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Introduction: The development of robust predictive models for high-grade

cytokine release syndrome (CRS) in CAR-T recipients remains limited by sparse

clinical trial data.

Methods: We analyzed of 496 COVID-19 patients revealed that CRS plays a

pivotal role in disease progression and serves as a valuable data source for

understanding CRS progression. Building on this insight, we evaluated and

compared the predictive performance of three machine learning models, with

the ultimate goal of developing a predictive model for high-grade CRS in patients

receiving CAR-T therapy.

Results: Among evaluated algorithms (XGBoost, Random Forest, Logistic

Regression), XGBoost demonstrated superior performance in high-grade CRS

prediction. Feature importance analysis identified SpO2, D-dimer, diastolic blood

pressure, and INR as key predictors, enabling development of a validated

riskassessment algorithm. In an independent CAR-T cohort (n=45), the

algorithm achieved impressive predictive performance for high-grade

CRS prediction.

Discussion: Using machine learning, we identified key clinical biomarkers

strongly associated with high-grade CRS. This tool efficiently predicts

progression to high-grade CRS post-onset and shows significant potential for

clinical deployment in CAR-T therapy.
KEYWORDS

CAR-T therapy, cytokine release syndrome, COVID-19, machine learning technique,
XGBoost model
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1 Introduction

Chimeric antigen receptor T-cell (CAR-T) therapy has made

significant advances in the treatment of malignant tumors. However,

the risk of severe adverse events, particularly cytokine release

syndrome (CRS), can lead to life-threatening complications (1).

High-grade CRS severely limits the safety and efficacy of CAR-T

therapy, making early detection and intervention crucial. Previous

studies have suggested that factors such as CAR-T cell expansion

dynamics, tumor burden, and baseline lymphocyte counts can predict

the severity of CRS, underscoring the need for effective monitoring

systems (2). However, the complexity of existing monitoring systems

has restricted their clinical application. Therefore, it is imperative to

develop an early predictive system for high-grade CRS using clinical

observational data from CAR-T treatments. However, due to the

scarcity of large-scale clinical trials in CAR-T treatment, an early

predictive model based on such data has not yet been realized.

High-grade CRS is not only a complication frequently

encountered in the context of tumor immunotherapies, but also

commonly observed in patients with COVID-19. Despite

differences in the pathogenesis, CRS patients present with similar

symptoms and signs, CAR-T therapy related CRS primarily arises

from the anti-tumor immune response, whereas in COVID-19, CRS

is precipitated by viral infection and the resulting immune

dysregulation (3). However, immune activation and inflammatory

responses play a central role in the immune response to both

diseases. The occurrence of severe CRS in COVID-19 patients is

often accompanied by a cascade of serious complications and

increased mortality (3, 4). Notably, the exacerbation in the late

stages of COVID-19 has been found to correlate with specific

biomarkers of CRS, including interleukin-1b (IL-1b) and tumor

necrosis factor-a (TNF-a) (5). These clinical observations in

COVID-19 patients provide a valuable dataset for the

understanding for high-grade CRS.

Machine learning models have achieved significant

breakthroughs in medical research and clinical practice,

particularly in predicting disease progression. By leveraging large

datasets and advanced algorithms, machine learning models can

identify patterns that offer more precise and personalized predictive

analyses, thereby optimizing clinical decision-making and patient

management. For instance, support vector machines and boosted

decision trees have notably enhanced the accuracy of predicting

disease progression and prognosis in conditions such as cancer and

diabetic nephropathy, through the analysis of complex and

heterogeneous data (6, 7). This study aims to apply machine

learning models to explore a predictive model for high-grade CRS

in tumor patients undergoing CAR-T therapy.
2 Materials and methods

2.1 Data collection and clinical assessment

A retrospective observational study of COVID-19 was

conducted in two cohorts: Wuhan Taikang Hospital (Wuhan,
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China) between December 2019 and April 2020, and Shandong

Second Provincial General Hospital (Jinan, China) between

December 2022 and February 2023. All enrolled patients

developed cytokine release syndrome (CRS) and had complete

clinical data, including demographics, presenting symptoms at

admission, disease course, and laboratory values obtained during

hospitalization. Baseline information and laboratory results were

collected from the electronic medical record systems of

both hospitals.

The collected variables included age, gender, and medical

history (cardiovascular disease, diabetes mellitus, chronic lung

disease, chronic kidney disease, chronic liver disease,

cerebrovascular disease, and malignant tumor); respiratory rate

(RR), heart rate (HtR), oxygen saturation (SpO2), systolic and

diastolic pressure, oxygen inhalation mode, coagulation

parameters (prothrombin time [PT], international normalized

ratio [INR], thrombin time [TT], activated partial thromboplastin

time [APTT], fibrinogen [FIB], fibrinogen degradation products

[FDP], and D-dimer), hospital stay, ICU admission, and clinical

outcomes (improved or aggravated). Coagulation and other

monitoring parameters were collected at least twice: initially at

the onset of CRS and subsequently during the convalescent phase or

upon progression to the highest severity grade. CRS diagnosis and

grading were performed according to CTCAE 5.0 (Supplementary

Table S1). Patients were stratified into two groups: Low-grade CRS

(Grades 1–2) and High-grade CRS (Grades 3–5).

In the COVID-19 cohorts, participants were included if they

met the following criteria: ① aged ≥18 years and treated according

to the national COVID-19 management guidelines; ② tested

positive for SARS-CoV by PCR or serology, with radiologic

evidence of pneumonia on chest CT; ③ patients were diagnosed

with CRS by at least two clinicians. ④ patients suspected of COVID-

19 or pregnant women were excluded.

In the CAR-T therapy cohort, 45 consecutive patients were

enrolled at Shandong Second Provincial General Hospital between

August 2021 and September 2024. Baseline characteristics and CRS

clinical trajectories were recorded during the observation period

following CAR-T infusion (Days 0–14). Monitoring data were

collected at multiple time points (Days 4, 7, and 10), including

four clinical parameters: SpO2, D-dimer, diastolic pressure,

and INR.

