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Insulin resistance is a central pathological feature of several chronic metabolic
disorders, including obesity, type 2 diabetes, polycystic ovary syndrome, and
cardiovascular disease. While its pathogenesis is multifactorial, lipid dysregulation
and chronic low-grade inflammation are recognised as two major,
interconnected processes that impair insulin action across multiple tissues.
This review summarises core mechanistic themes linking these processes, with
a focus on three key signalling pathways that are particularly relevant to
metabolic regulation and to the interplay between lipid metabolism,
inflalmmation, and insulin action: phosphoinositide 3-kinase/protein kinase B,
AMP-activated protein kinase, and c-Jun N-terminal kinase. Dysregulated lipid
metabolism, including the accumulation of bioactive intermediates such as
diacylglycerols and ceramides, disrupts insulin signalling, promotes lipotoxicity
and adipose tissue dysfunction, and triggers inflammatory cascades. In parallel,
inflammatory mediators, including cytokines, adipokines, and related signalling
pathways, further impair insulin receptor function and exacerbate metabolic
stress. Together, these processes form a self-reinforcing cycle that sustains
insulin resistance and accelerates disease progression. Despite recent
advances in delineating these mechanisms, critical gaps remain in defining
tissue-specific effects, pathway interactions, sex-based differences, and the
roles of lesser-studied lipid species and regulatory layers, highlighting priorities
for future mechanistic research.
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1 Introduction

Insulin resistance (IR) is highly prevalent, affecting an estimated 16% to 47% of adults
worldwide (1). As a central pathophysiological mechanism, IR underlies major chronic
metabolic disorders such as type 2 diabetes (T2D), making it a critical target for prevention
and treatment. First recognised in the 1930s, IR was initially described in patients who remained
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hyperglycaemic despite exogenous insulin therapy (2), reflecting the
impaired ability of insulin to stimulate glucose uptake and maintain
normoglycaemia. It is now recognised as a metabolic state in which
insulin-responsive tissues, primary skeletal muscle, adipose tissue, and
liver, exhibit reduced responsiveness to insulin action despite normal or
elevated circulating insulin levels. This distinguishes IR from conditions
of absolute insulin deficiency, such as type 1 diabetes (3, 4). Under
normal physiological conditions, insulin secreted from pancreatic -
cells maintains glucose homeostasis by promoting glucose uptake into
muscle and adipose tissue, inhibiting hepatic gluconeogenesis, and
suppressing lipolysis in adipocytes (3). However, insulin-stimulated
glucose uptake in skeletal muscle and adipose tissue is impaired in
individuals with IR, while hepatic glucose production remains elevated.
To maintain euglycaemia, pancreatic B-cells increase insulin secretion,
leading to compensatory hyperinsulinemia. Over time, -cell function
progressively declines, reducing the ability to compensate, leading to
worsening hyperglycaemia and glucose intolerance. This is often
concomitant with other metabolic sequalae, including elevated free
fatty acids, ectopic lipid accumulation, and chronic low-grade
inflammation (3, 5, 6).

With systemic consequences extending across multiple organ
systems, IR is recognised as a defining feature in a spectrum of
chronic disorders. In T2D, sustained IR accelerates B-cell
dysfunction, which ultimately results in persistent hyperglycaemia
and multisystem complications (7). In gestational diabetes mellitus
(GDM), pregnancy-induced IR combined with insufficient -cell
compensation results in maternal hyperglycaemia and adverse
perinatal outcomes (8). IR and hyperinsulinemia also contribute
to the metabolic and reproductive sequelae of polycystic ovary
syndrome (PCOS) by driving or exacerbating androgen excess,
disrupting ovarian function and worsening metabolic risk (9). In
addition, IR significantly increases the risk of cardiovascular disease
(CVD) by promoting endothelial dysfunction, arterial stiftness, and
dyslipidaemia (10). Hepatic consequences of IR are seen in
metabolic dysfunction-associated steatotic liver disease (MASLD),
whereby IR promotes hepatic fat accumulation, liver inflammation,
oxidative stress, and fibrosis (11, 12). Obesity compounds each of
these conditions by intensifying IR, altering lipid handling, and
escalating chronic low-grade inflammation; these effects are
influenced by altered body composition especially visceral and
ectopic fat accumulation (13). The clustering of these
abnormalities - abdominal obesity, dyslipidaemia, dysglycaemia,
and hypertension - is captured as metabolic syndrome which is
largely driven by IR (14). Beyond metabolic disorders, there is also
growing evidence that IR increases the risk of cancer, as
hyperinsulinaemia can stimulate tumour growth through
mitogenic and anti-apoptotic pathways (15).

Considering its broad clinical implications, understanding the
mechanisms that drive and sustain IR is essential. While multiple,
interacting pathophysiological processes influence IR, dysregulated
lipid metabolism and chronic inflammation are among the most
consistently implicated, yet their discrete effects and mechanistic
interlinks remain poorly understood. This review outlines key
pathways of insulin action and examines how lipid dysregulation,
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inflammation, and their convergence, influence IR development
and severity, with implications for disease progression.

