? frontiers ‘ Frontiers in Immunology

@ Check for updates

OPEN ACCESS

EDITED BY
Dimitri Poddighe,
VinUniversity, Vietnam

REVIEWED BY
Surya Prakash Pandey,

University of Pittsburgh, United States
Karen Cerosaletti,

Benaroya Research Institute, United States
Sally C. Kent,

University of Massachusetts Medical School,
United States

Alice Cheung,

Singapore General Hospital, Singapore
Veronika Niederlova,

Institute of Molecular Genetics (ASCR),
Czechia

*CORRESPONDENCE
Qiuyue Wang
wqycmul23@l63.com

These authors have contributed
equally to this work and share
first authorship

RECEIVED 27 August 2025
ACCEPTED 29 October 2025
PUBLISHED 18 November 2025

CITATION

Wang B, Li Q and Wang Q (2025) v8 T cells
in diabetes mellitus: dual roles and
therapeutic implications.

Front. Immunol. 16:1693466.

doi: 10.3389/fimmu.2025.1693466

COPYRIGHT
© 2025 Wang, Li and Wang. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Immunology

TYPE Review
PUBLISHED 18 November 2025
D01 10.3389/fimmu.2025.1693466

v0 T cells in diabetes
mellitus: dual roles and
therapeutic implications

Bing Wang', Qi Li" and Qiuyue Wang*

Department of Endocrinology and Metabolism, The First Affiliated Hospital of China Medical
University, Shenyang, Liaoning, China

Diabetes mellitus is primarily categorized into type 1 diabetes mellitus (TIDM) and
type 2 diabetes mellitus (T2DM), which exhibit distinct pathogenic mechanisms.
T1DM is characterized by an absolute deficiency of insulin secretion,
predominantly resulting from the autoimmune-mediated destruction of
pancreatic beta cells. In contrast, T2DM arises from a combination of insulin
resistance in peripheral tissues and a compensatory insulin secretory response
that ultimately becomes inadequate. The pathogenesis of diabetes mellitus is
orchestrated through bidirectional crosstalk between autoimmune aggression
and metabolic derangement. yd T cells, innate-like lymphocytes bridging innate
and adaptive immunity, play pivotal roles in tissue homeostasis, inflammation,
and immunity through cytokine production and cytotoxicity. This review
comprehensively examines the dual roles of yd T cells across diabetes mellitus
types. Furthermore, ¥8 T cells contribute to diabetic complications and are
profoundly affected by the diabetic milieu, leading to defective anti-infection
and anti-tumor immunity. We discuss emerging therapeutic strategies targeting
v T cells or their effector pathways and highlight key knowledge gaps regarding
subset-specific functions, dynamic changes during disease progression, and
tissue-resident y& T cell roles. Elucidating these mechanisms may provide a
strong foundation for developing novel ¥y T cell-based immunotherapies for
diabetes mellitus and its complications.
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1 Introduction

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by persistent
hyperglycemia. DM embodies a paradigm of autoimmune-metabolic crosstalk. Type 1
diabetes mellitus (TIDM) is defined by autoimmune destruction of pancreatic B-cells,
while type 2 diabetes mellitus (T2DM) features metabolism-triggered autoinflammation.
According to the 2021 Global Burden of Disease analysis, approximately 591 million
individuals worldwide live with diabetes, a figure projected to reach 1.031 billion by 2050
(1). This escalating prevalence underscores DM’s status as a critical public health challenge.
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Suboptimal glycemic control predisposes patients to multi-system
complications affecting ocular, renal, integumentary, and other
organ systems (2, 3). Furthermore, DM significantly elevates
mortality risks from infections and malignancies (4), with this
systemic vulnerability linked to immune dysregulation. The
innate immune system is involved in the pathogenesis of DM and
its chronic complications (5). Within this context, Y3 T cells emerge
as unexplored arbiters of diabetic autoimmunity in TIDM and as
drivers of obesity-related inflammation in T2DM. Serving as a
bridge between innate and adaptive immunity (6), Y0 T cells exert
unique functions in tissue immunosurveillance and inflammatory
modulation through major histocompatibility complex (MHC)
-unrestricted activation and cytokine secretion, thereby regulating
off T cells and other immune effectors (7). Notably, the diabetic
milieu may reciprocally impair ¥3 T cell function.

As an endocrine-metabolic disease driven primarily by
autoimmunity, Y8 T cells may mediate either protective or
destructive effects on pancreatic B-cells in TIDM. yd T cells also
critically interact with obesity-induced insulin resistance, which is
the fundamental mechanism in T2DM development. Visceral
adipose tissue (AT) in obese individuals shows marked ¥d T cell
expansion, accounting for over 95% of tissue-resident immune cells
(8), highlighting their dominance in the adipose niche. IL-17, a key
cytokine secreted by ¥ T cells in AT (9, 10), suppresses glucose
uptake in skeletal muscle and impairs insulin sensitivity in
hepatocytes (11), positioning yd T cells as drivers of obesity-
related inflammation in T2DM. Additionally, Y8 T cells
participate in diabetic complications through epithelial repair
mechanisms in lung and skin tissues (6), potentially influencing
infection susceptibility and wound healing in DM. While ¥8 T cells
exhibit context-dependent pro- or anti-inflammatory roles in DM,
their subset-specific functions, temporal dynamics, and therapeutic
targeting potential remain incompletely defined. Elucidating these
mechanisms may provide a critical foundation for novel
immunomodulatory strategies against DM.

2 Gamma delta T cell
2.1 Origin and development

YO T cells are innate-like lymphocytes that fundamentally differ
from conventional off T cells in developmental origin and
activation mechanisms. T cell development broadly follows a
sequential process. Initially, hematopoietic stem cells differentiate
into lymphoid stem cells within the bone marrow hematopoietic
inductive microenvironment. These lymphoid stem cells further
develop into pro-T cells, which then migrate via the bloodstream to
the thymus (12). Within the thymic microenvironment, pro-T cells
differentiate sequentially through the double-negative (DN),
double-positive (DP), and single-positive (SP) stages, ultimately
maturing into functional T cells (13). The pro-T cell stage
represents the branch point at which aff T cells and yd T cells
begin to diverge into distinct lineages. During differentiation, bone
marrow-derived progenitor T cells migrate to the thymus where
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they undergo TCR gene rearrangement at the pro-T cell stage. In
the thymus, aff T cells constitute over 95% of the total T cell
population, whereas 3 T cells account for less than 5%. ¥0 T cells
arise from DN thymocytes and undergo TCRy and TCRS
rearrangement prior to TCRP recombination, subsequently
expressing the YOTCR/CD3 complex on their plasma membrane
(14). Notably, rare thymocytes co-express both ¥ and aff TCRs
(15). Their antigen recognition mechanisms differ significantly
from those of afy T cells. ¥§ T cells directly recognize diverse
antigens in an MHC-independent manner. This non-classical
recognition stems from unique TCR diversity generation
mechanisms. Functionally, Y8 T cells rapidly secrete cytokines or
directly lyse target cells via the NKG2D-ligand pathway, playing
pivotal roles in anti-pathogen defense, tumor immunosurveillance
and tissue repair (16). The high conservation of TCR repertoires,
tissue distribution, and functional subsets between human and
murine Y3 T cells establishes mice as essential model organisms
for mechanistic studies.

