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carcinoma through network
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analysis, and cellular experiments
Yaru Shi1†, Yanan Bai1†, Jianglan Wu1, Yunfeng Yu1, Xinyu Yang1,
Haobo Yang1, Weixiong Jian1,2* and Jun Qing1,3*

1School of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine,
Changsha, Hunan, China, 2Diagnostics of Traditional Chinese Medicine, National Key Discipline,
Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China, 3Department of
Cardiovascular Medicine, Hunan Hospital of Integrated Traditional Chinese and Western Medicine,
Changsha, Hunan, China
Background: Hepatocellular carcinoma (HCC) is a key global health issue,

marked by poor clinical outcomes and lower survival rates. Icaritin (ICT), a

bioactive compound derived from traditional Chinese medicine, has shown

promising multi-target antitumor properties and potential clinical benefits in

the treatment of HCC; however, its precise mechanisms of action remain

insufficiently understood. Therefore, this study adopted an integrative strategy

that combined bioinformatics analysis, experimental validation, and network

pharmacology to systematically explore the prognostic and therapeutic

relevance of ICT-associated genes.

Methods: Initially, potential targets of ICT and HCC-associated genes were

identified through extensive database screening, and the overlapping

candidates were further determined using WGCNA and differential expression

analysis. These core intersecting genes were subsequently refined via four

complementary machine learning algorithms, KM survival analysis and LASSO

Cox regression to establish a prognostic risk score model with predictive value.

Additionally, molecular docking and dynamics simulations were performed to

evaluate the binding stability between ICT and these targets. Finally, in vitro

experiments were conducted to evaluate the effects of ICT on the proliferation

and migration, as well as the expression of core target genes.

Results: We identified thirty-five overlapping targets between ICT and HCC, and

functional enrichment analysis showed that these genes are primarily implicated

in cell cycle regulation and glycolytic pathways, highlighting potential

mechanisms through which ICT exerts its antitumor effects. By integrating

multiple machine learning approaches, KM survival analysis and LASSO Cox

regression, we developed a four-gene prognostic model that successfully

stratified HCC patients into higher- and lower-risk groups. Molecular docking

and molecular dynamics simulations demonstrated that ICT binds stably to core

targets, supporting its potential role in modulating disease progression. In vitro

validation confirmed that ICT suppresses HepG2 and Huh7 cells proliferation and

migration in a dose-dependent manner, while molecular analyses demonstrated
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that ICT treatment significantly downregulates CA9, UCK2, and FABP5 expression

and simultaneously upregulates CYP2C9, thereby supporting its role in

modulating critical oncogenic pathways.

Conclusion:Modulation of ICT-targeted genes was found to effectively suppress

HCC progression, underscoring their potential value as prognostic biomarkers

and ideal therapeutic targets for the treatment of HCC.
KEYWORDS

hepatocellular carcinoma, icaritin, prognostic genes, molecular mechanism, network
pharmacology, bioinformatics analysis
1 Introduction

Liver cancer is the 6th most prevalent malignant neoplasm

around the globe and the second key cause of cancer-related

mortality (1). Among its subtypes, hepatocellular carcinoma

(HCC) accounts for around 80–90% of primary cases of liver

cancer and is characterized by an unfavorable prognosis, with a

5-year survival rate as low as 12%, thereby posing a substantial

global public health burden (2, 3). China bears nearly half of the

global liver cancer cases, reflecting a disproportionate disease

burden (4). The major etiological factors contributing to HCC

include chronic liver disorders such as viral hepatitis, liver

cirrhosis, and excessive alcohol consumption. Surgical resection

remains the primary therapeutic option; however, because early-

stage HCC is frequently asymptomatic or associated with

nonspecific clinical manifestations, fewer than 30% of patients are

qualified for curative surgery at diagnosis, leaving most cases

detected at advanced stages when surgical intervention is no

longer feasible (5). For advanced HCC, systemic therapies such as

lenvatinib and sorafenib are recommended, but their clinical

efficacy is often compromised by treatment resistance, disease

progression, and prolonged drug-related toxicities, which

collectively limit therapeutic outcomes (6). Moreover, even after

apparently successful surgical resection, many patients face a higher

risk of recurrence or metastasis, contributing to persistently poor

long-term survival rates (7). These challenges underscore an urgent

necessity for the advancement of safer and more effective

therapeutic strategies to advance survival outcomes and enhance

the quality of life (QoL) for HCC patients.

Growing evidence indicates that traditional Chinese medicine

(TCM) and natural compounds hold systemic therapeutic potential

in managing HCC, as they have been shown to reduce treatment-

related toxicity, enhance therapeutic efficacy, suppress tumor

recurrence, improve QoL, and prolong overall survival (OS) (8–

10). Among these agents, Icaritin (ICT), a prenylated flavonoid

isolated from the medicinal herb Epimedium, has demonstrated

potent anti-tumor activity in HCC as well as in several other

malignancies (11, 12). The anti-cancer effects of ICT are mediated

via the multiple signaling pathways’ regulation, including ERK/
02
ULK1/NCOA4, IL-6/JAK2/STAT3, and ER-a36 (13, 14). Clinical

trials involving advanced HCC patients, particularly those unable to

tolerate conventional therapies and generally facing poor

prognoses, have further shown that ICT is well tolerated with

minimal adverse events, while also improving survival outcomes,

delaying disease progression, and delivering meaningful clinical

benefits (15). In addition, ICT has been reported to boost anti-

tumor immune responses by modulating the phenotype and

function of key immune cells, such as MDSCs and CD8+ T cells

(16). Together, these results underscore ICT’s promise as a novel

therapeutic candidate for HCC and other cancers; nevertheless, the

accurate molecular mechanisms underlying its anti-HCC effects

continue to be fully explained.

Network pharmacology, as an integrative multidisciplinary

methodology, addresses the inherent limitations of traditional

single-target research by constructing comprehensive “drug–

target–pathway–disease” networks that systematically analyze

complex biological interactions, thereby reflecting the multi-target

synergistic effects characteristic of TCM (17). This systems-level

approach offers a novel framework for elucidating the intricate gene

networks and biological processes (BPs) underlying ICT’s

therapeutic effects in HCC, offering insights into its multi-target

mechanisms and potential contributions to improved treatment

outcomes. Complementing this strategy, molecular docking serves

as a widely applied computational technique that simulates the

interactions between small molecules (ligands) and proteins

(receptors) by predicting binding conformations and estimating

affinity parameters (18). Its higher predictive accuracy and cost-

effectiveness have made molecular docking be a vital tool in

structural biology, modern drug discovery, and the exploration of

biochemical pathways. In parallel, bioinformatics plays a critical

role across nearly all phases of drug development, extending far

beyond the processing of large-scale datasets to provide powerful

predictive, analytical, and interpretive capabilities that inform both

preclinical research and clinical applications.