2 Key insulin signalling pathways in
insulin resistance

Insulin is a 51 amino-acid peptide hormone composed of an o
chain (21 amino acids) and a 3 chain (30 amino acids), linked by
two interchain disulphide bonds, with an additional intrachain
disulphide bond within the o chain (16). Secreted by pancreatic
[3-cells, insulin plays a central role in maintaining glucose and lipid
homeostasis (16). Binding of insulin to its receptor on target cell
membranes triggers a cascade of intracellular signalling events that
coordinate key metabolic processes such as glucose uptake,
glycogen synthesis, de novo lipogenesis, adipogenesis, stimulation
of protein synthesis, and suppression of gluconeogenesis and
lipolysis (17). However, these signalling pathways are disrupted in
IR, leading to metabolic dysfunction and the development of IR-
related diseases (17-19). Among the many signalling routes
downstream of the insulin receptor, three are particularly relevant
to metabolic regulation and to the interplay between lipid
metabolism, inflammation, and insulin action, as described below
(20-22).

2.1 PI3K/Akt pathway in insulin signalling

The phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)
pathway is a key mediator of the metabolic actions of insulin,
playing a central role in promoting glucose uptake, glycogen
synthesis, de novo lipogenesis, adipogenesis, suppressing
gluconeogenesis and lipolysis, and stimulating protein synthesis
(20). Following insulin binding to its receptor, insulin receptor
substrate (IRS)-1 is activated, which in turn recruits and activates
PI3K. This leads to the phosphorylation and activation of Akt, a key
downstream effector involved in regulating a wide range of
metabolic processes (17).

A major function of Akt is the regulation of glucose homeostasis
in skeletal muscle, liver, and adipose tissue (2). In skeletal muscle
and adipose tissue, Akt promotes glucose uptake by stimulating the
translocation of glucose transporter type 4 (GLUT4) to the plasma
membrane. GLUT4 trafficking is regulated by Akt via
phosphorylation and inhibition of its downstream target, AS160
(Akt substrate of 160 kDa), which allows GLUT4-containing
vesicles to fuse with the cell membrane and facilitate glucose
entry (2). Akt also stimulates glycogen synthesis in the liver and
skeletal muscle by phosphorylating and inactivating glycogen
synthase kinase 3, thereby activating glycogen synthase (20, 23),
and by activating protein phosphatase 1, which further promotes
glycogen synthesis (24). In the liver, Akt suppresses
gluconeogenesis by phosphorylating forkhead box protein Ol
(FOXOL1), a transcription factor that regulates gluconeogenic gene
expression (25). Phosphorylation excludes FOXO1 from the
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nucleus, reducing gluconeogenic enzyme expression and lowering
hepatic glucose production (25).

In addition to glucose regulation, Akt plays a central role in
lipid metabolism (26). In liver and adipose tissue, Akt stimulates de
novo lipogenesis, the process by which fatty acids are synthesised
from non-lipid sources. This occurs via upregulation of sterol
regulatory element-binding protein 1c (SREBP-1c¢), a
transcription factor that activates genes encoding lipogenic
enzymes such as acetyl-CoA carboxylase (ACC) and fatty acid
synthase (26). In addition to promoting lipid synthesis, Akt
inhibits lipolysis by activating phosphodiesterase 3B, which
hydrolyses cyclic adenosine 5'-monophosphate (cAMP). The
resulting reduction in cAMP levels leads to dephosphorylation of
hormone-sensitive lipase (HSL), preventing its translocation to lipid
droplets and subsequent hydrolysis of stored triglycerides (3, 27).
Together, increased lipogenesis and suppressed lipolysis promote
triglyceride storage in liver and adipose tissue, reduce fatty acid
oxidation, and support energy balance under normal metabolic
conditions (3).

Beyond glucose and lipid regulation, Akt influences protein
synthesis and adipogenesis by activating the mechanistic target of
rapamycin complex 1 (mTORC1), a central nutrient- and energy-
sensing complex that regulates cell growth (28). Here, Akt
phosphorylates and inhibits two of its upstream negative
regulators: tuberous sclerosis complex 2 (TSC2) and proline-rich
Akt substrate 40 (PRAS40) (28), thereby relieving their suppression
of mTORCI activity. In turn, mTORCI is activated, promoting
protein synthesis and adipogenesis, and further contributing to
energy storage and tissue growth (28).

Dysregulation of the PI3K/Akt pathway is a key mechanism
driving IR and its related metabolic disorders (29). In IR, signalling
can be compromised at multiple points, including the insulin
receptor, IRS-1, PI3K, Akt, or GLUT4, leading to impaired
downstream metabolic effects (3, 29). In skeletal muscle, reduced
Akt activation limits GLUT4 translocation, increasing the risk of
hyperglycaemia and development of T2D (3). Insufficient Akt
signalling in the liver fails to suppress gluconeogenesis, further
elevating blood glucose (3). Defective signalling in adipose tissue
increases lipolysis and circulating free fatty acids, which exacerbate
IR and impair lipid storage and adipogenesis (3). Through these
defects, chronic dysregulation of this pathway alters nutrient
handling, promotes fat storage and ectopic lipid deposition,
reduces fatty acid oxidation, and impairs glucose disposal,
collectively driving the development and progression of metabolic
disorders including obesity, T2D, MASLD, PCOS, and metabolic
syndrome (30-32). The PI3K/Akt pathway is therefore essential for
preserving glucose homeostasis and regulating the synthesis of
proteins, glycogen, and lipids in a variety of insulin-sensitive tissues.