We excluded cases with incomplete monitoring data and

collected clinical data from a total of 25 CRS patients, including

biomarker levels at CRS onset and sequential timepoints (days 4, 7,

and 10). A validation cohort consisting of 36 complete records (6

high-grade CRS and 30 low-grade CRS) was used as the test set for

evaluating the predictive model of high-grade CRS risk. Each record

was annotated with CRS grade contemporaneous at sampling

timepoints. The cohort data were processed through the

predictive model for computational validation and results were

compared with clinical outcomes.

The inclusion criteria of CAR-T therapy cohort were as follows:

① patients with advanced, metastatic, or relapsed malignancies

confirmed by immunohistochemistry (IHC) to express the target

antigen; ② those who had failed at least second-line standard
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therapy or lacked effective treatment options; ③ patients with at

least one measurable lesion; ④ Eastern Cooperative Oncology

Group (ECOG) score of 0–2. Exclusion criteria included patients

with central nervous system metastases, uncontrolled systemic

infections, or significant dysfunction of vital organs.

This study was approved by the Ethics Committee of Shandong

Second Provincial General Hospital (Q-2023037, LS-2021-008-001,

LS-2021-009-001, and LS-2022-004-001). Detailed inclusion and

exclusion criteria for both studies are provided in the Supplemental

Eligibility Criteria.
2.2 Machine learning model development
and validation

We developed and validated a machine learning model to

predict high-grade CRS using clinical observational data from 496

COVID-19 patients diagnosed with CRS. The overall analytical

workflow included data preprocessing, imputation of missing

values, model construction, hyperparameter optimization, and

performance validation. Missing data were imputed using the

non-parametric missForest algorithm (v1.4) (8), with iterative

imputations repeated until the prediction error stabilized,

ensuring reliable and accurate estimation.

After imputation, the complete dataset was randomly divided into

an 80% training set and a 20% testing set, with subgroup stratification

based on median values and clinically relevant criteria. Univariate Cox

regression analyses were conducted to identify prognostic variables

associated with disease aggravation, and hazard ratios (HRs) with 95%

confidence intervals (CIs) were calculated to quantify their impact.

Subsequently, three machine learning algorithms—Lasso regression,

Random Forest, and Extreme Gradient Boosting (XGBoost)—were

applied to construct predictive models. Hyperparameters were

optimized using GridSearchCV (9, 10) with cross-validation to

ensure optimal performance. Among these, XGBoost demonstrated

the best predictive capacity for high-grade CRS. To enhance

interpretability, SHapley Additive exPlanations (SHAP) (11) were

used to quantify the contribution of each feature to model

predictions, while Receiver Operating Characteristic (ROC) curve

analysis was employed to assess model discrimination and

determine optimal cutoffs via the Youden Index. The final model

achieved high accuracy, sensitivity, and area under the curve (AUC)

values, and its predictive robustness was further validated using

clinical data from 45 cancer patients receiving CAR-T therapy.

2.2.1 Dataset construction using missForest for
imputation of missing data

Missing data were imputed using the missForest package

(version 1.4) (8). This non-parametric algorithm applies random

forest regression trees for continuous variables and classification

trees for categorical variables. Missing values were iteratively

predicted, with each variable imputed using all other available

variables as predictors. The iterative process continued until the
Frontiers in Immunology 03
imputation error stabilized or reached the preset maximum number

of iterations, evaluated using normalized root mean squared error

(NRMSE) for continuous variables and proportion of falsely

classified entries (PFC) for categorical variables. To balance

accuracy and computational efficiency, each forest contained

approximately 100 trees, and the maximum number of iterations

was limited to 10, ensuring stable and reliable estimates. After data

imputation, the complete dataset was randomly divided into a

training set (80%) and a testing set (20%), with variables further

stratified according to median values and clinically relevant

classification criteria to enable subgroup analyses while

maintaining statistical robustness and clinical interpretability.

2.2.2 Forest plot analysis
To comprehensively explore subgroup characteristics and

identify predictive factors associated with disease aggravation

or other clinical outcomes, univariate Cox regression analyses

were performed within each predefined subgroup (12, 13). The

pooled dataset was stratified by median values or established

clinical criteria, ensuring adequate representation across

subgroups and maintaining both statistical robustness and

clinical interpretability.

Univariate Cox regression was conducted using the R survival

package (v3.5-5). Hazard ratios (HRs) were calculated as the

exponential of the regression coefficient, and 95% confidence

intervals (CIs) were derived using the Wald test. Statistical

significance was determined at a two-sided P < 0.05.

The baseline variables included in subgroup analyses were age,

gender, tumor stage, comorbidities (e.g., cardiovascular disease,

diabetes mellitus, chronic lung disease, chronic kidney disease),

and selected laboratory markers. Variables with missing data were

imputed using the missForest algorithm described previously.

Detailed subgroup stratification criteria and the complete list of

baseline variables are provided in Supplementary Table S2.

Results were visualized using forest plots generated with the

forestplot (v3.1.1) and ggplot2 (v3.4.2) packages, where each

horizontal bar represents the HR and its corresponding 95% CI.

These visualizations provided an intuitive representation of effect

sizes across different subgroups, facilitating the identification of

high-risk factors within clinically meaningful patient strata.

2.2.3 Construction and evaluation of machine
learning models

Three machine learning algorithms were employed to construct

predictive models: Lasso regression, Random Forest, and Extreme

Gradient Boosting (XGBoost). For each model, hyperparameter

optimization was conducted using GridSearchCV with cross-

validation to ensure fair comparison under optimal configurations.

Lasso regression (13, 14):

Lasso regression, incorporating L1 regularization, was used to

reduce model complexity and handle high-dimensional features.

Hyperparameter tuning was performed for the regularization

coefficient (a, ranging from 0.001 to 1). The optimal a was
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selected via 10-fold cross-validation, minimizing prediction error

while avoiding over-penalization.

Random Forest (13, 15):

Random Forest, based on an ensemble of decision trees,

improved robus tnes s and reduced ove rfi t t ing . Key

hyperparameters tuned included:
Fron
• Number of trees (n_estimators): 100–500

• Maximum tree depth (max_depth): 3–10

• Minimum samples per split (min_samples_split): 2–10
Maximum features per split (max_features): √ p or log2(p) The

optimal model was obtained with approximately 300 trees and a

maximum depth of 6, achieving a balance between variance

and bias.

XGBoost (13, 16):

XGBoost, a gradient boosting algorithm, iteratively minimized

prediction errors and effectively captured nonlinear relationships.

