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Introduction: The development of robust predictive models for high-grade
cytokine release syndrome (CRS) in CAR-T recipients remains limited by sparse
clinical trial data.

Methods: We analyzed of 496 COVID-19 patients revealed that CRS plays a
pivotal role in disease progression and serves as a valuable data source for
understanding CRS progression. Building on this insight, we evaluated and
compared the predictive performance of three machine learning models, with
the ultimate goal of developing a predictive model for high-grade CRS in patients
receiving CAR-T therapy.

Results: Among evaluated algorithms (XGBoost, Random Forest, Logistic
Regression), XGBoost demonstrated superior performance in high-grade CRS
prediction. Feature importance analysis identified SpO2, D-dimer, diastolic blood
pressure, and INR as key predictors, enabling development of a validated
riskassessment algorithm. In an independent CAR-T cohort (n=45), the
algorithm achieved impressive predictive performance for high-grade
CRS prediction.

Discussion: Using machine learning, we identified key clinical biomarkers
strongly associated with high-grade CRS. This tool efficiently predicts
progression to high-grade CRS post-onset and shows significant potential for
clinical deployment in CAR-T therapy.
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1 Introduction

Chimeric antigen receptor T-cell (CAR-T) therapy has made
significant advances in the treatment of malignant tumors. However,
the risk of severe adverse events, particularly cytokine release
syndrome (CRS), can lead to life-threatening complications (1).
High-grade CRS severely limits the safety and efficacy of CAR-T
therapy, making early detection and intervention crucial. Previous
studies have suggested that factors such as CAR-T cell expansion
dynamics, tumor burden, and baseline lymphocyte counts can predict
the severity of CRS, underscoring the need for effective monitoring
systems (2). However, the complexity of existing monitoring systems
has restricted their clinical application. Therefore, it is imperative to
develop an early predictive system for high-grade CRS using clinical
observational data from CAR-T treatments. However, due to the
scarcity of large-scale clinical trials in CAR-T treatment, an early
predictive model based on such data has not yet been realized.

High-grade CRS is not only a complication frequently
encountered in the context of tumor immunotherapies, but also
commonly observed in patients with COVID-19. Despite
differences in the pathogenesis, CRS patients present with similar
symptoms and signs, CAR-T therapy related CRS primarily arises
from the anti-tumor immune response, whereas in COVID-19, CRS
is precipitated by viral infection and the resulting immune
dysregulation (3). However, immune activation and inflammatory
responses play a central role in the immune response to both
diseases. The occurrence of severe CRS in COVID-19 patients is
often accompanied by a cascade of serious complications and
increased mortality (3, 4). Notably, the exacerbation in the late
stages of COVID-19 has been found to correlate with specific
biomarkers of CRS, including interleukin-1f (IL-1B) and tumor
necrosis factor-oo (TNF-o) (5). These clinical observations in
COVID-19 patients provide a valuable dataset for the
understanding for high-grade CRS.

Machine learning models have achieved significant
breakthroughs in medical research and clinical practice,
particularly in predicting disease progression. By leveraging large
datasets and advanced algorithms, machine learning models can
identify patterns that offer more precise and personalized predictive
analyses, thereby optimizing clinical decision-making and patient
management. For instance, support vector machines and boosted
decision trees have notably enhanced the accuracy of predicting
disease progression and prognosis in conditions such as cancer and
diabetic nephropathy, through the analysis of complex and
heterogeneous data (6, 7). This study aims to apply machine
learning models to explore a predictive model for high-grade CRS
in tumor patients undergoing CAR-T therapy.

2 Materials and methods
2.1 Data collection and clinical assessment

A retrospective observational study of COVID-19 was
conducted in two cohorts: Wuhan Taikang Hospital (Wuhan,
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China) between December 2019 and April 2020, and Shandong
Second Provincial General Hospital (Jinan, China) between
December 2022 and February 2023. All enrolled patients
developed cytokine release syndrome (CRS) and had complete
clinical data, including demographics, presenting symptoms at
admission, disease course, and laboratory values obtained during
hospitalization. Baseline information and laboratory results were
collected from the electronic medical record systems of
both hospitals.

The collected variables included age, gender, and medical
history (cardiovascular disease, diabetes mellitus, chronic lung
disease, chronic kidney disease, chronic liver disease,
cerebrovascular disease, and malignant tumor); respiratory rate
(RR), heart rate (HtR), oxygen saturation (SpO,), systolic and
diastolic pressure, oxygen inhalation mode, coagulation
parameters (prothrombin time [PT], international normalized
ratio [INR], thrombin time [TT], activated partial thromboplastin
time [APTT], fibrinogen [FIB], fibrinogen degradation products
[FDP], and D-dimer), hospital stay, ICU admission, and clinical
outcomes (improved or aggravated). Coagulation and other
monitoring parameters were collected at least twice: initially at
the onset of CRS and subsequently during the convalescent phase or
upon progression to the highest severity grade. CRS diagnosis and
grading were performed according to CTCAE 5.0 (Supplementary
Table S1). Patients were stratified into two groups: Low-grade CRS
(Grades 1-2) and High-grade CRS (Grades 3-5).

In the COVID-19 cohorts, participants were included if they
met the following criteria: © aged =18 years and treated according
to the national COVID-19 management guidelines; @ tested
positive for SARS-CoV by PCR or serology, with radiologic
evidence of pneumonia on chest CT; ® patients were diagnosed
with CRS by at least two clinicians. @ patients suspected of COVID-
19 or pregnant women were excluded.

In the CAR-T therapy cohort, 45 consecutive patients were
enrolled at Shandong Second Provincial General Hospital between
August 2021 and September 2024. Baseline characteristics and CRS
clinical trajectories were recorded during the observation period
following CAR-T infusion (Days 0-14). Monitoring data were
collected at multiple time points (Days 4, 7, and 10), including
four clinical parameters: SpO,, D-dimer, diastolic pressure,
and INR.

We excluded cases with incomplete monitoring data and
collected clinical data from a total of 25 CRS patients, including
biomarker levels at CRS onset and sequential timepoints (days 4, 7,
and 10). A validation cohort consisting of 36 complete records (6
high-grade CRS and 30 low-grade CRS) was used as the test set for
evaluating the predictive model of high-grade CRS risk. Each record
was annotated with CRS grade contemporaneous at sampling
timepoints. The cohort data were processed through the
predictive model for computational validation and results were
compared with clinical outcomes.

