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Background: Hepatocellular carcinoma (HCC) is a key global health issue,
marked by poor clinical outcomes and lower survival rates. Icaritin (ICT), a
bioactive compound derived from traditional Chinese medicine, has shown
promising multi-target antitumor properties and potential clinical benefits in
the treatment of HCC; however, its precise mechanisms of action remain
insufficiently understood. Therefore, this study adopted an integrative strategy
that combined bioinformatics analysis, experimental validation, and network
pharmacology to systematically explore the prognostic and therapeutic
relevance of ICT-associated genes.

Methods: Initially, potential targets of ICT and HCC-associated genes were
identified through extensive database screening, and the overlapping
candidates were further determined using WGCNA and differential expression
analysis. These core intersecting genes were subsequently refined via four
complementary machine learning algorithms, KM survival analysis and LASSO
Cox regression to establish a prognostic risk score model with predictive value.
Additionally, molecular docking and dynamics simulations were performed to
evaluate the binding stability between ICT and these targets. Finally, in vitro
experiments were conducted to evaluate the effects of ICT on the proliferation
and migration, as well as the expression of core target genes.

Results: We identified thirty-five overlapping targets between ICT and HCC, and
functional enrichment analysis showed that these genes are primarily implicated
in cell cycle regulation and glycolytic pathways, highlighting potential
mechanisms through which ICT exerts its antitumor effects. By integrating
multiple machine learning approaches, KM survival analysis and LASSO Cox
regression, we developed a four-gene prognostic model that successfully
stratified HCC patients into higher- and lower-risk groups. Molecular docking
and molecular dynamics simulations demonstrated that ICT binds stably to core
targets, supporting its potential role in modulating disease progression. In vitro
validation confirmed that ICT suppresses HepG2 and Huh7 cells proliferation and
migration in a dose-dependent manner, while molecular analyses demonstrated
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that ICT treatment significantly downregulates CA9, UCK2, and FABP5 expression
and simultaneously upregulates CYP2C9, thereby supporting its role in
modulating critical oncogenic pathways.

Conclusion: Modulation of ICT-targeted genes was found to effectively suppress
HCC progression, underscoring their potential value as prognostic biomarkers
and ideal therapeutic targets for the treatment of HCC.

hepatocellular carcinoma, icaritin, prognostic genes, molecular mechanism, network
pharmacology, bioinformatics analysis

1 Introduction

Liver cancer is the 6th most prevalent malignant neoplasm
around the globe and the second key cause of cancer-related
mortality (1). Among its subtypes, hepatocellular carcinoma
(HCC) accounts for around 80-90% of primary cases of liver
cancer and is characterized by an unfavorable prognosis, with a
5-year survival rate as low as 12%, thereby posing a substantial
global public health burden (2, 3). China bears nearly half of the
global liver cancer cases, reflecting a disproportionate disease
burden (4). The major etiological factors contributing to HCC
include chronic liver disorders such as viral hepatitis, liver
cirrhosis, and excessive alcohol consumption. Surgical resection
remains the primary therapeutic option; however, because early-
stage HCC is frequently asymptomatic or associated with
nonspecific clinical manifestations, fewer than 30% of patients are
qualified for curative surgery at diagnosis, leaving most cases
detected at advanced stages when surgical intervention is no
longer feasible (5). For advanced HCC, systemic therapies such as
lenvatinib and sorafenib are recommended, but their clinical
efficacy is often compromised by treatment resistance, disease
progression, and prolonged drug-related toxicities, which
collectively limit therapeutic outcomes (6). Moreover, even after
apparently successful surgical resection, many patients face a higher
risk of recurrence or metastasis, contributing to persistently poor
long-term survival rates (7). These challenges underscore an urgent
necessity for the advancement of safer and more effective
therapeutic strategies to advance survival outcomes and enhance
the quality of life (QoL) for HCC patients.

Growing evidence indicates that traditional Chinese medicine
(TCM) and natural compounds hold systemic therapeutic potential
in managing HCC, as they have been shown to reduce treatment-
related toxicity, enhance therapeutic efficacy, suppress tumor
recurrence, improve QoL, and prolong overall survival (OS) (8-
10). Among these agents, Icaritin (ICT), a prenylated flavonoid
isolated from the medicinal herb Epimedium, has demonstrated
potent anti-tumor activity in HCC as well as in several other
malignancies (11, 12). The anti-cancer effects of ICT are mediated
via the multiple signaling pathways’ regulation, including ERK/
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ULK1/NCOA4, IL-6/JAK2/STAT3, and ER-036 (13, 14). Clinical
trials involving advanced HCC patients, particularly those unable to
tolerate conventional therapies and generally facing poor
prognoses, have further shown that ICT is well tolerated with
minimal adverse events, while also improving survival outcomes,
delaying disease progression, and delivering meaningful clinical
benefits (15). In addition, ICT has been reported to boost anti-
tumor immune responses by modulating the phenotype and
function of key immune cells, such as MDSCs and CD8+ T cells
(16). Together, these results underscore ICT’s promise as a novel
therapeutic candidate for HCC and other cancers; nevertheless, the
accurate molecular mechanisms underlying its anti-HCC effects
continue to be fully explained.

Network pharmacology, as an integrative multidisciplinary
methodology, addresses the inherent limitations of traditional
single-target research by constructing comprehensive “drug-
target-pathway-disease” networks that systematically analyze
complex biological interactions, thereby reflecting the multi-target
synergistic effects characteristic of TCM (17). This systems-level
approach offers a novel framework for elucidating the intricate gene
networks and biological processes (BPs) underlying ICT’s
therapeutic effects in HCC, offering insights into its multi-target
mechanisms and potential contributions to improved treatment
outcomes. Complementing this strategy, molecular docking serves
as a widely applied computational technique that simulates the
interactions between small molecules (ligands) and proteins
(receptors) by predicting binding conformations and estimating
affinity parameters (18). Its higher predictive accuracy and cost-
effectiveness have made molecular docking be a vital tool in
structural biology, modern drug discovery, and the exploration of
biochemical pathways. In parallel, bioinformatics plays a critical
role across nearly all phases of drug development, extending far
beyond the processing of large-scale datasets to provide powerful
predictive, analytical, and interpretive capabilities that inform both
preclinical research and clinical applications.

This study applied an integrative approach that combined
network pharmacology and bioinformatics analyses to identify
core genes targeted by ICT in HCC and to evaluate their
prognostic significance. Based on ICT-related genes closely
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associated with survival outcomes, we constructed a prognostic
model and further explored the relationship between gene
expression levels and pharmacological sensitivity. Molecular
docking was then performed to predict the binding affinities of
ICT with its potential target proteins. To substantiate these
computational findings, experimental validation was carried out
using human hepatoma HepG2 cell lines, confirming the inhibitory
effects of ICT on cell proliferation, migration, and target gene
expression. By integrating advanced computational methodologies
with in vitro experiments, this investigation not only elucidates the
prognostic and therapeutic relevance of ICT-related genes in HCC
but also provides novel insights and a theoretical foundation for the
development of effective treatment strategies utilizing small-
molecule compounds derived from TCM. The flowchart of this
study is shown in Figure 1.