2.2 AMPK pathway in insulin signalling
While insulin primarily activates the PI3K/Akt pathway to

promote anabolic processes such as glucose uptake and lipid
synthesis, AMP-activated protein kinase (AMPK) is activated
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under conditions of cellular and/or metabolic stress (e.g., fasting,
exercise) when the ratio of adenosine monophosphate (AMP) to
adenosine triphosphate (ATP) increases (33-35). Unlike the
insulin-stimulated PI3K/Akt pathway, AMPK is largely insulin-
independent, although in liver and adipose tissue, insulin may
inhibit AMPK due to its opposing catabolic functions (36).
AMPK is a heterotrimeric complex composed of a catalytic a-
subunit and two regulatory subunits (§ and ) (33). Its activation
begins with AMP binding to an allosteric site on the y-subunit (34),
which promotes phosphorylation and protects the enzyme from
dephosphorylation, maintaining it in an active state (34). AMPK
becomes fully active when upstream kinases, mainly liver kinase B1
and ca2+/calmodulin-dependent kinase kinase 2, phosphorylate
Thrl72 on its o-subunit (active site) (37, 38). Although liver
kinase Bl is constitutively active, protein phosphatases tightly
regulate AMPK activity and can deactivate it by
dephosphorylating this site. However, AMP binding helps
maintain AMPK activity by promoting its phosphorylation and
preventing dephosphorylation at the active site (22).

Activated AMPK improves insulin sensitivity and restores
metabolic balance through several mechanisms (39). In skeletal
muscle, AMPK promotes glucose uptake by phosphorylating
AS160; inhibits glycogen synthesis via glycogen synthase-1
phosphorylation; and increases fatty acid oxidation through
activation of malonyl-CoA decarboxylase (22, 40). In the liver,
AMPK inhibits de novo lipogenesis by suppressing SREBP-1c,
counteracting the lipogenic effects of insulin (41), and by
inhibiting ATP-citrate lyase, an enzyme which converts citrate to
cytosolic acetyl-CoA for fatty acid and cholesterol biosynthesis (42).
AMPK also inhibits lipid accumulation in liver and muscle by
phosphorylating and inactivating ACC, thereby reducing malonyl-
CoA levels and promoting mitochondrial fatty acid oxidation (43).
These actions collectively decrease hepatic steatosis, suppress
gluconeogenesis, and stimulate mitochondrial biogenesis in
skeletal muscle, all of which main insulin sensitivity and
metabolic efficiency (38).

In addition to its effect on glucose and lipid metabolism, AMPK
also suppresses mTORCI by phosphorylating its upstream
regulators, TSC2 and raptor (44, 45). This inhibition counteracts
anabolic signalling and reduces excessive protein synthesis, which
could otherwise lead to cellular stress and IR. Inhibition of
mTORC1 also helps maintain insulin sensitivity by preserving the
integrity of insulin receptor substrate proteins (IRS-1 and IRS-2),
preventing their degradation and ensuring effective insulin signal
transduction (33).

In states of IR, AMPK function can become impaired, and its
regulatory control over glucose uptake, lipid metabolism, protein
synthesis, and mitochondrial function is compromised, leading to
cellular energy imbalance (46). This dysregulation promotes lipid
accumulation, and exacerbates inflammation and oxidative stress,
which together sustain IR. As such, AMPK acts as a metabolic
master switch, and its activation represents a crucial adaptive
response to restore cellular homeostasis, mitigate the progression
and severity of IR, and ameliorate T2D and its associated
complications (39, 46).
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2.3 INK-IRS-1 pathway in insulin signalling

The c-Jun N-terminal kinase (JNK) pathway, a member of the
mitogen-activated protein kinase family, is a serine/threonine
kinase activated in response to different cellular stress stimuli,
including inflammatory cytokines, oxidative stress, and elevated
free fatty acids (3, 47). Under normal physiological conditions, JNK
activity is transient and contributes to adaptive responses by
mediating immune responses, cell survival, and apoptosis (3). It
regulates transcription factors such as c-Jun (cellular Jun),
activating transcription factor 2, and E26 transformation-specific-
like protein-1, which together form activator protein-1 complexes
that control the expression of genes involved in stress adaptation,
inflammation, and cell fate (e.g., survival, proliferation, or
apoptosis) (48, 49). In metabolic tissues including the liver,
pancreas, adipose tissue, and skeletal muscle, this controlled JTNK
signalling is essential for maintaining homeostasis, as it modulates
immune surveillance, tissue repair, and metabolic flexibility in
response to nutrient availability and physiological stressors (50).
In healthy conditions, controlled JNK activation therefore supports
host defence and tissue integrity. However, when such activation is
chronic or dysregulated, it shifts from an adaptive mechanism to a
driver of pathological inflammation.