2.2 Subsets

Human Y3 T cells are classified into V31, V2, and V33 subsets
based on & chain usage. From embryonic stages to childhood, the
relative frequencies of the two primary human ¥0 T cell subsets
(V01 and V&2) undergo dynamic shifts (Figure 1A). The earliest
rearrangements in the gamma/delta T cell lineage involve the V9
and V2 gene segments. Evidence of this process appears in the fetal
liver during gestational 5-6 weeks and in the fetal thymus from the
8th week onward (17). Following this early development, Vy9V&2*
T cells expand to constitute the majority of the gamma/delta
repertoire by midgestation (20-30 weeks) (17). From birth to
approximately 10 years of age, the peripheral 8 T cell
compartment undergoes substantial maturation, marked not only
by an increase in total numbers but also by a dramatic
reconstitution of its subset composition, wherein the Vy9V32
population expands from a small fraction to a majority (>75%
circulating Y0 T cells) (18). In contrast to their minority status in
adults, V81 T cells represent the dominant ¥ T cell subset in
umbilical cord blood at birth (18). V&1 T cells, which account for
only a minority in peripheral blood, are enriched in barrier tissues
such as the skin and mucosa-associated lymphoid tissue (MALT),
and recognize antigens presented by CD1 molecules; V&2 T cells,
which dominate in peripheral blood and lymphoid organs, are
primarily recognize phosphoantigens derived from microbial
metabolism (e.g., HMBPP) (6, 19, 20). Zoledronate is a
bisphosphonate. V31 T cells are non-responsive to
bisphosphonates or phosphoantigens. Culturing Y3 T cells under
high-glucose conditions requires an initial in vitro expansion step
(Figure 1B). The established method of expanding V&2 T cells in
vitro with zoledronate and IL-2 has made this subset a major subject
of study in diabetic autoimmunity research (21). This subset-
specific distribution and functional specialization underscore the
need to avoid overgeneralization when studying y8 T cells in
diabetic complications.
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(A) Dynamic reconstitution of human y8 T cell subsets from fetal development to childhood. The earliest rearrangements involve the Vy9 and V&2

gene segments. Although Vy9Va2 T cells expand to form a major subset by mid-gestation,

blood at birth. During postnatal development, the peripheral Y8 T cell compartment undergoes a substantial reconstitution, characterized by a

marked expansion of the Vy9V82 population, which becomes the predominant subset (>75

age. (B) Isolation, in vitro expansion, and high-glucose treatment of ¥3 T cells from diabetic models. Peripheral blood mononuclear cells (PBMCs)

are isolated from peripheral venous blood via density-gradient centrifugation. Cultures are

IL-2 to promote yd T cell activation and proliferation. After 10-14 days of expansion, ¥d T cells display robust proliferation, whereas other immune
cell subsets progressively undergo apoptosis. Finally, the expanded y8 T cells are exposed to high-glucose conditions to mimic the diabetic
microenvironment and assess their functional responses. (C). Spatiotemporal ontogeny and tissue distribution of murine y3 T cell subsets. During
embryogenesis, the first wave of 8 T cells expresses monoclonal Vy5V81 TCRs, which migrate to and establish permanent residency within the
epidermis. Subsequent Vy6" subsets traffic to the dermis, peritoneal cavity, and adipose tissue, while Vy4" subsets emerge concurrently and localize
to the lung, skin dermis, and lymph nodes. In the perinatal period, Vy7* subsets colonize the intestinal tract, whereas polyclonal Vy1* and Vy4™*

subsets distribute broadly across peripheral lymphoid organs.
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Murine 3 T cell subsets are primarily classified according to Vy
chain usage. Developmentally, Y0 T cells represent the earliest T cell
population emerging in the embryonic mouse thymus. During
embryogenesis, the first wave expresses monoclonal Vy5V31
TCRs that home to and permanently reside in the skin epidermis
(17). Subsequently, additional subsets develop and localize to
specific niches (Figure 1C). The skin epidermis harbors a
specialized subset termed dendritic epidermal T cells (DETC),
originating from embryonic Vy3V31 precursors (22). Postnatally,
polyclonal CD27% Vyl and CD27" Vy4 subsets mature
predominantly in the liver and lymph nodes (16). Functional
specialization of murine Y3 T cells is governed by Vy chains,
establishing mice as essential experimental models (17, 23).
Despite conserved tissue distribution and phenotypic functions
between human and murine yd T cells, no strict subset
equivalency exists. Researchers must judiciously select models and
subsets based on target tissue microenvironments and specific
biological questions (Table 1).

Beyond the aforementioned major subtype classification based
on TCR chains, 8 T cells can also be categorized into distinct
subsets according to their cluster of differentiation (CD) profiles.
Fundamentally, the T-cell receptor (TCR) complex consists of
receptor subunits (either TCRo or TCRYd) and the associated
CD3 subunits (CD3Y, , €, and {) (31). Consequently, like all mature
T cells, Y0 T cells uniformly express the CD3 complex. ¥0 T cells
predominantly exhibit a CD4 CD8  double-negative phenotype,
with a minor subset expressing CD8" (32). A single-cell RNA
sequencing study in NOD mice revealed an abnormal expansion
of double-negative T cells (33), although the specific role of Y6 T
cells within this population requires further investigation.
Furthermore, Different functional ¥ cell subsets can be classified
by CD27. Mature TCRof3" thymocytes homogeneously express
CD27, while Y3 T cells represent only a small subset of the
CD27" thymocyte population. Human V82 T cells can be
functionally subdivided into naive (CD45RA*CD27"), central
memory (CD45RA'CD27"), effector memory (CD45RA CD27°),

10.3389/fimmu.2025.1693466

and terminally differentiated effector (often CD45RA'CD27 or
other combinations) phenotypes (17). CD27  thymocytes
(approximately 10% of all yd thymocytes) preferentially
differentiate into IL-17A-secreting cells and CD27" subsets
primarily generate IFN-y (34).

2.3 Effector functions

vd T cells can be activated by specific cytokines to produce
effector cytokines. While essential for tissue homeostasis at
physiological levels, excessive concentrations of pro-inflammatory
cytokines, such as TNF-o. and IL-17, drive chronic inflammation
(6). IFN-y production requires synergistic IL-12 and IL-18
signaling, and IL-17A secretion is induced by IL-23 and IL-1B
(19). Notably, single cytokine stimulation fails to elicit robust
responses (24). Although Thl7 cells are primary IL-17A
producers, Y3 T cells serve as significant contributors, particularly
during early mucosal immune defense. Murine Y8 T cell
development critically depends on IL-7 and IL-15 (35). IL-15 and
IL-2 drive IFN-y" subsets (Vy5" DETC, Vy7*, Vy1*), and IL-7
promotes IL-17A" y8 T cells (predominantly CD27 Vy6") (17) (25).

YS T cells have several activation pathways (Figure 2). The
JAK2/STAT3/RORYt axis implicated in inflammatory and fibrotic
diseases operates in immune cells (36-38). However, previous
studies on this pathway have mostly focused on Th17 cells, with
relatively few studies on ¥ T cells that secrete IL-17. When
pathogen-associated molecular patterns (PAMP) bind to
pathogen recognition receptors(PRRs), DCs or macrophages
release IL-23 and IL-1P directly triggers yd T cell IL-17A
secretion without TCR involvement (39). In addition, the TCR
signaling pathway can also regulate the secretion of cytokines by yd
T cells. According to some research findings, Y0 T cells may utilize
molecular mechanisms during TCR signaling activation that differ
from those of oy T cells (40, 41). Although this pathway has not
been fully elucidated, the signaling mechanisms of afy TCR are

TABLE 1 Human and mice y3 T cell subsets: tissue localization and dominant cytokine profiles.