This study applied an integrative approach that combined

network pharmacology and bioinformatics analyses to identify

core genes targeted by ICT in HCC and to evaluate their

prognostic significance. Based on ICT-related genes closely
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associated with survival outcomes, we constructed a prognostic

model and further explored the relationship between gene

expression levels and pharmacological sensitivity. Molecular

docking was then performed to predict the binding affinities of

ICT with its potential target proteins. To substantiate these

computational findings, experimental validation was carried out

using human hepatoma HepG2 cell lines, confirming the inhibitory

effects of ICT on cell proliferation, migration, and target gene

expression. By integrating advanced computational methodologies

with in vitro experiments, this investigation not only elucidates the

prognostic and therapeutic relevance of ICT-related genes in HCC

but also provides novel insights and a theoretical foundation for the

development of effective treatment strategies utilizing small-

molecule compounds derived from TCM. The flowchart of this

study is shown in Figure 1.
2 Materials and methods

2.1 Network pharmacology and
bioinformatics

2.1.1 Identify potential targets for ICT and HCC
The ADME properties of ICT were retrieved from the TCMSP

(https://tcmsp-e.com/) database (19), revealing an oral
Frontiers in Immunology 03
bioavailability (OB) of 45.41% and a drug-likeness (DL) index of

0.44. OB reflects the rate and extent to which a compound enters

systemic circulation, serving as a key determinant of therapeutic

efficacy, while DL indicates the likelihood that a compound

possesses favorable pharmacokinetic properties based on its

functional groups and physicochemical characteristics. According

to TCMSP criteria, compounds with OB≥30% and DL≥0.18 are

considered active candidates, suggesting that ICT likely exhibits

significant pharmacological activity in vivo. The 3D molecular

structure of ICT was sourced from the PubChem (http://

pubchem.ncbi.nlm.nih.gov/) database (20), as shown in Figure 2A.

Potential ICT-related target genes were recognized by

systematically searching three public databases, CTD (http://

ctdbase.org/) (21), TCMSP, and HERB (http://herb.ac.cn/) (22),

using the keyword “icaritin.” To further expand target prediction,

both the SMILES format and three-dimensional (3D) molecular

structure of ICT were obtained from the PubChem database. The

SMILES format was subsequently entered into the Swiss Target

Prediction platform (http://www.swisstargetprediction.ch/) (23) to

forecast potential molecular targets, while the 3D structure was

uploaded to the PharmMapper database (https://www.lilab-

ecust.cn/pharmmapper/index.html) (24), where gene targets with

a normalized fitting score (Normfit) greater than 0.3 were selected.

Screening “ICT” across five databases, CTD, TCMSP, HERB, Swiss

Target Prediction, and PharmMapper, identified 33, 36, 38, 103,
FIGURE 1

Flowchart of this study.
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and 289 potential targets, respectively; after integration and

removal of duplicates, 406 unique ICT-related targets were

compiled (Figure 2B).

For the identification of HCC-related genes, the GeneCards

(https://www.genecards.org) and OMIM (https://www.omim.org)

databases were systematically queried using the keywords

“hepatocellular carcinoma” and “HCC”. Within the GeneCards

database, only genes with a relevance score ≥ 2.0 were selected as

higher-confidence candidates. The gene sets obtained from both

databases were subsequently integrated, and duplicate entries were

deleted to produce a non-redundant and comprehensive list of

HCC-associated targets. The OMIM and GeneCards databases

yielded 192 and 6,874 entries, respectively, which, after

deduplication, resulted in 7,000 distinct HCC-associated genes.

The overlapping targets between ICT-related and HCC-associated

genes are presented in a Venn diagram (Figure 2C), and the ICT

compound–target interaction network was then constructed using

Cytoscape 3.10.2 (Figure 2D).

2.1.2 Differential expression analysis and co-
expression network construction

Transcriptomic sequencing data and relevant clinical

information for HCC samples were obtained from the TCGA-

LIHC cohort in the TCGA database (https://portal.gdc.cancer.gov/),

which comprises 374 tumor samples and 50 adjacent normal
Frontiers in Immunology 04
controls. DEA was performed on count-based gene expression

data using the “DESeq2” package in R software (version 4.3.3),

with genes classified as differentially expressed genes (DEGs) when

adjusted p-values were < 0.05 and |log2 fold change (FC)| ≥ 1. The

results were imaged utilizing the “ggplot2” package to generate a

volcano plot of DEGs. For downstream analyses, HCC expression

profiles were normalized to transcripts per million (TPM).

Weighted gene co-expression network analysis (WGCNA) was

then employed to identify gene modules functionally associated

with HCC, with the top 25% of genes showing the highest variance

selected as input. Prior to network construction, outlier samples

were identified and excluded using the “goodSamplesGenes”

function, and data consistency was assessed through sample

clustering. The optimum soft-thresholding power was determined

utilizing the “pickSoftThreshold” function, enabling conversion of

the correlation matrix into an adjacency matrix and subsequent

construction of a topological overlap matrix (TOM). Moreover,

gene modules were observed via hierarchical clustering, with highly

similar modules merged at a mergeCutHeight threshold of 0.4.

Modules most strongly related with HCC clinical traits were

selected as key modules for further study. Finally, intersection

analysis was performed among predicted ICT-target genes, HCC-

associated disease genes, DEGs, and key module genes, and the

overlapping genes, defined as ICT-related DEGs in HCC, were

subjected to subsequent functional and prognostic analyses.
FIGURE 2

Network pharmacology analysis of ICT. (A) Three-dimensional chemical structure of ICT (PubChem CID: 5318980 with the molecular formula
C21H20O6). (B) Candidate therapeutic targets of ICT retrieved from five public databases. (C) Venn diagram illustrating the overlapping genes
between potential ICT targets and HCC-associated genes. (D) PPI network of ICT targets.
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2.1.3 Functional enrichment analysis
FEA of the overlapping genes was performed utilizing the R

package “clusterProfiler,” incorporating both Kyoto encyclopedia of

genes and genomes (KEGG) and gene ontology (GO) pathway

analyses (25). A significance threshold of p < 0.05 was employed,

and the enriched GO terms and KEGG pathways were imaged

utilizing the “ggplot2” and “enrichplot” packages to ensure clear

and intuitive presentation of the results.

2.1.4 Protein–protein interaction network
construction

To construct the PPI network, the overlapping genes were

uploaded to the STRING database (https://www.string-db.org),

restricting the Homo sapiens’ species and applying a confidence

score threshold of 0.4. Following network optimization through the

removal of isolated nodes, the interaction data were exported in

TSV format and imported into Cytoscape 3.10.2 for visualization.

Node color gradients were assigned based on degree values,

reflecting the topological importance of each protein within

the network.

2.1.5 Cox regression and machine learning
To identify prognostic biomarkers associated with ICT in HCC,

univariate Cox regression analysis was performed on genes shared

by a cohort of TCGA HCC patients who had complete clinical

information and survived more than 30 days. To enhance the

accuracy of key ICT-related gene selection, four complementary

machine learning approaches were employed, including SVM-RFE,

XGBoost, GMM, and RF.

The XGBoost algorithm, implemented via the “xgboost” R

package, was initially applied to iteratively construct decision trees,

correcting previous errors to improve model performance and identify

critical predictive genes, with features exhibiting gain values greater

than zero considered important (26). Subsequently, GMM analysis was

carried out utilizing the “SimDesign” package to determine the model

with the highest classification accuracy and its associated genes; this

approach models gene expression data as a combination of multiple

Gaussian distributions, capturing complex underlying biological

patterns (27). Following this, the SVM-RFE technique was employed

through the “e1071” R package to iteratively remove less significant

features, thereby refining the optimal gene set (28). Additionally, the RF

algorithm, applied via the “randomForest” package, generated multiple

decision trees whose aggregated predictions enhanced model accuracy

and stability, with genes showing a mean decrease Gini (MDG) index

greater than 2.0 designated as essential (29). Ultimately, genes

consistently identified by all four machine learning methods were

classified as key prognostic ICT-related genes in HCC and selected for

subsequent downstream analyses.

2.1.6 Development of a risk scoring model
To systematically identify ICT-associated prognostic biomarkers,

we employed LASSO Cox regression analysis and Kaplan-Meier (K-

M) survival analysis within the TCGA-LIHC cohort to evaluate the

prognostic potential of key genes. Genes identified through both

LASSO Cox regression and K-M survival analysis were defined as
Frontiers in Immunology 05
core prognostic genes, and their significance in HCC was further

evaluated using the “glmnet” R package, focusing on OS as the

primary outcome. The optimal penalty parameter (l) was measured

through ten-fold cross-validation and consistently applied across the

analysis. Gene coefficients were extracted using the “coef” function to

quantify each gene’s contribution to the model, and patient risk

scores were calculated as risk score = S (Xi × Yi), where Xi represents

the regression coefficient of gene i, Yi denotes its expression level.

