD

mouse gd T cells exhibit specific reactivity to multiple insulin

antigens, likely through an APC-independent mechanism (59),

indicating TCR-dependent recognition. For instance, gd TCRs can

recognize the insulin oxidized B:9–23 peptide, naturally generated

during insulin degradation in b cells, which contains the essential

Cys19 residue for gd T cell responses (60). Based on these findings, a

mechanistic model can be proposed. Mucosal insulin

administration may enhance the local presentation or availability

of insulin-derived peptides (such as B:9–23) in respiratory mucosa.

This setting likely promotes the engagement of insulin-reactive gd T
cell TCRs, leading to their activation and functional polarization.

These activated CD8+ gd T cells acquire a regulatory phenotype,

characterized by secretion of the potent anti-inflammatory cytokine

IL-10. These cells subsequently migrate to pancreatic lymph nodes,

where local IL-10 production may suppress the activation and

effector functions of autoreactive ab T cells (61), thereby

reestablishing immune tolerance and preventing b cell

destruction. Collectively, these studies demonstrate that insulin,

beyond its metabolic role, may exert immunomodulatory effects

that counter T1DM pathogenesis. gd T cells may modulate immune

function through potential responses to insulin antigens, potentially

influencing T1DM onset and progression.
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The role of gd T cells in T1DM is gradually being elucidated

(Table 2). However, current human studies present limitations.

Firstly, clinical assessments predominantly measure total gd T cells

without distinguishing functionally heterogeneous subsets (Vd1/
Vd2), hindering the precise identification of protective versus

pathogenic subsets and contributing to observed discrepancies.

Defining the gd T cell subset repertoire in human T1DM patients

remains a future objective. Additionally, the lack of phenotypic and

functional tracking of islet-resident gd T cells in humans impedes

understanding of their direct role in islet autoimmunity. The

inherent difficulty in obtaining pancreatic tissue samples from

T1DM patients, who rarely undergo surgical intervention,

presents a major obstacle. Currently, there is experience in

procuring pancreatic tissue from individuals with T1DM.

Pancreatic tissue samples from donors with T1DM can be

obtained through nPOD (https://npod.org). Studies utilizing

laparoscopic pancreatic biopsy have revealed immunological

changes in the islets of newly diagnosed T1DM patients, without

reporting major complications (62). However, the Diabetes Virus

Detection Study (DiViD) collected larger pancreatic tissue samples

via caudal pancreatectomy from adults recently diagnosed with

T1DM, which resulted in some patients experiencing postoperative

bleeding and leakage of amylase-rich pancreatic juice (63).

Consequently, it was deemed unethical to continue the study.

Significant challenges remain in the acquisition of pancreatic

tissue from patients with T1DM.
3.2 gd T cells in T2DM: balancing systemic
exhaustion and tissue inflammation

Studies have shown that patients with T2DM exhibit increased

monocyte counts, reflecting exacerbated chronic inflammation and

immune activation, which promotes insulin resistance through the

secretion of pro-inflammatory cytokines (64). Insulin resistance

(IR), a central feature of obesity-related metabolic dysregulation,

manifests as reduced insulin responsiveness in adipose, hepatic, and

muscle tissues, ultimately leading to b-cell failure and T2DM onset.

Obesity-induced chronic low-grade inflammation is a key driver of

IR. The chronic inflammatory process is embedded within an

immune-mediated proinflammatory environment, wherein gd T

cells exhibit complex immunoregulatory roles. First, both obese

individuals and obese T2DM patients display significant

dysfunction in the peripheral Vg9Vd2 T cell subset, characterized

by diminished IFN-g secretion (65, 66). In obese individuals, the

proportion of Vg9Vd2 T cells in late apoptosis (Annexin V+ PI+) is

significantly higher compared to those in early apoptosis (Annexin

V+ PI-) (65). This accelerated apoptotic process in Vg9Vd2 T cells

under obese conditions represents a potential mechanism

contributing to their depletion in obese individuals. In addition,

IL-2 stimulation can reverse this IFN-g secretory defect, suggesting
reversible functional suppression (65). Furthermore, the study

indicated that obesity does not impair the capacity of Vg9Vd2 T

cells to produce IFN-g upon strong HDMAPP stimulation. This

observation may also partially explain the improved fasting glucose,
frontiersin.org
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HbA1c, and insulin sensitivity observed in postmenopausal women

with prediabetes and osteopenia following alendronate treatment

(67). Bisphosphonates may restore the capacity of Vg9Vd2 T cells to

produce cytokines such as IFN-g through their activation.

Consequently, restoring peripheral gd T cell function represents a

promising therapeutic avenue for T2DM. Within peripheral blood

mononuclear cells (PBMCs) of T2DM patients, gd T cells

demonstrate increased cytotoxicity and expansion (68). In

contrast to their systemic exhaustion, gd T cells within adipose

tissue (AT) exhibit a pro-inflammatory, tissue-resident phenotype.