In settings of IR, JNK activation becomes chronic, disrupting
insulin signalling and driving metabolic dysfunction (3). A key
mechanism by which JNK impairs insulin action is through the
phosphorylation of IRS-1 at serine residues, particularly Ser307.
This aberrant phosphorylation reduces the ability of IRS-1 to
activate downstream signalling via the PI3K/Akt pathway,
ultimately leading to impaired glucose uptake, abnormal lipid
metabolism, and worsening IR (47, 51). One of the major
upstream activators of JNK is angiotensin II, a peptide hormone
that underpins the development of diabetic microvascular and
macrovascular complications (21, 52). In vascular smooth muscle
cells, angiotensin II triggers IRS-1 phosphorylation at serine
residues, leading to the degradation of IRS-1 and further
impairing its ability to activate downstream signalling pathways
such as PI3K/Akt (52). This disruption of insulin signalling worsens
hyperglycaemia and promotes dysregulated lipid metabolism by
reducing glucose uptake and increasing hepatic glucose
production (52).

In addition to insulin signalling defects, chronic JNK activation
shifts the metabolic balance toward inflammation and lipid
accumulation (53, 54). While JNK does not directly induce
lipogenesis via classic transcriptional pathways (e.g., SREBP1), its
activation may favour lipid storage in insulin-sensitive tissues by
reducing glucose utilisation and modifying energy distribution (53).
Concurrently, JNK increases pro-inflammatory signalling by
activating nuclear factor-xB (NF-xB), leading to increased
expression of inflammatory cytokines. These processes create a
vicious cycle in which chronic inflammation and metabolic
dysfunction reinforce one another, further exacerbating IR and
positioning the JNK-IRS-1 pathway as a central mediator linking
cellular stress responses, immune activation, and metabolic
dysregulation (54).

Frontiers in Immunology

10.3389/fimmu.2025.1692742

Taken together, these disruptions in insulin signalling pathways
underscore how cellular stress and metabolic imbalance converge to
drive IR. Within this context, inflammation and lipid dysregulation
act as overarching drivers that sustain these defects and intensify the
metabolic and inflammatory dysfunction characteristic of insulin-
resistant conditions.

3 Lipid dysregulation and
inflammation as drivers of insulin
resistance

Chronic low-grade inflammation and dysregulated lipid
metabolism are well-recognised, interdependent drivers of IR, as
illustrated in Figure 1 (55). Emerging evidence indicates a
bidirectional relationship in which excess or altered lipid species
promote inflammatory signalling, while inflammation disrupts lipid
handling and promotes lipotoxicity. This reciprocal crosstalk is
mediated by overlapping molecular pathways involving cytokine
signalling, adipokine secretion, and lipid-induced activation of
stress and inflammatory kinases, together forming a self-
perpetuating cycle that exacerbates IR and metabolic dysfunction.

3.1 Lipid dysregulation and insulin resistance

Disturbances in lipid metabolism are a critical and
complementary factor in the development of IR (20, 56, 57). One
of the earliest models proposed to explain how excess lipids
interfere with glucose metabolism is the Randle cycle, also known
as the glucose-fatty acid cycle (58, 59). This model suggests that
elevated fatty acid oxidation increases mitochondrial by-products,
such as acetyl-CoA and nicotinamide adenine dinucleotide, which
inhibit pyruvate dehydrogenase activity. The resulting citrate
accumulation suppresses key glycolytic enzymes, which results in
lowering glucose uptake and utilisation (58, 59). Although
foundational, this model does not fully account for the
mechanisms underlying lipid-induced IR (60).

In conditions of chronic overnutrition, as the lipid-storage
capacity of adipose tissue becomes saturated, excess lipids,
primarily in the form of triacylglycerols (TAGs), begin to
accumulate in non-adipose tissues such as the liver and skeletal
muscle, a phenomenon known as lipotoxicity (61, 62). While TAGs
are often considered inert storage molecules, their chronic
accumulation reflects sustained lipid oversupply and is closely
associated with increased generation of bioactive intermediates,
mitochondrial stress, and impaired insulin signalling (63). This
ectopic lipid deposition disrupts cellular function caused and is a
major factor in IR. Once the storage capacity of adipose tissue is
exceeded, it shifts from a passive energy reservoir to an active
contributor to metabolic dysfunction, as unregulated lipolysis
releases free fatty acids that further exacerbate IR (63).