The final optimized hyperparameters were as follows:
• learning_rate = 0.05

• n_estimators = 100

• max_depth = 4

• min_child_weight = 3

• subsample = 0.8

• colsample_bytree = 0.8

• gamma = 0.1

• lambda = 1.5

• alpha = 0.1
This configuration maximized predictive performance while

controlling model complexity.

2.2.4 SHAP analysis and ROC curve evaluation
To improve the interpretability of the XGBoost model, SHapley

Additive Explanations (SHAP) were applied to quantify and

visualize the contribution of individual features to model

predictions. SHAP values were computed using the Python SHAP

package (v0.41.0). Each feature’s contribution to the prediction was

quantified as follows (13, 17):
• Positive SHAP values indicate that a feature increases the

probability of high-grade CRS.

• Negative SHAP values indicate that a feature decreases the

probability of high-grade CRS.

• Visualization methods included:

• SHAP summary plots, displaying overall feature

importance across all samples.

• SHAP dependence plots, illustrating the marginal effect of

individual features.

• Feature importance bar plots, ranking predictors according

to their mean absolute SHAP values.
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This approach allowed identification of the most influential

clinical factors driving high-grade CRS risk and enhanced the

model’s mechanistic interpretability.

Additionally, Receiver Operating Characteristic (ROC) curves

were generated using the scikit-learn library (v1.2.2) to evaluate

classification performance across thresholds (13). For each

threshold, the True Positive Rate (TPR) and False Positive Rate

(FPR) were calculated as:

TPR = TP=(TP + FN)

FPR = FP=(FP + TN)The Area Under the Curve (AUC) served

as the primary performance metric, representing global model

discrimination ability. Bootstrapping (n = 1000 resamples) was

conducted to estimate 95% confidence intervals of AUC, and the

optimal classification threshold was determined by maximizing the

Youden index (TPR – FPR).

Together, SHAP and ROC analyses provided both mechanistic

interpretability and robust performance validation, ensuring that

the XGBoost model achieved both predictive accuracy and

clinical transparency.

2.2.6 Determination of optimal cutoff and
Youden Index calculation

To determine the optimal classification threshold for the model,

Receiver Operating Characteristic (ROC) curve analysis was

performed on the training dataset (13). For each potential cutoff

value, sensitivity and specificity were calculated, and the Youden

Index (sensitivity + specificity − 1) was used to quantify the overall

trade-off between true positive and false positive rates. The cutoff

corresponding to the maximum Youden Index was defined as the

optimal operating point, representing the best balance between

sensitivity and specificity.
2.3 Statistical analysis

Normality of continuous variables was assessed using the

Shapiro–Wilk test. For variables meeting the assumption of

normality, descriptive statistics were reported as mean ± SD and

group comparisons were performed with independent sample t-

tests. For variables not meeting normality, results were presented

as median [IQR] and compared using Mann–Whitney U tests.

Homogeneity of variance for t-tests was verified using Levene’s

test. Categorical variables were summarized as frequencies and

percentages, with inter-group comparisons conducted using chi-

square tests or Fisher’s exact test when expected cell counts were

<5. For multiple comparisons, Bonferroni correction was applied

to adjust p-values. All statistical analyses were conducted in

Python 3.10 using the following libraries: NumPy (v1.24),

Pandas (v1.5), SciPy (v1.9), and Statsmodels (v0.13). Data

visualization was performed with Matplotlib (v3.6) and Seaborn

(v0.12) (18).
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3 Results

3.1 High-grade cytokine release syndrome
emerges as the important predictor of
clinical deterioration in COVID-19 patients

In the retrospective study of COVID-19, a total of 496 patients

were enrolled, consisting of 286 patients from the Wuhan cohort

and 210 patients from the Jinan cohort. The patients were

categorized based on the disease progression after admission

(Improved group vs. Aggravated group. Supplementary Table S2).
Frontiers in Immunology 05
The Aggravated group exhibited a higher prevalence of abnormal

coagulation parameters (78.9% vs. 61.0%, p < 0.001) and high-grade

CRS compared to the Improved group (91.2% vs. 19.9%, p < 0.001).

To further investigate the impact of various parameters on

disease progression, subgroup analyses with a Forest Plot were

performed based on the median values of each parameter or clinical

classification standards (Figure 1). The Aggravated group was

predominantly represented by the following subgroups: age ≥ 70

years (HR: 1.344, 95% CI: 1.217–1.470, p < 0.001), medical history

of cerebrovascular disease (HR: 1.453, 95% CI: 1.251–1.654, p <

0.001), abnormal coagulation parameters (HR: 1.784, 95%
FIGURE 1

Forest plot showing subgroup analysis of disease progression among COVID-19 patients categorized as Improved versus Aggravated. Each subgroup
(age, gender, comorbidities, coagulation abnormality, and CRS classification) was analyzed using Cox proportional hazards regression to estimate
the hazard ratio (HR) with corresponding 95% confidence intervals (CIs). The number of patients in each subgroup is indicated in the Improved
and Aggravated columns. Points represent HR estimates, and horizontal lines denote 95% CIs. The vertical solid line indicates the null value
(HR = 1). Subgroups with p < 0.05 are highlighted in bold. An HR > 1 indicates an increased risk of disease aggravation, whereas HR < 1 suggests a
protective effect.
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CI: 1.725–1.844, p < 0.001) and patients with high-grade CRS (HR:

1.776, 95% CI: 1.646–1.907, p < 0.001). Among these, high-grade

CRS and abnormal coagulation parameters are major parameters

contributing to the aggravation of COVID-19.
3.2 Analysis of key risk parameters for
high-grade CRS incidence

Given the critical role of high-grade CRS in clinical

deterioration, we performed further analyses to identify predictors

of severe CRS progression. All the patients were divided into two

groups based on their CRS severity (High-grade vs. Low-grade), and

a correlation analysis of clinical parameters was performed

(Table 1). The results indicated that patients with High-grade

CRS were significantly older (mean age: 74.76 vs. 67.18 years, p =

0.001) and predominantly male (65.5% vs. 54.6%, p = 0.036).

Additionally, patients with High-grade CRS exhibited faster

respiratory rates (21.13 vs. 20.55 times/min, p = 0.003), lower

SpO2 levels (81.15% vs. 95.94%, p = 0.001), and lower blood

pressure (112.11/66.61 vs. 131.72/79.85 mmHg, p = 0.001).