In AT of mice, two major gd T cell populations exist: a

CD3elowCD27+ subset secreting IFN-g, and a CD3ehighCD27-

subset producing IL-17A and TNF-a (69). Adipose-resident gd T

cells serve as the primary source of IL-17A in adipose tissue. These

IL-17-producing gd T cells exhibit robust diurnal rhythms in RORgt
and IL-17A expression, playing a critical role in systemic metabolic

homeostasis by sustaining de novo lipogenesis (DNL) (70).

Dysregulation of DNL is associated with metabolic disorders such

as obesity and type 2 diabetes (71).The proportion of gd T cells

increases in the livers of individuals with non-alcoholic

steatohepatiti (72). Paradoxically, clinical studies report

significantly lower serum IL-17A levels in T2DM patients

compared to normoglycemic controls (73), indicating a potential

dissociation between local tissue inflammation and systemic

immune responses, reflecting compartmentalized inflammation.

This may arise from systemic immune exhaustion in diabetes

reducing serum IL-17, while persistent activation of gd T cells

within the local adipose microenvironment elevates IL-17. This

dichotomy may be explained by chronic metabolic insults which
Frontiers in Immunology 07
globally dampen immune responsiveness, leading to reduced

cytokine output in circulation. Conversely, within specific niches

like inflamed adipose tissue, local pro-inflammatory cytokines

provide potent, compartmentalized signals that drive IL-17

production from resident gd T cells. Furthermore, in obese mice,

the predominant gd T cell subsets accumulating in epididymal AT

(eAT) are Vg4+ and Vg6+ T cells, which promote eAT inflammation

by inhibiting the accumulation of anti-inflammatory M2

macrophages (74). M1 macrophages, conversely, enhance

adipocyte inflammation and reduce insulin sensitivity via TNF-a
production (75). High-fat (HF) diet-fed TCRd-/- mice exhibit

reduced M1 macrophage accumulation and improved glucose

clearance and insulin sensitivity post-insulin injection compared

to TCRd+/+ mice (74), suggesting adipose-resident gd T cells

promote insulin resistance.

NR4A nuclear receptors regulate hepatic gluconeogenesis and

maintain inflammatory balance (76, 77). Dysregulated hepatic

gluconeogenesis significantly impacts T2DM. NR4A1 and NR4A3

enhance insulin sensitivity in skeletal muscle and liver, yet are

underexpressed in these tissues across various insulin-resistant

animal models (78). In eAT, the abundance of gd T cells

decreased in mice fed with HF diet (79). In 3T3-L1 adipocytes,

NR4A3 overexpression enhances insulin-stimulated glucose

transport activity, potentially by increasing GLUT4 translocation

to the plasma membrane or augmenting insulin-mediated IRS1

tyrosine phosphorylation and Akt phosphorylation (78). However,

these studies primarily focus on NR4A in adipocytes or tissues.

Research in cervical cancer cells indicates that transcription factors

NR4A2/3 promote Vg9Vd2 T cell exhaustion (80), suggesting
TABLE 2 The role of gd T cells in T1DM.

Study type Cell type/feature Dual function/role Possible mechanisms Reference

Clinical Studies

Total peripheral blood gd T cells

↓ (Decreased in newly diagnosed T1DM
patients)

Autoimmune progression (47)
↓ (Further depleted after 1 year of
insulin therapy)

↑ (Correlated with ICA positivity) Immune dysregulation state (48)

Peripheral blood CD8+ gd T cells
↑ (Significantly increased in T1DM
patients post-insulin therapy)

Immunomodulatory effect (56)

Animal Model
(NOD mice)

Vg4+/IL-17-produing gd T cells
Protective role (predominantly):
Suppresses T1DM development

1. Secretion of IL-17
2. Promotion of regulatory CD4+ ab T
cell differentiation
3. Upregulation of TGF-b (34, 51, 52)

Vg1+/CD27-gd T cells
Pathogenic role: Promotes T1DM
development

1.Secretion of IFN-g
2.Secretion of IL-17

CD8+ gd T cells in pancreatic lymph
nodes (Post naso-respiratory insulin)

↑ Secretion of IL-10 (57, 58)

gd T cells response to insulin antigens
Insulin modulates immune responses via
gd T cells, influencing T1DM onset/
progression

1. TCR-dependent recognition of insulin
antigens
2. Recognition of insulin oxidized B:9–23
peptide (Cys19-dependent)
3. APC-independent mechanism

(59, 60)
This table summarizes the findings from clinical and animal model (NOD mice) studies on the frequency, function, and mechanisms of distinct gd T-cell subsets in T1DM. Arrows (↑ increase, ↓
decrease) indicate significant changes in cell frequency or function associated with disease state or treatment. The proposed mechanisms are derived from the referenced studies. APC, antigen-
presenting cell; ICA, islet cell antibody; NOD, non-obese diabetic; TCR, T-cell receptor; TGF-b, transforming growth factor beta.
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NR4A may regulate gd T cells and influence immune-mediated

inflammatory process in insulin resistance. Reduced adipocyte

NR4A exacerbates insulin resistance, while diminished NR4A in

adipose gd T cells might delay their exhaustion, potentially

contributing to sustained pro-inflammatory cytokine secretion

and establishing a vicious cycle of metabolic and autoimmune

inflammation. While NR4A receptors are implicated in

metabolism and inflammation, their direct role in regulating gd T

cell function within the context of diabetic insulin resistance

remains speculative and warrants dedicated investigation. If

validated, NR4A could emerge as a key therapeutic target in

T2DM. However, given divergent alterations in peripheral blood

versus adipose tissue gd T cells, NR4A expression may also exhibit

opposing patterns. Specific investigations into NR4A family

members within gd T cells under diabetic conditions remain

limited and warrant further study.