Traditionally, lipotoxicity referred to the toxic accumulation of
triglycerides and free fatty acids in non-adipose tissues (61). This
concept has since evolved to include abnormal fat distribution,
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FIGURE 1

Mechanistic links between lipid dysregulation and inflammation in insulin resistance. Excess FFAs and altered lipid handling generate DAGs and
ceramides, activating PKC and PP2A, which inhibit PI3K/Akt signalling and promote lipotoxicity/pan-lipotoxicity. In parallel, TLR activation and
cytokines (e.g., TNF-o, IL-6) stimulate IKKB/NF-xB, JNK, S6K/mTOR, and SOCS/JAK-STAT, driving inhibitory IRS-1 phosphorylation and impaired
insulin action across tissues (liver, skeletal muscle, adipose tissue, pancreas, brain). Adipokines (e.g., adiponectin) modulate these effects. Although
not depicted here, lipid- or inflammation-induced energy stress can activate AMP-activated protein kinase (AMPK), a key energy sensor that provides
a protective counter-regulatory response by mitigating lipotoxic and inflammatory effects. Arrows indicate activation/flow while blunt bars indicate
inhibition. PP2A, protein phosphatase 2A; FFA, free fatty acid; FA, fatty acid; ROS, reactive oxygen species; SOCS, suppressor of cytokine signalling;
JAK-STAT, Janus kinase-signal transducer and activator of transcription; PKC, protein kinase C; IL, interleukin; TNF-co, tumour necrosis factor-o;
IKKB, 1xB kinase B; NF-kB, nuclear factor-xB; JNK, Jun N-terminal kinase; S6K, S6 kinase; mTOR, mechanistic target of rapamycin; IRS-1, insulin
receptor substrate 1; PI3K, phosphoinositide 3-kinase; Akt, protein kinase B; NAD*/NADH, nicotinamide adenine dinucleotide; TLR, toll-like receptor;

DAG/TAG, di/triacylglycerol.

imbalances in various lipid species, and disruptions in lipoprotein
metabolism, all of which lead to more widespread systemic
dysfunction (62, 64). Building on this expanded view, the concept
of pan-lipotoxicity has emerged (64), extending the definition of

Frontiers in Immunology 05

lipotoxicity from toxic accumulation of specific lipids within
individual tissues to a systemic phenomenon affecting multiple
tissues and organs. This systemic toxicity is driven not only by
lipid accumulation, but also by widespread disturbances in lipid
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handling, composition, and transport, including altered levels of
ceramides, diacylglycerols (DAG), and lipoproteins (64, 65), which
collectively promote cellular damage and dysfunction. This broader
framework better captures the complexity of conditions
underpinned by IR, facilitating a more holistic understanding of
the lipid metabolism pathways involved in IR-related
disorders (64).

Recent research has highlighted bioactive lipid intermediates,
such as DAGs and ceramides, as important mediators of impaired
insulin signalling (20). These molecules inhibit phosphorylation
and activation of insulin receptor substrates by activating specific
isoforms of protein kinase C (PKC), such as PKC-6 in muscle and
PKC-¢ in the liver (66-68). Experimental inhibition or genetic
deletion of these PKC isoforms improves insulin sensitivity,
supporting a causal link (69, 70). However, the role of DAGs in
IR remains contentious, as some studies show that deletion of PKC-
€ in the liver does not consistently improve insulin sensitivity, and
insulin receptor phosphorylation at the implicated sites is often
undetectable (71). These discrepancies highlight the need for
further research to determine the exact role of the DAG-PKC axis
in lipid-induced IR.

Ceramides, a class of sphingolipids, are also important lipid
intermediates that hinder insulin signalling through several
mechanisms (72). Ceramides activate protein phosphatase 2A
(PP2A), inhibiting Akt phosphorylation, a key step in the insulin
signalling cascade (73). They also suppress fatty acid oxidation and
enhance lipid uptake, increasing lipid overload in skeletal muscle
and liver (72). Insulin-resistant tissues have high concentrations of
ceramides, particularly C16 and C18 species synthesised by
ceramide synthase 6 (74, 75). Ceramide accumulation is further
driven by elevated circulating free fatty acids and reduced
adiponectin, both common features of IR, which respectively
increase ceramide synthesis and impair its clearance by
downregulating ceramidase activity (76, 77). Adiponectin
connects lipid metabolism to adipokine signalling by stimulating
ceramidase activity via its receptors AdipoR1 and AdipoR2, in turn
promoting ceramide degradation (78). In addition to directly
impairing insulin signalling, ceramides exacerbate IR by inducing
mitochondrial stress, generating reactive oxygen species, and
promoting pro-inflammatory cytokine release (3). DAGs and
ceramides are biochemically interconnected, as sphingomyelin
synthase converts ceramides into DAGs (3). Both lipids can
activate PKC isoforms, which phosphorylate Raf kinase inhibitory
protein (RKIP), leading to its dissociation from Raf and subsequent
activation of the mitogen-activated protein kinase/extracellular
signal-regulated kinase (MEK-ERK) signalling cascade (79, 80).
Activation of this pathway enhances NF-kB activity and promotes
the transcription of pro-inflammatory cytokines, thereby linking
lipid-induced PKC activation to inflammation and worsening IR
(80). Excessive lipid supply, particularly of free fatty acids, can also
activate pattern recognition receptors such as Toll-like receptor 4,
further amplifying cytokine production and worsening IR (3).