The inclusion criteria of CAR-T therapy cohort were as follows:
@ patients with advanced, metastatic, or relapsed malignancies
confirmed by immunohistochemistry (IHC) to express the target
antigen; @ those who had failed at least second-line standard
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therapy or lacked effective treatment options; @ patients with at
least one measurable lesion; @ Eastern Cooperative Oncology
Group (ECOG) score of 0-2. Exclusion criteria included patients
with central nervous system metastases, uncontrolled systemic
infections, or significant dysfunction of vital organs.

This study was approved by the Ethics Committee of Shandong
Second Provincial General Hospital (Q-2023037, LS-2021-008-001,
LS-2021-009-001, and LS-2022-004-001). Detailed inclusion and
exclusion criteria for both studies are provided in the Supplemental
Eligibility Criteria.

2.2 Machine learning model development
and validation

We developed and validated a machine learning model to
predict high-grade CRS using clinical observational data from 496
COVID-19 patients diagnosed with CRS. The overall analytical
workflow included data preprocessing, imputation of missing
values, model construction, hyperparameter optimization, and
performance validation. Missing data were imputed using the
non-parametric missForest algorithm (v1.4) (8), with iterative
imputations repeated until the prediction error stabilized,
ensuring reliable and accurate estimation.

After imputation, the complete dataset was randomly divided into
an 80% training set and a 20% testing set, with subgroup stratification
based on median values and clinically relevant criteria. Univariate Cox
regression analyses were conducted to identify prognostic variables
associated with disease aggravation, and hazard ratios (HRs) with 95%
confidence intervals (Cls) were calculated to quantify their impact.
Subsequently, three machine learning algorithms—Lasso regression,
Random Forest, and Extreme Gradient Boosting (XGBoost)—were
applied to construct predictive models. Hyperparameters were
optimized using GridSearchCV (9, 10) with cross-validation to
ensure optimal performance. Among these, XGBoost demonstrated
the best predictive capacity for high-grade CRS. To enhance
interpretability, SHapley Additive exPlanations (SHAP) (11) were
used to quantify the contribution of each feature to model
predictions, while Receiver Operating Characteristic (ROC) curve
analysis was employed to assess model discrimination and
determine optimal cutoffs via the Youden Index. The final model
achieved high accuracy, sensitivity, and area under the curve (AUC)
values, and its predictive robustness was further validated using
clinical data from 45 cancer patients receiving CAR-T therapy.

2.2.1 Dataset construction using missForest for
imputation of missing data

Missing data were imputed using the missForest package
(version 1.4) (8). This non-parametric algorithm applies random
forest regression trees for continuous variables and classification
trees for categorical variables. Missing values were iteratively
predicted, with each variable imputed using all other available
variables as predictors. The iterative process continued until the
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imputation error stabilized or reached the preset maximum number
of iterations, evaluated using normalized root mean squared error
(NRMSE) for continuous variables and proportion of falsely
classified entries (PFC) for categorical variables. To balance
accuracy and computational efficiency, each forest contained
approximately 100 trees, and the maximum number of iterations
was limited to 10, ensuring stable and reliable estimates. After data
imputation, the complete dataset was randomly divided into a
training set (80%) and a testing set (20%), with variables further
stratified according to median values and clinically relevant
classification criteria to enable subgroup analyses while
maintaining statistical robustness and clinical interpretability.

2.2.2 Forest plot analysis

To comprehensively explore subgroup characteristics and
identify predictive factors associated with disease aggravation
or other clinical outcomes, univariate Cox regression analyses
were performed within each predefined subgroup (12, 13). The
pooled dataset was stratified by median values or established
clinical criteria, ensuring adequate representation across
subgroups and maintaining both statistical robustness and
clinical interpretability.

Univariate Cox regression was conducted using the R survival
package (v3.5-5). Hazard ratios (HRs) were calculated as the
exponential of the regression coefficient, and 95% confidence
intervals (CIs) were derived using the Wald test. Statistical
significance was determined at a two-sided P < 0.05.

The baseline variables included in subgroup analyses were age,
gender, tumor stage, comorbidities (e.g., cardiovascular disease,
diabetes mellitus, chronic lung disease, chronic kidney disease),
and selected laboratory markers. Variables with missing data were
imputed using the missForest algorithm described previously.
Detailed subgroup stratification criteria and the complete list of
baseline variables are provided in Supplementary Table S2.

Results were visualized using forest plots generated with the
forestplot (v3.1.1) and ggplot2 (v3.4.2) packages, where each
horizontal bar represents the HR and its corresponding 95% CIL.
These visualizations provided an intuitive representation of effect
sizes across different subgroups, facilitating the identification of
high-risk factors within clinically meaningful patient strata.

2.2.3 Construction and evaluation of machine
learning models

Three machine learning algorithms were employed to construct
predictive models: Lasso regression, Random Forest, and Extreme
Gradient Boosting (XGBoost). For each model, hyperparameter
optimization was conducted using GridSearchCV with cross-
validation to ensure fair comparison under optimal configurations.

Lasso regression (13, 14):

Lasso regression, incorporating L1 regularization, was used to
reduce model complexity and handle high-dimensional features.
Hyperparameter tuning was performed for the regularization
coefficient (o, ranging from 0.001 to 1). The optimal o was
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selected via 10-fold cross-validation, minimizing prediction error
while avoiding over-penalization.

Random Forest (13, 15):

Random Forest, based on an ensemble of decision trees,
improved robustness and reduced overfitting. Key
hyperparameters tuned included:

e Number of trees (n_estimators): 100-500
* Maximum tree depth (max_depth): 3-10
*  Minimum samples per split (min_samples_split): 2-10

Maximum features per split (max_features): Y p or log,(p) The
optimal model was obtained with approximately 300 trees and a
maximum depth of 6, achieving a balance between variance
and bias.