Compared to Low-grade CRS patients, High-grade CRS patients
Frontiers in Immunology 06
showed significantly altered coagulation parameters, characterized

by higher levels of D-Dimer (3.03 vs. 1.03 mg/ml, p < 0.001), INR

(1.18 vs. 1.09, p < 0.001), FDP (11.10 vs. 3.91 mg/ml, p < 0.001), as

well as prolonged TT (16.10 vs. 15.80 s, p = 0.008) and PT (13.70 vs.

12.40 s, p < 0.001). These findings suggest that coagulation

abnormalities, respiratory and circulatory dysfunction are

correlated with the progression of CRS.

Further Subgroup analysis with Forest Plot explored the impact of

the aforementioned factors on the incidence of High-grade CRS

(Figure 2). The results revealed that the High-grade CRS was

significantly associated with the following factors: older age (≥70

years) (HR = 1.651, 95% CI: 1.328–1.974, p < 0.001), respiratory

rate ≥ 20 breaths per minute (HR = 1.356, 95% CI: 1.021–1.701, p =

0.003), oxygen saturation < 96% (HR = 1.958, 95% CI: 1.619–2.297, p

< 0.001), and diastolic pressure < 60 mmHg (HR = 1.514, 95% CI:

1.219–1.808, p < 0.001). Notably, coagulation parameters also showed

significant associations with the incidence of High-grade CRS,

including PT ≥ 12.7 seconds (HR = 1.739, 95% CI: 1.409–2.070, p <

0.001), D-dimer ≥ 1.06 mg/ml (HR = 1.719, 95% CI: 1.329–2.108,

p < 0.001), and FDP ≥ 4.8 mg/L (HR = 1.746, 95% CI: 1.357–2.135, p <

0.001). These findings provide crucial insights for the development of

a predictive model for the incidence of High-grade CRS.
TABLE 1 Patient characteristics, comorbidities, monitoring parameters and outcomes of COVID-19 cohorts stratified by CRS Grade (n = 496).

Variable Total Low-grade CRS High-grade CRS P-value a

Total 496 357 (72.0%) 139 (28.0%)

Age (year) 69.31 (25.00-99.00) 67.18 (25.00-99.00) 74.76 (40.00-95.00) 0.001

Gender (male%) 286 (57.7%) 195 (54.6%) 91 (65.5%) 0.036

Respiratory rate (times per minute) 20.70(0.00-40.00) 20.55 (14.00-33.00) 21.13 (0.00-40.00) 0.003

Oxygen saturation (%) 91.97 (0.00-100.00) 95.94 (80.00-100.00) 81.15 (0.00-100.00) 0.001

Heart rate (times a minute) 86.69 (0.00-155.00) 87.00 (55.00-134.00) 85.83(0.00-155.00) 0.403

Systolic pressure (mmHg) 126.48 (0.00-176.00) 131.72 (90.00-169.00) 112.11 (0.00-176.00) 0.001

Diastolic pressure (mmHg) 76.33 (0.00-156.00) 79.85 (56.00-156.00) 66.61 (0.00-139.00) 0.001

Outcomes (%)

Improved 439 (88.5%) 352 (98.6%) 87 (62.6%) <0.001

Aggravated 57 (11.5%) 5 (1.4%) 52 (37.4%)

Coagulation parameters

PT(s) 12.70 (11.93-13.68) 12.40 (11.80-13.20) 13.70 (12.50-15.30) <0.001

INR 1.11 (1.04-1.20) 1.09 (1.03-1.16) 1.18 (1.09-1.32) <0.001

FIB(g/L) 3.46 (2.66-4.60) 3.41 (2.66-4.46) 3.63 (2.73-4.68) 0.640

APTT(s) 29.80 (27.30-33.20) 29.65 (27.60-32.40) 30.20 (27.10-34.20) 0.304

TT(s) 15.90 (14.90-16.80) 15.80 (14.90-16.60) 16.10 (15.10-17.70) 0.008

DD(mg/ml) 1.16 (0.66-2.75) 1.03 (0.61-1.51) 3.03 (1.03-6.13) <0.001

FDP(mg/ml) 4.80 (3.00-9.70) 3.91 (2.70-5.80) 11.10 (5.34-24.20) <0.001
frontiersin.org
Categorical data are shown as count (%). Numeric data are presented as mean (range) or median (interquartile ranges).
aCategorical data: P-values arise from chi-square test. Values in bold formatting are statistically significant (p < 0.05).
Numeric data: P-values arise from Mann-Whitney-Wilcoxon test. Values in bold formatting are statistically significant (p < 0.05).
CRS, Cytokine Release Syndrome; PT, prothrombin time; INR, international normalized ratio; FIB, fibrinogen; APTT, activated partial thromboplastin time; TT, thrombin time; D-D, D-dimer;
FDP, fibrinogen degradation products.
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FIGURE 2

Forest plot showing subgroup analysis of cytokine release syndrome (CRS) classification among patients with COVID-19. Each clinical subgroup—
including respiratory rate, oxygen saturation, and coagulation-related indices (PT, INR, FIB, APTT, TT, D-Dimer, and FDP)—was analyzed using Cox
proportional hazards regression to estimate the hazard ratio (HR) and corresponding 95% confidence interval (CI). The number of patients within
each subgroup is indicated in the table columns. Points represent HR estimates, and horizontal lines denote 95% CIs; the vertical solid line marks the
null reference (HR = 1). Subgroups with p < 0.05 are highlighted in bold. An HR > 1 indicates a higher risk of developing high-grade CRS, whereas HR
< 1 suggests a lower risk or protective effect.
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FIGURE 3