Overall, disturbances in lipid metabolism contribute to IR
through both well-established and newly recognised mechanisms.
Although the Randle cycle explained some of the early effects of
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lipid oversupply on glucose metabolism, additional pathways have
since been identified that extend and complement this framework
in the context of IR. Expanded concepts of lipotoxicity and pan-
lipotoxicity emphasise that IR arises not only from localised lipid
excess, but from systemic disturbances in lipid storage, distribution
and trafficking, compounded by bioactive intermediates such as
DAGs and ceramides. These processes impair insulin signalling and
promote metabolic stress and inflammation, emphasising the need
for therapeutic approaches that target systemic lipid dysregulation
as a central driver of IR.

3.2 Inflammation and insulin resistance

Chronic low-grade inflammation reflects an imbalance between
pro-inflammatory cytokines, such as interleukin (IL)-6, IL-1, and
tumour necrosis factor-o. (TNF-a), and anti-inflammatory
mediators such as IL-10 and transforming growth factor-B1
(TGF-B1) (81). Elevated pro-inflammatory cytokines, produced
primarily by activated immune cells and/or adipose tissue in the
context of IR, induce paracrine activation of nearby serine kinases
in insulin-responsive cells (e.g., adipocytes, hepatocytes), including
IxB kinase B (IKKP), JNK, S6 kinase (S6K), and mTOR (17, 82).
These kinases phosphorylate IRS-1 on serine residues, disrupting
downstream PI3K/Akt signalling and impairing glucose uptake and
glycogen synthesis in target tissues such as liver and muscle (17).
Inflammatory processes can also impair insulin action in the
pancreas by reducing B-cell function and survival; and in the
brain by disrupting hypothalamic insulin signalling that regulates
appetite and peripheral glucose metabolism (83). Together, these
mechanisms perpetuate systemic IR via a bidirectional loop, where
inflammation reduces insulin responsiveness, and this diminished
insulin action potentially exacerbates weight gain, amplifying
inflammatory cytokine production and driving progressive
adiposity, metabolic dysfunction and T2D risk (83, 84).

Pro-inflammatory effects on insulin signalling are mediated via
several key interconnected pathways, including the NF-kB pathway,
Toll-like receptor signalling, and cytokine-cytokine receptor
interactions (85, 86). NF-kB is activated by metabolic stressors
such as elevated circulating free fatty acids (especially palmitate),
and indirectly by bioactive lipids such as DAGs and ceramides,
through upstream kinases, oxidative stress and receptor-mediated
pathways. This in turn induces transcription of inflammatory genes
such as TNF-o and IL-6 that impair insulin receptor function (85,
86). IKKP, an upstream regulator in this pathway, activates NF-xB
by phosphorylating and degrading its inhibitor, IkB, allowing NF-
KB to translocate to the nucleus and initiate the expression of pro-
inflammatory genes (87). This pathway promotes cytokine
production in adipocytes, hepatocytes, and macrophages,
particularly in the context of obesity or high-fat diet conditions
(86). Both the JNK and IKKB/NF-xB pathways converge on IRS-1,
leading to its inhibitory serine phosphorylation, which impairs
insulin signal transduction and contributes to systemic IR and
associated metabolic dysfunction (86). In parallel, Toll-like
receptor signalling enhances NF-xB activation and cytokine
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overproduction, especially through toll-like receptor 4 and the
adaptor protein MyD88. This pathway is activated in part by
saturated free fatty acids, a key mechanistic link between lipid
oversupply and inflammatory signalling in IR (85). Further, the
cytokine-cytokine receptor interaction pathway augments immune
cell activation and signalling and, through activation of the Janus
kinase-signal transducer and activator of transcription (JAK-STAT)
pathway, induces suppressor of cytokine signalling (SOCS) protein
expression, further reinforcing this pro-inflammatory state (85).
Together, these pathways impair insulin signalling by inducing
inhibitory serine phosphorylation of IRS-1 and activating
downstream kinases that further disrupt the PI3K/Akt signal
transduction, thereby contributing to systemic IR (85).