2 Materials and methods

2.1 Network pharmacology and
bioinformatics

2.1.1 Identify potential targets for ICT and HCC
The ADME properties of ICT were retrieved from the TCMSP
(https://tcmsp-e.com/) database (19), revealing an oral
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bioavailability (OB) of 45.41% and a drug-likeness (DL) index of
0.44. OB reflects the rate and extent to which a compound enters
systemic circulation, serving as a key determinant of therapeutic
efficacy, while DL indicates the likelihood that a compound
possesses favorable pharmacokinetic properties based on its
functional groups and physicochemical characteristics. According
to TCMSP criteria, compounds with OB>30% and DL>0.18 are
considered active candidates, suggesting that ICT likely exhibits
significant pharmacological activity in vivo. The 3D molecular
structure of ICT was sourced from the PubChem (http://
pubchem.ncbi.nlm.nih.gov/) database (20), as shown in Figure 2A.

Potential ICT-related target genes were recognized by
systematically searching three public databases, CTD (http://
ctdbase.org/) (21), TCMSP, and HERB (http://herb.ac.cn/) (22),
using the keyword “icaritin.” To further expand target prediction,
both the SMILES format and three-dimensional (3D) molecular
structure of ICT were obtained from the PubChem database. The
SMILES format was subsequently entered into the Swiss Target
Prediction platform (http://www.swisstargetprediction.ch/) (23) to
forecast potential molecular targets, while the 3D structure was
uploaded to the PharmMapper database (https://www.lilab-
ecust.cn/pharmmapper/index.html) (24), where gene targets with
a normalized fitting score (Normfit) greater than 0.3 were selected.
Screening “ICT” across five databases, CTD, TCMSP, HERB, Swiss
Target Prediction, and PharmMapper, identified 33, 36, 38, 103,
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Network pharmacology analysis of ICT. (A) Three-dimensional chemical structure of ICT (PubChem CID: 5318980 with the molecular formula
C,1H2006). (B) Candidate therapeutic targets of ICT retrieved from five public databases. (C) Venn diagram illustrating the overlapping genes
between potential ICT targets and HCC-associated genes. (D) PPI network of ICT targets.

and 289 potential targets, respectively; after integration and
removal of duplicates, 406 unique ICT-related targets were
compiled (Figure 2B).

For the identification of HCC-related genes, the GeneCards
(https://www.genecards.org) and OMIM (https://www.omim.org)
databases were systematically queried using the keywords
“hepatocellular carcinoma” and “HCC”. Within the GeneCards
database, only genes with a relevance score > 2.0 were selected as
higher-confidence candidates. The gene sets obtained from both
databases were subsequently integrated, and duplicate entries were
deleted to produce a non-redundant and comprehensive list of
HCC-associated targets. The OMIM and GeneCards databases
yielded 192 and 6,874 entries, respectively, which, after
deduplication, resulted in 7,000 distinct HCC-associated genes.
The overlapping targets between ICT-related and HCC-associated
genes are presented in a Venn diagram (Figure 2C), and the ICT
compound-target interaction network was then constructed using
Cytoscape 3.10.2 (Figure 2D).

2.1.2 Differential expression analysis and co-
expression network construction

Transcriptomic sequencing data and relevant clinical
information for HCC samples were obtained from the TCGA-
LIHC cohort in the TCGA database (https://portal.gdc.cancer.gov/),
which comprises 374 tumor samples and 50 adjacent normal
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controls. DEA was performed on count-based gene expression
data using the “DESeq2” package in R software (version 4.3.3),
with genes classified as differentially expressed genes (DEGs) when
adjusted p-values were < 0.05 and |log2 fold change (FC)| > 1. The
results were imaged utilizing the “ggplot2” package to generate a
volcano plot of DEGs. For downstream analyses, HCC expression
profiles were normalized to transcripts per million (TPM).
Weighted gene co-expression network analysis (WGCNA) was
then employed to identify gene modules functionally associated
with HCC, with the top 25% of genes showing the highest variance
selected as input. Prior to network construction, outlier samples
were identified and excluded using the “goodSamplesGenes”
function, and data consistency was assessed through sample
clustering. The optimum soft-thresholding power was determined
utilizing the “pickSoftThreshold” function, enabling conversion of
the correlation matrix into an adjacency matrix and subsequent
construction of a topological overlap matrix (TOM). Moreover,
gene modules were observed via hierarchical clustering, with highly
similar modules merged at a mergeCutHeight threshold of 0.4.
Modules most strongly related with HCC clinical traits were
selected as key modules for further study. Finally, intersection
analysis was performed among predicted ICT-target genes, HCC-
associated disease genes, DEGs, and key module genes, and the
overlapping genes, defined as ICT-related DEGs in HCC, were
subjected to subsequent functional and prognostic analyses.
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2.1.3 Functional enrichment analysis

FEA of the overlapping genes was performed utilizing the R
package “clusterProfiler,” incorporating both Kyoto encyclopedia of
genes and genomes (KEGG) and gene ontology (GO) pathway
analyses (25). A significance threshold of p < 0.05 was employed,
and the enriched GO terms and KEGG pathways were imaged
utilizing the “ggplot2” and “enrichplot” packages to ensure clear
and intuitive presentation of the results.

2.1.4 Protein—protein interaction network
construction

To construct the PPI network, the overlapping genes were
uploaded to the STRING database (https://www.string-db.org),
restricting the Homo sapiens’ species and applying a confidence
score threshold of 0.4. Following network optimization through the
removal of isolated nodes, the interaction data were exported in
TSV format and imported into Cytoscape 3.10.2 for visualization.
Node color gradients were assigned based on degree values,
reflecting the topological importance of each protein within
the network.

2.1.5 Cox regression and machine learning

To identify prognostic biomarkers associated with ICT in HCC,
univariate Cox regression analysis was performed on genes shared
by a cohort of TCGA HCC patients who had complete clinical
information and survived more than 30 days. To enhance the
accuracy of key ICT-related gene selection, four complementary
machine learning approaches were employed, including SVM-RFE,
XGBoost, GMM, and RF.

The XGBoost algorithm, implemented via the

2

‘xgboost” R
package, was initially applied to iteratively construct decision trees,
correcting previous errors to improve model performance and identify
critical predictive genes, with features exhibiting gain values greater
than zero considered important (26). Subsequently, GMM analysis was
carried out utilizing the “SimDesign” package to determine the model
with the highest classification accuracy and its associated genes; this
approach models gene expression data as a combination of multiple
Gaussian distributions, capturing complex underlying biological
patterns (27). Following this, the SVM-RFE technique was employed
through the “e1071” R package to iteratively remove less significant
features, thereby refining the optimal gene set (28). Additionally, the RF
algorithm, applied via the “randomForest” package, generated multiple
decision trees whose aggregated predictions enhanced model accuracy
and stability, with genes showing a mean decrease Gini (MDG) index
greater than 2.0 designated as essential (29). Ultimately, genes
consistently identified by all four machine learning methods were
classified as key prognostic ICT-related genes in HCC and selected for
subsequent downstream analyses.