XGBoost (13, 16):

XGBoost, a gradient boosting algorithm, iteratively minimized
prediction errors and effectively captured nonlinear relationships.
The final optimized hyperparameters were as follows:

* learning rate = 0.05

* n_estimators = 100

* max_depth =4

* min_child_weight = 3
* subsample = 0.8

* colsample_bytree = 0.8
* gamma = 0.1

* lambda = 1.5

* alpha=0.1

This configuration maximized predictive performance while
controlling model complexity.

2.2.4 SHAP analysis and ROC curve evaluation

To improve the interpretability of the XGBoost model, SHapley
Additive Explanations (SHAP) were applied to quantify and
visualize the contribution of individual features to model
predictions. SHAP values were computed using the Python SHAP
package (v0.41.0). Each feature’s contribution to the prediction was
quantified as follows (13, 17):

* Positive SHAP values indicate that a feature increases the
probability of high-grade CRS.

* Negative SHAP values indicate that a feature decreases the
probability of high-grade CRS.

* Visualization methods included:

* SHAP summary plots, displaying overall feature
importance across all samples.

* SHAP dependence plots, illustrating the marginal effect of
individual features.

+ Feature importance bar plots, ranking predictors according
to their mean absolute SHAP values.
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This approach allowed identification of the most influential
clinical factors driving high-grade CRS risk and enhanced the
model’s mechanistic interpretability.

Additionally, Receiver Operating Characteristic (ROC) curves
were generated using the scikit-learn library (v1.2.2) to evaluate
classification performance across thresholds (13). For each
threshold, the True Positive Rate (TPR) and False Positive Rate
(FPR) were calculated as:

TPR = TP/(TP + FN)

FPR = FP/(FP + TN)The Area Under the Curve (AUC) served
as the primary performance metric, representing global model
discrimination ability. Bootstrapping (n = 1000 resamples) was
conducted to estimate 95% confidence intervals of AUC, and the
optimal classification threshold was determined by maximizing the
Youden index (TPR - FPR).

Together, SHAP and ROC analyses provided both mechanistic
interpretability and robust performance validation, ensuring that
the XGBoost model achieved both predictive accuracy and
clinical transparency.

2.2.6 Determination of optimal cutoff and
Youden Index calculation

To determine the optimal classification threshold for the model,
Receiver Operating Characteristic (ROC) curve analysis was
performed on the training dataset (13). For each potential cutoff
value, sensitivity and specificity were calculated, and the Youden
Index (sensitivity + specificity — 1) was used to quantify the overall
trade-off between true positive and false positive rates. The cutoff
corresponding to the maximum Youden Index was defined as the
optimal operating point, representing the best balance between
sensitivity and specificity.

2.3 Statistical analysis

Normality of continuous variables was assessed using the
Shapiro-Wilk test. For variables meeting the assumption of
normality, descriptive statistics were reported as mean + SD and
group comparisons were performed with independent sample t-
tests. For variables not meeting normality, results were presented
as median [IQR] and compared using Mann-Whitney U tests.
Homogeneity of variance for t-tests was verified using Levene’s
test. Categorical variables were summarized as frequencies and
percentages, with inter-group comparisons conducted using chi-
square tests or Fisher’s exact test when expected cell counts were
<5. For multiple comparisons, Bonferroni correction was applied
to adjust p-values. All statistical analyses were conducted in
Python 3.10 using the following libraries: NumPy (v1.24),
Pandas (v1.5), SciPy (v1.9), and Statsmodels (v0.13). Data
visualization was performed with Matplotlib (v3.6) and Seaborn
(v0.12) (18).
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3 Results

3.1 High-grade cytokine release syndrome
emerges as the important predictor of
clinical deterioration in COVID-19 patients

In the retrospective study of COVID-19, a total of 496 patients
were enrolled, consisting of 286 patients from the Wuhan cohort
and 210 patients from the Jinan cohort. The patients were
categorized based on the disease progression after admission
(Improved group vs. Aggravated group. Supplementary Table S2).

10.3389/fimmu.2025.1692892

The Aggravated group exhibited a higher prevalence of abnormal
coagulation parameters (78.9% vs. 61.0%, p < 0.001) and high-grade
CRS compared to the Improved group (91.2% vs. 19.9%, p < 0.001).

To further investigate the impact of various parameters on
disease progression, subgroup analyses with a Forest Plot were
performed based on the median values of each parameter or clinical
classification standards (Figure 1). The Aggravated group was
predominantly represented by the following subgroups: age = 70
years (HR: 1.344, 95% CI: 1.217-1.470, p < 0.001), medical history
of cerebrovascular disease (HR: 1.453, 95% CI: 1.251-1.654, p <
0.001), abnormal coagulation parameters (HR: 1.784, 95%

Group Improved Aggravated HR(95%CI) P
Age <0.001
<70 226 10 e 0.646 (0.376—0.915)

>=70 213 47 L] 1.344 (1.217-1.47)
Gender 0.028
Female 189 21 1.046 (0.859—-1.233)

Man 250 36 1.158 (1.015-1.302)
Cardiovascular disease 0.051
Yes 231 34 1.168 (1.021-1.315)

No 208 23 1.044 (0.865—-1.222)
Diabetes mullitus 0.12
Yes 92 17 [ | 1.267 (1.057-1.476)

No 347 40 [ 1.062 (0.926—1.197)
Chronic lung disease 0.395
Yes 52 9 [ i | 1.238 (0.951-1.526)

No 387 48 [ ] 1.094 (0.97-1.117)
Chronic kidney disease 0.68
Yes 11 1 I—T 0.959 (0.104—1.813)

No 428 56 1.117 (1.002—-1.231)
Chronic liver disease 0.68
Yes 11 1 0.959 (0.104—1.813)

No 428 56 L_l 1.117 (1.002-1.231)
Cerebrovascular disease <0.001
Yes 67 19 o ] 1.453 (1251-1.654)

No 372 38 ] 1.009 (0.871-1.148)
Malignant tumor 0.505
Yes 46 4 l_t' 0.939 (0.512—-1.366)

No 393 53 1.13 (1.012—-1.248)
Coagulation Abnormality <0.001
Yes 268 45 ] 1.784(1.725-1.844)

No 171 12 [ ] 0.646(0.587-0.705)