The JAK2/STAT3/RORgt pathway in gd T cells may also

contribute to T2DM pathogenesis. Enhanced expression of IL-23,

JAK2, STAT3, and RORgt is observed in PBMCs of T2DM patients

(81). RORgt is the key transcription factor for gd T cell

differentiation into IL-17–producing subsets, and this pathway is

critically involved in Th17-mediated inflammation. Compared to

non-diabetic or insulin-deficient islets, insulin-sufficient islets

demonstrate elevated IL-17 expression in both b-cells and a-cells,
though CD45+ cells are not the primary source of this IL-17 (82). In

diabetic tissues, IL-17 contributes to impaired insulin signaling and

b-cell dysfunction by activating the JNK pathway, promoting

neutrophil infiltration into islets, and enhancing the expression of

inflammatory cytokines and chemokines (83). Thus, investigating

the specific molecular mechanisms underlying IL-17 production by

CD45- gd T cells in T2DM islets represents a promising area for

future research. gd T cells might amplify AT inflammation and

accelerate IR progression via this pathway, although the precise

mechanisms require elucidation.

In summary, the role of gd T cells in T2D is marked by a critical

functional compartmentalization: systemic exhaustion in the

periphery—evidenced by reduced Vg9Vd2 T cell frequency and

impaired IFN-g production—coexists with pro-inflammatory

activation within metabolic tissues. In AT, resident gd T cells
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promote insulin resistance through secretion of IL-17 and TNF-a,
as well as by inducing pro-inflammatory macrophage polarization.

This dichotomy resolves the apparent paradox of low serum IL-17

levels alongside localized tissue inflammation. The NR4A receptor

family and the JAK2/STAT3/RORgt pathway have emerged as key

potential mechanisms linking metabolic dysregulation to gd T cell–

driven inflammation, thereby providing an integrated model of

their dual role in T2D pathogenesis (Table 3).
3.3 Gestational state and gestational
diabetes mellitus

Pregnancy represents a unique physiological state where gd T

cells contribute to localized immune responses. In healthy pregnant

women, gd T cells account for up to 50% of CD3+ T cells in the

uterus. The majority of gd T cells at the maternal-fetal interface

(MFI) express Vd1 and produce elevated levels of TGF-b and IL-10

(84). During early normal pregnancy, the Vd1 subset at the MFI

increases significantly (85), and exhibits fluctuations under

progesterone regulation (86), highlighting its hormone-responsive

functionality. Gestational diabetes mellitus (GDM), a common

complication in pregnancy, prompts interest in the relationship

between gd T cells and GDM. The exploration of gd T cells in GDM

reveals alterations but lacks mechanistic clarity. Studies indicate

alterations in lymphocyte subsets in GDM mothers and their

newborns compared to health pregnancies. GDM mothers exhibit

higher gd T cell levels than healthy pregnant controls (87, 88).

Specifically, GDM patients show increased peripheral blood total

lymphocytes and CD8+ gd T cells compared to normal glucose

tolerance (NGT) controls, and GDM newborns have a higher

proportion of CD8+ gd T cell numbers than NGT newborns (89).

While current research has not yet directly elucidated the

mechanistic pathways by which gd T cells contribute to the

pathogenesis of GDM, their known biological characteristics and

the pathophysiology of GDM suggest several promising future

research directions. First, given that progesterone regulates

fluctuations in gd T cells, the pronounced hormonal disturbances

in GDM may disrupt the precise hormonal control of endometrial
TABLE 3 Compartmentalized roles of gd T cells in type 2 diabetes.

Compartment Phenotype & function Synthesized view Reference

Peripheral Blood
↓ Vg9Vd2 T cell frequency
↓ IFN-g production (exhaustion)
↑ Cytotoxic potential

Systemic Immune Dysregulation/Exhaustion (65, 66)

Adipose Tissue (AT)
↑ gd T cell infiltration
↑ IL-17A/TNF-a production
Promotes M1 macrophage polarization

Local Pro-inflammatory Driver of Insulin Resistance (69, 74, 75)

Key Discrepancy Low Serum IL-17A vs. High Local IL-17 in tissues
Compartmentalized Inflammation: Systemic levels do not
reflect pathogenic local tissue activity

–

Potential Regulators
NR4A receptors: Link metabolism and gd T cell exhaustion.
JAK2/STAT3/RORgt: Drives IL-17 production potential. (↑
JAK2/STAT3/RORgt pathway in PBMCs of T2D patients.)

These pathways may provide a molecular basis for the
dysregulated gd T cell responses.