2.1.6 Development of a risk scoring model

To systematically identify ICT-associated prognostic biomarkers,
we employed LASSO Cox regression analysis and Kaplan-Meier (K-
M) survival analysis within the TCGA-LIHC cohort to evaluate the
prognostic potential of key genes. Genes identified through both
LASSO Cox regression and K-M survival analysis were defined as
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core prognostic genes, and their significance in HCC was further
evaluated using the “glmnet” R package, focusing on OS as the
primary outcome. The optimal penalty parameter (L) was measured
through ten-fold cross-validation and consistently applied across the
analysis. Gene coefficients were extracted using the “coef” function to
quantify each gene’s contribution to the model, and patient risk
scores were calculated as risk score = X (Xi x Yi), where Xi represents
the regression coefficient of gene i, Yi denotes its expression level.
Patients were stratified into lower- and higher-risk groups based on
the median risk score, and the model’s prognostic performance was
gauged by comparing OS between these groups using K-M analysis.
Furthermore, time-dependent receiver operating characteristic
(ROC) curve analysis was directed with the “timeROC” package to
calculate the predictive accuracy of the model for patient survival
outcomes (30).

2.1.7 Drug sensitivity analysis and immune
infiltration analysis

The genomics of drug sensitivity in cancer database and the
“oncoPredict” R package were employed to evaluate the
relationship between sorafenib sensitivity and the expression
levels of ICT-related prognostic genes, with the aim of predicting
cellular responsiveness to pharmacological treatment (31).

The “CIBERSORT” algorithm was utilized to quantify the
relative proportions of 22 distinct immune cell subtypes within
the samples. Differences in immune cell composition across higher-
and lower-risk groups were measured utilizing the Wilcoxon rank-
sum test. Additionally, Spearman’s rank correlation analysis was
conducted to evaluate the relationships, whether positive or
negative, between the expression levels of prognostic genes and
the proportions of specific immune cell populations.

2.1.8 Validation of ICT-target binding through
molecular docking

The SDF format file of ICT was first obtained from the
PubChem database, and the protein data bank (PDB) format file
of the corresponding core target receptor protein was retrieved from
the PDB (http://www.rcsb.org/). Subsequently, the ligand structure
was converted to the mol2 format using Chem3D 14.0, while the
receptor proteins underwent preprocessing steps such as removal of
were preprocessed in PYMOL 2.6.0 by removing water molecules
and addition of adding hydrogen atoms in PyMOL 2.6.0. Molecular
docking between ICT and the receptor proteins was then performed
using AutoDockTools 1.5.7. The binding energy of each protein-
ligand pair complex was recorded, calculated, and the resulting
complex conformations were saved in pdbqt format. Finally, three-
dimensional the 3D visualization and graphical representation
analysis of the molecular docking results were conducted using
carried out in PyMOL software to intuitively assess clearly illustrate
the interaction modes.

2.1.9 Validation of binding affinity using
molecular dynamics simulations

MD simulations of the small molecule-protein complexes were
performed using GROMACS 2020.6. The simulations were
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conducted under constant temperature (300 K) and pressure (1 bar)
conditions (32). The topology of the small-molecule ligand was
generated using the GAFF2 force field, while the protein was
parameterized with the CHARMM36 force field (33). The protein
receptor was solvated in a TIP3P water model, and sodium and
chloride ions were introduced to neutralize the system’s net charge.
Energy minimization was performed using the steepest descent
method followed by the conjugate gradient approach. Subsequently,
a100,000-step equilibration was carried out under both isothermal-
isochoric (NVT) and isothermal-isobaric (NPT) ensembles. Finally,
two independent systems were subjected to 1,000,000-step MD
simulations (corresponding to 100 ns) under periodic boundary
conditions. The resulting trajectories were analyzed using the built-
in tools of GROMACS.

2.2 Experimental verification

2.2.1 Cell lines and materials

Human HCC HepG2 cells (CL-0103), Huh7 cells (CL-0120),
fetal bovine serum (Cat. No. 164210-50), DMEM higher-glucose
medium (Cat. No. PM150210), and 100x penicillin-streptomycin
solution (Cat. No. PB180120) were purchased from Procell, while
0.25% trypsin-EDTA solution containing phenol red (Cat. No.
SL6020) was obtained from Coolaber. ICT (purity >98%, Cat. No.
A1458605) was procured from AmBeed. All reagents and cell lines
were sourced from their respective companies in China or the USA.

2.2.2 Cell culture and subculture

All experimental procedures followed standard cell culture
protocols. HepG2 and Huh7 cells were maintained in DMEM
added with 10% FBS and 1% streptomycin-penicillin solution and
incubated in a humidified environment with 5% CO, at 37°C. Cells
were subcultured upon reaching approximately 70-80% confluence
to ensure optimal growth conditions. During subculturing, the
culture medium was eliminated, cells were rinsed with PBS, and
subsequently detached using 0.25% trypsin~-EDTA before being
counted for downstream experiments.

2.2.3 Cell viability assay

To assess HCC cell viability Following ICT treatment, HepG2
and Huh?7 cells were seeded in the logarithmic growth phase (LGP)
into 96-well plates at a density of 5 x 10° cells per well. After cell
adherence, the culture medium was substituted with fresh medium
comprising various concentrations of ICT HepG2 cells were treated
with 0, 3.25, 7.5, 15, 30, and 60uM ICT, while Huh7 cells were
exposed to 0, 5, 10, 20, 40, and 80uM ICT for 24 and 48 hours. Post-
treatment, the medium was removed, and a working solution was
prepared by mixing complete culture medium with the cell
counting kit-8 (CCK-8) reagent (Catalog No. BMU106-CN,
Abbkine, China) at a 10:1 (v/v) ratio. This solution was carefully
poured to each well, which was then followed by an additional 1-
hour incubation. Absorbance was then measured at 450 nm
utilizing a Varioskan Lux microplate reader (Thermo Scientific)
to estimate cell viability.
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2.2.4 Wound healing assay

For the WHA, straight reference lines were drawn on the
bottom of a 6-well plate using a marker pen. Cells in the LGP
were seeded at a density of 6 x 10* cells per well and incubated
under standard culture conditions for 24 hours until reaching up to
80% confluence. A uniform scratch wound was then created
perpendicular to the marked lines using a sterile 1 mL pipette tip.
Following wounding, culture medium containing different
concentrations of ICT (0, 7.5, 15, and 30 UM or 0, 5, 10, and 20
UM) was added to the respective wells. Images of the wound area
were captured at 0-, 24-, and 48-hours post-scratch, and the wound
closure was quantitatively analyzed utilizing Image] software.