CRS classification <0.001
low—grade CRS 352 5 t— 0.152(0.022-0.533)
high—grade CRS 87 52 ] 1.776 (1.646—1.907)

FIGURE 1

Hazard ratio

Forest plot showing subgroup analysis of disease progression among COVID-19 patients categorized as Improved versus Aggravated. Each subgroup
(age, gender, comorbidities, coagulation abnormality, and CRS classification) was analyzed using Cox proportional hazards regression to estimate
the hazard ratio (HR) with corresponding 95% confidence intervals (Cls). The number of patients in each subgroup is indicated in the Improved

and Aggravated columns. Points represent HR estimates, and horizontal lines denote 95% Cls. The vertical solid line indicates the null value

(HR = 1). Subgroups with p <0.05 are highlighted in bold. An HR > 1 indicates an increased risk of disease aggravation, whereas HR <1 suggests a

protective effect
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CI: 1.725-1.844, p < 0.001) and patients with high-grade CRS (HR:
1.776, 95% CI: 1.646-1.907, p < 0.001). Among these, high-grade
CRS and abnormal coagulation parameters are major parameters
contributing to the aggravation of COVID-19.

3.2 Analysis of key risk parameters for
high-grade CRS incidence

Given the critical role of high-grade CRS in clinical
deterioration, we performed further analyses to identify predictors
of severe CRS progression. All the patients were divided into two
groups based on their CRS severity (High-grade vs. Low-grade), and
a correlation analysis of clinical parameters was performed
(Table 1). The results indicated that patients with High-grade
CRS were significantly older (mean age: 74.76 vs. 67.18 years, p =
0.001) and predominantly male (65.5% vs. 54.6%, p = 0.036).
Additionally, patients with High-grade CRS exhibited faster
respiratory rates (21.13 vs. 20.55 times/min, p = 0.003), lower
SpO, levels (81.15% vs. 95.94%, p = 0.001), and lower blood
pressure (112.11/66.61 vs. 131.72/79.85 mmHg, p = 0.001).
Compared to Low-grade CRS patients, High-grade CRS patients

10.3389/fimmu.2025.1692892

showed significantly altered coagulation parameters, characterized
by higher levels of D-Dimer (3.03 vs. 1.03 pg/ml, p < 0.001), INR
(1.18 vs. 1.09, p < 0.001), FDP (11.10 vs. 3.91 pg/ml, p < 0.001), as
well as prolonged TT (16.10 vs. 15.80 s, p = 0.008) and PT (13.70 vs.
12.40 s, p < 0.001). These findings suggest that coagulation
abnormalities, respiratory and circulatory dysfunction are
correlated with the progression of CRS.

Further Subgroup analysis with Forest Plot explored the impact of
the aforementioned factors on the incidence of High-grade CRS
(Figure 2). The results revealed that the High-grade CRS was
significantly associated with the following factors: older age (=70
years) (HR = 1.651, 95% CI: 1.328-1.974, p < 0.001), respiratory
rate > 20 breaths per minute (HR = 1.356, 95% CI: 1.021-1.701, p =
0.003), oxygen saturation < 96% (HR = 1.958, 95% CI: 1.619-2.297, p
< 0.001), and diastolic pressure < 60 mmHg (HR = 1.514, 95% CL:
1.219-1.808, p < 0.001). Notably, coagulation parameters also showed
significant associations with the incidence of High-grade CRS,
including PT > 12.7 seconds (HR = 1.739, 95% CI: 1.409-2.070, p <
0.001), D-dimer > 1.06 pug/ml (HR = 1.719, 95% CI: 1.329-2.108,
p <0.001), and FDP > 4.8 mg/L (HR = 1.746, 95% CI: 1.357-2.135, p <
0.001). These findings provide crucial insights for the development of
a predictive model for the incidence of High-grade CRS.

TABLE 1 Patient characteristics, comorbidities, monitoring parameters and outcomes of COVID-19 cohorts stratified by CRS Grade (n = 496).

Variable Total Low-grade CRS High-grade CRS P-value ®
Total 496 357 (72.0%) 139 (28.0%)

Age (year) 69.31 (25.00-99.00) 67.18 (25.00-99.00) 74.76 (40.00-95.00) 0.001
Gender (male%) 286 (57.7%) 195 (54.6%) 91 (65.5%) 0.036
Respiratory rate (times per minute) 20.70(0.00-40.00) 20.55 (14.00-33.00) 21.13 (0.00-40.00) 0.003
Oxygen saturation (%) 91.97 (0.00-100.00) 95.94 (80.00-100.00) 81.15 (0.00-100.00) 0.001
Heart rate (times a minute) 86.69 (0.00-155.00) 87.00 (55.00-134.00) 85.83(0.00-155.00) 0.403
Systolic pressure (mmHg) 126.48 (0.00-176.00) 131.72 (90.00-169.00) 112.11 (0.00-176.00) 0.001
Diastolic pressure (mmHg) 76.33 (0.00-156.00) 79.85 (56.00-156.00) 66.61 (0.00-139.00) 0.001
Outcomes (%)

Improved 439 (88.5%) 352 (98.6%) 87 (62.6%) <0.001
Aggravated 57 (11.5%) 5 (1.4%) 52 (37.4%)

Coagulation parameters

PT(s) 12.70 (11.93-13.68) 12.40 (11.80-13.20) 13.70 (12.50-15.30) <0.001
INR 1.11 (1.04-1.20) 1.09 (1.03-1.16) 1.18 (1.09-1.32) <0.001
FIB(g/L) 3.46 (2.66-4.60) 3.41 (2.66-4.46) 3.63 (2.73-4.68) 0.640
APTT(s) 29.80 (27.30-33.20) 29.65 (27.60-32.40) 30.20 (27.10-34.20) 0.304
TT(s) 15.90 (14.90-16.80) 15.80 (14.90-16.60) 16.10 (15.10-17.70) 0.008
DD(ug/ml) 1.16 (0.66-2.75) 1.03 (0.61-1.51) 3.03 (1.03-6.13) <0.001
FDP(ug/ml) 4.80 (3.00-9.70) 3.91 (2.70-5.80) 11.10 (5.34-24.20) <0.001

Categorical data are shown as count (%). Numeric data are presented as mean (range) or median (interquartile ranges).
“Categorical data: P-values arise from chi-square test. Values in bold formatting are statistically significant (p < 0.05).