Patients were stratified into lower- and higher-risk groups based on

the median risk score, and the model’s prognostic performance was

gauged by comparing OS between these groups using K–M analysis.

Furthermore, time-dependent receiver operating characteristic

(ROC) curve analysis was directed with the “timeROC” package to

calculate the predictive accuracy of the model for patient survival

outcomes (30).

2.1.7 Drug sensitivity analysis and immune
infiltration analysis

The genomics of drug sensitivity in cancer database and the

“oncoPredict” R package were employed to evaluate the

relationship between sorafenib sensitivity and the expression

levels of ICT-related prognostic genes, with the aim of predicting

cellular responsiveness to pharmacological treatment (31).

The “CIBERSORT” algorithm was utilized to quantify the

relative proportions of 22 distinct immune cell subtypes within

the samples. Differences in immune cell composition across higher-

and lower-risk groups were measured utilizing the Wilcoxon rank-

sum test. Additionally, Spearman’s rank correlation analysis was

conducted to evaluate the relationships, whether positive or

negative, between the expression levels of prognostic genes and

the proportions of specific immune cell populations.

2.1.8 Validation of ICT-target binding through
molecular docking

The SDF format file of ICT was first obtained from the

PubChem database, and the protein data bank (PDB) format file

of the corresponding core target receptor protein was retrieved from

the PDB (http://www.rcsb.org/). Subsequently, the ligand structure

was converted to the mol2 format using Chem3D 14.0, while the

receptor proteins underwent preprocessing steps such as removal of

were preprocessed in PyMOL 2.6.0 by removing water molecules

and addition of adding hydrogen atoms in PyMOL 2.6.0. Molecular

docking between ICT and the receptor proteins was then performed

using AutoDockTools 1.5.7. The binding energy of each protein–

ligand pair complex was recorded, calculated, and the resulting

complex conformations were saved in pdbqt format. Finally, three-

dimensional the 3D visualization and graphical representation

analysis of the molecular docking results were conducted using

carried out in PyMOL software to intuitively assess clearly illustrate

the interaction modes.

2.1.9 Validation of binding affinity using
molecular dynamics simulations

MD simulations of the small molecule-protein complexes were

performed using GROMACS 2020.6. The simulations were
frontiersin.org
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conducted under constant temperature (300 K) and pressure (1 bar)

conditions (32). The topology of the small-molecule ligand was

generated using the GAFF2 force field, while the protein was

parameterized with the CHARMM36 force field (33). The protein

receptor was solvated in a TIP3P water model, and sodium and

chloride ions were introduced to neutralize the system’s net charge.

Energy minimization was performed using the steepest descent

method followed by the conjugate gradient approach. Subsequently,

a 100,000-step equilibration was carried out under both isothermal–

isochoric (NVT) and isothermal–isobaric (NPT) ensembles. Finally,

two independent systems were subjected to 1,000,000-step MD

simulations (corresponding to 100 ns) under periodic boundary

conditions. The resulting trajectories were analyzed using the built-

in tools of GROMACS.
2.2 Experimental verification

2.2.1 Cell lines and materials
Human HCC HepG2 cells (CL-0103), Huh7 cells (CL-0120),

fetal bovine serum (Cat. No. 164210-50), DMEM higher-glucose

medium (Cat. No. PM150210), and 100× penicillin–streptomycin

solution (Cat. No. PB180120) were purchased from Procell, while

0.25% trypsin–EDTA solution containing phenol red (Cat. No.

SL6020) was obtained from Coolaber. ICT (purity ≥98%, Cat. No.

A1458605) was procured from AmBeed. All reagents and cell lines

were sourced from their respective companies in China or the USA.

2.2.2 Cell culture and subculture
All experimental procedures followed standard cell culture

protocols. HepG2 and Huh7 cells were maintained in DMEM

added with 10% FBS and 1% streptomycin-penicillin solution and

incubated in a humidified environment with 5% CO2 at 37°C. Cells

were subcultured upon reaching approximately 70–80% confluence

to ensure optimal growth conditions. During subculturing, the

culture medium was eliminated, cells were rinsed with PBS, and

subsequently detached using 0.25% trypsin–EDTA before being

counted for downstream experiments.

2.2.3 Cell viability assay
To assess HCC cell viability Following ICT treatment, HepG2

and Huh7 cells were seeded in the logarithmic growth phase (LGP)

into 96-well plates at a density of 5 × 10³ cells per well. After cell

adherence, the culture medium was substituted with fresh medium

comprising various concentrations of ICT HepG2 cells were treated

with 0, 3.25, 7.5, 15, 30, and 60mM ICT, while Huh7 cells were

exposed to 0, 5, 10, 20, 40, and 80mM ICT for 24 and 48 hours. Post-

treatment, the medium was removed, and a working solution was

prepared by mixing complete culture medium with the cell

counting kit-8 (CCK-8) reagent (Catalog No. BMU106-CN,

Abbkine, China) at a 10:1 (v/v) ratio. This solution was carefully

poured to each well, which was then followed by an additional 1-

hour incubation. Absorbance was then measured at 450 nm

utilizing a Varioskan Lux microplate reader (Thermo Scientific)

to estimate cell viability.
Frontiers in Immunology 06
2.2.4 Wound healing assay
For the WHA, straight reference lines were drawn on the

bottom of a 6-well plate using a marker pen. Cells in the LGP

were seeded at a density of 6 × 104 cells per well and incubated

under standard culture conditions for 24 hours until reaching up to

80% confluence. A uniform scratch wound was then created

perpendicular to the marked lines using a sterile 1 mL pipette tip.

Following wounding, culture medium containing different

concentrations of ICT (0, 7.5, 15, and 30 mM or 0, 5, 10, and 20

mM) was added to the respective wells. Images of the wound area

were captured at 0-, 24-, and 48-hours post-scratch, and the wound

closure was quantitatively analyzed utilizing ImageJ software.

2.2.5 Immunofluorescence staining experiment
Double-target immunofluorescence staining was performed using

the tyramide signal amplification (TSA) technique. Briefly, cells were

permeabilized for 10minutes at room temperature with 0.1% Triton X-

100 (T8200, Solarbio, China) and rinsed three times with PBS.

Nonspecific binding was blocked by incubating the cells with 10%

goat serum (PN0038, pinuofei Biotech, China) at 37°C for 30 minutes.

The cells were then incubated with primary antibodies (Wuhan

Sanying, China: Fatty acid-binding protein 5 (FABP5)/12348-1-AP/

1:200, UCK2/66822-1-IG/1:200, carbonic anhydrase 9 (CA9)/11071-1-

AP/1:200, CYP2C9/16546-1-AP/1:500), the same antibodies used for

Western blotting (WB), either for 2 hours at 37 °C or for the entire

night at 4°C. Following primary incubation, HRP-conjugated goat anti-

rabbit IgG secondary antibody (PN0046, pinuofei Biotech) was applied

at 37°C for 1 hour. After extensive washing with PBST (it is PBS, which

has 0.1% Tween-20), TSA was performed sequentially with TYR-488

(PN0100, pinuofei Biotech) and TYR-555 (PN0101, pinuofei Biotech)

at 37°C for 30 minutes each. Nuclei were counterstained with DAPI

(PN0015, pinuofei Biotech) for 5 minutes, and samples were mounted

using an anti-fluorescence quenching mounting medium (PN0024,

pinuofei Biotech) and stored at 4°C in the dark. Fluorescence images

were acquired using a fluorescence microscope, and the fluorescence

intensity was quantitatively analyzed using ImageJ software. Finally, the

relative protein expression level was determined by comparing the

mean fluorescence intensity of the target protein to that of DAPI. PBST

was used for all washing steps throughout the procedure, and working

concentrations of all antibodies and reagents were pre-optimized in

preliminary experiments to ensure optimal staining efficiency and

signal specificity.