Major tissue distribution Predominant cytokine Reference
Vye Mucosal tissue/Lung IL-17
vy7 Intestinal epithelium IFN-y, TNF-o
Va1 Vy5* (DETC) Epidermis IFN-7y, TNF-a, (16, 17, 20, 24-29)
Vyl Lamina propria of the intestine IFN-y
Vyl Inflammatory tissue/Brain(Traumatic brain injury) IL-10, TGF-B
vyl Spleen/Lymph nodes/Liver IFN-y
V82 (Vy9Ve2) (17, 19, 20)
V4 Peripheral blood/Liver/Secondary lymphoid organs IFN-y/TNF-a/IL-17
V383" (Rare) - Liver/Intestine IL-17/TFN-y (17, 20, 30)

This table summarizes the predominant subsets, their major tissue localization, and key effector cytokines based on the literature. DETC, dendritic epidermal T cells. Cytokines listed (e.g., IFN-y/
IL-17) indicate the predominant ones produced by the subset, with multiple cytokines indicating potential co-production or context-dependent expression. The murine Vy nomenclature is

provided as the functional counterpart to the human subsets where applicable.
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considered largely similar to those of Y0 TCR (14). Therefore, the Y5
TCR signaling pathway can be understood within the framework
established for oy TCR signaling. Kinases act as critical drivers of
TCR signaling. ZAP-70, a member of the Syk family kinases, is
recruited to the TCR complex and the transmembrane adaptor
protein LAT upon TCR activation, where it undergoes
phosphorylation (42, 43). Phosphorylated LAT then provides
docking sites for signaling enzymes such as PLCyl. Subsequently,
PLCy1 hydrolyzes phosphatidylinositol-4,5-bisphosphate (PIP,)
into inositol-1,4,5-trisphosphate (IP;) and diacylglycerol (DAG).
DAG recruits Ras guanine nucleotide-releasing protein 1
(RasGRP1) to the plasma membrane, leading to activation of the
Ras-ERK pathway (14). In y8 T cells, the main transcription factors
regulating the expression of IL-17 or IFN-y downstream of the TCR
signaling pathway are RORyt or Tbx21(T-bet), which are partially
transduced through the extracellular-signal related kinases/
mitogen-activated protein kinases (ERK/MAPK) pathway
(25).Functionally constrained by their developmental
programming, Y0 T cell effector fates remain largely unaltered in
response to exogenous cytokines. Physiological cytokine secretion
maintains tissue homeostasis, whereas pathological overproduction
contributes to skin inflammation, atopic dermatitis, and
autoimmune arthritis (44, 45). Therapeutic IL-17 blockade
attenuates such inflammation (46), highlighting ¥ T cell subset
modulation as a promising, though still investigational,
intervention strategy.

10.3389/fimmu.2025.1693466

3 Gamma delta T cells in diabetes
mellitus pathogenesis

3.1 The dual role and therapeutic potential
of Y0 T cells in TIDM

Several clinical studies suggest a potential association between
Y0 T cells and TIDM. Newly diagnosed T1DM patients exhibit a
reduced mean proportion of peripheral blood yd T cells, with
further depletion observed after one year of insulin therapy (47).
In islet cell antibody (ICA)-positive relatives of TIDM probands,
who represent a high-risk group for future diabetes development, a
high percentage of Y5 T cells is associated with ICA positivity (48,
49), potentially reflecting stage-specific immune alterations. In
T1DM animal models, distinct Y8 T cell subsets have been
specifically investigated. The non-obese diabetic (NOD) mouse
serves as an ideal model for studying the immune basis and
treatment of TIDM (50). Research indicates that Vy4™ v8 T cells
in NOD mice can suppress T1IDM development by producing IL-17
and facilitating the differentiation of regulatory CD4" of T cells in
pancreatic lymph nodes; Vyl™ cells, biased toward IFN-y
production, thereby promote a pro-inflammatory
microenvironment conducive to TIDM pathogenesis (51). Within
NOD mouse islets, the majority of infiltrating yd T cells are IL-17-
producing CD27" cells, while the IFN-y-producing subset expresses
CD27 (34, 52). Although the proportion of peripheral ¥d T cells
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recognition via the y3 TCR activates the ERK/MAPK signaling cascade, driving transcriptional polarization toward RORyt in IL-17—producing subsets.
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increases in NOD mice, predominantly IL-17-producing cells, they
do not exacerbate diabetes; instead, they confer protection by
upregulating TGF-f production (53). A gluten-free diet enriches
splenic naive CD27" y8 T cells in mice, potentially reducing type 1
diabetes susceptibility by preventing their differentiation into pro-
autoreactive effector cells (54). Collectively, these findings
demonstrate a dual role for y§ T cells in TIDM pathogenesis,
primarily governed by their effector cytokine profile. IL-17-
producing Y8 T cells appear primarily protective, suppressing islet
inflammation. In contrast, the IFN-y-producing subset promotes
disease progression. Notably, ¥0 T cells coordinate with o8 T cells to
drive TIDM development but are insufficient to independently
cause disease (52). The role of IL-17 remains particularly
challenging to define, as studies using IL-17 blockade have
reported either protective effects or no significant impact, while in
diabetic complications it demonstrates a dual nature (55). These
discrepancies appear to depend on the experimental animal model
employed, the timing of intervention, and the specific cytokine
microenvironment, highlighting the need for further investigation
in future studies.

Insulin therapy remains a cornerstone treatment for TIDM and
has been shown to possess immunomodulatory properties. TIDM
patients show a significant increase in peripheral blood CD8™Yd T
cells after 3-6 months of insulin treatment (56), suggesting the
expansion of a potential regulatory subset induced by exogenous
insulin. This concept is strongly supported by animals studies in
which mucosal insulin administration promotes immune tolerance.
Aerosol insulin induces autoimmune tolerance mediated by
regulatory CD8" y8 T cells, preventing TIDM in mice (57).
Similarly, naso-respiratory insulin administration in NOD mice
increases IL-10-producing CD8" ¥ T cells in pancreatic lymph
nodes (58). The underlying mechanism may involve the unique
antigen-recognition capability of Y8 T cells. The TCRs of NOD
mouse Y0 T cells exhibit specific reactivity to multiple insulin
antigens, likely through an APC-independent mechanism (59),
indicating TCR-dependent recognition. For instance, ¥ TCRs can
recognize the insulin oxidized B:9-23 peptide, naturally generated
during insulin degradation in {3 cells, which contains the essential
Cys19 residue for y0 T cell responses (60). Based on these findings, a
mechanistic model can be proposed. Mucosal insulin
administration may enhance the local presentation or availability
of insulin-derived peptides (such as B:9-23) in respiratory mucosa.
This setting likely promotes the engagement of insulin-reactive Y T
cell TCRs, leading to their activation and functional polarization.
These activated CD8" y8 T cells acquire a regulatory phenotype,
characterized by secretion of the potent anti-inflammatory cytokine
IL-10. These cells subsequently migrate to pancreatic lymph nodes,
where local IL-10 production may suppress the activation and
effector functions of autoreactive oy T cells (61), thereby
reestablishing immune tolerance and preventing [ cell
destruction. Collectively, these studies demonstrate that insulin,
beyond its metabolic role, may exert immunomodulatory effects
that counter T1IDM pathogenesis. Y3 T cells may modulate immune
function through potential responses to insulin antigens, potentially
influencing T1IDM onset and progression.
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The role of ¥ T cells in TIDM is gradually being elucidated
(Table 2). However, current human studies present limitations.
Firstly, clinical assessments predominantly measure total o T cells
without distinguishing functionally heterogeneous subsets (V31/
V§2), hindering the precise identification of protective versus
pathogenic subsets and contributing to observed discrepancies.
Defining the Y3 T cell subset repertoire in human T1DM patients
remains a future objective. Additionally, the lack of phenotypic and
functional tracking of islet-resident ¥d T cells in humans impedes
understanding of their direct role in islet autoimmunity. The
inherent difficulty in obtaining pancreatic tissue samples from
T1DM patients, who rarely undergo surgical intervention,
presents a major obstacle. Currently, there is experience in
procuring pancreatic tissue from individuals with T1DM.
Pancreatic tissue samples from donors with TIDM can be
obtained through nPOD (https://npod.org). Studies utilizing
laparoscopic pancreatic biopsy have revealed immunological
changes in the islets of newly diagnosed TIDM patients, without
reporting major complications (62). However, the Diabetes Virus
Detection Study (DiViD) collected larger pancreatic tissue samples
via caudal pancreatectomy from adults recently diagnosed with
T1DM, which resulted in some patients experiencing postoperative
bleeding and leakage of amylase-rich pancreatic juice (63).
Consequently, it was deemed unethical to continue the study.
Significant challenges remain in the acquisition of pancreatic
tissue from patients with TIDM.