Numeric data: P-values arise from Mann-Whitney-Wilcoxon test. Values in bold formatting are statistically significant (p < 0.05).
CRS, Cytokine Release Syndrome; PT, prothrombin time; INR, international normalized ratio; FIB, fibrinogen; APTT, activated partial thromboplastin time; TT, thrombin time; D-D, D-dimer;

FDP, fibrinogen degradation products.
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Group High CRS Low CRS HR(95%CTI) P
Age <0.001
<70 101 159 e 0.454(0.236—0.672)
>=70 38 198 —e— 1.651(1.328—1.974)
Respiratory rate 0.003
<20 105 225 —e— 0.762(0.557-0.967)
>=20 34 132 — 1.356(1.012—1.701)
Oxygen saturation <0.001
<96 34 240 ——0—11.958(1.619-2.297)
>=96 105 117 b 0.100(0.073-0.328)

Heart rate 0.403
<85 79 178 —e— 0.812(0.577-1.047)
>=85 60 179 —ro— 1.093(0.830—-1.357)
Systolic pressure 0.057
<140 49 209 H—— 1.276(0.913—1.638)
>=140 90 148 = — 0.823(0.622—-1.024)
Diastolic pressure <0.001
<60 46 209 —0o— 1.514(1.219—-1.808)
>=60 93 148 —— 0.465(0.238-0.691)
Coagulation index
PT <0.001
<127 103 152 —e— 0.389(0.171-0.607)
>=12.7 36 205 F—0— 1.739(1.409-2.070)
INR <0.001
<1.1 77 196 0.934(0.73-1.17)
>=1.1 62 161 I:l! 1.04(0.692—1.388)
FIB 0.664
<3.46 66 183 —p— 1.020(0.767—-1.272)
>=3.46 73 174 - 0.869(0.625-1.112)
APTT 0.304
<29.8 78 175 — 0.808(0.571-1.045)
>=29.80 61 182 — — 1.093(0.832—-1.354)
TT 0.008
<159 82 179 — — 0.781(0.549-1.012)
>=15.9 57 178 r-o— 1.139(0.869—-1.408)
D-D <0.001
<1.06 113 212 [t | 0.629(0.428—0.830)
>=1.06 26 145 —0— 1.719(1.329-2.108)
FDP <0.001
<4.80 67 268 —o— 0.610(0.409—-0.811)
>=4.80 72 89 00— 1.746(1.357-2.135)
1
Hazard ratio
FIGURE 2

Forest plot showing subgroup analysis of cytokine release syndrome (CRS) classification among patients with COVID-19. Each clinical subgroup—
including respiratory rate, oxygen saturation, and coagulation-related indices (PT, INR, FIB, APTT, TT, D-Dimer, and FDP)—was analyzed using Cox
proportional hazards regression to estimate the hazard ratio (HR) and corresponding 95% confidence interval (Cl). The number of patients within
each subgroup is indicated in the table columns. Points represent HR estimates, and horizontal lines denote 95% Cls; the vertical solid line marks the
null reference (HR = 1). Subgroups with p < 0.05 are highlighted in bold. An HR > 1 indicates a higher risk of developing high-grade CRS, whereas HR
< 1 suggests a lower risk or protective effect.
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Comparative analysis of machine learning models: predictive performance and feature importance for COVID-19 CRS severity progression. (A) Receiver
Operating Characteristic (ROC) curves illustrate the predictive performance of three models: Random Forest (AUC = 0.90), XGBoost (AUC = 0.94), and
Logistic Regression (AUC = 0.80). (B) Radar plot summarizing model performance across five evaluation metrics: precision, accuracy, recall, F1 score,
and AUC. Random Forest: precision (0.94), accuracy (0.85), recall (0.59), F1 score (0.73), AUC (0.90); XGBoost: precision (0.96), accuracy (0.90), recall
(0.67), F1 score (0.79), AUC (0.94); Logistic Regression: precision (0.88), accuracy (0.83), recall (0.57), F1 score (0.69), AUC (0.80). Among the three
models, XGBoost demonstrated the highest overall performance. (C) SHAP analysis of the XGBoost model evaluating feature importance for CRS
classification. The left figure shows the SHAP summary plot, where the y-axis lists input features ranked by their mean absolute SHAP values across all
samples—features with higher rankings contribute more strongly to the overall model output. The x-axis represents SHAP values, reflecting both the
direction and magnitude of each feature's influence on predicting high-grade CRS. Each dot corresponds to an individual patient sample, with color
indicating the actual feature value (red = high, blue = low). The right bar chart presents the XGBoost feature importance, calculated based on the
average information gain across all decision trees. (D) ROC curve analysis showing the XGBoost model's predictive power for CRS severity classification

in the validation cohort (AUC = 0.87). (E) Radar plot presenting XGBoost model performance across evaluation metrics: accuracy (0.89), precision
(0.83), recall (0.75), and F1 score (0.79).
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3.3 Development and optimization of the
XGBoost model for predicting high-grade
CRS

Then, we developed and comparatively evaluated three machine
learning models - Random Forest, XGBoost, and Logistic
Regression - using clinical datasets to analysis and feature
importance of the parameters associated with High-grade CRS.
The ROC curve visually illustrated the discriminative ability of each
model in disease aggravation (Figure 3A). The results indicated that
the XGBoost model outperformed the others, achieving an AUC of
0.94. In contrast, the AUC values for the Random Forest and
Logistic Regression models were 0.90 and 0.80, respectively.
Radar Charts were also employed for multi-dimension analysis of
the models’ performance, including accuracy, precision, recall, F1
score, and AUC. The results showed that XGBoost consistently
demonstrated superior performance across all the indicators,
particularly in recall (0.67), F1 score (0.79) and precision (0.96)
(Figure 3B). Based on these findings, we selected XGBoost as the
primary model for consequent analysis.