2.2.5 Immunofluorescence staining experiment

Double-target immunofluorescence staining was performed using
the tyramide signal amplification (TSA) technique. Briefly, cells were
permeabilized for 10 minutes at room temperature with 0.1% Triton X-
100 (T8200, Solarbio, China) and rinsed three times with PBS.
Nonspecific binding was blocked by incubating the cells with 10%
goat serum (PN0038, pinuofei Biotech, China) at 37°C for 30 minutes.
The cells were then incubated with primary antibodies (Wuhan
Sanying, China: Fatty acid-binding protein 5 (FABP5)/12348-1-AP/
1:200, UCK2/66822-1-1G/1:200, carbonic anhydrase 9 (CA9)/11071-1-
AP/1:200, CYP2C9/16546-1-AP/1:500), the same antibodies used for
Western blotting (WB), either for 2 hours at 37 °C or for the entire
night at 4°C. Following primary incubation, HRP-conjugated goat anti-
rabbit IgG secondary antibody (PN0046, pinuofei Biotech) was applied
at 37°C for 1 hour. After extensive washing with PBST (it is PBS, which
has 0.1% Tween-20), TSA was performed sequentially with TYR-488
(PN0100, pinuofei Biotech) and TYR-555 (PN0101, pinuofei Biotech)
at 37°C for 30 minutes each. Nuclei were counterstained with DAPI
(PN0015, pinuofei Biotech) for 5 minutes, and samples were mounted
using an anti-fluorescence quenching mounting medium (PN0024,
pinuofei Biotech) and stored at 4°C in the dark. Fluorescence images
were acquired using a fluorescence microscope, and the fluorescence
intensity was quantitatively analyzed using Image] software. Finally, the
relative protein expression level was determined by comparing the
mean fluorescence intensity of the target protein to that of DAPI. PBST
was used for all washing steps throughout the procedure, and working
concentrations of all antibodies and reagents were pre-optimized in
preliminary experiments to ensure optimal staining efficiency and
signal specificity.

2.2.6 gRT-PCR analysis

Total RNA was extracted from cells utilizing TriQuick Total RNA
Extraction Reagent (R1100, Solarbio, China) and purified via a
precipitation method employing chloroform (CAS: 67-66-3,
Sinopharm, China) and isopropanol (CAS: 80109218, Sinopharm),
followed by washing with anhydrous ethanol (10009218, Sinopharm).
The purified RNA was dissolved in DEPC-treated water (R0022,
Beyotime, China) for storage. Genomic DNA was eliminated, and
complementary DNA was synthesized utilizing the Evo M-MLV RT
Mix Kit with gDNA Clean for quantitative PCR (qPCR) Ver.2
(AG11728, Accurate Biology, China). qQPCR was performed using
PerfectStart® Green qPCR SuperMix (+Dye II, AQ602, TransGen,
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China) under the following thermal cycling conditions: initial
denaturation at 94°C for 2 minutes, 45 cycles of amplification (94°C
for 5 seconds, 60°C for 30 seconds), and a final melting curve analysis
from 65°C to 95°C with 0.5°C increments every 5 seconds. Relative
expression levels of the target genes were calculated utilizing the 244"
method, with [-actin as the internal reference. All experiments
included three biological replicates and three technical replicates.

Primer sequences are provided in Table 1.

2.2.7 Western blotting

Cells were lysed utilizing RIPA buffer for 30 minutes. The lysates
were centrifuged for 15 minutes at 12,000 rpm to collect the supernatant,
and protein concentrations were quantified using a BCA protein assay
kit (E-BC-K318-M, Elabscience, China). Sample concentrations were
then adjusted to ensure uniform protein loading based on the standard
curve. Twenty micrograms of protein per sample were separated on a 4—
20% Bis-Tris precast gel at 160 V for 40 minutes and transferred onto a
PVDF membrane at a constant current of 200 mA. Membranes were
blocked with 5% skim milk in TBST at room temperature for 1 hour
and incubated overnight at 4°C with primary antibodies diluted 1:1000,
alongside GAPDH as the internal reference (1:5000, YM3029,
Immunoway, China). Following three washes with TBST, HRP-
conjugated goat anti-rabbit IgG (RS0002, Immunoway; 1:5000) was
applied for 1 hour at room temperature. After additional washes, protein
bands were imaged utilizing ECL chemiluminescent reagent, and images
were captured with an automatic chemiluminescence imaging system.

2.2.8 Statistical analysis

All data are expressed as mean + standard deviation (SD).
Moreover, statistical analyses were carried out utilizing GraphPad
Prism 8.0, with one-way or two-way ANOVA applied for multiple
group comparisons. Statistical significance was denoted as follows:
*p < 0.05, **p < 0.01, ***p < 0.001, and ***p < 0.0001.

3 Result

3.1 Investigation utilizing network
pharmacology and bioinformatics
approaches

3.1.1 Discovery of ICT-related DEGs in HCC
After excluding outliers from the TCGA-LIHC dataset, a total
of 19,938 protein-coding genes were obtained. DEA revealed that

TABLE 1 Primers sequences used in this study.

10.3389/fimmu.2025.1693028

3,335 genes were significantly upregulated in HCC tissues relative t
controls, while 1,204 genes were downregulated (Figure 3A).
WGCNA was then applied to establish co-expression networks
and detect gene modules in both control and HCC groups. The top
25% of genes displaying the maximum variance, totaling 4,985
genes, were selected for WGCNA. A soft-thresholding power () of
5 (R? = 0.9) was chosen to achieve a scale-free network topology,
leading to the identification of seven distinct co-expression
modules, each represented by a different color (Figures 3B, C).
The dissTOM matrix heatmap, visualized using the dynamic tree
cut algorithm, further illustrated the modular structure (Figure 3D).
Clinical features (control versus HCC status) were incorporated to
evaluate module-trait associations, revealing that the red module,
comprising 2,036 genes, displayed the strongest and most
statistically significant correlation with HCC (Figure 3E). A
scatter plot confirmed this association, demonstrating a strong
positive correlation between module eigengene values and HCC
status (Figure 3F). Finally, integration of potential ICT target genes,
HCC-related disease genes, DEGs, and key module genes via a
Venn diagram identified 35 overlapping genes (see Supplementary
Table 1), which were designated as ICT-linked DEGs in
HCC (Figure 3G).

3.1.2 Enrichment analysis and PPI network
construction of intersection genes

Functional enrichment analyses were carried out on the 35
overlapping genes, encompassing GO and KEGG pathway
annotations. In the BP category, the genes were predominantly
enriched in pathways associated with the G2/M phase transition of
the cell cycle, terpene metabolism, primary alcohol metabolism, and
retinol metabolism (Figure 4A). For cellular components (CC), the
genes were mainly linked to structures such as chromatin, spindle
microtubules, and condensed chromatin (Figure 4B). Regarding
molecular functions (MFs), momentous enrichment was detected in
oxidoreductase activity, carboxylic acid binding, organic acid
binding, and protein serine/threonine kinase activity (Figure 4C).
KEGG pathway analysis indicated that ICT may exert therapeutic
effects on HCC by modulating key signaling pathways, including
the cell cycle, nucleotide metabolism, glycolysis/gluconeogenesis,
and drug metabolism pathways (Figure 4D). To further investigate
interactions among these target proteins, the genes were analyzed
utilizing the STRING database to exclude non-interacting targets,
and the resulting dataset was imported into Cytoscape 3.10.2 to
build a PPI network (Figure 4E).