2.2.6 qRT-PCR analysis
Total RNA was extracted from cells utilizing TriQuick Total RNA

Extraction Reagent (R1100, Solarbio, China) and purified via a

precipitation method employing chloroform (CAS: 67-66-3,

Sinopharm, China) and isopropanol (CAS: 80109218, Sinopharm),

followed by washing with anhydrous ethanol (10009218, Sinopharm).

The purified RNA was dissolved in DEPC-treated water (R0022,

Beyotime, China) for storage. Genomic DNA was eliminated, and

complementary DNA was synthesized utilizing the Evo M-MLV RT

Mix Kit with gDNA Clean for quantitative PCR (qPCR) Ver.2

(AG11728, Accurate Biology, China). qPCR was performed using

PerfectStart® Green qPCR SuperMix (+Dye II, AQ602, TransGen,
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China) under the following thermal cycling conditions: initial

denaturation at 94°C for 2 minutes, 45 cycles of amplification (94°C

for 5 seconds, 60°C for 30 seconds), and a final melting curve analysis

from 65°C to 95°C with 0.5°C increments every 5 seconds. Relative

expression levels of the target genes were calculated utilizing the 2−DDCt

method, with b-actin as the internal reference. All experiments

included three biological replicates and three technical replicates.

Primer sequences are provided in Table 1.

2.2.7 Western blotting
Cells were lysed utilizing RIPA buffer for 30 minutes. The lysates

were centrifuged for 15minutes at 12,000 rpm to collect the supernatant,

and protein concentrations were quantified using a BCA protein assay

kit (E-BC-K318-M, Elabscience, China). Sample concentrations were

then adjusted to ensure uniform protein loading based on the standard

curve. Twentymicrograms of protein per sample were separated on a 4–

20% Bis-Tris precast gel at 160 V for 40 minutes and transferred onto a

PVDF membrane at a constant current of 200 mA. Membranes were

blocked with 5% skim milk in TBST at room temperature for 1 hour

and incubated overnight at 4°C with primary antibodies diluted 1:1000,

alongside GAPDH as the internal reference (1:5000, YM3029,

Immunoway, China). Following three washes with TBST, HRP-

conjugated goat anti-rabbit IgG (RS0002, Immunoway; 1:5000) was

applied for 1 hour at room temperature. After additional washes, protein

bands were imaged utilizing ECL chemiluminescent reagent, and images

were captured with an automatic chemiluminescence imaging system.

2.2.8 Statistical analysis
All data are expressed as mean ± standard deviation (SD).

Moreover, statistical analyses were carried out utilizing GraphPad

Prism 8.0, with one-way or two-way ANOVA applied for multiple

group comparisons. Statistical significance was denoted as follows:

*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
3 Result

3.1 Investigation utilizing network
pharmacology and bioinformatics
approaches

3.1.1 Discovery of ICT-related DEGs in HCC
After excluding outliers from the TCGA-LIHC dataset, a total

of 19,938 protein-coding genes were obtained. DEA revealed that
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3,335 genes were significantly upregulated in HCC tissues relative t

controls, while 1,204 genes were downregulated (Figure 3A).

WGCNA was then applied to establish co-expression networks

and detect gene modules in both control and HCC groups. The top

25% of genes displaying the maximum variance, totaling 4,985

genes, were selected for WGCNA. A soft-thresholding power (b) of
5 (R² = 0.9) was chosen to achieve a scale-free network topology,

leading to the identification of seven distinct co-expression

modules, each represented by a different color (Figures 3B, C).

The dissTOM matrix heatmap, visualized using the dynamic tree

cut algorithm, further illustrated the modular structure (Figure 3D).

Clinical features (control versus HCC status) were incorporated to

evaluate module–trait associations, revealing that the red module,

comprising 2,036 genes, displayed the strongest and most

statistically significant correlation with HCC (Figure 3E). A

scatter plot confirmed this association, demonstrating a strong

positive correlation between module eigengene values and HCC

status (Figure 3F). Finally, integration of potential ICT target genes,

HCC-related disease genes, DEGs, and key module genes via a

Venn diagram identified 35 overlapping genes (see Supplementary

Table 1), which were designated as ICT-linked DEGs in

HCC (Figure 3G).
3.1.2 Enrichment analysis and PPI network
construction of intersection genes

Functional enrichment analyses were carried out on the 35

overlapping genes, encompassing GO and KEGG pathway

annotations. In the BP category, the genes were predominantly

enriched in pathways associated with the G2/M phase transition of

the cell cycle, terpene metabolism, primary alcohol metabolism, and

retinol metabolism (Figure 4A). For cellular components (CC), the

genes were mainly linked to structures such as chromatin, spindle

microtubules, and condensed chromatin (Figure 4B). Regarding

molecular functions (MFs), momentous enrichment was detected in

oxidoreductase activity, carboxylic acid binding, organic acid

binding, and protein serine/threonine kinase activity (Figure 4C).

KEGG pathway analysis indicated that ICT may exert therapeutic

effects on HCC by modulating key signaling pathways, including

the cell cycle, nucleotide metabolism, glycolysis/gluconeogenesis,

and drug metabolism pathways (Figure 4D). To further investigate

interactions among these target proteins, the genes were analyzed

utilizing the STRING database to exclude non-interacting targets,

and the resulting dataset was imported into Cytoscape 3.10.2 to

build a PPI network (Figure 4E).
TABLE 1 Primers sequences used in this study.

Targets
Sequences

Forward:5’-3’ Reverse:5’-3’

UCK2 CAGCTAGCGGCAAGAGGTAA TGCTCAGTCCCAAAGCTGAG

CA9 CCAGGGTGTCATCTGGACTG TCAGCTGTAGCCGAGAGTCA

FABP5 TCTTGTACCCTGGGAGAGAAGT CCACTCCTGATGCTGAACCA

CYP2C9 GGGGCATTATCCATCTTTCACT ACTCTCCGTAATGGAGGTCG
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3.1.3 Identification of core genes associated with
ICT and construction of a prognostic model

Univariate Cox regression analysis of the 35 overlapping genes

identified 21 ICT-associated genes with statistically significant

prognostic value (Figure 5A). To further refine key prognostic

candidates, multiple machine learning algorithms (MLAs) were

applied. Using XGBoost, 15 core genes with gain values greater

than zero were identified (Figure 5B). GMM regression analysis,

performed over 221 iterations, selected a model with optimal

predictive performance (area under the curve (AUC)≈ 0.998)
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comprising 10 core genes (Figure 5C). The SVM-RFE approach

identified 19 feature genes (Figures 5D, E), while the RF algorithm,

integrating multiple decision trees, highlighted 13 genes with MDG

values greater than 2.0 as key prognostic features (Figures 5G, H).

Intersection analysis of these gene sets yielded six overlapping genes

as key candidate prognostic markers (Figure 5F), whose expression

levels were compared between control and HCC tissues (Figure 5I).