(78–81)
This table is organized to clarify the dichotomous role of gd T cells in T2D, contrasting their exhausted state in circulation with their pro-inflammatory activation in adipose tissue. The
“Synthesized View” provides an integrated model that reconciles these observations, while arrows (↓, decrease; ↑, increase) indicate the direction of changes reported in studies.
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Vd1 cells. This dysregulation could impair their production of

cytokines such as IL-10 and TGF-b, thereby disturbing the

immune-tolerant environment at the maternal-fetal interface and

triggering local inflammation. Second, a shift of gd T cells toward a

pro-inflammatory profile may exacerbate insulin resistance.

Approximately 80% of GDM cases arise from b-cell dysfunction
against a background of chronic insulin resistance, a

pathophysiology similar to that of T2DM (90). As significant

producers of cytokines such as IFN-g and IL-17, gd T cells in

GDM may undergo an abnormal shift toward such pro-

inflammatory subsets, amplifying systemic and placental

inflammation. This, in turn, can disrupt metabolic regulation via

cytokine-mediated mechanisms and worsen insulin resistance in

both maternal and fetal tissues. Finally, the observation that about

70% of prior GDM patients later develop T2DM (91) suggests the

potential persistence of metabolic and immune dysregulation. The

alterations in gd T cells observed during GDM pregnancy may not

be transient but rather represent a lasting immunological imprint.

These long-lived, tissue-resident Vd1 cells could sustain a low-grade

inflammatory state, partially explaining the immunological link

between GDM and subsequent T2DM. Future studies should

directly analyze the functional status, subset distribution, and

specific cytokine profiles of gd T cells at the maternal-fetal

interface and in the circulation of GDM patients to validate

these hypotheses.
4 Diabetes-induced gd T cells
dysfunction

Clinical diabetes often involves pathological states like

hyperglycemia or obesity. While gd T cells contribute to diabetes

pathogenesis, the diabetic milieu also impacts gd T cells, inducing

functional impairments that heighten susceptibility to infections

and cancer in diabetic patients.
4.1 Anti-infection defects

gd T cells constitute a crucial first line of defense against

infections, acting early before primary ab T cell responses

develop. Vg9Vd2 T cells induce potent anti-infective effects by

producing IFN-g and lysing infected target cells (e.g., influenza,

Mycobacterium tuberculosis) (65). T2DM patients are frequently

overweight or obese. Obesity is associated with reduced peripheral

Vg9Vd2 T cell numbers and weakened IFN-g–dependent antiviral
responses (65), potentially compromising anti-infective gd T cell

function in obese diabetics. Furthermore, hyperglycemia negatively

impacts innate autoimmunity via oxidative stress induction and

reduced cytokine production, increasing infection risk in DM (92–

94). The lifetime risk of progressing from Mycobacterium

tuberculosis infection to active tuberculosis (TB) significantly

increases with immunosuppressive triggers like diabetes (95).

Individuals with latent TB infection (LTBI) who have diabetes or

prediabetes show reduced gd T cells in PBMCs (96), potentially
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linked to diminished immune protection in LTBI. IL-17 is

considered vital for anti-infective defense. gd T cells secrete IL-17

early during mucosal surface infections, contributing to

antibacterial immunity (39). Murine models of various pathogens

(S. pneumoniae, S. aureus, Escherichia coli, influenza) demonstrate

that gd T cells can mobilize neutrophils via IL-17 secretion to

combat infection (97–100). The IL-17-producing CD27- gd T cell

subset rapidly expands during acute infection (34). gd T cells and

ab-gd T cells are also significant sources of IL-17 in early S. aureus

infection and experimental autoimmune encephalomyelitis (EAE)

(101, 102). Hyperglycemia in DM may impair IL-17 secretion,

thereby increasing infection risk.
4.2 Antitumor impairment

gd T cells play indispensable roles in antitumor immunity. This

section focuses on how hyperglycemia alters gd T cell antitumor

function. Vg9Vd2 T cell receptors recognize phosphorylated

metabolites accumulating in cancer cells due to dysregulated

mevalonate pathways or pharmacologic intervention (103). IL-17-

secreting gd T cells, relying on oxidative phosphorylation, often

promote tumor progression, whereas IFN-g–producing subsets,

dependent on glycolysis, associate with tumor regression and

favorable prognosis (104–106). Vg9Vd2 T cells from T2DM

patients exhibit defects in synapse formation with target tumor

cells and lytic granule polarization (21). The hyperglycemic diabetic

environment induces pathological metabolic reprogramming,

enhancing the Warburg effect (aerobic glycolysis) in Vg9Vd2 T

cells, which suppresses AMPK activity and impedes lytic granule

polarization and trafficking to the immunological synapse (21). The

AMPK pathway also functions in tumor cells. Vg9Vd2 T cells

recognize a cell surface complex containing Butyrophilin 2A1

(BTN2A1) and BTN3A1, overexpressed in malignancies (107).