3.2y T cells in T2DM: balancing systemic
exhaustion and tissue inflammation

Studies have shown that patients with T2DM exhibit increased
monocyte counts, reflecting exacerbated chronic inflammation and
immune activation, which promotes insulin resistance through the
secretion of pro-inflammatory cytokines (64). Insulin resistance
(IR), a central feature of obesity-related metabolic dysregulation,
manifests as reduced insulin responsiveness in adipose, hepatic, and
muscle tissues, ultimately leading to B-cell failure and T2DM onset.
Obesity-induced chronic low-grade inflammation is a key driver of
IR. The chronic inflammatory process is embedded within an
immune-mediated proinflammatory environment, wherein y§ T
cells exhibit complex immunoregulatory roles. First, both obese
individuals and obese T2DM patients display significant
dysfunction in the peripheral VyoV&2 T cell subset, characterized
by diminished IFN-y secretion (65, 66). In obese individuals, the
proportion of VY9V82 T cells in late apoptosis (Annexin V* PI") is
significantly higher compared to those in early apoptosis (Annexin
V" PI) (65). This accelerated apoptotic process in VYOV82 T cells
under obese conditions represents a potential mechanism
contributing to their depletion in obese individuals. In addition,
IL-2 stimulation can reverse this IFN-y secretory defect, suggesting
reversible functional suppression (65). Furthermore, the study
indicated that obesity does not impair the capacity of VyovVa2 T
cells to produce IFN-y upon strong HDMAPP stimulation. This
observation may also partially explain the improved fasting glucose,
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TABLE 2 The role of 3 T cells in TLDM.

Study type

Cell type/feature

Dual function/role

10.3389/fimmu.2025.1693466

Possible mechanisms Reference

| (Decreased in newly diagnosed TIDM

patients)

Total peripheral blood y8 T cells

Clinical Studies insulin therapy)

1 (Correlated with ICA positivity)

Peripheral blood CD8" v8 T cells

Vy4*/IL-17-produing ¥ T cells

1 (Significantly increased in TIDM
patients post-insulin therapy)

Protective role (predominantly):
Suppresses T1IDM development

| (Further depleted after 1 year of

Autoimmune progression (47)
Immune dysregulation state (48)
Immunomodulatory effect (56)

1. Secretion of IL-17
2. Promotion of regulatory CD4" o3 T
cell differentiation

Animal Model
(NOD mice)

3. Upregulation of TGF-p (34, 51, 52)
VYI'/CD27 98 T cells Pathogenic role: Promotes TIDM l.Secret?on of IFN-y
development 2.Secretion of IL-17
CD8" y3 T cells i tic lymph
Yo esin par}crea 164 ymP Secretion of IL-10 (57, 58)
nodes (Post naso-respiratory insulin)
1. TCR-dependent recognition of insulin
Insulin modulates immune responses via = antigens
Y8 T cells response to insulin antigens = y8 T cells, influencing T1IDM onset/ 2. Recognition of insulin oxidized B:9-23 (59, 60)

progression

peptide (Cys19-dependent)
3. APC-independent mechanism

This table summarizes the findings from clinical and animal model (NOD mice) studies on the frequency, function, and mechanisms of distinct yd T-cell subsets in TIDM. Arrows (1 increase, |
decrease) indicate significant changes in cell frequency or function associated with disease state or treatment. The proposed mechanisms are derived from the referenced studies. APC, antigen-
presenting cell; ICA, islet cell antibody; NOD, non-obese diabetic; TCR, T-cell receptor; TGF-, transforming growth factor beta.

HbAlc, and insulin sensitivity observed in postmenopausal women
with prediabetes and osteopenia following alendronate treatment
(67). Bisphosphonates may restore the capacity of VY9V82 T cells to
produce cytokines such as IFN-y through their activation.
Consequently, restoring peripheral ¥d T cell function represents a
promising therapeutic avenue for T2DM. Within peripheral blood
mononuclear cells (PBMCs) of T2DM patients, Y0 T cells
demonstrate increased cytotoxicity and expansion (68). In
contrast to their systemic exhaustion, Y0 T cells within adipose
tissue (AT) exhibit a pro-inflammatory, tissue-resident phenotype.
In AT of mice, two major ¥ T cell populations exist: a
CD3%°VCD27" subset secreting IFN-y, and a CD3MehcD27”
subset producing IL-17A and TNF-a (69). Adipose-resident y3 T
cells serve as the primary source of IL-17A in adipose tissue. These
IL-17-producing yd T cells exhibit robust diurnal rhythms in RORyt
and IL-17A expression, playing a critical role in systemic metabolic
homeostasis by sustaining de novo lipogenesis (DNL) (70).
Dysregulation of DNL is associated with metabolic disorders such
as obesity and type 2 diabetes (71).The proportion of ¥d T cells
increases in the livers of individuals with non-alcoholic
steatohepatiti (72). Paradoxically, clinical studies report
significantly lower serum IL-17A levels in T2DM patients
compared to normoglycemic controls (73), indicating a potential
dissociation between local tissue inflammation and systemic
immune responses, reflecting compartmentalized inflammation.
This may arise from systemic immune exhaustion in diabetes
reducing serum IL-17, while persistent activation of 8 T cells
within the local adipose microenvironment elevates IL-17. This
dichotomy may be explained by chronic metabolic insults which
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globally dampen immune responsiveness, leading to reduced
cytokine output in circulation. Conversely, within specific niches
like inflamed adipose tissue, local pro-inflammatory cytokines
provide potent, compartmentalized signals that drive IL-17
production from resident yd T cells. Furthermore, in obese mice,
the predominant 3 T cell subsets accumulating in epididymal AT
(eAT) are Vy4" and Vy6™ T cells, which promote eAT inflammation
by inhibiting the accumulation of anti-inflammatory M2
macrophages (74). M1 macrophages, conversely, enhance
adipocyte inflammation and reduce insulin sensitivity via TNF-o
production (75). High-fat (HF) diet-fed TCRS”’" mice exhibit
reduced M1 macrophage accumulation and improved glucose
clearance and insulin sensitivity post-insulin injection compared
to TCRS*'* mice (74), suggesting adipose-resident y§ T cells
promote insulin resistance.