To construct a strong prognostic model, the six candidate genes

were further analyzed utilizing K–M survival analysis and LASSO

Cox regression. K-M analysis revealed that five genes (UCK2, FABP5,
FIGURE 3

Identification of ICT-associated DEGsin HCC through integrated DEA and WGCNA. (A) Volcano plot illustrating DEGs between HCC tumor tissues
and adjacent normal tissues in the TCGA-LIHC cohort. (B) Network topology plots depicting scale-free fit and mean connectivity across varying
soft-thresholding powers. (C) Hierarchical clustering dendrogram of DEGs. (D) Heatmap showing the dissTOM among all identified gene modules.
(E) Correlation heatmap between gene modules (represented by colors) and clinical traits. (F) Scatter plot demonstrating the positive correlation
between gene significance (GS) and module membership (MM) for the red module in tumor tissues. (G) Venn diagram illustrating the intersection
among HCC DEGs, ICT-related targets, HCC-derived module genes, and HCC-associated disease genes.
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CA9, CYP2C9, and TOP2A) met the significance criterion (p < 0.05),

indicating their expression levels were significantly associated with

OS (Figures 6A–F). Ten-fold cross-validation was applied to

minimize overfitting, and LASSO regression identified four genes,

UCK2, FABP5, CA9, and CYP2C9, as significant predictors

(Figures 6G, H). Subsequently, based on the intersection of results

from these two analytical approaches, a four-gene risk score model

was established via LASSO analysis (Figure 6I). The risk score

measured as follows: Risk Score = 0.0849 × CA9 + 0.0151 × UCK2

– 0.0585 × CYP2C9 + 0.0267 × FABP5 expression levels (Figure 6I).

Using the four-gene risk score, HCC patients with available

clinical data from the TCGA database were stratified into lower-risk

and higher-risk groups. K–M survival analysis revealed that patients

in the lower-risk group had markedly improved OS compared with

those in the higher-risk group (Figure 6J). The predictive

performance of the model was further assessed using time-

dependent ROC curve analysis, yielding AUC values of 0.688,

0.691, and 0.686 at 1, 3, and 5 years, respectively, demonstrating

the model’s moderate prognostic accuracy (Figure 6K).

3.1.4 Analysis of drug sensitivity and immune cell
infiltration

The link between gene expression levels and sorafenib

sensitivity was assessed using the “oncoPredict” package. Box and

scatter plots demonstrated significant correlations between the
Frontiers in Immunology 09
expression of four key genes and drug sensitivity, with all p-values

< 0.01, signifying their potential as predictive biomarkers for

sorafenib response. Notably, CYP2C9 expression exhibited a

positive correlation with sorafenib sensitivity, whereas UCK2,

FABP5, and CA9 showed negative correlations (Figures 7A–D).

To investigate immunological implications, immune infiltration

was analyzed using the CIBERSORT algorithm, revealing significant

variances in the proportions of 15 distinct immune cell populations

between higher-risk and lower-risk groups stratified by the four-gene

risk score (Figure 7E). Further correlation analysis between ICT-

related prognostic hub genes and immune cell infiltration indicated

strong associations, particularly involving M0 macrophages, memory

B cells, monocytes, and regulatory T cells (Figure 7F).

3.1.5 Molecular docking results
Molecular docking analysis revealed that ICT exhibited negative

binding energy values with the key target proteins CA9, UCK2,

FABP5, and CYP2C9 (Table 2), indicating direct interactions with

amino acid residues within these proteins. Lower binding energies

correspond to more stable and favorable molecular interactions,

with values below −5.0 kJ/mol reflecting favorable binding affinity

and values below −7 kJ/mol indicating strong binding activity.

Notably, all four core targets demonstrated binding energies

below −7 kJ/mol, suggesting their critical involvement in ICT’s

therapeutic mechanism against HCC. The docking results were
FIGURE 4

Functional enrichment analysis and PPI network construction of ICT-associated differentially expressed genes in HCC. (A–C) Network diagrams
illustrating the top 8 enriched categories in BPs, CCs, and MFs. (D) Bubble plot showing the top ten suggestively enriched KEGG pathways. (E) PPI
network of ICT-associated DEGs in HCC.
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visualized in Figure 8. Molecular docking analysis revealed that ICT

exhibited binding energies of -7.3, -7.5, -8.9, and -9.5 kJ/mol with

the four core target proteins UCK2, CA9, CYP2C9, and FABP5,

respectively. Among these, ICT showed the strongest binding

affinity toward FABP5. Therefore, FABP5—the protein with the

highest binding affinity—was selected for subsequent MD

simulations to further validate and characterize the stability of the

binding interaction.

3.1.6 Validation of binding capacity through
molecular dynamics simulations

Although a semi-flexible docking strategy was applied during the

molecular docking process, this approach remains limited in

accurately capturing the influence of real-world environmental

factors on proteins, such as temperature, pressure, conformational

flexibility, and solvent effects. To overcome these limitations, a 100-ns

all-atom MD simulation of the FABP5–ICT complex was performed

using GROMACS to comprehensively analyze the protein’s dynamic

behavior and conformational stability upon ligand binding.

Following the simulation, multiple structural parameters were
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systematically assessed using the software’s built-in trajectory

analysis tools, including root mean square deviation (RMSD), root

mean square fluctuation (RMSF), radius of gyration (Rg), hydrogen

bond interactions, and the free energy landscape (FEL).

The MD simulation results showed that the RMSD values of the

protein–ligand complex fluctuated by less than 0.2 nm throughout

the 100-ns trajectory, indicating that the complex maintained a

relatively stable conformation under simulated physiological

conditions (Figure 9A). RMSF analysis further revealed regions of

higher residue flexibility, highlighting local conformational

variations within the protein structure (Figure 9B). In parallel, the

radius of gyration (Rg) exhibited only minor fluctuations,

suggesting a compact overall structure and strong intramolecular

cohesion (Figure 9C). Moreover, analysis of backbone hydrogen

bonds indicated the formation of persistent and stable hydrogen

bond interactions between FABP5 and ICT throughout the

simulation period (Figure 9D). To further evaluate the

conformational stability of the FABP5–ICT complex, principal

component analysis was performed to extract the first two

principal components from the RMSD and Rg data. These were
FIGURE 5

Candidate prognostic genes were identified through integration of Cox regression analysis and machine learning algorithms. (A) Univariate Cox
regression analysis identified 21 genes significantly associated with OS. (B) Core diagnostic markers selected using the XGBoost algorithm (n=15).
(C) Identification of significant genes via GMM regression analysis (n=10). (D, E) Feature genes detected by the SVF-RFE method (n=19). (F) Venn
diagram showing the intersection of results from four MLAs used to define candidate prognostic genes. (G, H) Key predictive features selected by
the random forest algorithm (n=13). (I) Box plots depicting the expression levels of six candidate prognostic genes in the TCGA-LIHC cohort. * <
0.05, ** < 0.01, *** < 0.001.
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integrated with the binding free energy, calculated using the Gibbs

free energy equation, to construct the corresponding 2D and 3D

FEL plots. The analysis revealed a distinct low-energy basin that

persisted throughout the simulation, suggesting that the complex
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preferentially resides in energetically favorable and structurally

stable conformations (Figures 9E, F). Collectively, these findings

confirm the robust structural stability of the FABP5–ICT complex

during dynamic simulation.
FIGURE 6

Development of a risk score model for prognostic prediction. (A–F) K-M survival curves demonstrating the prognostic value of CA9, CYP2C9,
DTYMK, FABP5, TOP2A, and UCK2 expression levels in the TCGA-LIHA cohort. (G) Establishment of the prognostic model using LASSO Cox
regression analysis. (H) LASSO coefficient profile across varying lambda values. (I) Risk score distribution, survival status, and expression heatmap
ofthe four ICT-associated genes in the TCGA-LIHA cohort. (J) Kaplan–Meier survival analysis comparing OS between higher-risk and lower-risk
groups. (K) Time-dependent ROC curves evaluating the predictive performance of the risk score model for 1-year, 3-year, and 5-year survival in
theTCGA-LIHC cohort.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1693028
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shi et al. 10.3389/fimmu.2025.1693028
3.2 Experimental verification

3.2.1 The influence of ICT treatment
concentration and time on the survival rate of
HCC cells

The results revealed that ICT inhibited HepG2 and Huh7 cells

growth in a pronounced dose-dependent manner (DDM) and time-

dependent manner (TDM) (Figures 10A, D). Specifically, cell viability
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decreased progressively with increasing ICT concentrations following

24-hour and 48-hour treatments. The IC50 values for HepG2 and

Huh7 cells were 31.38 mM and 24.32 mM at 24 hours, respectively,

and 22.62 mM and 13.68 mM at 48 hours, respectively, indicating

enhanced cytotoxic activity with prolonged exposure. Based on the

24-hour IC50 values, three representative concentrations were

selected for each cell line for subsequent experiments: 7.5 mM
(approximately one-quarter of the IC50), 15 mM (approximately

one-half of the IC50), and 30 mM (approximately the IC50) for

HepG2 cells; and 5 mM (approximately one-quarter of the IC50), 10

mM (approximately one-half of the IC50), and 20 mM (approximately

the IC50) for Huh7 cells.