This complex can be activated by elevated levels of

phosphoantigens in tumor cells. AMPK activation in tumor cells

increases BTN2A1-BTN3A complex expression, enhancing

Vg9Vd2 T cell-mediated tumor killing (107). Many antidiabetic

drugs may modulate cancer risk (108). Metformin, as an AMPK

agonist, may increase the expression of specific tumor cell surface

proteins (BTN2A1 and BTN3A), potentially enhancing recognition

by Vg9Vd2 T cells (21) (Figure 3). Various gd T cell-based

immunotherapeutic strategies, including ex vivo expanded

allogeneic gd T cells, gd T cell infusion, and antibodies, are under

clinical evaluation (103). This offers insight: deeper understanding

of DM-gd T cell interactions may enable analogous strategies to

delay disease progression and improve quality of life in diabetic

patients and those with complications.
4.3 Impaired wound healing

The skin harbors gd T cells enriched in both the epidermis and

dermis. These cells coordinate the complex interplay between

keratinocytes and inflammatory cells by secreting growth factors
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1693466
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1693466
and inflammatory mediators, thereby contributing to the regulation

of epithelial homeostasis. Skin-resident gd T cells exert protective

functions and contribute critically to skin wound healing through

multiple mechanisms, including costimulatory molecules, cytokine

secretion, and chemokine production (109). This is highly relevant

to understanding the mechanisms underlying chronic, non-healing

wounds. Under diabetic conditions, hyperglycemia and obesity

synergistically disrupt this repair network. Human chronic wound

tissues contain more gd T cells than normal tissues, but gd T cell

numbers are lower in chronic wounds of T2DM patients compared

to non-diabetic chronic wound patients (26). Studies in diabetic

mice reveal impaired IL-17 secretion by dermal Vg4+ T cells due to

reduced levels of IL-7, IL-23, and IL-1b; recruitment of Vg4+ T cells

is also diminished by attenuated CCL20/CCR6 chemokine signaling

(109, 110). Notably, this research identified that impaired mTOR

signaling in epidermal keratinocytes of diabetic mice leads to

reduced IL-7 secretion, consequently impairing Vg4+ T cell

function. The mTOR inhibitor rapamycin can impair the wound-

healing capacity of gd T cells in mice (111). Similarly, in intact skin

of streptozotocin (STZ)-induced diabetic rats, weakened mTOR

pathway activation impairs the insulin like growth factor 1 (IGF-1)/

IL-15 axis, disrupting keratinocyte-gd T cell interactions and

delaying wound closure (112, 113). Skin gd T cells are activated

via junctional adhesion molecule-like (JAML)-coxsackie and
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adenovirus receptor (CAR)costimulatory signals, inducing

secretion of cytokines like IL-2 and TNF-a (114), thereby

influencing wound healing processes involving outer-layer

keratinocytes (26). IL-2 stimulation activates Jak1 and Jak3 in

skin gd T cells of mice (115), leading to phosphorylation of

STAT5A and STAT5B, peaking at 30 minutes before rapidly

declining (116). Under high-glucose conditions, IL-2 stimulation

induces abnormally sustained STAT5A phosphorylation but fails to

elicit STAT5B phosphorylation (116). Elevated TNF-a, associated
with obesity and insulin resistance, suppresses the tissue-repair

function of skin gd T cells, whereas TNF-a blockade restores their

epithelial responsiveness (116, 117). Collectively, hyperglycemia or

obesity impairs skin gd T cell proliferation and function via STAT5,

aryl hydrocarbon receptor (AHR) signaling, mTOR, the IL-15–IGF-

1 loop, and other pathways (22, 113, 116, 118) (Table 4). This

renders gd T cells unresponsive to epithelial damage and increases

inflammation-associated gene expression.

Psoriasis, a chronic inflammatory skin disorder, is another skin-

related comorbidity of DM. CCL20-mediated recruitment of gd T

cells via the CCR6 receptor, promoting increased IL-17 secretion,

may be a key mechanism underlying delayed wound repair in

diabetes. In psoriasis, enhanced CCR6 expression on skin gd T cells

of mice facilitates greater recruitment of dermal Vg4+ T cells (123),

which drive pathology through massive IL-17 secretion. IL-17, in
FIGURE 3

Metabolic–immunological interplay in hyperglycemia-driven tumor immunity dysfunction. Hyperglycemia impairs tumor immunity through two
parallel mechanisms: (1) In gd T cells, it induces a Warburg-like metabolic shift that suppresses AMPK activity, thereby disrupting lytic granule
trafficking and reducing cytotoxicity. (2) In tumor cells, it downregulates AMPK-dependent expression of BTN2A1/BTN3A1 complexes, attenuating
Vg9Vd2 TCR–mediated tumor recognition. Metformin reverses these defects via dual AMPK activation, restoring gd T cell cytotoxicity and enhancing
BTN2A1/BTN3A1 presentation on tumor cells.
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turn, acts on keratinocytes to induce their proliferation (leading to