NR4A nuclear receptors regulate hepatic gluconeogenesis and
maintain inflammatory balance (76, 77). Dysregulated hepatic
gluconeogenesis significantly impacts T2DM. NR4A1 and NR4A3
enhance insulin sensitivity in skeletal muscle and liver, yet are
underexpressed in these tissues across various insulin-resistant
animal models (78). In eAT, the abundance of Y0 T cells
decreased in mice fed with HF diet (79). In 3T3-L1 adipocytes,
NR4A3 overexpression enhances insulin-stimulated glucose
transport activity, potentially by increasing GLUT4 translocation
to the plasma membrane or augmenting insulin-mediated IRS1
tyrosine phosphorylation and Akt phosphorylation (78). However,
these studies primarily focus on NR4A in adipocytes or tissues.
Research in cervical cancer cells indicates that transcription factors
NR4A2/3 promote Vy9V82 T cell exhaustion (80), suggesting
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NR4A may regulate y0 T cells and influence immune-mediated
inflammatory process in insulin resistance. Reduced adipocyte
NR4A exacerbates insulin resistance, while diminished NR4A in
adipose y0 T cells might delay their exhaustion, potentially
contributing to sustained pro-inflammatory cytokine secretion
and establishing a vicious cycle of metabolic and autoimmune
inflammation. While NR4A receptors are implicated in
metabolism and inflammation, their direct role in regulating & T
cell function within the context of diabetic insulin resistance
remains speculative and warrants dedicated investigation. If
validated, NR4A could emerge as a key therapeutic target in
T2DM. However, given divergent alterations in peripheral blood
versus adipose tissue Y0 T cells, NR4A expression may also exhibit
opposing patterns. Specific investigations into NR4A family
members within Y0 T cells under diabetic conditions remain
limited and warrant further study.

The JAK2/STAT3/RORyt pathway in ¥ T cells may also
contribute to T2DM pathogenesis. Enhanced expression of IL-23,
JAK2, STAT3, and RORt is observed in PBMCs of T2DM patients
(81). RORyt is the key transcription factor for y§ T cell
differentiation into IL-17-producing subsets, and this pathway is
critically involved in Th17-mediated inflammation. Compared to
non-diabetic or insulin-deficient islets, insulin-sufficient islets
demonstrate elevated IL-17 expression in both -cells and o.-cells,
though CD45" cells are not the primary source of this IL-17 (82). In
diabetic tissues, IL-17 contributes to impaired insulin signaling and
B-cell dysfunction by activating the JNK pathway, promoting
neutrophil infiltration into islets, and enhancing the expression of
inflammatory cytokines and chemokines (83). Thus, investigating
the specific molecular mechanisms underlying IL-17 production by
CD45 yd T cells in T2DM islets represents a promising area for
future research. Y0 T cells might amplify AT inflammation and
accelerate IR progression via this pathway, although the precise
mechanisms require elucidation.

In summary, the role of ¥d T cells in T2D is marked by a critical
functional compartmentalization: systemic exhaustion in the
periphery—evidenced by reduced Vy9V32 T cell frequency and
impaired IFN-y production—coexists with pro-inflammatory
activation within metabolic tissues. In AT, resident Y0 T cells

TABLE 3 Compartmentalized roles of v3 T cells in type 2 diabetes.

Compartment Phenotype & function

1 VY9Vd2 T cell frequency
Peripheral Blood | IFN-y production (exhaustion)

1 Cytotoxic potential

1 98 T cell infiltration
1 IL-17A/TNF-o production
Promotes M1 macrophage polarization

Adipose Tissue (AT)

Key Discrepancy Low Serum IL-17A vs. High Local IL-17 in tissues

NR4A receptors: Link metabolism and ¥ T cell exhaustion.
JAK2/STAT3/RORt: Drives IL-17 production potential. (1
JAK2/STAT3/RORYt pathway in PBMCs of T2D patients.)

Potential Regulators

10.3389/fimmu.2025.1693466

promote insulin resistance through secretion of IL-17 and TNF-q,
as well as by inducing pro-inflammatory macrophage polarization.
This dichotomy resolves the apparent paradox of low serum IL-17
levels alongside localized tissue inflammation. The NR4A receptor
family and the JAK2/STAT3/RORYt pathway have emerged as key
potential mechanisms linking metabolic dysregulation to Y5 T cell-
driven inflammation, thereby providing an integrated model of
their dual role in T2D pathogenesis (Table 3).

3.3 Gestational state and gestational
diabetes mellitus

Pregnancy represents a unique physiological state where 6 T
cells contribute to localized immune responses. In healthy pregnant
women, Y0 T cells account for up to 50% of CD3" T cells in the
uterus. The majority of Y8 T cells at the maternal-fetal interface
(MFTI) express V31 and produce elevated levels of TGF-3 and IL-10
(84). During early normal pregnancy, the V81 subset at the MFI
increases significantly (85), and exhibits fluctuations under
progesterone regulation (86), highlighting its hormone-responsive
functionality. Gestational diabetes mellitus (GDM), a common
complication in pregnancy, prompts interest in the relationship
between YO T cells and GDM. The exploration of Y3 T cells in GDM
reveals alterations but lacks mechanistic clarity. Studies indicate
alterations in lymphocyte subsets in GDM mothers and their
newborns compared to health pregnancies. GDM mothers exhibit
higher ¥ T cell levels than healthy pregnant controls (87, 88).
Specifically, GDM patients show increased peripheral blood total
lymphocytes and CD8" y8 T cells compared to normal glucose
tolerance (NGT) controls, and GDM newborns have a higher
proportion of CD8" y8 T cell numbers than NGT newborns (89).

While current research has not yet directly elucidated the
mechanistic pathways by which y§ T cells contribute to the
pathogenesis of GDM, their known biological characteristics and
the pathophysiology of GDM suggest several promising future
research directions. First, given that progesterone regulates
fluctuations in Y9 T cells, the pronounced hormonal disturbances
in GDM may disrupt the precise hormonal control of endometrial

Synthesized view Reference
Systemic Immune Dysregulation/Exhaustion (65, 66)

Local Pro-inflammatory Driver of Insulin Resistance (69, 74, 75)
Compartmentalized Inflammation: Systemic levels do not ~

reflect pathogenic local tissue activity

These pathways may provide a molecular basis for the (78-81)

dysregulated Y0 T cell responses.

This table is organized to clarify the dichotomous role of Y3 T cells in T2D, contrasting their exhausted state in circulation with their pro-inflammatory activation in adipose tissue. The

“Synthesized View” provides an integrated model that reconciles these observations, while arrows (|, decrease; 1, increase) indicate the direction of changes reported in studies.
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V&1 cells. This dysregulation could impair their production of
cytokines such as IL-10 and TGEF-f, thereby disturbing the
immune-tolerant environment at the maternal-fetal interface and
triggering local inflammation. Second, a shift of 3 T cells toward a
pro-inflammatory profile may exacerbate insulin resistance.
Approximately 80% of GDM cases arise from B-cell dysfunction
against a background of chronic insulin resistance, a
pathophysiology similar to that of T2DM (90). As significant
producers of cytokines such as IFEN-y and IL-17, Y8 T cells in
GDM may undergo an abnormal shift toward such pro-
inflammatory subsets, amplifying systemic and placental
inflammation. This, in turn, can disrupt metabolic regulation via
cytokine-mediated mechanisms and worsen insulin resistance in
both maternal and fetal tissues. Finally, the observation that about
70% of prior GDM patients later develop T2DM (91) suggests the
potential persistence of metabolic and immune dysregulation. The
alterations in yd T cells observed during GDM pregnancy may not
be transient but rather represent a lasting immunological imprint.
These long-lived, tissue-resident V31 cells could sustain a low-grade
inflammatory state, partially explaining the immunological link
between GDM and subsequent T2DM. Future studies should
directly analyze the functional status, subset distribution, and
specific cytokine profiles of Y8 T cells at the maternal-fetal
interface and in the circulation of GDM patients to validate
these hypotheses.

4 Diabetes-induced o T cells
dysfunction

Clinical diabetes often involves pathological states like
hyperglycemia or obesity. While y§ T cells contribute to diabetes
pathogenesis, the diabetic milieu also impacts Y0 T cells, inducing
functional impairments that heighten susceptibility to infections
and cancer in diabetic patients.