Comparative analysis of machine learning models: predictive performance and feature importance for COVID-19 CRS severity progression. (A) Receiver
Operating Characteristic (ROC) curves illustrate the predictive performance of three models: Random Forest (AUC = 0.90), XGBoost (AUC = 0.94), and
Logistic Regression (AUC = 0.80). (B) Radar plot summarizing model performance across five evaluation metrics: precision, accuracy, recall, F1 score,
and AUC. Random Forest: precision (0.94), accuracy (0.85), recall (0.59), F1 score (0.73), AUC (0.90); XGBoost: precision (0.96), accuracy (0.90), recall
(0.67), F1 score (0.79), AUC (0.94); Logistic Regression: precision (0.88), accuracy (0.83), recall (0.57), F1 score (0.69), AUC (0.80). Among the three
models, XGBoost demonstrated the highest overall performance. (C) SHAP analysis of the XGBoost model evaluating feature importance for CRS
classification. The left figure shows the SHAP summary plot, where the y-axis lists input features ranked by their mean absolute SHAP values across all
samples—features with higher rankings contribute more strongly to the overall model output. The x-axis represents SHAP values, reflecting both the
direction and magnitude of each feature’s influence on predicting high-grade CRS. Each dot corresponds to an individual patient sample, with color
indicating the actual feature value (red = high, blue = low). The right bar chart presents the XGBoost feature importance, calculated based on the
average information gain across all decision trees. (D) ROC curve analysis showing the XGBoost model’s predictive power for CRS severity classification
in the validation cohort (AUC = 0.87). (E) Radar plot presenting XGBoost model performance across evaluation metrics: accuracy (0.89), precision
(0.83), recall (0.75), and F1 score (0.79).
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3.3 Development and optimization of the
XGBoost model for predicting high-grade
CRS

Then, we developed and comparatively evaluated three machine

learning models - Random Forest, XGBoost, and Logistic

Regression - using clinical datasets to analysis and feature

importance of the parameters associated with High-grade CRS.

The ROC curve visually illustrated the discriminative ability of each

model in disease aggravation (Figure 3A). The results indicated that

the XGBoost model outperformed the others, achieving an AUC of

0.94. In contrast, the AUC values for the Random Forest and

Logistic Regression models were 0.90 and 0.80, respectively.

Radar Charts were also employed for multi-dimension analysis of

the models’ performance, including accuracy, precision, recall, F1

score, and AUC. The results showed that XGBoost consistently

demonstrated superior performance across all the indicators,

particularly in recall (0.67), F1 score (0.79) and precision (0.96)

(Figure 3B). Based on these findings, we selected XGBoost as the

primary model for consequent analysis.

We then optimized the XGBoost algorithm with GridSearchCV.

The hyperparameters were tuned as follows: a learning rate of 0.01,

100 estimators, and a maximum depth of 4, along with other

specified values. This optimization allowed us to conduct a more

in-depth analysis of the key features associated with CRS

aggravation. The SHAP Value Plots and Feature Importance Bars

revealed the relative contributions of each parameter to the

optimized XGBoost model’s predictions (Figure 3C). The Feature

Importance Bar chart (on the right) scored the various features

based on their importance in the model, while the SHAP value plot

(on the left) further illustrated the direction and intensity of each

feature’s impact on predicting CRS aggravation. All SHAP values

were computed on a unified scale, allowing direct comparison of the

relative contribution of different features to the model output. The

importance scores were normalized so that their total equals 1,

representing the proportional contribution of each feature to the

overall model performance. The results indicate that SpO2 (%) is the

most critical predictor for the occurrence of High-grade CRS, with

lower SpO2 (%) showing the strongest association with High-grade

CRS incidence. Among the coagulation parameters, D-dimer, INR

and FDP were also identified as important factors in predicting

High-grade CRS. Elevated levels of D-dimer and FDP, higher INR

strongly correlate with the incidence of High-grade CRS.

Additionally, blood pressure, particularly diastolic pressure, was

also found to promote the development of High-grade CRS. Other

factors were also found to be associated with High-grade CRS,

including RR, APTT, Fib, TT, PT, and HtR. These features provide

valuable predictive insights for the incidence of High-grade CRS.

Based on the feature importance and contribution ranking of

the relevant clinical parameters identified by the optimized

XGBoost model, we selected the top four parameters, including

SpO2, D-dimer, diastolic pressure, and INR, to simplify the

prediction model for High-grade CRS, making it more suitable

for clinical practice. The performance evaluation of the simplified

XGBoost model indicated that AUC reached 0.87 (Figure 3D). The
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Radar Chart demonstrated that the model maintained high

accuracy (0.89), precision (0.83), recall (0.75), and F1 score (0.79)

(Figure 3E), which suggest the simplified XGBoost model retains a

high level of predictive efficiency in high-grade CRS prediction.
3.4 Validation of simplified XGBoost model
with CAR-T therapy cohort

Furthermore, we included clinical observation data from 45

CAR-T therapy patients as the test dataset. Among these patients, 9

cases were hematological tumors and 36 cases were solid tumors.

During the clinical observation period, 8 patients experienced high-

grade CRS (17.78%), 26 patients experienced only low-grade CRS

(57.78%), and 11 patients did not develop CRS at any level (24.45%)

(Figure 4A). We analyzed the correlation between clinical

parameters and high-grade CRS, which showed no significant

associations between the development of high-grade CRS and

clinical parameters such as age, gender, ECOG score, prior

treatment lines, medical history, or CAR-T treatment targets

(Table 2). We collected clinical test results during episodes of

low-grade CRS, including four key parameters: SpO2, D-dimer,

diastolic pressure, and INR. A total of 36 complete data sets were

collected from 25 CRS patients across three longitudinal time

points, including 6 sets obtained from patients experiencing high-

grade CRS (Figure 4B). We applied the simplified XGBoost model

to assess the risk of high-grade CRS with the dataset. Based on the

risk analysis for high-grade CRS, we categorized patients with a risk

of ≥68% as high risk and those with <68% as non-high risk. The

efficiency of the model in predicting the risk of high-grade CRS was

analyzed in conjunction with actual clinical observations and was

displayed using a confusion matrix (Figure 4C). Among the 6 cases

of high-grade CRS, the model correctly predicted 5 cases and

incorrectly predicted 1. For patients who did not develop high-

grade CRS, the model correctly predicted 27 cases and incorrectly

predicted 3. The sensitivity and specificity of the simplified

XGBoost model in predicting the occurrence of high-level CRS

are 0.83 and 0.90, respectively. We packaged the simplified

XGBoost model into a software tool (crs_predictor) for clinical

practice (Supplemental. The CRS_predictor software). For cancer

patients undergoing CAR-T therapy with a risk of high-grade CRS,

the four monitored parameters (SpO2, D-dimer, diastolic pressure,

and INR) can be used in conjunction with the software to efficiently

predict the risk of high-grade CRS (Figure 4D).
4 Discussion

This study employed the XGBoost algorithm to construct a

predictive model for assessing the risk of progression to high-grade

CRS following its onset, thereby offering critical evidence for

evaluating the safety and efficacy of CAR-T therapy in cancer

patients. CRS is characterized by a cascade of cytokine activation

and immune cell hyperactivation, which can be triggered by

infection, various immunotherapeutic, malignant tumors,
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autoimmunity (19). COVID-19 patients who develop CRS exhibit

similar clinical features and share a common pathophysiological

mechanism with CAR-T recipients, thereby serving as a valuable

surrogate dataset for model development, given the scarcity of
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large-scale clinical data from CAR-T-treated cancer patients.