epidermal hyperplasia) and the production of further pro-

inflammatory cytokines and antimicrobial peptides, creating a

self-amplifying inflammatory loop (124). This same pro-

inflammatory pathway is hijacked in diabetic skin, contributing to

impaired wound healing. CCL20 expression is elevated in the skin

of T2DM patients (125), and dermal gd T cells increase in the hind

paws of 21-week-old db/db mice (126). The resulting IL-17-driven

chronic inflammation disrupts the orderly process of wound repair

by preventing the transition from the inflammatory to the

proliferative phase. Chronic inflammation driven by pro-

inflammatory cytokines from immune cells can stall diabetic

wound repair (127). However, findings regarding gd T cell

numbers in wounds show discrepancies between studies. While

Vg4+ T cells play a significant role in chronic wound healing, both

increasing and inhibiting IL-17A have been observed to accelerate

wound healing in diabetic mice (109). This paradox may be

explained by the concentration-dependent and temporal-specific

role of IL-17; at early stages or low levels, it may aid in host defense

and stem cell activation, whereas its persistent, high-level secretion

is unequivocally pathogenic. Variations in wound pathology

severity across non-healing models and limited sample sizes likely

contribute to these conflicting results, highlighting the need for

future research to explore whether skin gd T cell loss or recruitment

relates to other underlying factors. Furthermore, preventing chronic

wounds may require a specific cytokine balance. These studies

provide novel insights into the mechanisms of refractory wound
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formation in diabetic patients. As the autoimmunity mechanisms

by which skin gd T cells function in diabetic refractory wounds are

further elucidated, fine-tuning cytokine levels holds promise for

overcoming the therapeutic challenges of these wounds.
5 Immunomodulatory effects of
antidiabetic drugs on gd T cells

Current research on the mechanisms of antidiabetic drugs is

shifting from solely metabolic regulation towards dual

immunometabolic perspectives. As pivotal bridging cells, gd T

cells represent a functional target for multiple therapeutic

approaches (Table 5). 1a,25(OH)2D3 is the active form of

Vitamin D, which is also known as Calcitriol. It improves

systemic insulin resistance by suppressing inflammatory

responses in gd T cells. Acting via the vitamin D receptor (VDR),

1a,25(OH)2D3 promotes FBP1 expression, inhibits glycolysis in

human Vd2 T cells, and consequently reduces pro-inflammatory

cytokine production (105). Mucosal insulin administration,

inducing regulatory CD8+ gd T cells, represents another potential

strategy for preventing human T1DM (57). PBMCs from T2DM

patients treated with saxagliptin, a dipeptiyl peptidase 4 (DPP-4)

inhibitor, exhibit reduced levels of IL-23, JAK2, STAT3, and RORgt
(81). As RORgt is a key transcription factor for gd T cells, these cells

may be modulated by DPP-4 inhibitors, potentially contributing to

improvements in glucose homeostasis and metabolic control in
TABLE 4 Immunologic mechanisms of diabetic wound healing failure in gd T cells: dysregulated pathways and compromised gd T cell-epithelial
communication.

Molecular
factors/
pathways

Physiological role in wound
progression or wound healing

Alterations in obesity/
hyperglycemia/diabetes
models

Outcome Reference

AHR

Alleviates inflammation and maintains skin
homeostasis by suppressing inflammatory
genes and upregulating genes for cell
morphology and ion homeostasis

↓ (AHR signaling in obesity)

↑ Expression of certain inflammatory
genes (e.g., IFN-g, GZMF, PDL-1);
Epidermal gd T cell accumulation and
cytokine release, contributing to delayed
wound repair

(22)

STAT5
STAT5A and STAT5B undergo rapid,
transient phosphorylation

Prolonged STAT5A phosphorylation
under hyperglycemia; Absence of
STAT5B phosphorylation

↓ Proliferation of skin gd T cells (116)

IGF-1
Modulates keratinocyte secretion of IL-15,
promoting wound closure

↓ (mTOR pathway impairment reduces
IL-15 activation and IGF-1 levels; Basal
keratinocyte layer in diabetic skin and
foot ulcers lacks)

Negative impact on keratinocyte
proliferation; Delayed wound closure

(109, 119–121)

Akt/mTOR
↑ (Total and phosphorylated protein levels
of Akt, mTOR, p70S6K, 4E-BP1 and eIF4E
in wound)

↓ (Total and phosphorylated protein
levels of Akt, mTOR, p70S6K, 4E-BP1);
↑ (Phosphorylated eIF4E post-wounding)

↓ Number of dual-positive fibroblasts;
Delayed re-epithelialization, impaired
neovascularization, reduced synthesis of
growth factors, collagen, and ECM

(113, 116)

TNF-a Induces inflammation ↑ TNF-a levels
Skin gd T cells become unresponsive to
tissue damage

(122)

TGF-b1 Critical cytokine for wound repair TGF-b1 fails to increase
Skin gd T cells in obesity and metabolic
disease fail to upregulate TGF-b1 at the
wound edge

(116)
This table summarizes the physiological role of specific molecular factors and pathways in normal wound healing and their documented alterations in models of obesity, hyperglycemia, and
diabetes. Arrows (↑ increase, ↓ decrease) indicate the direction of change in expression, phosphorylation, or activity of the specified factor in the diabetic state compared to healthy controls. The
outcomes listed are the proposed cellular and physiological consequences of these molecular alterations, culminating in delayed wound repair. Key abbreviations: AHR, aryl hydrocarbon
receptor; ECM, extracellular matrix; eIF4E, eukaryotic initiation factor 4E; GZMF, Granzyme F; IGF-1, insulin-like growth factor 1; 4E-BP1, eIF4E-binding protein 1; p70S6K, p70 S6 kinase.
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T2DM. Additionally, psoriasis exhibits a significant association with