Sequences
Targets
Forward:5'-3' Reverse:5'-3'
UCK2 CAGCTAGCGGCAAGAGGTAA TGCTCAGTCCCAAAGCTGAG
CA9 CCAGGGTGTCATCTGGACTG TCAGCTGTAGCCGAGAGTCA
FABP5 TCTTGTACCCTGGGAGAGAAGT CCACTCCTGATGCTGAACCA
CYP2C9 GGGGCATTATCCATCTTTCACT ACTCTCCGTAATGGAGGTCG
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3.1.3 Identification of core genes associated with
ICT and construction of a prognostic model
Univariate Cox regression analysis of the 35 overlapping genes
identified 21 ICT-associated genes with statistically significant
prognostic value (Figure 5A). To further refine key prognostic
candidates, multiple machine learning algorithms (MLAs) were
applied. Using XGBoost, 15 core genes with gain values greater
than zero were identified (Figure 5B). GMM regression analysis,
performed over 221 iterations, selected a model with optimal
predictive performance (area under the curve (AUC)= 0.998)
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comprising 10 core genes (Figure 5C). The SVM-RFE approach
identified 19 feature genes (Figures 5D, E), while the RF algorithm,
integrating multiple decision trees, highlighted 13 genes with MDG
values greater than 2.0 as key prognostic features (Figures 5G, H).
Intersection analysis of these gene sets yielded six overlapping genes
as key candidate prognostic markers (Figure 5F), whose expression
levels were compared between control and HCC tissues (Figure 5I).

To construct a strong prognostic model, the six candidate genes
were further analyzed utilizing K-M survival analysis and LASSO
Cox regression. K-M analysis revealed that five genes (UCK2, FABP5,
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CA9, CYP2C9, and TOP2A) met the significance criterion (p < 0.05),
indicating their expression levels were significantly associated with
OS (Figures 6A-F). Ten-fold cross-validation was applied to
minimize overfitting, and LASSO regression identified four genes,
UCK2, FABP5, CA9, and CYP2C9, as significant predictors
(Figures 6G, H). Subsequently, based on the intersection of results
from these two analytical approaches, a four-gene risk score model
was established via LASSO analysis (Figure 6I). The risk score
measured as follows: Risk Score = 0.0849 x CA9 + 0.0151 x UCK2
- 0.0585 x CYP2C9 + 0.0267 x FABP5 expression levels (Figure 61).

Using the four-gene risk score, HCC patients with available
clinical data from the TCGA database were stratified into lower-risk
and higher-risk groups. K-M survival analysis revealed that patients
in the lower-risk group had markedly improved OS compared with
those in the higher-risk group (Figure 6]). The predictive
performance of the model was further assessed using time-
dependent ROC curve analysis, yielding AUC values of 0.688,
0.691, and 0.686 at 1, 3, and 5 years, respectively, demonstrating
the model’s moderate prognostic accuracy (Figure 6K).

3.1.4 Analysis of drug sensitivity and immune cell
infiltration

The link between gene expression levels and sorafenib
sensitivity was assessed using the “oncoPredict” package. Box and
scatter plots demonstrated significant correlations between the
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expression of four key genes and drug sensitivity, with all p-values
< 0.01, signifying their potential as predictive biomarkers for
sorafenib response. Notably, CYP2C9 expression exhibited a
positive correlation with sorafenib sensitivity, whereas UCK2,
FABPS5, and CA9 showed negative correlations (Figures 7A-D).

To investigate immunological implications, immune infiltration
was analyzed using the CIBERSORT algorithm, revealing significant
variances in the proportions of 15 distinct immune cell populations
between higher-risk and lower-risk groups stratified by the four-gene
risk score (Figure 7E). Further correlation analysis between ICT-
related prognostic hub genes and immune cell infiltration indicated
strong associations, particularly involving MO macrophages, memory
B cells, monocytes, and regulatory T cells (Figure 7F).

3.1.5 Molecular docking results

Molecular docking analysis revealed that ICT exhibited negative
binding energy values with the key target proteins CA9, UCK2,
FABPS5, and CYP2C9 (Table 2), indicating direct interactions with
amino acid residues within these proteins. Lower binding energies
correspond to more stable and favorable molecular interactions,
with values below —5.0 kJ/mol reflecting favorable binding affinity
and values below -7 kJ/mol indicating strong binding activity.
Notably, all four core targets demonstrated binding energies
below -7 kJ/mol, suggesting their critical involvement in ICT’s
therapeutic mechanism against HCC. The docking results were
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Candidate prognostic genes were identified through integration of Cox regression analysis and machine learning algorithms. (A) Univariate Cox
regression analysis identified 21 genes significantly associated with OS. (B) Core diagnostic markers selected using the XGBoost algorithm (n=15).
(C) Identification of significant genes via GMM regression analysis (n=10). (D, E) Feature genes detected by the SVF-RFE method (n=19). (F) Venn
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the random forest algorithm (n=13). (1) Box plots depicting the expression levels of six candidate prognostic genes in the TCGA-LIHC cohort. * <

0.05, ** < 0.01, *** < 0.001.

visualized in Figure 8. Molecular docking analysis revealed that ICT
exhibited binding energies of -7.3, -7.5, -8.9, and -9.5 kJ/mol with
the four core target proteins UCK2, CA9, CYP2C9, and FABPS5,
respectively. Among these, ICT showed the strongest binding
affinity toward FABP5. Therefore, FABP5—the protein with the
highest binding affinity—was selected for subsequent MD
simulations to further validate and characterize the stability of the
binding interaction.

3.1.6 Validation of binding capacity through
molecular dynamics simulations

Although a semi-flexible docking strategy was applied during the
molecular docking process, this approach remains limited in
accurately capturing the influence of real-world environmental
factors on proteins, such as temperature, pressure, conformational
flexibility, and solvent effects. To overcome these limitations, a 100-ns
all-atom MD simulation of the FABP5-ICT complex was performed
using GROMACS to comprehensively analyze the protein’s dynamic
behavior and conformational stability upon ligand binding.
Following the simulation, multiple structural parameters were
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systematically assessed using the software’s built-in trajectory
analysis tools, including root mean square deviation (RMSD), root
mean square fluctuation (RMSF), radius of gyration (Rg), hydrogen
bond interactions, and the free energy landscape (FEL).