Previous research has demonstrated that fatalities in severe

COVID-19 are associated with elevated levels of circulating pro-

inflammatory cytokines (20) and that high-grade CRS significantly
FIGURE 4

Validation and clinical application of the simplified XGBoost model for predicting high-grade CRS in CAR-T therapy cohorts. (A) Clinical records of
patients who developed CRS after CAR-T infusion. Each row corresponds to an individual patient, and the columns represent the day after CAR-T
infusion. The color of the squares represents the grade of CRS. (B) The probability of developing high-grade CRS at each time points predicted by a
simplified XGBoost model. Each pie chart represents the model’s predicted probability for an individual patient at a specific time point (Days 4, 7, and
10 after CAR-T infusion). The entire circle corresponds to 100% of the prediction probability: The red segment and the green segment respectively
represent the occurrence probabilities of high grade CRS and non-high grade CRS. The black line within each pie denotes the classification
threshold (cutoff = 0.68) derived from the training dataset. When the red portion exceeds this threshold, the model predicts that the patient is likely
to develop high-grade CRS. (C) Confusion matrix illustrating the predictive performance of the simplified XGBoost model for identifying high-grade
CRS. Each cell represents the number of cases where the predicted classification agrees or disagrees with the actual clinical outcome. The model
correctly identified 5 of 6 patients with high-grade CRS (true positives) and 27 of 30 patients with no-high-grade CRS (true negatives). (D) Schematic
illustration of the clinical workflow for applying the simplified XGBoost model to predict the risk of high-grade CRS. First, Clinical parameters are
collected as model inputs. Subsequently, the XGBoost model to calculate the probability score. Finally, the model output is visualized to classify
patients into predicted high-grade CRS (red) and non–high-grade CRS (green) groups.
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correlates with COVID-19 severity. Furthermore, several studies

confirm that severe immune dysregulation during COVID-19

progression, along with inflammasome-associated cytokines such

as IL-1b and IL-18, is significantly associated with vascular damage

(5, 21). Coagulopathy—characterized by elevated D-dimer levels,

prolonged PT, and decreased coagulation proteins—has been

shown to predict poor outcomes in severe COVID-19 cases

(22–24). Our study highlights that abnormal coagulation

parameters may serve as early diagnostic biomarkers. Notably,

these characteristics closely resemble those observed following

CAR-T cell infusion. These findings regarding the pivotal role of
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CRS in COVID-19 progression further support the utility of this

dataset as a valuable resource for modeling CRS progression.

Subsequently, clinical big data from COVID-19 patients with

CRS were analyzed, enabling the identification of key clinical

parameters associated with the incidence of high-grade CRS,

including SpO2, D-dimer, diastolic pressure, and INR. A machine

learning-based decision tree model was developed using these

parameters, which showed high predictive performance in

estimating the risk of high-grade CRS in CAR-T–treated patients.

The XGBoost model has emerged as a powerful tool for

predicting disease progression, with several advantages that
TABLE 2 The Characteristics, comorbidities, and monitoring parameters of the CAR-T therapy cohort (n = 45).

Variable Total No or low-grade CRS High-grade CRS P-value a

Total 45 37 (82.2%) 8 (17.8%)

Age, years 0.945

< 58 23 (51.1%) 19 (51.3%) 4 (50.0%)

≥58 22 (48.9%) 18 (48.6%) 4 (50.0%)

Gender 0.136

Male, No. (%) 23 (51.1%) 17 (45.9%) 6 (75.0%)

Female, No. (%) 22 (48.9%) 20 (54.1%) 2 (25.0%)

ECOG, No. (%) 0.270

0-1 30 (66.7%) 26 (70.3%) 4 (50.0%)

2 15 (33.3%) 11 (29.7%) 4 (50.0%)

No. of previous lines, n (%) 0.100

2 12 (15.6%) 8 (8.1%) 4 (50.0%)

≥3 33 (73.3%) 29 (78.4%) 4 (50.0%)

Tumor type, No. (%) 0.697

Solid tumor 36 (80%) 30 (81.1%) 6 (75.0%)

Hematologic tumors 9 (20%) 7 (18.9%) 2 (25.0%)

Medical history (%)

Cardiovascular disease 10 (22.2%) 5 (13.5%) 5 (62.5%) 0.003

Diabetes mellitus 6 (13.3%) 4 (10.8) 2 (25%) 0.284

Chronic lung disease 1 (2.2%) 1 (2.7%) 0 (0.0%) 0.638

Chronic liver disease 1 (2.2%) 1 (2.7%) 0 (0.0%) 0.638

Chronic kidney disease 1 (2.2%) 1 (2.7%) 0 (0.0%) 0.638

Cerebrovascular disease 6 (13.3%) 3 (8.1%) 3 (37.5%) 0.027

Targets 0.465

CD19 9 (20.0%) 7 (18.9%) 2 (25.0%)

CEA 29 (64.4%) 25 (67.6%) 4 (50.0%)

MSLN 2 (4.4%) 2 (5.4%) 0 (0.0%)

ROR1 5 (11.1%) 3 (8.1%) 2 (25%)
aCategorical data: P-values arise from chi-square test. Values in bold formatting are statistically significant (p < 0.05).
CRS, Cytokine Release Syndrome; ECOG, Eastern Cooperative Oncology Group; CEA, carcino-embryonic antigen; MSLN, mesothelin; ROR1, the receptor tyrosine kinase-like orphan receptor 1.
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informed its selection in this study. First, XGBoost is highly effective

in handling high-dimensional datasets, which makes it particularly

suitable for medical data analysis. For example, XGBoost has

demonstrated superior performance in predicting the progression

and metastasis of thyroid cancer compared to traditional models

(25). Additionally, its efficient data processing capabilities enable

rapid training and prediction, showcasing its versatility and

reliability across various medical fields (26). In recent years,

XGBoost has also shown promising potential in predicting severe

outcomes of acute diseases, such as predicting respiratory failure in

COVID-19 patients (27). Another advantage is the interpretability

of XGBoost’s results, which enhances clinical understanding and

facilitates the application of its predictions in practice (28). In the

present study, the XGBoost model played a pivotal role in

identifying key parameters associated with high-grade CRS

incidence. By ranking feature importance and contributions, it

yielded valuable insights into the most influential predictors.