In addition to systemic inflammatory cytokine signalling,
adipose tissue itself plays a pivotal role in modulating insulin
sensitivity, by secreting adipokines and other bioactive
compounds with potent immunometabolic effects (88). Chronic
unresolved inflammation, both in systemic circulation and within
adipose depots, drives the pathogenesis of obesity-related
cardiometabolic disease (89). Leptin, the first adipokine identified,
regulates energy balance and inflammatory responses through
signalling via the long isoform of its receptor (LEPRB) in the
brain and immune cells (88, 90). Both leptin deficiency and
chronic hyperleptinaemia promote IR; leptin deficiency impairs
energy balance and glucose regulation, while excess leptin, which is
common in obesity, causes leptin resistance and blunts its metabolic
effects (91, 92). In contrast, adiponectin is an anti-inflammatory,
anti-diabetic adipokine that lowers lipotoxicity, in part by
enhancing ceramide clearance through adiponectin receptor-
mediated ceramidase activity, thereby enhancing insulin
sensitivity and protecting against tissue inflammation (88, 93). It
also promotes fatty acid oxidation, preserves pancreatic [-cell
function, and exerts anti-apoptotic and anti-fibrotic effects (3).
Higher serum adiponectin levels have been associated with a
lower risk of metabolic and obesity-related disorders, such as
T2D and GDM (94, 95). Similar to adiponectin, apelin also
improves insulin sensitivity by increasing Akt phosphorylation
and glucose uptake via the AMPK pathway (96), with studies
reporting higher apelin concentrations in insulin-resistant and/or
individuals with morbid obesity and T2D (88, 97). Other adipokines
such as resistin and chemerin have also been implicated in IR.
Resistin promotes IR primarily through increasing inflammation in
adipose tissue and other metabolic organs, and may indirectly
contribute to lipotoxicity via macrophage activation, although a
direct causal link in humans remains unclear (98, 99). In contrast,
chemerin has context-specific effects that depend on tissue type and
metabolic state. At physiological levels, it may modulate insulin
sensitivity through regulation of IRS-1, GLUT4, and adiponectin
expression, particularly in adipose tissue and skeletal muscle.
However, when chronically elevated, as observed in obesity and
metabolic inflammation, chemerin can contribute to lipotoxicity by
impairing fatty acid clearance and promoting hepatocyte lipid
accumulation, potentially worsening IR. These roles remain
controversial and are likely dependent on local tissue
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environment, the form of chemerin present and stage of
metabolic disease (100-103).

In addition to cytokines and adipokines, hormone-like factors
released by the liver (hepatokines such as fetuin-A and fibroblast
growth factor-21), skeletal muscle (myokines such as irisin),
pancreas (e.g., amylin), heart (cardiokines such as B-type
natriuretic peptide), bone (osteokines such as osteocalcin), and
gut (enterokines/incretins such as glucagon-like peptide-1 and
peptide YY) also influence insulin sensitivity and energy
metabolism, highlighting the complex multi-organ crosstalk
involved in metabolic regulation (104, 105). Many of these
interconnected signals are modulated by inflammatory pathways,
providing a mechanistic link by which chronic inflammation can
disrupt insulin signalling and contribute to the development of
IR (104).

Collectively, available evidence underscores the importance of
inflammation as a central driver of IR, sustained by the interplay
between classical pro-inflammatory cytokines, adipose-derived and
hormone-like mediators, and bioactive lipid species. Adipose tissue
in particular functions as a dynamic immunometabolic organ,
rather than a passive energy reservoir, integrating systemic
inflammatory cues with local adipokine and lipid secretion to
influence insulin sensitivity across multiple tissues. In this
context, lipid intermediates such as ceramides and DAGs can
trigger inflammatory signalling, while inflammatory cytokines and
altered adipokine profiles disrupt lipid storage, oxidation, and
trafficking, thereby perpetuating lipotoxicity. Protective
adipokines such as adiponectin and apelin exhibit insulin-
sensitising effects, whereas dysregulation of other mediators such
as leptin, resistin, and chemerin, together with hormone-like signals
(e.g., fetuin-A, irisin, etc.) converge with lipid-induced
inflammatory signalling to exacerbate metabolic dysfunction.
Targeting these interconnected lipid-inflammation networks,
spanning cytokine signalling, adipose tissue function and broader
multi-organ cross-talk within the pan-lipotoxicity framework, offers
a promising strategy to restore metabolic homeostasis and reduce
the burden of metabolic disorders including T2D.

4 Limitations and future directions

Despite substantial progress in elucidating the molecular
mechanisms linking lipid dysregulation, inflammation and IR,
several key limitations and knowledge gaps remain. First, much of
the current evidence is derived from animal models and in vitro
experiments which, while invaluable for generating mechanistic
insights under controlled conditions, do not directly and fully
reflect the complexity of human IR. These models often
oversimplify biological systems and are constrained by species-
specific differences in immune responses, hormonal regulation, and
metabolic processes. For example, metabolic profiles and responses
to interventions in rodent models, commonly used in IR research,
differ markedly from those in humans, especially in relation to sex
hormone influences, depot-specific adipose tissue function, and the
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regulation of inflammatory pathways (106, 107). In vitro studies
similarly tend to isolate specific cell types or pathways, thereby
overlooking the complex crosstalk and systemic interactions that
occur in vivo. Such differences have contributed to translational
failures; for example, AMPK activators that improved lipid
metabolism and IR in animal models have failed to replicate the
same beneficial effects in human trials (38). Consequently, findings
from these models may overestimate or underestimate the clinical
relevance of specific molecular pathways and their potential as
therapeutic targets in diverse human populations. To complement
insights from existing animal and in vitro studies, future research
should incorporate physiologically relevant human-based models,
such as advanced 3D culture systems, organoids, and micro-
physiological platforms, xenografts using human adipose or
hepatic tissues, alongside ex vivo human tissue studies,
prospective cohorts with deep phenotyping, and multi-omics
approaches to capture the complex, multi-layered regulation of
metabolic and inflammatory networks in IR.