3.2.2 The influence of ICT on the migration ability
of HCC cells

Experimental results demonstrated that ICT effectively inhibits

HCC cell migration in a both DDM and TDM (Figures 11B, C, E, F).

In HepG2 cells, after 24 hours of treatment with 0, 7.5, 15, and 30 mM
ICT, the migration rates were 53%, 50%, 44% (p < 0.01), and 36%
FIGURE 7

Drug sensitivity profiling and immune infiltration characterization. (A-D) Individual analysis of the correlation between the expression level of each
core gene (CA9, CYP2C9, FABP5, UCK2) and sorafenib sensitivity. (E) Comparison of immune cell infiltration proportions between the high-risk and
low-risk groups defined by the four-gene risk score. (F) Correlation analysis between the continuous risk score and the infiltration levels of various
immune cells. * < 0.05, ** < 0.01, *** < 0.001.
TABLE 2 Molecular docking results of icaritin with core targets.

Compound Target PDB: ID
Binding Energy

(KJ/mol)

icaritin UCK2 1UJ2 -7.3

icaritin CA9 6RQU -7.5

icaritin CYP2C9 5A5I -8.9

icaritin FABP5 7G0E -9.5
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(p < 0.0001), respectively. This suppression was further enhanced

after 48 hours, with the control group’s migration rate increasing to

79%, while the ICT-treated groups showed significantly reduced rates

of 72% (p < 0.01), 52% (p < 0.0001), and 47% (p < 0.0001). Similarly,

in Huh7 cells, 24-hour treatment with 0, 5, 10, and 20 mM ICT

resulted in migration rates of 48%, 40% (p < 0.05), 28% (p < 0.0001),

and 16% (p < 0.0001), respectively. After 48 hours, the control

migration rate increased to 74%, whereas ICT treatment led to

markedly suppressed migration rates of 57%, 44%, and 25% (all

p < 0.01). Together, these findings indicate that ICT effectively

inhibits hepatocellular carcinoma cell migration in a sustained and

cumulative manner.

3.2.3 The influence of ICT treatment on the
expression of target protein-positive cells

These four genes were selected for in vitro validation based on a

stepwise computational analysis. We first identified 35 ICT-HCC

overlapping genes through network pharmacology and

bioinformatics. Univariate Cox regression and four machine learning

algorithms narrowed them to six candidate genes. Integrating Kaplan–

Meier and LASSO Cox regression analyses, we defined a four-gene

signature—UCK2, FABP5, CA9, and CYP2C9—that stratifies HCC

patients into high- and low-risk groups with significant survival

differences. As the top candidates from this analysis, they were

chosen to test whether ICT directly regulates these prognostic targets.

In this study, the expression patterns of FABP5 (red) and CYP2C9

(green) in HepG2 cells were evaluated using immunofluorescence

double-labeling, with nuclei counterstained by DAPI (blue)

(Figure 11A). Similarly, UCK2 (red) and CA9 (green) expression was

examined. Fluorescence microscopy, combined with quantitative

analysis using ImageJ (Figure 11B), was applied to estimate the

impacts of different ICT concentrations on target protein expression.

Relative to the control, FABP5 fluorescence intensity decreased in a
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DDM, with significant reductions observed at 15 mM and 30 mM
(p < 0.01), whereas the 7.5 mM group exhibited a non-significant

downward trend (p > 0.05). In contrast, CYP2C9 expression was

significantly upregulated at 15 mM ICT (p < 0.01) and showed no

significant change at 7.5 mM (p > 0.05). In the second detection group,

UCK2 and CA9 expression levels were significantly downregulated in a

DDM as ICT concentration increased (p < 0.05).

3.2.4 The regulation of core target expression by
ICT at the mRNA and protein levels

This study systematically evaluated the effects of ICT on the

expression of key metabolism-related proteins—FABP5, UCK2,

CA9, and CYP2C9—in HepG2 and Huh7 cells using qRT-PCR

and Western blot analyses. As shown in Figures 12A, B, qRT-PCR

results indicated that ICT dose-dependently suppressed the mRNA

levels of FABP5, UCK2, and CA9, while gradually increasing

CYP2C9 mRNA expression with rising ICT concentrations.

Correspondingly, Western blot analysis (Figure 12C) revealed a

marked reduction in the protein expression of FABP5, CA9, and

UCK2, accompanied by a significant upregulation of CYP2C9

protein levels in response to increasing ICT concentrations. The

overall concordance between mRNA and protein expression

patterns suggests that ICT modulates these metabolism-related

targets in a gene-specific and dose-dependent manner, exerting

regulatory effects at both transcriptional and protein levels.
4 Discussion

HCC is among the most lethal malignant tumors worldwide

and continues to pose a significant clinical challenge. Surgical

resection remains the primary treatment but is limited to patients

diagnosed at early stages, while pharmacological therapies, although
FIGURE 8

Molecular docking patterns between ICT and its target proteins. (A) UCK2. (B) CA9. (C) CYP2C9. (D) FABP5.
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capable of extending survival, are often constrained by drug

resistance and adverse effects. Consequently, elucidating the

pathogenesis of HCC and identifying more effective and safer

therapeutic strategies have become critical research priorities.

Advances in TCM research have provided growing evidence that

plant-derived natural compounds exhibit potent anti-tumor

activities, enhance therapeutic efficacy, reduce toxicity, and hold

considerable promise for cancer prevention and treatment (34, 35).

ICT, a major bioactive flavonoid extracted from the TCM herb

Epimedium, has recently been demonstrated to inhibit HCC cell

proliferation, induce apoptosis, modulate glycolytic metabolism,

and promote cellular senescence (36, 37). Despite increasing

interest in ICT’s therapeutic potential against HCC, its underlying

molecular mechanisms remain incompletely understood. This

study systematically investigates the molecular mechanisms

through which ICT-related hub genes influence HCC prognosis

and treatment, employing an integrated approach that combines
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network pharmacology, bioinformatics analysis, molecular docking,

and in vitro experimental validation. Collectively, our findings

provide both theoretical and experimental evidence providing a

support to develop novel ICT-based therapies for HCC.

This study systematically elucidated the potential mechanisms

underlying the antitumor effects of ICT against HCC by integrating

network pharmacology, bioinformatics, and experimental validation.

Through comprehensive multi-database analysis, 406 potential ICT

targets were identified. Subsequent screening, which combined

differential expression analysis, WGCNA, and intersection with

HCC-associated genes, ultimately yielded 35 ICT-related DEGs. FEA

indicated that these genes are primarily involved in critical signaling

pathways such as cell cycle regulation, glycolysis, and drug metabolism.