We then optimized the XGBoost algorithm with GridSearchCV.
The hyperparameters were tuned as follows: a learning rate of 0.01,
100 estimators, and a maximum depth of 4, along with other
specified values. This optimization allowed us to conduct a more
in-depth analysis of the key features associated with CRS
aggravation. The SHAP Value Plots and Feature Importance Bars
revealed the relative contributions of each parameter to the
optimized XGBoost model’s predictions (Figure 3C). The Feature
Importance Bar chart (on the right) scored the various features
based on their importance in the model, while the SHAP value plot
(on the left) further illustrated the direction and intensity of each
feature’s impact on predicting CRS aggravation. All SHAP values
were computed on a unified scale, allowing direct comparison of the
relative contribution of different features to the model output. The
importance scores were normalized so that their total equals 1,
representing the proportional contribution of each feature to the
overall model performance. The results indicate that SpO, (%) is the
most critical predictor for the occurrence of High-grade CRS, with
lower SpO, (%) showing the strongest association with High-grade
CRS incidence. Among the coagulation parameters, D-dimer, INR
and FDP were also identified as important factors in predicting
High-grade CRS. Elevated levels of D-dimer and FDP, higher INR
strongly correlate with the incidence of High-grade CRS.
Additionally, blood pressure, particularly diastolic pressure, was
also found to promote the development of High-grade CRS. Other
factors were also found to be associated with High-grade CRS,
including RR, APTT, Fib, TT, PT, and HtR. These features provide
valuable predictive insights for the incidence of High-grade CRS.

Based on the feature importance and contribution ranking of
the relevant clinical parameters identified by the optimized
XGBoost model, we selected the top four parameters, including
SpO,, D-dimer, diastolic pressure, and INR, to simplify the
prediction model for High-grade CRS, making it more suitable
for clinical practice. The performance evaluation of the simplified
XGBoost model indicated that AUC reached 0.87 (Figure 3D). The
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Radar Chart demonstrated that the model maintained high
accuracy (0.89), precision (0.83), recall (0.75), and F1 score (0.79)
(Figure 3E), which suggest the simplified XGBoost model retains a
high level of predictive efficiency in high-grade CRS prediction.

3.4 Validation of simplified XGBoost model
with CAR-T therapy cohort

Furthermore, we included clinical observation data from 45
CAR-T therapy patients as the test dataset. Among these patients, 9
cases were hematological tumors and 36 cases were solid tumors.
During the clinical observation period, 8 patients experienced high-
grade CRS (17.78%), 26 patients experienced only low-grade CRS
(57.78%), and 11 patients did not develop CRS at any level (24.45%)
(Figure 4A). We analyzed the correlation between clinical
parameters and high-grade CRS, which showed no significant
associations between the development of high-grade CRS and
clinical parameters such as age, gender, ECOG score, prior
treatment lines, medical history, or CAR-T treatment targets
(Table 2). We collected clinical test results during episodes of
low-grade CRS, including four key parameters: SpO,, D-dimer,
diastolic pressure, and INR. A total of 36 complete data sets were
collected from 25 CRS patients across three longitudinal time
points, including 6 sets obtained from patients experiencing high-
grade CRS (Figure 4B). We applied the simplified XGBoost model
to assess the risk of high-grade CRS with the dataset. Based on the
risk analysis for high-grade CRS, we categorized patients with a risk
of 268% as high risk and those with <68% as non-high risk. The
efficiency of the model in predicting the risk of high-grade CRS was
analyzed in conjunction with actual clinical observations and was
displayed using a confusion matrix (Figure 4C). Among the 6 cases
of high-grade CRS, the model correctly predicted 5 cases and
incorrectly predicted 1. For patients who did not develop high-
grade CRS, the model correctly predicted 27 cases and incorrectly
predicted 3. The sensitivity and specificity of the simplified
XGBoost model in predicting the occurrence of high-level CRS
are 0.83 and 0.90, respectively. We packaged the simplified
XGBoost model into a software tool (crs_predictor) for clinical
practice (Supplemental. The CRS_predictor software). For cancer
patients undergoing CAR-T therapy with a risk of high-grade CRS,
the four monitored parameters (SpO,, D-dimer, diastolic pressure,
and INR) can be used in conjunction with the software to efficiently
predict the risk of high-grade CRS (Figure 4D).

4 Discussion

This study employed the XGBoost algorithm to construct a
predictive model for assessing the risk of progression to high-grade
CRS following its onset, thereby offering critical evidence for
evaluating the safety and efficacy of CAR-T therapy in cancer
patients. CRS is characterized by a cascade of cytokine activation
and immune cell hyperactivation, which can be triggered by
infection, various immunotherapeutic, malignant tumors,
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FIGURE 4
Validation and clinical application of the simplified XGBoost model for predicting high-grade CRS in CAR-T therapy cohorts. (A) Clinical records of
patients who developed CRS after CAR-T infusion. Each row corresponds to an individual patient, and the columns represent the day after CAR-T
infusion. The color of the squares represents the grade of CRS. (B) The probability of developing high-grade CRS at each time points predicted by a
simplified XGBoost model. Each pie chart represents the model's predicted probability for an individual patient at a specific time point (Days 4, 7, and
10 after CAR-T infusion). The entire circle corresponds to 100% of the prediction probability: The red segment and the green segment respectively
represent the occurrence probabilities of high grade CRS and non-high grade CRS. The black line within each pie denotes the classification
threshold (cutoff = 0.68) derived from the training dataset. When the red portion exceeds this threshold, the model predicts that the patient is likely
to develop high-grade CRS. (C) Confusion matrix illustrating the predictive performance of the simplified XGBoost model for identifying high-grade
CRS. Each cell represents the number of cases where the predicted classification agrees or disagrees with the actual clinical outcome. The model
correctly identified 5 of 6 patients with high-grade CRS (true positives) and 27 of 30 patients with no-high-grade CRS (true negatives). (D) Schematic
illustration of the clinical workflow for applying the simplified XGBoost model to predict the risk of high-grade CRS. First, Clinical parameters are
collected as model inputs. Subsequently, the XGBoost model to calculate the probability score. Finally, the model output is visualized to classify
patients into predicted high-grade CRS (red) and non—high-grade CRS (green) groups.

autoimmunity (19). COVID-19 patients who develop CRS exhibit  large-scale clinical data from CAR-T-treated cancer patients.
similar clinical features and share a common pathophysiological ~ Previous research has demonstrated that fatalities in severe
mechanism with CAR-T recipients, thereby serving as a valuable =~ COVID-19 are associated with elevated levels of circulating pro-
surrogate dataset for model development, given the scarcity of  inflammatory cytokines (20) and that high-grade CRS significantly
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TABLE 2 The Characteristics, comorbidities, and monitoring parameters of the CAR-T therapy cohort (n = 45).