Second, pathway-specific and study-related factors limit our
understanding of how insulin signalling networks interact under
various metabolic conditions. Although the PI3K/Akt and AMPK
pathways are well-established in regulating glucose and lipid
metabolism, their dynamic crosstalk in complex clinical settings
such as obesity, T2D, GDM, and PCOS remains poorly defined,
including whether they act in compensatory, synergistic, or
antagonistic ways. This uncertainty is further complicated by
inconsistencies across studies, including differences in disease
models, tissue-specific responses, and control for inflammatory
states. For example, while AMPK is activated by cellular energy
stress and PI3K/Akt is typically insulin-driven, it is unclear how these
processes influence each other when active in the same metabolic
environment, or how their combined activity amplifies, counteracts,
or modifies downstream effects on inflammation, insulin sensitivity,
and tissue-specific metabolic functions. The JNK pathway, which is
frequently linked to IR through IRS-1 inhibition and inflammatory
signalling, is similarly complicated by variations in its upstream
activators and downstream effects across tissues and metabolic
settings. These variations can obscure the role of JNK in systemic
IR, particularly in the context of lipid overload and chronic low-grade
inflammation. Together, these issues make it challenging to pinpoint
which pathways should be targeted therapeutically, and in whom.
Addressing these gaps will require coordinated, cross-tissue and
longitudinal human studies supported by integrative analytical
approaches to map the temporal and spatial interactions of these
pathways and identify context-specific therapeutic targets.

Another emerging challenge is the growing identification of
novel regulators in IR pathogenesis, such as non-coding RNAs,
epigenetic modifications, and gut microbiota-derived metabolites.
These factors remain largely absent from standard animal and cell-
based models used to study IR, despite mounting evidence from
preclinical and human studies linking them to the modulation of
insulin signalling (108, 109). This gap reflects both the complexity
of these regulatory networks and the limited research examining
how they interact with classical insulin signalling pathways such as
PI3K/Akt and AMPK or stress-activated pathways such as JNK.
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Efforts to assess the clinical significance and therapeutic potential of
these novel regulators are further constrained by variations in study
designs, population characteristics, and analytical techniques.
Progress will require incorporating these novel regulatory layers
into established mechanistic frameworks, particularly in well-
characterised human cohorts, and applying multi-omics and
systems biology approaches to determine their role in disease
heterogeneity and to uncover novel, context-specific
therapeutic targets.

Beyond these emerging regulatory factors, important
knowledge gaps also remain for other bioactive lipid
intermediates in the context of IR. While DAGs and ceramides
are well-established as lipid intermediates contributing to IR, other
species including acylcarnitines, lysophospholipids,
sphingomyelins, and free fatty acids, likely play important but
underexplored roles. Branched fatty acid esters of hydroxy fatty
acids (FAHFAs) enhance insulin sensitivity and reduce
inflammation, yet their circulating levels are reduced in IR (3, 89)
and their roles in complex metabolic disorders such as T2D and
GDM are not well understood. The contribution of these diverse
lipids to the broader “pan-lipotoxicity” framework, and their
interactions with cytokine and adipokine networks, remain poorly
defined. Expanding lipidomics beyond conventional targets, using
both targeted and untargeted approaches, will be critical for
mapping these lipid-inflammation networks and clarifying the
functional significance of lesser-studied lipid species in
IR pathogenesis.

Finally, research on sex-specific variations in insulin signalling
and IR remain underrepresented in the literature. Many clinical
studies do not stratify analyses by sex, and most preclinical studies
use male animals to avoid variability brought about by hormonal
fluctuations. Yet, evidence indicates that sex hormones can
markedly influence insulin sensitivity, adipose tissue distribution,
and inflammatory responses (110-114). Common conditions such
as PCOS provide a clear example of this, with androgen excess in
women contributing to IR via alterations in adipose tissue biology,
lipid handling, and inflammatory signalling (115). Recognising such
differences is essential, as sex can shape both the mechanisms and
severity of IR, with direct consequences for prevention and
treatment. Future research should routinely incorporate sex as a
biological variable, prioritise mechanistic and clinical studies in
women, and apply sex-stratified analyses to inform targeted
prevention and treatment strategies.

5 Conclusions

IR is a complex metabolic disorder primarily driven by the
disruption of key intracellular signalling pathways, including PI3K/
Akt, AMPK, and JNK. These pathways regulate essential cellular
processes underpinning IR, including glucose uptake, glycogen
synthesis, lipid metabolism and inflammatory responses.
Impaired Akt activation, decreased AMPK activity, and increased
JNK signalling decrease insulin sensitivity and promote lipid
accumulation, chronic low-grade inflammation, and overall
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metabolic dysfunction. The interplay between these defects creates a
self-reinforcing cycle that exacerbates IR and accelerates disease
progression. Despite significant advances in our understanding of
the molecular drivers of IR, critical gaps remain in defining tissue-
specific differences in signalling, pathway crosstalk under metabolic
stress, the roles of novel regulators and diverse lipid intermediates,
and sex-specific mechanisms. Addressing these challenges requires
leveraging physiologically relevant human models, integration of
metabolic and inflammatory networks, and multi-omics
approaches in well-characterised cohorts. Such strategies will be
essential for identifying context-specific therapeutic targets and
developing precise, effective treatments for IR and its associated
metabolic disorders.
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