They participate in BPs related to cell cycle control and metabolic

regulation, are associated with chromatin-related CCs, and are

enriched in MFs such as organic acid binding and protein kinase

activity. These findings suggest that ICT may exert its antitumor effects
FIGURE 9

Molecular dynamics simulation results of the interaction between icaritin and the FABP5 protein. (A) Root-mean square deviation values of the
FABP5 protein and the FABP5 protein–icaritin saponin complex. (B) Changes in protein flexibility during molecular dynamics simulation of icaritin. (C)
Radius of gyration profile of the protein-icaritin complex. (D) Hydrogen bond dynamics during molecular dynamics simulations.
(E, F) Two-dimensional and three-dimensional visualization of the free energy landscape.
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by modulating these key biological pathways. Among these pathways,

cell cycle progression and glycolysis are well-established drivers of

tumorigenesis, while protein kinases serve as central regulators of

cellular energy metabolism, growth, proliferation, and survival (38,

39). Consistent with these predictions, CCK-8 and wound-healing

assays demonstrated that ICT markedly inhibited the proliferation and

migration of HepG2 and Huh7 cells in a dose- and TDM, thereby

corroborating the bioinformatics-based findings.

In constructing a prognostic model, six candidate genes with

prognostic significance were identified through the integration of
Frontiers in Immunology 15
univariate Cox regression and multiple MLAs. Among these, four

core genes (UCK2, FABP5, CA9, and CYP2C9) were further refined

using LASSO Cox regression and K-M survival analysis. The risk score

model developed from these genes exhibited strong accuracy and

stability in predicting 1-, 3-, and 5-year survival outcomes,

underscoring its potential clinical applicability and prognostic value

in HCC. Currently, sorafenib represents the standard first-line therapy

for advanced HCC (40). Drug sensitivity analysis revealed significant

correlations between the expression levels of these four genes and

sorafenib sensitivity. Furthermore, the CIBERSORT algorithm is
FIGURE 10

Effect of ICT on the proliferation and migration of hepatocellular carcinoma HepG2 and Huh7 cells. (A) Cytotoxic effect of ICT on HepG2 cells. (B, C)
Quantification and representative images of the wound healing assay in HepG2 cells treated with various concentrations of ICT.
(D) Cytotoxic effect of ICT on Huh7 cells. (E, F) Quantification and representative images of the wound healing assay in Huh7 cells treated with
various concentrations of ICT. (*p < 0.05, **p < 0.01, ****p < 0.0001, scale bar: 200mm; data from three biological replicates, with three regions
analyzed per replicate).
FIGURE 11

Quantitative immunofluorescence analysis of target protein expression in ICT-treated HepG2 cells. (A) Results of the quantitative immunofluorescence
analysis. (B) Representative immunofluorescence images. (*p < 0.05, ***p < 0.001, ****p < 0.0001, scale bar:1:0.005; Data are presented as the mean ±
standard deviation (Mean ± SD) from at least three independent experiments (n = 3.).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1693028
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shi et al. 10.3389/fimmu.2025.1693028
recognized as a gold-standard computational approach for assessing

immune cell infiltration within the tumor microenvironment. Our

analysis revealed that the risk score derived from the four-gene

signature was positively correlated with the infiltration of M0

macrophages and regulatory T cells (Tregs)—both associated with

pro-tumorigenic activity—and negatively correlated with the

infiltration of M1 macrophages and monocytes, which are typically

anti-tumorigenic. This consistent pattern of immune cell distribution

suggests a close association between the risk model (and its constituent

genes) and an immunosuppressive tumor microenvironment, thereby

providing strong indirect evidence that ICT may modulate immune

infiltration by targeting these genes. To further substantiate this

hypothesis, molecular docking analysis was performed to investigate

the interactions between ICT and the four core proteins. The results

demonstrated that ICT exhibits strong binding affinities toward CA9,

UCK2, FABP5, and CYP2C9, confirming potential direct molecular

interactions with these targets. In addition, MD simulations further

validated the stability and binding capacity of the ICT–protein

complexes, reinforcing the proposed mechanism by which ICT may

exert its therapeutic effects through modulation of these core targets.

Among the core genes identified in our study, CA9 is a direct

downstream transcriptional target of HIF1a and has a pivotal role in

regulating extracellular pH under hypoxic, acidic, and carcinogenic

conditions. It is widely documented as a critical biomarker of tumor

hypoxia (41), and hypoxia-induced drug resistance has been shown

to compromise the efficacy of chemotherapy (42). Accumulating

evidence indicates that CA9 expression is suggestively linked with

poor clinical outcomes across various malignancies, including renal

cell carcinoma, head and neck cancer, breast cancer, and gastric

cancer (43). In HCC, CA9 upregulation promotes tumor progression

by modulating cell proliferation, apoptosis, and epithelial-

mesenchymal transition (EMT) (44, 45). In this study, analysis of
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the TCGA-LIHC cohort confirmed that CA9 expression is

significantly upregulated in HCC tissues compared with normal

liver tissues (Figure 5I). Within our constructed four-gene

prognostic risk model, the coefficient for CA9 (0.0849) was

markedly higher than those of the other genes, indicating that even

minor fluctuations in CA9 expression exert a disproportionately large

influence on the patient’s risk score. This finding identifies CA9 as the

strongest risk factor within the model and the gene most closely

associated with HCC prognosis. These observations are highly

consistent with previous studies. For example, Huang WJ et al.

reported that elevated CA9 expression serves as an independent

predictor of poor prognosis in patients with resectable HCC,

potentially by promoting EMT and enhancing tumor invasiveness

(43). Similarly, another study demonstrated that CA9 overexpression,

observed in approximately 61.8% (63/102) of HCC tumor samples,

not only reflects a hypoxic and highly malignant tumor phenotype

but also functions as a powerful, independent biomarker for

unfavorable postoperative outcomes, including shortened survival

and higher recurrence rates (46). In relation to ICT treatment, our in

vitro experiments revealed that ICT significantly downregulates CA9

mRNA and protein expression in HepG2 and Huh7 cells in a DDM.

Given CA9’s established role in regulating extracellular pH

homeostasis, promoting EMT, and facilitating tumor invasiveness,

its downregulation by ICT likely represents a key mechanism

underlying ICT’s ability to inhibit HCC cell proliferation and

migration, thereby contributing to its antitumor efficacy. Thus, the

overexpression of CA9 not only reaffirms its prognostic value as a

biomarker of poor outcomes but also supports its identification as a

principal molecular target of ICT in HCC. In summary, considering

CA9’s highest weighting in the prognostic model, its strong

association with chemoresistance, and its central role in malignant

progression—including hypoxia adaptation and EMT induction—
FIGURE 12

Effect of ICT on multi-target protein expression in HepG2 and Huh7 cells. (A) mRNA expression levels of relevant genes in HepG2 cells after 24-hour
treatment with different concentrations of ICT, as determined by qPCR. (B) mRNA expression levels of relevant genes in Huh7 cells after 24-hour
treatment with different concentrations of ICT, as determined by qPCR. (C) Western Blot analysis was used to determine the expression changes and
quantification of CA9, UCK2, FABP5, and CYP2C9 proteins in HepG2 and Huh7 cells treated with different concentrations of ICT for 24
hours.(*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; Data are presented as the mean ± standard deviation (Mean ± SD) from at least three
independent experiments (n = 3).
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CA9 can be regarded as the most critical and functionally significant

gene within the identified risk signature.