Specifically, key predictive indicators—such as SpO2, D-Dimer,

diastolic blood pressure, and INR—were identified as potentially

significant contributors to high-grade CRS development and

warrant further investigation.

The pathophysiological mechanisms underlying CRS involve

several intertwining processes, including inflammatory cytokine

production, endothelial activation, and coagulopathy. An

exaggerated interplay between these processes create a vicious

cycle that damages organs and vasculature (29). One central

mechanism of CRS is endothelial cell activation, manifested

through increased endothelial permeability and a pro-

inflammatory state (30), concurrently accompanied by loss of

vascular integrity and a transition to a prothrombotic

phenotype (31).

D-dimer, a fibrin degradation product, serves as a biomarker for

coagulation and fibrinolysis and is commonly used in laboratory

tests. Elevated D-dimer is a well-established predictor of severe

COVID-19 manifestation—including thromboembolism (32),

acute respiratory distress syndrome (33), and mortality (22, 34)—

and has also been implicated in predicting CRS development (35).

In anti-CD19 CAR-T cell therapy, D-dimer elevation correlates

with endothelial injury and CRS severity (30), mirroring similar

pathophysiological mechanisms observed in COVID-19 (36).

Mechanistic studies have shown that D-dimer can induce

monocytes to release pro-inflammatory cytokines such as IL-6,

thereby exacerbating the inflammatory response in CRS (37). This

hypercoagulable state arises from enhanced thrombin generation

coupled with suppressed fibrinolysis—processes exacerbated during

CRS that resemble those observed in sepsis and disseminated

intravascular coagulation (DIC) (38). Collectively, these findings

suggest that elevated D-dimer levels represent a distinctive

immunological hallmark of disease progression (39), offering

valuable insights for assessing CRS severity.

The INR is a critical clinical marker for assessing coagulation

status. An elevated INR reflects underlying coagulation dysfunction.

Elevation in INR correlates with the severity of dysfunction and

endothelial injury, illustrating how coagulopathy is integrally

involved in CRS pathogenesis. As CRS develops, inflammatory
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activation further disrupts coagulation pathways, worsening the

INR elevation (40). This phenomenon is exemplified in COVID-19,

where systemic inflammation induces disseminated intravascular

coagulation, often accompanied by characteristic INR elevation

(41). Previous studies have demonstrated that an elevated INR

retains predictive value for CRS severity across diverse clinical

scenarios, including SARS-CoV-2 infection and therapeutic

interventions such as monoclonal antibody treatments (42) and

anti-thymocyte globulin administration (43). Therefore, elevated

INR may represent a valuable early biomarker for the detection of

CRS and associated coagulation disorders.

SpO2 and hemodynamic instability play crucial roles in the

development and progression of CRS (44). Studies have shown that

hypoxemia (45) and diastolic pressure (46, 47) has been identified

as an early biomarker for assessing CRS risk in COVID-19 patients.

Mechanistically, excessive IL-6 signaling promotes the

accumulation of innate and adaptive immune cells in the lungs

(48) and amplifies the inflammatory cascade, leading to damage of

capillary endothelial and lung epithelial cells (49). Concurrently,

systemic inflammation disrupts the coagulation-fibrinolysis balance

and impairs hypoxic compensatory mechanisms, exacerbating

microthrombosis and worsening hypoxia and tissue injury (20).

In summary, CRS-induced endothelial activation increases vascular

permeability, and coagulopathy leads to microthrombosis. These

alterations collectively compromise pulmonary microcirculation,

impair gas exchange, and result in hypoxemia. Furthermore,

elevated inflammatory mediators disrupt vascular tone and

endothelial function, causing dysregulation of blood pressure and

increased vascular resistance, particularly affecting diastolic

pressure (50). Therefore, monitoring oxygen saturation and

diastolic blood pressure is essential for assessing the severity and

prognosis of CRS. Notably, while hypoxemia and hypotension are

included as clinical criteria in current CRS grading systems, our

predictive model integrates these parameters as continuous

physiological variables rather than binary thresholds used for

clinical interventions. Through quantitative analysis of their

temporal dynamics in patients with low-grade CRS, we identify

subclinical deterioration patterns that remain undetected by

conventional ordinal grading systems.

There has been notable progress in improving the prediction

models for CRS using high-dimensional analysis. Specific

inflammatory cytokine profiles, including elevated levels of IL-6

and TNF-a, have been shown to predict the severity of COVID-19

(5, 51). Predictive models for real-time CRS risk assessment have

also found applications in oncology settings (52). The XGBoost

model, employed in this project using machine learning techniques,

highlights the potential of advanced analytical methods in clinical

practice, demonstrating notable advantages in risk factor

identification and the design of personalized intervention

strategies. When the model identifies a high risk of severe CRS

(predicted probability≥0.68), it alerts the clinical team to consider

initiating a standardized protocol for proactive management. This

protocol encompasses intensified clinical monitoring, early

readiness for intervention with anti-IL-6 agents or corticosteroids,

multidisciplinary team (MDT) evaluation, and advance preparation
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for potential ICU transfer. Through this integrated management

pathway, early recognition and mitigation of toxicity become

feasible, thereby enhancing the overall safety and therapeutic

efficacy of CAR-T treatment.

One limitation of this study is the small sample size of the

validation dataset, which is a common limitation in the current

CAR-T therapy research. As most CAR-T cell therapies remain in

the clinical trial stage (53), heterogeneous clinical observation data

from different research centers, the sample size of the validation

data set is limited to a certain extent. Another important limitation

concerns the influence of treatment interventions. We observed

three cases in which the model predicted high-grade CRS, whereas

the actual clinical grade was low. Notably, all of these patients had

received glucocorticoid therapy. This finding implies that the

model’s “false-positive” predictions may, in fact, reflect patients at

genuine high risk whose severe reactions were effectively prevented

by timely treatment. Such an interaction between predictive output

and therapeutic intervention introduces bias into retrospective

validation and constitutes a critical limitation of the study.