DM (131, 132). A prospective case study found that applying GLP-1

receptor agonists (GLP-1 RAs) in T2DM patients with comorbid

psoriasis reduced dermal gd T cell numbers and IL-17 production,

correlating with improved clinical severity of psoriasis (128). Given

that psoriasis involves elevated gd T cells and IL-17 production,

these findings suggest that GLP-1 RAs may offer benefits for

psoriasis management alongside glucose-lowering and weight-loss

effects. This finding provides a novel rationale for selecting glucose-

lowering regimens in diabetic patients, specifically favoring GLP-1

RAs for T2DM patients with concurrent psoriasis (Figure 4).

Further research reveals abundant GLP-1 receptor expression on

murine small intestinal gd T cells (129, 130), suggesting that GLP-1

RAs may directly modulate gd T cells and influence autoimmune

responses, potentially delaying diabetes onset and progression.

However, specific mechanistic evidence for this remains lacking

and warrants investigation.

Therapeutically harnessing gd T cells requires precision

targeting of autoimmune-specific pathways. In T1DM, agents

targeting IL-17 and related pathways, such as ustekinumab and

ixekizumab, are currently in Phase II/III recruiting stage (39, 133,

134). Beyond monoclonal antibodies, safe and effective oral small

molecule drugs (SMDs) targeting molecules like RORgt (39) hold
future clinical promise, although such agents have not yet advanced

to clinical studies. While IL-17 and RORgt are closely linked to gd T
cells, they are not gd T cell-specific targets, as other immune cells

also utilize these pathways. The potential of gd T cells as early

warning biomarkers or immunomodulatory targets remains

underexplored, particularly for high-risk diabetes populations.

Given that up to 50% of individuals with prediabetes progress to
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diabetes within 5 years (135), strategies to delay or reverse this

progression are crucial. Significant potential also exists for novel gd
T cell-targeted drug development. Local insulin injection accelerates

diabetic foot ulcer healing by stimulating AKT and ERK pathways

(136). As gd T cells recognize certain insulin antigens and their TCR

activation involves MAPK pathways, investigating whether insulin

promotes gd T cell function to aid wound healing in diabetes

presents a promising avenue for future research. Collectively,

substantial gaps remain in developing clinically applicable gd T

cell-based strategies for preventing or treating diabetes, demanding

further exploration.
6 Discussion

This review comprehensively summarizes the dual regulatory

roles of gd T cells in DM and its complications. On the one hand, gd
T cells contribute to diabetes pathogenesis through the secretion of

effector molecules like IL-17, with functions exhibiting subset-

specific characteristics. On the other hand, the diabetic

pathological milieu reciprocally impairs gd T cell functions in

anti-infection, antitumor autoimmunity, and tissue repair.

gd T cells may also modulate regulatory T cells (Tregs) or other

immune cells, thereby potentially alleviating certain pathological

processes. In AT of mice, both gd T cells and Tregs increase with

age, with gd T cells and their secretion of IL-17 providing a

conditioning signal for Treg accumulation (69). During influenza

virus clearance or AT thermoregulation, IL-17-secreting gd T cells

may promote Treg accumulation via IL-33 upregulation (69, 137).

Studies have identified impaired function or reduced numbers of
TABLE 5 Dual metabolic-immune targeting in DM and comorbidities: gd T cell-directed therapeutic strategies.

Therapeutic
agent

Target/
context

Effect on gd T cells Key mechanism(s) Therapeutic significance Reference

1a,25(OH)2D3
T2DM Insulin
Resistance

Suppresses inflammatory
response

Activates VDR receptor → ↑ FBP1
expression;
Inhibits glycolysis → ↓ Pro-
inflammatory cytokine production

Improves systemic inflammation
and insulin sensitivity

(105)

GLP-1 Receptor
Agonists

T2DM patients
with comorbid
psoriasis

↓ Dermal gd T cell numbers
Reduces IL-17 (key pathogenic factor
in psoriasis) production of gd T cells

Ameliorates skin inflammation and
metabolic parameters

(128)

Murine intestinal
gd T cells

? (No direct evidence)
High GLP-1 receptor expression →

Potential for direct modulation
Novel immunometabolic regulatory
target

(129, 130)

Aerosol Insulin
T1DM prevention
(Animal/Clinical
exploration)

Induces expansion of
regulatory CD8+ gd T cells

Promotes immune tolerance/
suppresses autoimmunity: ↑ IL-10-
secreting CD8+ gd T cells in
pancreatic lymph nodes

Potential prevention of T1DM
onset

(57)

DPP-4 Inhibitors
(e.g., Saxagliptin)

T2DM patients ? (No direct evidence)
Suppresses key pathway (JAK2/
STAT3/RORgt) for Th17/gdT17 cell
differentiation → ↓ IL-17