Similarly, our data demonstrated that UCK2 and FABP5 are

significantly overexpressed in HCC tissues, whereas CYP2C9 is

markedly downregulated. Although CA9 exhibits the strongest

relative importance, UCK2 and FABP5 also represent essential

molecular drivers of HCC development and progression.UCK2 is a

pyrimidine ribonucleotide kinase, catalyzing the phosphorylation of

cytidine and uridine to produce uridine monophosphate and cytidine

monophosphate, thereby participating in pyrimidine nucleotide

metabolism (47). Aberrant overexpression of UCK2 has been

linked with poor prognosis in multiple cancers, particularly in

HCC (48), and our study further confirms that elevated UCK2

expression predicts adverse clinical outcomes, underscoring its

potential as a prognostic biomarker. As a key enzyme involved in

nucleotide synthesis during DNA replication, UCK2 overexpression

may drive abnormal hepatoma cell proliferation. Moreover, increased

UCK2 levels in HCC have been shown to promote tumor growth and

metastasis by activating critical oncogenic signaling pathways,

including STAT3, Wnt/b-catenin, and EGFR-AKT (49–51),

whereas UCK2 knockdown significantly suppresses tumor cell

proliferation (52). Inhibiting UCK2 directly disrupts the nucleotide

“supply” for tumor cells, making it an attractive therapeutic target.

Our results align with this: following ICT treatment, UCK2

expression was significantly suppressed, explaining ICT’s ability to

inhibit HCC cell proliferation from the perspective of nucleotide

metabolism. Targeting nucleotide metabolism is a classic anti-cancer

strategy, thus establishing a solid theoretical foundation for UCK2 as

a target of ICT.

FABP5 is a cytoplasmic transporter of oleic acid that participates

in diverse biological processes, including cell proliferation,

differentiation, and migration, all of which contribute to the

development of multiple cancers (53). Clinical studies have

illustrated that FABP5 overexpression is closely linked with poor

clinical outcomes in HCC, colorectal cancer, and breast cancer, and it

has emerged as a key oncogenic driver in liver tumorigenesis (54).

Mechanistically, FABP5 improves HIF-1a activity by inhibiting its

interaction with Factor Inhibiting HIF (FIH), thereby enhancing lipid

accumulation and tumor cell proliferation (55). Furthermore, recent

evidence indicates that FABP5 facilitates HCC progression through

the CREB/miR-889-5p/KLF9 signaling pathway, underscoring its

potential as a promising therapeutic and prognostic target in HCC

(56). Consistent with previous reports, our study identified FABP5 as

a pro-oncogenic factor in HCC. Treatment with ICT significantly

downregulated FABP5 expression, suggesting that ICT may suppress

the malignant phenotype of HCC cells by disrupting lipid metabolic

pathways mediated by FABP5. Furthermore, molecular docking

analysis revealed a low binding energy between ICT and FABP5,

indicating a strong and stable interaction that may underlie ICT’s

inhibitory effect on FABP5 activity.

Additionally, CYP2C9 belongs to the cytochrome P450 2C

(CYP2C) family and is critically CYP2C9, an enzyme involved in the

metabolism of numerous carcinogens and pharmaceutical agents,

exhibits significantly reduced expression in HCC (57). Time-series

transcriptomic analyses in mouse models have demonstrated that
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CYP2C9 plays a critical regulatory role in HCC development by

suppressing hepatocyte proliferation induced by liver injury through

inhibition of the NF-kB signaling pathway. Furthermore, human

CYP2C9 expression in mice has been positively associated with

improved OS in HCC patients, illuminating its potential protective

role in HCC (58). This finding makes ICT’s regulatory effect on

CYP2C9 particularly distinctive and significant. In contrast to its

inhibitory effects on other genes, our experiments demonstrated that

ICT treatment markedly upregulates CYP2C9 protein expression in

bothHepG2 andHuh7 cells. This upregulationmay help restore partial

differentiation functions in hepatocytes or indirectly suppress tumor

growth. Thus, the combination of basal CYP2C9 underexpression in

HCC and ICT’s specific upregulatory effect provides a compelling

rationale for identifying CYP2C9 as a key therapeutic target of ICT. In

summary, ICT appears to function through a dual regulatory strategy:

“suppressing malignancy” by downregulating pro-oncogenic genes

(CA9, UCK2, and FABP5), and “reinforcing physiological function”

by upregulating the potential tumor suppressor CYP2C9. This

bidirectional, multi-target regulatory mechanism underscores ICT’s

therapeutic advantage in achieving comprehensive modulation of

tumor biology. We propose that ICT exerts its multi-target anti-

HCC activity through synergistic mechanisms—inhibiting CA9

(microenvironment regulation), UCK2 (nucleotide metabolism), and

FABP5 (lipid metabolism), while enhancing CYP2C9 expression,

which collectively contribute to its potent antitumor efficacy.

In conclusion, this study integrates computational biology and

experimental validation to demonstrate that ICT potentially inhibits

tumor progression and holds prognostic significance in HCC by

modulating a novel network of core targets—CA9, UCK2, FABP5,

and CYP2C9—thereby influencing key oncogenic pathways, including

the cell cycle and metabolic regulation. It is noteworthy that ICT, as a

multi-target agent, exerts its anti-HCC effects through complex

network-based mechanisms. Previous studies have reported

alternative targets and mechanisms for ICT. For instance, Mo D

et al. revealed that ICT directly binds to and inhibits IKKa, thereby
downregulating tumor cell PD-L1 expression via the NF-kB signaling

pathway, which alleviates T-cell suppression and enhances anti-tumor

immune responses (59). Another network pharmacology investigation

predicted that ICT may interact with additional potential targets (60).

The differences between these findings and our results likely reflect

distinct research emphases and methodological approaches.

Specifically, our study focused on identifying ICT targets most

closely associated with HCC prognosis through systematic

bioinformatic screening and in vitro validation, whereas other studies

have emphasized specific BPs such as immune regulation or have

employed broader predictive frameworks. Importantly, these findings

are not mutually exclusive but instead represent complementary

aspects of ICT’s multi-dimensional anti-HCC activity. Collectively,

they depict ICT as acting on both tumor-intrinsic pathways (e.g.,

metabolism and proliferation, as emphasized in this study) and the

tumor microenvironment (e.g., immunomodulation), embodying the

multi-component, multi-target, and multi-pathway therapeutic

paradigm characteristic of TCM. Future studies—particularly those

employing integrated analyses in immunocompetent animal models—

are warranted to further elucidate the systemic and synergistic
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mechanisms underlying ICT’s anti-HCC efficacy and to facilitate its

translation into clinical application.

Furthermore, although this study identified potential ICT

targets in HCC through integrated analytical approaches and

provided in vitro validation, and although we explored the

relationship between these gene expression patterns and immune

cell infiltration at the bioinformatic level, several limitations should

be acknowledged. Most notably, in vivo experimental data are

currently lacking to confirm whether ICT can similarly modulate

the expression of CA9, UCK2, FABP5, and CYP2C9, as well as

remodel the tumor immune microenvironment in living organisms.

Future studies will employ murine HCC models to directly validate

these regulatory effects and mechanistic insights. Despite these

limitations, the present work offers valuable candidate targets and

establishes a clear scientific foundation for subsequent in vivo and

clinical investigations.
5 Conclusion

This study systematically integrated network pharmacology,

molecular docking, bioinformatics analysis, and in vitro

experiments to elucidate the molecular mechanisms underlying

ICT’s therapeutic effects on HCC. Our findings demonstrate that

ICT significantly inhibits the proliferation and migration of HCC

cells in both the DDM and TDM, potentially through modulation of

key signaling pathways, including cell cycle regulation and

metabolic reprogramming. Moreover, ICT exerts its anti-HCC

effects, at least in part, by downregulating the expression of CA9,

UCK2, and FABP5 while upregulating CYP2C9, thereby validating

these four genes as robust prognostic biomarkers and potential

therapeutic targets. Collectively, these results provide a novel

theoretical foundation for targeted HCC therapy and highlight

ICT as a promising therapeutic agent with substantial potential in

HCC treatment.
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