Variable Total No or low-grade CRS High-grade CRS P-value ?

Total 45 37 (82.2%) 8 (17.8%)

Age, years 0.945
<58 23 (51.1%) 19 (51.3%) 4 (50.0%)
=58 22 (48.9%) 18 (48.6%) 4 (50.0%)

Gender 0.136
Male, No. (%) 23 (51.1%) 17 (45.9%) 6 (75.0%)
Female, No. (%) 22 (48.9%) 20 (54.1%) 2 (25.0%)

ECOG, No. (%) 0.270
0-1 30 (66.7%) 26 (70.3%) 4 (50.0%)
2 15 (33.3%) 11 (29.7%) 4 (50.0%)

No. of previous lines, n (%) 0.100
2 12 (15.6%) 8 (8.1%) 4 (50.0%)
>3 33 (73.3%) 29 (78.4%) 4 (50.0%)

Tumor type, No. (%) 0.697
Solid tumor 36 (80%) 30 (81.1%) 6 (75.0%)
Hematologic tumors 9 (20%) 7 (18.9%) 2 (25.0%)

Medical history (%)
Cardiovascular disease 10 (22.2%) 5 (13.5%) 5 (62.5%) 0.003
Diabetes mellitus 6 (13.3%) 4(10.8) 2 (25%) 0.284
Chronic lung disease 1(2.2%) 1(2.7%) 0 (0.0%) 0.638
Chronic liver disease 1(2.2%) 1(2.7%) 0 (0.0%) 0.638
Chronic kidney disease 1(2.2%) 1(2.7%) 0 (0.0%) 0.638
Cerebrovascular disease 6 (13.3%) 3 (8.1%) 3 (37.5%) 0.027

Targets 0.465
CD19 9 (20.0%) 7 (18.9%) 2 (25.0%)
CEA 29 (64.4%) 25 (67.6%) 4 (50.0%)
MSLN 2 (4.4%) 2 (5.4%) 0 (0.0%)
ROR1 5 (11.1%) 3 (8.1%) 2 (25%)

“Categorical data: P-values arise from chi-square test. Values in bold formatting are statistically significant (p < 0.05).
CRS, Cytokine Release Syndrome; ECOG, Eastern Cooperative Oncology Group; CEA, carcino-embryonic antigen; MSLN, mesothelin; ROR1, the receptor tyrosine kinase-like orphan receptor 1.

correlates with COVID-19 severity. Furthermore, several studies
confirm that severe immune dysregulation during COVID-19
progression, along with inflammasome-associated cytokines such
as IL-1P and IL-18, is significantly associated with vascular damage
(5, 21). Coagulopathy—characterized by elevated D-dimer levels,
prolonged PT, and decreased coagulation proteins—has been
shown to predict poor outcomes in severe COVID-19 cases
(22-24). Our study highlights that abnormal coagulation
parameters may serve as early diagnostic biomarkers. Notably,
these characteristics closely resemble those observed following
CAR-T cell infusion. These findings regarding the pivotal role of
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CRS in COVID-19 progression further support the utility of this
dataset as a valuable resource for modeling CRS progression.
Subsequently, clinical big data from COVID-19 patients with
CRS were analyzed, enabling the identification of key clinical
parameters associated with the incidence of high-grade CRS,
including SpO,, D-dimer, diastolic pressure, and INR. A machine
learning-based decision tree model was developed using these
parameters, which showed high predictive performance in
estimating the risk of high-grade CRS in CAR-T-treated patients.
The XGBoost model has emerged as a powerful tool for
predicting disease progression, with several advantages that
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informed its selection in this study. First, XGBoost is highly effective
in handling high-dimensional datasets, which makes it particularly
suitable for medical data analysis. For example, XGBoost has
demonstrated superior performance in predicting the progression
and metastasis of thyroid cancer compared to traditional models
(25). Additionally, its efficient data processing capabilities enable
rapid training and prediction, showcasing its versatility and
reliability across various medical fields (26). In recent years,
XGBoost has also shown promising potential in predicting severe
outcomes of acute diseases, such as predicting respiratory failure in
COVID-19 patients (27). Another advantage is the interpretability
of XGBoost’s results, which enhances clinical understanding and
facilitates the application of its predictions in practice (28). In the
present study, the XGBoost model played a pivotal role in
identifying key parameters associated with high-grade CRS
incidence. By ranking feature importance and contributions, it
yielded valuable insights into the most influential predictors.
Specifically, key predictive indicators—such as SpO,, D-Dimer,
diastolic blood pressure, and INR—were identified as potentially
significant contributors to high-grade CRS development and
warrant further investigation.

The pathophysiological mechanisms underlying CRS involve
several intertwining processes, including inflammatory cytokine
production, endothelial activation, and coagulopathy. An
exaggerated interplay between these processes create a vicious
cycle that damages organs and vasculature (29). One central
mechanism of CRS is endothelial cell activation, manifested
through increased endothelial permeability and a pro-
inflammatory state (30), concurrently accompanied by loss of
vascular integrity and a transition to a prothrombotic
phenotype (31).

D-dimer, a fibrin degradation product, serves as a biomarker for
coagulation and fibrinolysis and is commonly used in laboratory
tests. Elevated D-dimer is a well-established predictor of severe
COVID-19 manifestation—including thromboembolism (32),
acute respiratory distress syndrome (33), and mortality (22, 34)—
and has also been implicated in predicting CRS development (35).
In anti-CD19 CAR-T cell therapy, D-dimer elevation correlates
with endothelial injury and CRS severity (30), mirroring similar
pathophysiological mechanisms observed in COVID-19 (36).
Mechanistic studies have shown that D-dimer can induce
monocytes to release pro-inflammatory cytokines such as IL-6,
thereby exacerbating the inflammatory response in CRS (37). This
hypercoagulable state arises from enhanced thrombin generation
coupled with suppressed fibrinolysis—processes exacerbated during
CRS that resemble those observed in sepsis and disseminated
intravascular coagulation (DIC) (38). Collectively, these findings
suggest that elevated D-dimer levels represent a distinctive
immunological hallmark of disease progression (39), offering
valuable insights for assessing CRS severity.