Reduces inflammatory state;
Potential improvement in islet
function

(81)
This table summarizes the immunomodulatory effects of various diabetic therapeutics on gd T cell populations, their proposed mechanisms of action, and their therapeutic significance. A
question mark (?) indicates that direct evidence for an effect on gd T cells is currently lacking, and the proposed mechanism is inferred from related pathways or cell types. Key abbreviations:
DPP-4, dipeptidyl peptidase-4; FBP1, fructose-1,6-bisphosphatase 1; GLP-1, glucagon-like peptide-1; JAK2, Janus kinase 2; RORgt, retinoic acid receptor-related orphan receptor gamma-t;
STAT3, signal transducer and activator of transcription 3; T1DM, Type 1 diabetes mellitus; T2DM, Type 2 diabetes mellitus; Th17, T helper 17 cell; VDR, vitamin D receptor.
↑ (Upward arrow): Indicates upregulation, increase, or enhancement.
↓ (Downward arrow): Indicates downregulation, decrease, or suppression.
→ (Rightward arrow): Denotes leads to, results in, or promotes a subsequent biological effect or outcome.
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Tregs in both T1DM and T2DM patients (138, 139). Tregs can also

improve insulin resistance by suppressing the activity of Th1, Th2,

and Th17 cells (138). Therefore, gd T cell–mediated promotion of

Treg accumulation and functional restoration via IL-17A secretion

may represent a potential strategy for future diabetes

immunotherapy. In addition to their direct antitumor functions,

gd T cells also exert indirect antitumor effects by modulating ab T

cell activity (140).

Research on the role of gd T cells in DM still faces significant

limitations that require resolution. Firstly, current investigations

inadequately characterize the functions of human gd T cell subsets;

findings derived frommouse subsets cannot be directly extrapolated

to humans. The specific role of the tissue-resident Vd1 subset in

diabetes and its complications remains unclear. This ambiguity

stems partly from the difficulty in obtaining samples, as Vd1 cells

primarily reside in the skin and MALT. Utilizing organoid models

to simulate tissue-resident subset function may offer a solution.

Furthermore, the Vd1 subset is scarce in peripheral blood and does

not recognize phosphoantigens, presenting challenges for direct ex

vivo expansion and culture in research settings. Secondly, the

precise role of gd T cells across different stages of diabetes

progression remains poorly defined. The dynamic changes and

underlying mechanisms of gd T cells, from the stage of impaired

glucose tolerance in prediabetes to the onset of acute or chronic

diabetic complications, remain poorly understood.

While these unresolved complexities pose challenges,

therapeutically targeting the metabolic susceptibility and TCR-
Frontiers in Immunology 13
dependent reprogramming of gd T cells may help translate

mechanistic insights into future clinical applications for DM and

its comorbidities. Elucidating the context-dependent duality of gd T
cells in DM not only deciphers the immunometabolic crosstalk at

the cellular frontier but also unlocks precision-targeted therapies.
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FIGURE 4

Dermal gd T cell hyperactivation in T2DM-associated psoriasis and GLP-1RA intervention. Self-perpetuating inflammatory loop: Keratinocyte-derived
CCL20 recruits dermal gd T cells, whose IL-17 secretion further stimulates keratinocytes to upregulate CCL20, by binding to CCR6 receptors.
Cytokine and metabolic amplifiers: DC-derived IL-23 polarizes gd T cells toward a RORgt+IL-17+ phenotype, while T2DM-associated hyperglycemia
synergistically enhances both CCL20 production and IL-17 output. GLP-1 receptor agonists (GLP-1RAs) interrupt this cycle by modulating metabolic
and inflammatory pathways.
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Glossary

DM iabetes mellitus
Frontiers in Immunol
T1DM Type 1 diabetes mellitus
T2DM Type 2 diabetes mellitus
AT Adipose tissue
IR Insulin resistance
MALT Mucosa-associated lymphoid tissue
MHC Major histocompatibility complex
HMBPP (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate
IL Interleukin
IFN-g Interferon-gamma
TCR T cell receptor
DETC Dendritic epidermal T cell
DC Dendritic cell
PAMP Pathogen-associated molecular pattern
PRR Pattern-recognition receptor
ERK/MAPK Extracellular signal–regulated kinase/mitogen-activated

protein kinase
NK Natural killer
NR4A Nuclear receptor subfamily 4 group A
ogy 18
GDM Gestational diabetes mellitus
NOD Non-obese diabetic (mouse)
ICA Islet cell antibody
PBMCs Peripheral blood mononuclear cells
DKD Diabetic kidney disease
mTOR Mechanistic target of rapamycin
AMPK AMP-activated protein kinase
BTN Butyrophilin
BTN2A1 Butyrophilin subfamily 2 member A1
BTN3A Butyrophilin subfamily 3 member A
STAT Signal transducer and activator of transcription
RORgt Retinoic acid receptor-related orphan receptor gamma t
AHR Aryl hydrocarbon receptor
IGF-1 Insulin-like growth factor 1
HF diet High-fat diet
GLUT4 Glucose transporter type 4
IRS1 Insulin receptor substrate 1
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