The MD simulation results showed that the RMSD values of the
protein-ligand complex fluctuated by less than 0.2 nm throughout
the 100-ns trajectory, indicating that the complex maintained a
relatively stable conformation under simulated physiological
conditions (Figure 9A). RMSF analysis further revealed regions of
higher residue flexibility, highlighting local conformational
variations within the protein structure (Figure 9B). In parallel, the
radius of gyration (Rg) exhibited only minor fluctuations,
suggesting a compact overall structure and strong intramolecular
cohesion (Figure 9C). Moreover, analysis of backbone hydrogen
bonds indicated the formation of persistent and stable hydrogen
bond interactions between FABP5 and ICT throughout the
simulation period (Figure 9D). To further evaluate the
conformational stability of the FABP5-ICT complex, principal
component analysis was performed to extract the first two
principal components from the RMSD and Rg data. These were
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integrated with the binding free energy, calculated using the Gibbs
free energy equation, to construct the corresponding 2D and 3D
FEL plots. The analysis revealed a distinct low-energy basin that
persisted throughout the simulation, suggesting that the complex
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preferentially resides in energetically favorable and structurally
stable conformations (Figures 9E, F). Collectively, these findings
confirm the robust structural stability of the FABP5-ICT complex
during dynamic simulation.
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3.2 Experimental verification

3.2.1 The influence of ICT treatment
concentration and time on the survival rate of
HCC cells

The results revealed that ICT inhibited HepG2 and Huh7 cells
growth in a pronounced dose-dependent manner (DDM) and time-
dependent manner (TDM) (Figures 10A, D). Specifically, cell viability

TABLE 2 Molecular docking results of icaritin with core targets.

Binding Energy

Compound Target PDB: ID (K3/mol)
icaritin UCK2 1U]2 -7.3
icaritin CA9 6RQU -7.5
icaritin CYP2C9 5A51 -8.9
icaritin FABP5 7GOE -9.5
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decreased progressively with increasing ICT concentrations following
24-hour and 48-hour treatments. The IC50 values for HepG2 and
Huh?7 cells were 31.38 uM and 24.32 UM at 24 hours, respectively,
and 22.62 uM and 13.68 uM at 48 hours, respectively, indicating
enhanced cytotoxic activity with prolonged exposure. Based on the
24-hour IC50 values, three representative concentrations were
selected for each cell line for subsequent experiments: 7.5 uM
(approximately one-quarter of the IC50), 15 uM (approximately
one-half of the IC50), and 30 uM (approximately the IC50) for
HepG2 cells; and 5 uM (approximately one-quarter of the IC50), 10
UM (approximately one-half of the IC50), and 20 uM (approximately
the IC50) for Huh7 cells.

3.2.2 The influence of ICT on the migration ability
of HCC cells

Experimental results demonstrated that ICT effectively inhibits
HCC cell migration in a both DDM and TDM (Figures 11B, C, E, F).
In HepG2 cells, after 24 hours of treatment with 0, 7.5, 15, and 30 UM
ICT, the migration rates were 53%, 50%, 44% (p < 0.01), and 36%
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Molecular docking patterns between ICT and its target proteins. (A) UCK2. (B) CA9. (C) CYP2C9. (D) FABP5.

(p < 0.0001), respectively. This suppression was further enhanced
after 48 hours, with the control group’s migration rate increasing to
79%, while the ICT-treated groups showed significantly reduced rates
of 72% (p < 0.01), 52% (p < 0.0001), and 47% (p < 0.0001). Similarly,
in Huh7 cells, 24-hour treatment with 0, 5, 10, and 20 uM ICT
resulted in migration rates of 48%, 40% (p < 0.05), 28% (p < 0.0001),
and 16% (p < 0.0001), respectively. After 48 hours, the control
migration rate increased to 74%, whereas ICT treatment led to
markedly suppressed migration rates of 57%, 44%, and 25% (all
p < 0.01). Together, these findings indicate that ICT effectively
inhibits hepatocellular carcinoma cell migration in a sustained and
cumulative manner.

3.2.3 The influence of ICT treatment on the
expression of target protein-positive cells

These four genes were selected for in vitro validation based on a
stepwise computational analysis. We first identified 35 ICT-HCC
overlapping genes through network pharmacology and
bioinformatics. Univariate Cox regression and four machine learning
algorithms narrowed them to six candidate genes. Integrating Kaplan—
Meier and LASSO Cox regression analyses, we defined a four-gene
signature—UCK2, FABP5, CA9, and CYP2C9—that stratifies HCC
patients into high- and low-risk groups with significant survival
differences. As the top candidates from this analysis, they were
chosen to test whether ICT directly regulates these prognostic targets.

In this study, the expression patterns of FABP5 (red) and CYP2C9
(green) in HepG2 cells were evaluated using immunofluorescence
double-labeling, with nuclei counterstained by DAPI (blue)
(Figure 11A). Similarly, UCK2 (red) and CA9 (green) expression was
examined. Fluorescence microscopy, combined with quantitative
analysis using Image] (Figure 11B), was applied to estimate the
impacts of different ICT concentrations on target protein expression.
Relative to the control, FABP5 fluorescence intensity decreased in a
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DDM, with significant reductions observed at 15 uM and 30 uM
(p < 0.01), whereas the 7.5 UM group exhibited a non-significant
downward trend (p > 0.05). In contrast, CYP2C9 expression was
significantly upregulated at 15 uM ICT (p < 0.01) and showed no
significant change at 7.5 UM (p > 0.05). In the second detection group,
UCK2 and CA9 expression levels were significantly downregulated in a
DDM as ICT concentration increased (p < 0.05).

3.2.4 The regulation of core target expression by
ICT at the mRNA and protein levels

This study systematically evaluated the effects of ICT on the
expression of key metabolism-related proteins—FABP5, UCK2,
CA9, and CYP2C9—in HepG2 and Huh7 cells using qRT-PCR
and Western blot analyses. As shown in Figures 12A, B, qRT-PCR
results indicated that ICT dose-dependently suppressed the mRNA
levels of FABP5, UCK2, and CA9, while gradually increasing
CYP2C9 mRNA expression with rising ICT concentrations.
Correspondingly, Western blot analysis (Figure 12C) revealed a
marked reduction in the protein expression of FABP5, CA9, and
UCK?2, accompanied by a significant upregulation of CYP2C9
protein levels in response to increasing ICT concentrations. The
overall concordance between mRNA and protein expression
patterns suggests that ICT modulates these metabolism-related
targets in a gene-specific and dose-dependent manner, exerting
regulatory effects at both transcriptional and protein levels.

4 Discussion

HCC is among the most lethal malignant tumors worldwide
and continues to pose a significant clinical challenge. Surgical
resection remains the primary treatment but is limited to patients
diagnosed at early stages, while pharmacological therapies, although
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Molecular dynamics simulation results of the interaction between icaritin and the FABP5 protein. (A) Root-mean square deviation values of the
FABP5 protein and the FABP5 protein—icaritin saponin complex. (B) Changes in protein flexibility during molecular dynamics simulation of icaritin. (C)
Radius of gyration profile of the protein-icaritin complex. (D) Hydrogen bond dynamics during molecular dynamics simulations.