4.1 Anti-infection defects

Y0 T cells constitute a crucial first line of defense against
infections, acting early before primary ofy T cell responses
develop. VyY9V82 T cells induce potent anti-infective effects by
producing IFN-y and lysing infected target cells (e.g., influenza,
Mpycobacterium tuberculosis) (65). T2DM patients are frequently
overweight or obese. Obesity is associated with reduced peripheral
Vy9V2 T cell numbers and weakened IFN-y-dependent antiviral
responses (65), potentially compromising anti-infective Y T cell
function in obese diabetics. Furthermore, hyperglycemia negatively
impacts innate autoimmunity via oxidative stress induction and
reduced cytokine production, increasing infection risk in DM (92—
94). The lifetime risk of progressing from Mycobacterium
tuberculosis infection to active tuberculosis (TB) significantly
increases with immunosuppressive triggers like diabetes (95).
Individuals with latent TB infection (LTBI) who have diabetes or
prediabetes show reduced Y0 T cells in PBMCs (96), potentially

Frontiers in Immunology

10.3389/fimmu.2025.1693466

linked to diminished immune protection in LTBI. IL-17 is
considered vital for anti-infective defense. y0 T cells secrete I1L-17
early during mucosal surface infections, contributing to
antibacterial immunity (39). Murine models of various pathogens
(S. pneumoniae, S. aureus, Escherichia coli, influenza) demonstrate
that ¥§ T cells can mobilize neutrophils via IL-17 secretion to
combat infection (97-100). The IL-17-producing CD27" yd T cell
subset rapidly expands during acute infection (34). 8 T cells and
of-yd T cells are also significant sources of IL-17 in early S. aureus
infection and experimental autoimmune encephalomyelitis (EAE)
(101, 102). Hyperglycemia in DM may impair IL-17 secretion,
thereby increasing infection risk.

4.2 Antitumor impairment

¥d T cells play indispensable roles in antitumor immunity. This
section focuses on how hyperglycemia alters ¥ T cell antitumor
function. Vy9Vd2 T cell receptors recognize phosphorylated
metabolites accumulating in cancer cells due to dysregulated
mevalonate pathways or pharmacologic intervention (103). IL-17-
secreting 0 T cells, relying on oxidative phosphorylation, often
promote tumor progression, whereas IFN-y-producing subsets,
dependent on glycolysis, associate with tumor regression and
favorable prognosis (104-106). Vy9Vd2 T cells from T2DM
patients exhibit defects in synapse formation with target tumor
cells and lytic granule polarization (21). The hyperglycemic diabetic
environment induces pathological metabolic reprogramming,
enhancing the Warburg effect (aerobic glycolysis) in Vyové2 T
cells, which suppresses AMPK activity and impedes lytic granule
polarization and trafficking to the immunological synapse (21). The
AMPK pathway also functions in tumor cells. Vy9V32 T cells
recognize a cell surface complex containing Butyrophilin 2A1
(BTN2A1) and BTN3A1, overexpressed in malignancies (107).
This complex can be activated by elevated levels of
phosphoantigens in tumor cells. AMPK activation in tumor cells
increases BTN2A1-BTN3A complex expression, enhancing
VYVE2 T cell-mediated tumor killing (107). Many antidiabetic
drugs may modulate cancer risk (108). Metformin, as an AMPK
agonist, may increase the expression of specific tumor cell surface
proteins (BTN2A1 and BTN3A), potentially enhancing recognition
by Vy9V82 T cells (21) (Figure 3). Various Y0 T cell-based
immunotherapeutic strategies, including ex vivo expanded
allogeneic Y0 T cells, ¥8 T cell infusion, and antibodies, are under
clinical evaluation (103). This offers insight: deeper understanding
of DM-Yd T cell interactions may enable analogous strategies to
delay disease progression and improve quality of life in diabetic
patients and those with complications.

4.3 Impaired wound healing
The skin harbors yd T cells enriched in both the epidermis and

dermis. These cells coordinate the complex interplay between
keratinocytes and inflammatory cells by secreting growth factors
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and inflammatory mediators, thereby contributing to the regulation
of epithelial homeostasis. Skin-resident yd T cells exert protective
functions and contribute critically to skin wound healing through
multiple mechanisms, including costimulatory molecules, cytokine
secretion, and chemokine production (109). This is highly relevant
to understanding the mechanisms underlying chronic, non-healing
wounds. Under diabetic conditions, hyperglycemia and obesity
synergistically disrupt this repair network. Human chronic wound
tissues contain more Y0 T cells than normal tissues, but Y3 T cell
numbers are lower in chronic wounds of T2DM patients compared
to non-diabetic chronic wound patients (26). Studies in diabetic
mice reveal impaired IL-17 secretion by dermal Vy4"™ T cells due to
reduced levels of IL-7, IL-23, and IL-1p; recruitment of Vy4" T cells
is also diminished by attenuated CCL20/CCR6 chemokine signaling
(109, 110). Notably, this research identified that impaired mTOR
signaling in epidermal keratinocytes of diabetic mice leads to
reduced IL-7 secretion, consequently impairing Vy4" T cell
function. The mTOR inhibitor rapamycin can impair the wound-
healing capacity of Y0 T cells in mice (111). Similarly, in intact skin
of streptozotocin (STZ)-induced diabetic rats, weakened mTOR
pathway activation impairs the insulin like growth factor 1 (IGF-1)/
IL-15 axis, disrupting keratinocyte-yd T cell interactions and
delaying wound closure (112, 113). Skin ¥d T cells are activated
via junctional adhesion molecule-like (JAML)-coxsackie and

10.3389/fimmu.2025.1693466

adenovirus receptor (CAR)costimulatory signals, inducing
secretion of cytokines like IL-2 and TNF-o (114), thereby
influencing wound healing processes involving outer-layer
keratinocytes (26). IL-2 stimulation activates Jakl and Jak3 in
skin Y0 T cells of mice (115), leading to phosphorylation of
STAT5A and STATS5B, peaking at 30 minutes before rapidly
declining (116). Under high-glucose conditions, IL-2 stimulation
induces abnormally sustained STAT5A phosphorylation but fails to
elicit STAT5B phosphorylation (116). Elevated TNF-o,, associated
with obesity and insulin resistance, suppresses the tissue-repair
function of skin Y0 T cells, whereas TNF-a blockade restores their
epithelial responsiveness (116, 117). Collectively, hyperglycemia or
obesity impairs skin Y0 T cell proliferation and function via STATS5,
aryl hydrocarbon receptor (AHR) signaling, mTOR, the IL-15-1GF-
1 loop, and other pathways (22, 113, 116, 118) (Table 4). This
renders y0 T cells unresponsive to epithelial damage and increases
inflammation-associated gene expression.

Psoriasis, a chronic inflammatory skin disorder, is another skin-
related comorbidity of DM. CCL20-mediated recruitment of Y8 T
cells via the CCR6 receptor, promoting increased IL-17 secretion,
may be a key mechanism underlying delayed wound repair in
diabetes. In psoriasis, enhanced CCR6 expression on skin ¥0 T cells
of mice facilitates greater recruitment of dermal Vy4™ T cells (123),
which drive pathology through massive IL-17 secretion. IL-17, in
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turn, acts on keratinocytes to induce their proliferation (leading to
epidermal hyperplasia) and the production of further pro-
inflammatory cytokines and antimicrobial peptides, creating a
self-amplifying inflammatory loop (124). This same pro-
inflammatory pathway is hijacked in diabetic skin, contributing to
impaired wound healing. CCL20 expression is elevated in the skin
of T2DM patients (125), and dermal yd T cells increase in the hind
paws of 21-week-old db/db mice (126). The resulting IL-17-driven
chronic inflammation disrupts the orderly process of wound repair
by preventing the transition from the inflammatory to the
proliferative phase. Chronic inflammation driven by pro-
inflammatory cytokines from immune cells can stall diabetic
wound repair (127). However, findings regarding ¥ T cell
numbers in wounds show discrepancies between studies. While
V4" T cells play a significant role in chronic wound healing, both
increasing and inhibiting IL-17A have been observed to accelerate
wound healing in diabetic mice (109). This paradox may be
explained by the concentration-dependent and temporal-specific
role of IL-17; at early stages or low levels, it may aid in host defense
and stem cell activation, whereas its persistent, high-level secretion
is unequivocally pathogenic. Variations in wound pathology
severity across non-healing models and limited sample sizes likely
contribute to these conflicting results, highlighting the need for
future research to explore whether skin Y3 T cell loss or recruitment
relates to other underlying factors. Furthermore, preventing chronic
wounds may require a specific cytokine balance. These studies
provide novel insights into the mechanisms of refractory wound

10.3389/fimmu.2025.1693466

formation in diabetic patients. As the autoimmunity mechanisms
by which skin Y0 T cells function in diabetic refractory wounds are
further elucidated, fine-tuning cytokine levels holds promise for
overcoming the therapeutic challenges of these wounds.