Consequently, prospective validation in treatment-naïve settings

will be essential to accurately determine the model’s independent

predictive performance.

In conclusion, this study successfully addresses the critical

challenge of predicting high-grade CRS in CAR-T therapy by

developing a robust machine learning-based risk-assessment

algorithm. The validated XGBoost model, leveraging key

predictors (SpO2, D-dimer, diastolic BP, INR) identified through

comprehensive analysis, demonstrates strong predictive capability

and represents a significant advancement over existing approaches.

Notably, our predictive model—originally developed using data

from COVID-19 patients and subsequently validated in CAR-T

therapy—may also hold potential for broader application across

other CRS-associated contexts, such as bispecific antibody (BsAb)

therapies and immune checkpoint inhibitors (ICIs). These

therapeutic modalities share core immunopathological

mechanisms, including T-cell hyperactivation, cytokine release,

endothelial dysfunction, and coagulopathy, as documented in

prior studies (54, 55). Such overlapping biological processes

suggest that our biomarker-driven framework could be adapted to

an t i c i p a t e and manage CRS ac ro s s d i v e r s e f o rms

of immunotherapy.

The primary future perspective centers on translating this

validated predictive model into routine clinical practice.

Integrating this tool into CAR-T treatment protocols is

paramount, as it enables early identification of high-risk patients,

facilitating timely interventions to mitigate severe CRS and

ultimately improve patient safety and outcomes. Further

validation across larger, multi-center CAR-T cohorts will solidify

its generalizability. The deployment of this predictive algorithm

holds promise for personalizing CAR-T therapy and enhancing its

therapeutic index.
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Piotrowska M, Dymicka-Piekarska VJ, Matowicka-Karna J, et al. Unveiling covid-19
secrets: harnessing cytokines as powerful biomarkers for diagnosis and predicting
severity. J Inflammation Res. (2023) 16:6055–70. doi: 10.2147/jir.S439217

52. Pettinati MJ, Lajevardi-Khosh A, Rajput KS, Majmudar M, Selvaraj N. Towards
remote continuous monitoring of cytokine release syndrome. Annu Int Conf IEEE Eng
Med Biol Soc. (2022) 2022:966–70. doi: 10.1109/embc48229.2022.9871716

53. Sterner RC, Sterner RM. Car-T cell therapy: current limitations and potential
strategies. Blood Cancer J. (2021) 11:69. doi: 10.1038/s41408-021-00459-7

54. Tay SH, Toh MMX, Thian YL, Vellayappan BA, Fairhurst AM, Chan YH, et al.
Cytokine release syndrome in cancer patients receiving immune checkpoint inhibitors:
A case series of 25 patients and review of the literature. Front Immunol. (2022)
13:807050. doi: 10.3389/fimmu.2022.807050

55. Martin TG, Mateos MV, Nooka A, Banerjee A, Kobos R, Pei L, et al. Detailed
overview of incidence and management of cytokine release syndrome observed with
teclistamab in the majestec-1 study of patients with relapsed/refractory multiple
myeloma. Cancer. (2023) 129:2035–46. doi: 10.1002/cncr.34756
frontiersin.org

https://doi.org/10.1038/s41392-021-00764-4
https://doi.org/10.1111/bjh.18596
https://doi.org/10.1111/jcmm.17029
https://doi.org/10.1016/j.ejrad.2020.109336
https://doi.org/10.12688/f1000research.51191.3
https://doi.org/10.12688/f1000research.51191.3
https://doi.org/10.1111/jth.14768
https://doi.org/10.1038/s41409-021-01226-9
https://doi.org/10.1371/journal.pone.0268296
https://doi.org/10.1097/mbc.0000000000001208
https://doi.org/10.1097/mbc.0000000000001208
https://doi.org/10.1182/bloodadvances.2020002757
https://doi.org/10.1182/bloodadvances.2020002757
https://doi.org/10.1016/j.biopha.2021
https://doi.org/10.1038/s41392-021-00658-5
https://doi.org/10.3389/fimmu.2020.01626
https://doi.org/10.1186/1756-8722-7-44
https://doi.org/10.1002/anr3.12092
https://doi.org/10.1093/infdis/jiaa387
https://doi.org/10.1093/infdis/jiaa387
https://doi.org/10.1186/s13063-020-04680-w
https://doi.org/10.3390/tropicalmed5030112
https://doi.org/10.1155/2015/640528
https://doi.org/10.1155/2015/640528
https://doi.org/10.1101/cshperspect.a016295
https://doi.org/10.1101/cshperspect.a016295
https://doi.org/10.1016/j.cell.2020.11.025
https://doi.org/10.1155/2022/7137900
https://doi.org/10.1155/2022/7137900
https://doi.org/10.2147/jir.S439217
https://doi.org/10.1109/embc48229.2022.9871716
https://doi.org/10.1038/s41408-021-00459-7
https://doi.org/10.3389/fimmu.2022.807050
https://doi.org/10.1002/cncr.34756
https://doi.org/10.3389/fimmu.2025.1692892
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Machine learning-based predictive model for high- grade cytokine release syndrome in chimeric antigen receptor T-cell therapy
	1 Introduction
	2 Materials and methods
	2.1 Data collection and clinical assessment
	2.2 Machine learning model development and validation
	2.2.1 Dataset construction using missForest for imputation of missing data
	2.2.2 Forest plot analysis
	2.2.3 Construction and evaluation of machine learning models
	2.2.4 SHAP analysis and ROC curve evaluation
	2.2.6 Determination of optimal cutoff and Youden Index calculation

	2.3 Statistical analysis

	3 Results
	3.1 High-grade cytokine release syndrome emerges as the important predictor of clinical deterioration in COVID-19 patients
	3.2 Analysis of key risk parameters for high-grade CRS incidence
	3.3 Development and optimization of the XGBoost model for predicting high-grade CRS
	3.4 Validation of simplified XGBoost model with CAR-T therapy cohort

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References