The INR is a critical clinical marker for assessing coagulation
status. An elevated INR reflects underlying coagulation dysfunction.
Elevation in INR correlates with the severity of dysfunction and
endothelial injury, illustrating how coagulopathy is integrally
involved in CRS pathogenesis. As CRS develops, inflammatory
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activation further disrupts coagulation pathways, worsening the
INR elevation (40). This phenomenon is exemplified in COVID-19,
where systemic inflammation induces disseminated intravascular
coagulation, often accompanied by characteristic INR elevation
(41). Previous studies have demonstrated that an elevated INR
retains predictive value for CRS severity across diverse clinical
scenarios, including SARS-CoV-2 infection and therapeutic
interventions such as monoclonal antibody treatments (42) and
anti-thymocyte globulin administration (43). Therefore, elevated
INR may represent a valuable early biomarker for the detection of
CRS and associated coagulation disorders.

SpO, and hemodynamic instability play crucial roles in the
development and progression of CRS (44). Studies have shown that
hypoxemia (45) and diastolic pressure (46, 47) has been identified
as an early biomarker for assessing CRS risk in COVID-19 patients.
Mechanistically, excessive IL-6 signaling promotes the
accumulation of innate and adaptive immune cells in the lungs
(48) and amplifies the inflammatory cascade, leading to damage of
capillary endothelial and lung epithelial cells (49). Concurrently,
systemic inflammation disrupts the coagulation-fibrinolysis balance
and impairs hypoxic compensatory mechanisms, exacerbating
microthrombosis and worsening hypoxia and tissue injury (20).
In summary, CRS-induced endothelial activation increases vascular
permeability, and coagulopathy leads to microthrombosis. These
alterations collectively compromise pulmonary microcirculation,
impair gas exchange, and result in hypoxemia. Furthermore,
elevated inflammatory mediators disrupt vascular tone and
endothelial function, causing dysregulation of blood pressure and
increased vascular resistance, particularly affecting diastolic
pressure (50). Therefore, monitoring oxygen saturation and
diastolic blood pressure is essential for assessing the severity and
prognosis of CRS. Notably, while hypoxemia and hypotension are
included as clinical criteria in current CRS grading systems, our
predictive model integrates these parameters as continuous
physiological variables rather than binary thresholds used for
clinical interventions. Through quantitative analysis of their
temporal dynamics in patients with low-grade CRS, we identify
subclinical deterioration patterns that remain undetected by
conventional ordinal grading systems.

There has been notable progress in improving the prediction
models for CRS using high-dimensional analysis. Specific
inflammatory cytokine profiles, including elevated levels of IL-6
and TNF-o, have been shown to predict the severity of COVID-19
(5, 51). Predictive models for real-time CRS risk assessment have
also found applications in oncology settings (52). The XGBoost
model, employed in this project using machine learning techniques,
highlights the potential of advanced analytical methods in clinical
practice, demonstrating notable advantages in risk factor
identification and the design of personalized intervention
strategies. When the model identifies a high risk of severe CRS
(predicted probability>0.68), it alerts the clinical team to consider
initiating a standardized protocol for proactive management. This
protocol encompasses intensified clinical monitoring, early
readiness for intervention with anti-IL-6 agents or corticosteroids,
multidisciplinary team (MDT) evaluation, and advance preparation
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for potential ICU transfer. Through this integrated management
pathway, early recognition and mitigation of toxicity become
feasible, thereby enhancing the overall safety and therapeutic
efficacy of CAR-T treatment.

One limitation of this study is the small sample size of the
validation dataset, which is a common limitation in the current
CAR-T therapy research. As most CAR-T cell therapies remain in
the clinical trial stage (53), heterogeneous clinical observation data
from different research centers, the sample size of the validation
data set is limited to a certain extent. Another important limitation
concerns the influence of treatment interventions. We observed
three cases in which the model predicted high-grade CRS, whereas
the actual clinical grade was low. Notably, all of these patients had
received glucocorticoid therapy. This finding implies that the
model’s “false-positive” predictions may, in fact, reflect patients at
genuine high risk whose severe reactions were effectively prevented
by timely treatment. Such an interaction between predictive output
and therapeutic intervention introduces bias into retrospective
validation and constitutes a critical limitation of the study.
Consequently, prospective validation in treatment-naive settings
will be essential to accurately determine the model’s independent
predictive performance.

In conclusion, this study successfully addresses the critical
challenge of predicting high-grade CRS in CAR-T therapy by
developing a robust machine learning-based risk-assessment
algorithm. The validated XGBoost model, leveraging key
predictors (SpO,, D-dimer, diastolic BP, INR) identified through
comprehensive analysis, demonstrates strong predictive capability
and represents a significant advancement over existing approaches.
Notably, our predictive model—originally developed using data
from COVID-19 patients and subsequently validated in CAR-T
therapy—may also hold potential for broader application across
other CRS-associated contexts, such as bispecific antibody (BsAb)
therapies and immune checkpoint inhibitors (ICIs). These
therapeutic modalities share core immunopathological
mechanisms, including T-cell hyperactivation, cytokine release,
endothelial dysfunction, and coagulopathy, as documented in
prior studies (54, 55). Such overlapping biological processes
suggest that our biomarker-driven framework could be adapted to
anticipate and manage CRS across diverse forms
of immunotherapy.

The primary future perspective centers on translating this
validated predictive model into routine clinical practice.
Integrating this tool into CAR-T treatment protocols is
paramount, as it enables early identification of high-risk patients,
facilitating timely interventions to mitigate severe CRS and
ultimately improve patient safety and outcomes. Further
validation across larger, multi-center CAR-T cohorts will solidify
its generalizability. The deployment of this predictive algorithm
holds promise for personalizing CAR-T therapy and enhancing its
therapeutic index.
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