5 Immunomodulatory effects of
antidiabetic drugs on yo T cells

Current research on the mechanisms of antidiabetic drugs is
shifting from solely metabolic regulation towards dual
immunometabolic perspectives. As pivotal bridging cells, y0 T
cells represent a functional target for multiple therapeutic
approaches (Table 5). 10,25(0OH),D5 is the active form of
Vitamin D, which is also known as Calcitriol. It improves
systemic insulin resistance by suppressing inflammatory
responses in Y0 T cells. Acting via the vitamin D receptor (VDR),
10,25(0OH),D; promotes FBP1 expression, inhibits glycolysis in
human V82 T cells, and consequently reduces pro-inflammatory
cytokine production (105). Mucosal insulin administration,
inducing regulatory CD8" Y8 T cells, represents another potential
strategy for preventing human T1DM (57). PBMCs from T2DM
patients treated with saxagliptin, a dipeptiyl peptidase 4 (DPP-4)
inhibitor, exhibit reduced levels of IL-23, JAK2, STAT3, and RORyt
(81). As RORYt is a key transcription factor for yd T cells, these cells
may be modulated by DPP-4 inhibitors, potentially contributing to
improvements in glucose homeostasis and metabolic control in

TABLE 4 Immunologic mechanisms of diabetic wound healing failure in y8 T cells: dysregulated pathways and compromised y8 T cell-epithelial

communication.

Molecular
factors/
pathways

Physiological role in wound

progression or wound healing =~

Alleviates inflammation and maintains skin
homeostasis by suppressing inflammatory

Alterations in obesity/
hyperglycemia/diabetes

Reference

1 Expression of certain inflammatory
genes (e.g., IFN-y, GZMF, PDL-1);

AHR . | (AHR signaling in obesity) Epidermal y3 T cell accumulation and (22)
genes and upregulating genes for cell . a .
. . cytokine release, contributing to delayed
morphology and ion homeostasis .
wound repair
. Prolonged STAT5A phosphorylation
TAT5A TAT5B 5
STAT5 S .5 and § > 'undergo rapid under hyperglycemia; Absence of | Proliferation of skin Y3 T cells (116)
transient phosphorylation .
STATS5B phosphorylation
| (mTOR pathway impairment reduces
IGE-1 Modulates keratinocyte secretion of IL-15, IL-15 activation and IGF-1 levels; Basal Negative impact on keratinocyte (109, 119-121)
promoting wound closure keratinocyte layer in diabetic skin and proliferation; Delayed wound closure ’
foot ulcers lacks)
Number of dual-positive fibroblasts;
1 (Total and phosphorylated protein levels | (Total and phosphorylated protein i)elaim;d ire(; itllllel‘f l(':;;tli‘;; ix:) a;i;
Akt/mTOR of Akt, mTOR, p70S6K, 4E-BP1 and e[F4E  levels of Akt, mTOR, p70S6K, 4E-BP1); yed re-epithel > impaire (113, 116)
X d 1 (Phosphorylated eIF4E post ding) neovascularization, reduced synthesis of
in woun, osphorylated e ost-woundin
phory P 8 growth factors, collagen, and ECM
Skin ¥8 T cells b ive t
TNF-a Induces inflammation 1 TNF-o levels i Y0 L cells become unresponsive to (122)
tissue damage
Skin ¥3 T cells in obesity and metabolic
TGF-B1 Critical cytokine for wound repair TGF-B1 fails to increase disease fail to upregulate TGF-B1 at the  (116)

wound edge

This table summarizes the physiological role of specific molecular factors and pathways in normal wound healing and their documented alterations in models of obesity, hyperglycemia, and
diabetes. Arrows (1 increase, | decrease) indicate the direction of change in expression, phosphorylation, or activity of the specified factor in the diabetic state compared to healthy controls. The
outcomes listed are the proposed cellular and physiological consequences of these molecular alterations, culminating in delayed wound repair. Key abbreviations: AHR, aryl hydrocarbon
receptor; ECM, extracellular matrix; eIF4E, eukaryotic initiation factor 4E; GZMF, Granzyme F; IGF-1, insulin-like growth factor 1; 4E-BP1, eIF4E-binding protein 1; p70S6K, p70 S6 kinase.
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T2DM. Additionally, psoriasis exhibits a significant association with
DM (131, 132). A prospective case study found that applying GLP-1
receptor agonists (GLP-1 RAs) in T2DM patients with comorbid
psoriasis reduced dermal yd T cell numbers and IL-17 production,
correlating with improved clinical severity of psoriasis (128). Given
that psoriasis involves elevated yd T cells and IL-17 production,
these findings suggest that GLP-1 RAs may offer benefits for
psoriasis management alongside glucose-lowering and weight-loss
effects. This finding provides a novel rationale for selecting glucose-
lowering regimens in diabetic patients, specifically favoring GLP-1
RAs for T2DM patients with concurrent psoriasis (Figure 4).
Further research reveals abundant GLP-1 receptor expression on
murine small intestinal Y0 T cells (129, 130), suggesting that GLP-1
RAs may directly modulate Y3 T cells and influence autoimmune
responses, potentially delaying diabetes onset and progression.
However, specific mechanistic evidence for this remains lacking
and warrants investigation.

Therapeutically harnessing ¥ T cells requires precision
targeting of autoimmune-specific pathways. In TIDM, agents
targeting IL-17 and related pathways, such as ustekinumab and
ixekizumab, are currently in Phase II/IIT recruiting stage (39, 133,
134). Beyond monoclonal antibodies, safe and effective oral small
molecule drugs (SMDs) targeting molecules like RORyt (39) hold
future clinical promise, although such agents have not yet advanced
to clinical studies. While IL-17 and RORYt are closely linked to y3 T
cells, they are not 3 T cell-specific targets, as other immune cells
also utilize these pathways. The potential of Y3 T cells as early
warning biomarkers or immunomodulatory targets remains
underexplored, particularly for high-risk diabetes populations.
Given that up to 50% of individuals with prediabetes progress to

10.3389/fimmu.2025.1693466

diabetes within 5 years (135), strategies to delay or reverse this
progression are crucial. Significant potential also exists for novel Yo
T cell-targeted drug development. Local insulin injection accelerates
diabetic foot ulcer healing by stimulating AKT and ERK pathways
(136). As YO T cells recognize certain insulin antigens and their TCR
activation involves MAPK pathways, investigating whether insulin
promotes y0 T cell function to aid wound healing in diabetes
presents a promising avenue for future research. Collectively,
substantial gaps remain in developing clinically applicable y6 T
cell-based strategies for preventing or treating diabetes, demanding
further exploration.