(E, F) Two-dimensional and three-dimensional visualization of the free energy landscape.

capable of extending survival, are often constrained by drug
resistance and adverse effects. Consequently, elucidating the
pathogenesis of HCC and identifying more effective and safer
therapeutic strategies have become critical research priorities.
Advances in TCM research have provided growing evidence that
plant-derived natural compounds exhibit potent anti-tumor
activities, enhance therapeutic efficacy, reduce toxicity, and hold
considerable promise for cancer prevention and treatment (34, 35).
ICT, a major bioactive flavonoid extracted from the TCM herb
Epimedium, has recently been demonstrated to inhibit HCC cell
proliferation, induce apoptosis, modulate glycolytic metabolism,
and promote cellular senescence (36, 37). Despite increasing
interest in ICT’s therapeutic potential against HCC, its underlying
molecular mechanisms remain incompletely understood. This
study systematically investigates the molecular mechanisms
through which ICT-related hub genes influence HCC prognosis
and treatment, employing an integrated approach that combines
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network pharmacology, bioinformatics analysis, molecular docking,
and in vitro experimental validation. Collectively, our findings
provide both theoretical and experimental evidence providing a
support to develop novel ICT-based therapies for HCC.

This study systematically elucidated the potential mechanisms
underlying the antitumor effects of ICT against HCC by integrating
network pharmacology, bioinformatics, and experimental validation.
Through comprehensive multi-database analysis, 406 potential ICT
targets were identified. Subsequent screening, which combined
differential expression analysis, WGCNA, and intersection with
HCC-associated genes, ultimately yielded 35 ICT-related DEGs. FEA
indicated that these genes are primarily involved in critical signaling
pathways such as cell cycle regulation, glycolysis, and drug metabolism.
They participate in BPs related to cell cycle control and metabolic
regulation, are associated with chromatin-related CCs, and are
enriched in MFs such as organic acid binding and protein kinase
activity. These findings suggest that ICT may exert its antitumor effects
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by modulating these key biological pathways. Among these pathways,
cell cycle progression and glycolysis are well-established drivers of
tumorigenesis, while protein kinases serve as central regulators of
cellular energy metabolism, growth, proliferation, and survival (38,
39). Consistent with these predictions, CCK-8 and wound-healing
assays demonstrated that ICT markedly inhibited the proliferation and
migration of HepG2 and Huh7 cells in a dose- and TDM, thereby
corroborating the bioinformatics-based findings.

In constructing a prognostic model, six candidate genes with
prognostic significance were identified through the integration of
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model developed from these genes exhibited strong accuracy and
stability in predicting 1-, 3-, and 5-year survival outcomes,
underscoring its potential clinical applicability and prognostic value
in HCC. Currently, sorafenib represents the standard first-line therapy
for advanced HCC (40). Drug sensitivity analysis revealed significant
correlations between the expression levels of these four genes and
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recognized as a gold-standard computational approach for assessing
immune cell infiltration within the tumor microenvironment. Our
analysis revealed that the risk score derived from the four-gene
signature was positively correlated with the infiltration of MO
macrophages and regulatory T cells (Tregs)—both associated with
pro-tumorigenic activity—and negatively correlated with the
infiltration of M1 macrophages and monocytes, which are typically
anti-tumorigenic. This consistent pattern of immune cell distribution
suggests a close association between the risk model (and its constituent
genes) and an immunosuppressive tumor microenvironment, thereby
providing strong indirect evidence that ICT may modulate immune
infiltration by targeting these genes. To further substantiate this
hypothesis, molecular docking analysis was performed to investigate
the interactions between ICT and the four core proteins. The results
demonstrated that ICT exhibits strong binding affinities toward CA9,
UCK2, FABP5, and CYP2C9, confirming potential direct molecular
interactions with these targets. In addition, MD simulations further
validated the stability and binding capacity of the ICT-protein
complexes, reinforcing the proposed mechanism by which ICT may
exert its therapeutic effects through modulation of these core targets.
Among the core genes identified in our study, CA9 is a direct
downstream transcriptional target of HIF1o and has a pivotal role in
regulating extracellular pH under hypoxic, acidic, and carcinogenic
conditions. It is widely documented as a critical biomarker of tumor
hypoxia (41), and hypoxia-induced drug resistance has been shown
to compromise the efficacy of chemotherapy (42). Accumulating
evidence indicates that CA9 expression is suggestively linked with
poor clinical outcomes across various malignancies, including renal
cell carcinoma, head and neck cancer, breast cancer, and gastric
cancer (43). In HCC, CA9 upregulation promotes tumor progression
by modulating cell proliferation, apoptosis, and epithelial-
mesenchymal transition (EMT) (44, 45). In this study, analysis of
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the TCGA-LIHC cohort confirmed that CA9 expression is
significantly upregulated in HCC tissues compared with normal
liver tissues (Figure 5I). Within our constructed four-gene
prognostic risk model, the coefficient for CA9 (0.0849) was
markedly higher than those of the other genes, indicating that even
minor fluctuations in CA9 expression exert a disproportionately large
influence on the patient’s risk score. This finding identifies CA9 as the
strongest risk factor within the model and the gene most closely
associated with HCC prognosis. These observations are highly
consistent with previous studies. For example, Huang W] et al.
reported that elevated CA9 expression serves as an independent
predictor of poor prognosis in patients with resectable HCC,
potentially by promoting EMT and enhancing tumor invasiveness
(43). Similarly, another study demonstrated that CA9 overexpression,
observed in approximately 61.8% (63/102) of HCC tumor samples,
not only reflects a hypoxic and highly malignant tumor phenotype
but also functions as a powerful, independent biomarker for
unfavorable postoperative outcomes, including shortened survival
and higher recurrence rates (46). In relation to ICT treatment, our in
vitro experiments revealed that ICT significantly downregulates CA9
mRNA and protein expression in HepG2 and Huh?7 cells in a DDM.
Given CA9’s established role in regulating extracellular pH
homeostasis, promoting EMT, and facilitating tumor invasiveness,
its downregulation by ICT likely represents a key mechanism
underlying ICT’s ability to inhibit HCC cell proliferation and
migration, thereby contributing to its antitumor efficacy. Thus, the
overexpression of CA9 not only reaffirms its prognostic value as a
biomarker of poor outcomes but also supports its identification as a
principal molecular target of ICT in HCC. In summary, considering
CA9’s highest weighting in the prognostic model, its strong
association with chemoresistance, and its central role in malignant
progression—including hypoxia adaptation and EMT induction—
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CA9 can be regarded as the most critical and functionally significant
gene within the identified risk signature.

Similarly, our data demonstrated that UCK2 and FABP5 are
significantly overexpressed in HCC tissues, whereas CYP2C9 is
markedly downregulated. Although CA9 exhibits the strongest
relative importance, UCK2 and FABP5 also represent essential
molecular drivers of HCC development and progression.UCK?2 is a
pyrimidine ribonucleotide kinase, catalyzing the phosphorylation of
cytidine and uridine to produce uridine monophosphate and cytidine
monophosphate, thereby participating in pyrimidine nucleotide
metabolism (47). Aberrant overexpression of UCK2 has been
linked with poor prognosis in multiple cancers, particularly in
HCC (48), and our study further confirms that elevated UCK2
expression predicts adverse clinical outcomes, underscoring its
potential as a prognostic biomarker. As a key enzyme involved in
nucleotide synthesis during DNA replication, UCK2 overexpression
may drive abnormal hepatoma cell proliferation. Moreover, increased
UCK2 levels in HCC have been shown to promote tumor growth and
metastasis by activating critical oncogenic signaling pathways,
including STAT3, Wnt/B-catenin, and EGFR-AKT (49-51),
whereas UCK2 knockdown significantly suppresses tumor cell
proliferation (52). Inhibiting UCK2 directly disrupts the nucleotide
“supply” for tumor cells, making it an attractive therapeutic target.
Our results align with this: following ICT treatment, UCK2
expression was significantly suppressed, explaining ICT’s ability to
inhibit HCC cell proliferation from the perspective of nucleotide
metabolism. Targeting nucleotide metabolism is a classic anti-cancer
strategy, thus establishing a solid theoretical foundation for UCK2 as
a target of ICT.

FABPS is a cytoplasmic transporter of oleic acid that participates
in diverse biological processes, including cell proliferation,
differentiation, and migration, all of which contribute to the
development of multiple cancers (53). Clinical studies have
illustrated that FABP5 overexpression is closely linked with poor
clinical outcomes in HCC, colorectal cancer, and breast cancer, and it
has emerged as a key oncogenic driver in liver tumorigenesis (54).
Mechanistically, FABP5 improves HIF-1o activity by inhibiting its
interaction with Factor Inhibiting HIF (FIH), thereby enhancing lipid
accumulation and tumor cell proliferation (55). Furthermore, recent
evidence indicates that FABP5 facilitates HCC progression through
the CREB/miR-889-5p/KLF9 signaling pathway, underscoring its
potential as a promising therapeutic and prognostic target in HCC
(56). Consistent with previous reports, our study identified FABP5 as
a pro-oncogenic factor in HCC. Treatment with ICT significantly
downregulated FABP5 expression, suggesting that ICT may suppress
the malignant phenotype of HCC cells by disrupting lipid metabolic
pathways mediated by FABP5. Furthermore, molecular docking
analysis revealed a low binding energy between ICT and FABPS5,
indicating a strong and stable interaction that may underlie ICT’s
inhibitory effect on FABP5 activity.

Additionally, CYP2C9 belongs to the cytochrome P450 2C
(CYP2C) family and is critically CYP2C9, an enzyme involved in the
metabolism of numerous carcinogens and pharmaceutical agents,
exhibits significantly reduced expression in HCC (57). Time-series
transcriptomic analyses in mouse models have demonstrated that
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CYP2C9 plays a critical regulatory role in HCC development by
suppressing hepatocyte proliferation induced by liver injury through
inhibition of the NF-kB signaling pathway. Furthermore, human
CYP2C9 expression in mice has been positively associated with
improved OS in HCC patients, illuminating its potential protective
role in HCC (58). This finding makes ICT’s regulatory effect on
CYP2C9 particularly distinctive and significant. In contrast to its
inhibitory effects on other genes, our experiments demonstrated that
ICT treatment markedly upregulates CYP2C9 protein expression in
both HepG2 and Huh?7 cells. This upregulation may help restore partial
differentiation functions in hepatocytes or indirectly suppress tumor
growth. Thus, the combination of basal CYP2C9 underexpression in
HCC and ICT’s specific upregulatory effect provides a compelling
rationale for identifying CYP2C9 as a key therapeutic target of ICT. In
summary, ICT appears to function through a dual regulatory strategy:
“suppressing malignancy” by downregulating pro-oncogenic genes
(CA9, UCK2, and FABP5), and “reinforcing physiological function”
by upregulating the potential tumor suppressor CYP2C9. This
bidirectional, multi-target regulatory mechanism underscores ICT’s
therapeutic advantage in achieving comprehensive modulation of
tumor biology. We propose that ICT exerts its multi-target anti-
HCC activity through synergistic mechanisms—inhibiting CA9
(microenvironment regulation), UCK2 (nucleotide metabolism), and
FABP5 (lipid metabolism), while enhancing CYP2C9 expression,
which collectively contribute to its potent antitumor efficacy.

In conclusion, this study integrates computational biology and
experimental validation to demonstrate that ICT potentially inhibits
tumor progression and holds prognostic significance in HCC by
modulating a novel network of core targets—CA9, UCK2, FABP5,
and CYP2C9—thereby influencing key oncogenic pathways, including
the cell cycle and metabolic regulation. It is noteworthy that ICT, as a
multi-target agent, exerts its anti-HCC effects through complex
network-based mechanisms. Previous studies have reported
alternative targets and mechanisms for ICT. For instance, Mo D
et al. revealed that ICT directly binds to and inhibits IKKo,, thereby
downregulating tumor cell PD-L1 expression via the NF-kB signaling
pathway, which alleviates T-cell suppression and enhances anti-tumor
immune responses (59). Another network pharmacology investigation
predicted that ICT may interact with additional potential targets (60).
The differences between these findings and our results likely reflect
distinct research emphases and methodological approaches.
Specifically, our study focused on identifying ICT targets most
closely associated with HCC prognosis through systematic
bioinformatic screening and in vitro validation, whereas other studies
have emphasized specific BPs such as immune regulation or have
employed broader predictive frameworks. Importantly, these findings
are not mutually exclusive but instead represent complementary
aspects of ICT’s multi-dimensional anti-HCC activity. Collectively,
they depict ICT as acting on both tumor-intrinsic pathways (e.g.,
metabolism and proliferation, as emphasized in this study) and the
tumor microenvironment (e.g., immunomodulation), embodying the
multi-component, multi-target, and multi-pathway therapeutic
paradigm characteristic of TCM. Future studies—particularly those
employing integrated analyses in immunocompetent animal models—
are warranted to further elucidate the systemic and synergistic
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mechanisms underlying ICT’s anti-HCC efficacy and to facilitate its
translation into clinical application.

Furthermore, although this study identified potential ICT
targets in HCC through integrated analytical approaches and
provided in vitro validation, and although we explored the
relationship between these gene expression patterns and immune
cell infiltration at the bioinformatic level, several limitations should
be acknowledged. Most notably, in vivo experimental data are
currently lacking to confirm whether ICT can similarly modulate
the expression of CA9, UCK2, FABP5, and CYP2C9, as well as
remodel the tumor immune microenvironment in living organisms.
Future studies will employ murine HCC models to directly validate
these regulatory effects and mechanistic insights. Despite these
limitations, the present work offers valuable candidate targets and
establishes a clear scientific foundation for subsequent in vivo and
clinical investigations.

5 Conclusion

This study systematically integrated network pharmacology,
molecular docking, bioinformatics analysis, and in vitro
experiments to elucidate the molecular mechanisms underlying
ICT’s therapeutic effects on HCC. Our findings demonstrate that
ICT significantly inhibits the proliferation and migration of HCC
cells in both the DDM and TDM, potentially through modulation of
key signaling pathways, including cell cycle regulation and
metabolic reprogramming. Moreover, ICT exerts its anti-HCC
effects, at least in part, by downregulating the expression of CA9,
UCK2, and FABP5 while upregulating CYP2C9, thereby validating
these four genes as robust prognostic biomarkers and potential
therapeutic targets. Collectively, these results provide a novel
theoretical foundation for targeted HCC therapy and highlight
ICT as a promising therapeutic agent with substantial potential in
HCC treatment.
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