6 Discussion

This review comprehensively summarizes the dual regulatory
roles of Y3 T cells in DM and its complications. On the one hand, Y&
T cells contribute to diabetes pathogenesis through the secretion of
effector molecules like IL-17, with functions exhibiting subset-
specific characteristics. On the other hand, the diabetic
pathological milieu reciprocally impairs Y0 T cell functions in
anti-infection, antitumor autoimmunity, and tissue repair.

vd T cells may also modulate regulatory T cells (Tregs) or other
immune cells, thereby potentially alleviating certain pathological
processes. In AT of mice, both yd T cells and Tregs increase with
age, with 0 T cells and their secretion of IL-17 providing a
conditioning signal for Treg accumulation (69). During influenza
virus clearance or AT thermoregulation, IL-17-secreting ¥0 T cells
may promote Treg accumulation via IL-33 upregulation (69, 137).
Studies have identified impaired function or reduced numbers of

TABLE 5 Dual metabolic-immune targeting in DM and comorbidities: y3 T cell-directed therapeutic strategies.

Therapeutic  Target/ . S
P 9 Effect on y0 T cells = Key mechanism(s) Therapeutic significance Reference
agent context
Activates VDR receptor — 1 FBP1
10,25(0H), D, TZI?M Insulin Suppresses inflammatory expf’eésion; ' ImpervesA systenTiAc iAnﬂammation (105)
Resistance response Inhibits glycolysis — | Pro- and insulin sensitivity
inflammatory cytokine production
T2DM patient:
. pa 1er'1 s Reduces IL-17 (key pathogenic factor | Ameliorates skin inflammation and
with comorbid | Dermal ¥8 T cell numbers | | o ducti 5 T cell boli (128)
GLP-1 Receptor psoriasis in psoriasis) production of Y5 T cells metabolic parameters
Agonists
Murine intestinal ? (No direct evidence) High C‘;LP-I re‘ceptor expres-sion — Novel immunometabolic regulatory (129, 130)
Y8 T cells Potential for direct modulation target
X Promotes immune tolerance/
TIDM prevention |, ion of toimmunity: 1 1L-10 Potential tion of TIDM
nduces expansion o suppresses autoimmunity: -10- otential prevention o
Aerosol Insulin (Animal/Clinical P . PP X . ty: X P (57)
. regulatory CD8" y8 T cells secreting CD8" vd T cells in onset
exploration) .
pancreatic lymph nodes
ke hy AK2 R infl s
DPP-4 Inhibitors ' ‘ ' Suppresses key pathway (J. / educe?s 1141 ammatory sFat'e
L. T2DM patients ? (No direct evidence) STAT3/RORYt) for Th17/y8T17 cell Potential improvement in islet (81)
(e.g., Saxagliptin) . . .
differentiation — | 1L-17 function

This table summarizes the immunomodulatory effects of various diabetic therapeutics on y8 T cell populations, their proposed mechanisms of action, and their therapeutic significance. A
question mark (?) indicates that direct evidence for an effect on ¥ T cells is currently lacking, and the proposed mechanism is inferred from related pathways or cell types. Key abbreviations:
DPP-4, dipeptidyl peptidase-4; FBP1, fructose-1,6-bisphosphatase 1; GLP-1, glucagon-like peptide-1; JAK2, Janus kinase 2; RORYt, retinoic acid receptor-related orphan receptor gamma-t;
STATS3, signal transducer and activator of transcription 3; TIDM, Type 1 diabetes mellitus; T2DM, Type 2 diabetes mellitus; Th17, T helper 17 cell; VDR, vitamin D receptor.

1 (Upward arrow): Indicates upregulation, increase, or enhancement.
| (Downward arrow): Indicates downregulation, decrease, or suppression.

> (Rightward arrow): Denotes leads to, results in, or promotes a subsequent biological effect or outcome.
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FIGURE 4

Dermal y8 T cell hyperactivation in T2DM-associated psoriasis and GLP-1RA intervention. Self-perpetuating inflammatory loop: Keratinocyte-derived
CCL20 recruits dermal y3 T cells, whose IL-17 secretion further stimulates keratinocytes to upregulate CCL20, by binding to CCR6 receptors.
Cytokine and metabolic amplifiers: DC-derived IL-23 polarizes y8 T cells toward a RORYyt*IL-17* phenotype, while T2DM-associated hyperglycemia
synergistically enhances both CCL20 production and IL-17 output. GLP-1 receptor agonists (GLP-1RAs) interrupt this cycle by modulating metabolic

and inflammatory pathways.

Tregs in both TIDM and T2DM patients (138, 139). Tregs can also
improve insulin resistance by suppressing the activity of Thl, Th2,
and Th17 cells (138). Therefore, ¥d T cell-mediated promotion of
Treg accumulation and functional restoration via IL-17A secretion
may represent a potential strategy for future diabetes
immunotherapy. In addition to their direct antitumor functions,
YO T cells also exert indirect antitumor effects by modulating oy T
cell activity (140).

Research on the role of ¥d T cells in DM still faces significant
limitations that require resolution. Firstly, current investigations
inadequately characterize the functions of human Y3 T cell subsets;
findings derived from mouse subsets cannot be directly extrapolated
to humans. The specific role of the tissue-resident V31 subset in
diabetes and its complications remains unclear. This ambiguity
stems partly from the difficulty in obtaining samples, as V31 cells
primarily reside in the skin and MALT. Utilizing organoid models
to simulate tissue-resident subset function may offer a solution.
Furthermore, the V81 subset is scarce in peripheral blood and does
not recognize phosphoantigens, presenting challenges for direct ex
vivo expansion and culture in research settings. Secondly, the
precise role of Y8 T cells across different stages of diabetes
progression remains poorly defined. The dynamic changes and
underlying mechanisms of Y0 T cells, from the stage of impaired
glucose tolerance in prediabetes to the onset of acute or chronic
diabetic complications, remain poorly understood.

While these unresolved complexities pose challenges,
therapeutically targeting the metabolic susceptibility and TCR-
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dependent reprogramming of Y3 T cells may help translate
mechanistic insights into future clinical applications for DM and
its comorbidities. Elucidating the context-dependent duality of Y8 T
cells in DM not only deciphers the immunometabolic crosstalk at
the cellular frontier but also unlocks precision-targeted therapies.
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DM

T1DM

T2DM

AT

MALT
MHC

HMBPP

IEN-y
TCR
DETC
DC
PAMP
PRR

ERK/MAPK

NK

NR4A

iabetes mellitus

Type 1 diabetes mellitus

Type 2 diabetes mellitus

Adipose tissue

Insulin resistance

Mucosa-associated lymphoid tissue
Major histocompatibility complex
(E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate
Interleukin

Interferon-gamma

T cell receptor

Dendritic epidermal T cell

Dendritic cell

Pathogen-associated molecular pattern
Pattern-recognition receptor

Extracellular signal-regulated kinase/mitogen-activated
protein kinase

Natural killer

Nuclear receptor subfamily 4 group A
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GDM
NOD
ICA
PBMCs
DKD
mTOR
AMPK
BTN
BTN2A1
BTN3A
STAT
RORYt
AHR
IGF-1
HF diet
GLUT4

IRS1

10.3389/fimmu.2025.1693466

Gestational diabetes mellitus

Non-obese diabetic (mouse)

Islet cell antibody

Peripheral blood mononuclear cells

Diabetic kidney disease

Mechanistic target of rapamycin
AMP-activated protein kinase

Butyrophilin

Butyrophilin subfamily 2 member Al
Butyrophilin subfamily 3 member A

Signal transducer and activator of transcription
Retinoic acid receptor-related orphan receptor gamma t
Aryl hydrocarbon receptor

Insulin-like growth factor 1

High-fat diet

Glucose transporter type 4

Insulin receptor substrate 1
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