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The pregnane X receptor (PXR), a key hepatic nuclear receptor, exhibits a highly

plastic ligand-binding domain (LBD) that recognizes diverse endogenous and

exogenous ligands, contributing to interindividual variations in xenobiotic

metabolism and toxic responses. Emerging studies on the gut-liver axis reveal

that microbiota metabolites regulate hepatic PXR through dual mechanisms: (1)

Direct ligand-receptor interactions, where secondary bile acids (e.g., 3-keto LCA,

DCA) and indole-3-propionic acid (IPA) bind PXR-LBD via hydrogen bonding to

induce conformational changes, subsequently upregulating CYP3A4/ABCB1

expression while inhibiting NF-kB-mediated inflammation and modulating bile

acid homeostasis through crosstalk with the farnesoid X receptor (FXR); and (2)

Epigenetic reprogramming, wherein short-chain fatty acids (SCFAs) such as

butyrate enhance PXR transcription by inhibiting histone deacetylase (HDAC)

activity and promoting histone acetylation (e.g., at H3K9/K14 residues), thereby

increasing promoter accessibility. This epigenetic mechanism contrasts with the

direct ligand-binding pathway by acting indirectly through chromatin

remodeling. Dysregulated PXR signaling underlies bile acid imbalance,

mitochondrial dysfunction, and chemoresistance, driving clinical development

of interventions including probiotic modulation of LCA/DCA balance, triptolide-

mediated PXR activation, and structure-based PXR-targeted drug design. These

findings highlight the microbiota-PXR axis as a critical determinant of drug

response heterogeneity and a promising therapeutic target for metabolic liver

disorders and refractory malignancies.
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1 Introduction

The pregnane X receptor (PXR), a critical member of the

nuclear receptor superfamily, exhibits distinct structural and

functional characteristics that underpin its broad biological roles

(1). Comprising a highly variable ligand-binding domain (LBD)

and a conserved DNA-binding domain (DBD), the receptor

recognizes diverse ligands such as bile acids and pharmaceuticals

through its hydrophobic pocket, while forming heterodimers with

the retinoid X receptor (RXR) to bind target gene promoter regions

(2, 3). Its predominant expression in the liver and intestines aligns

with its core physiological functions in regulating drug-

metabolizing enzymes (e.g., CYP3A4, P-gp) and metabolic

networks of endogenous substances, including cholesterol and

bile acids (4). Upon ligand activation, PXR recruits coactivators

to initiate downstream gene transcription, playing a dual role in

detoxification, glucose-lipid homeostasis, and inflammatory

modulation (5).

Gut microbiota metabolites represent complex products of

host-microbial co-metabolism, categorized into seven functional

groups based on origin and activity (6–9). SCFAs, primarily derived

from dietary fiber fermentation (60% acetate, 20% propionate, 20%

butyrate), serve as energy sources for colon cells (butyrate

accounting for 90%) and modulate insulin sensitivity and

immune balance via GPCR activation (e.g., GPR43) (10).

Neuroactive substances (e.g., GABA, 5-HT) and tryptophan

metabolites (indole derivatives) form the gut-brain signaling

network (11, 12), while secondary bile acids and trimethylamine

N-oxide (TMAO) participate in cholesterol metabolism and

cardiovascular risk regulation. Notably, these metabolites

maintain intestinal barrier integrity (e.g., butyrate promoting

mucin secretion) (13) but may induce inflammation when

excessive (e.g., H2S disrupting epithelial junctions) (14), with their

dynamic equilibrium directly linked to metabolic disease

pathogenesis (15). Other metabolites include gases (H2, CH4,

CO2) that sustain anaerobic environments and energy cycles,

amino acid fermentation products (e.g., cadaverine, phenols,

H2S), and microbial-synthesized vitamins (K, B-complex)

involved in coagulation, energy metabolism, and DNA synthesis

(16, 17).

Recent studies reveal that gut microbiota metabolites regulate

PXR activity through direct binding or epigenetic modifications,

forming a three-dimensional “microbe-metabolite-host receptor”

interaction network (18, 19). For instance, secondary bile acids act

as dual ligands for PXR and farnesoid X receptor (FXR), while

SCFAs may influence PXR transcriptional efficiency via histone

deacetylase (HDAC) inhibition (20, 21). This review systematically

examines such cross-regulatory mechanisms, aiming to elucidate

the potential impact of microbial metabolites on personalized

medicine—including microbial explanations for drug metabolism

variability and microbiota-based interventions for therapeutic

optimization—thereby offering new perspectives for precision

medicine in metabolic diseases and oncology.
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2 Liver diseases associated with PXR
dysregulation

PXR dysfunction in the liver is a critical factor in lipid metabolic

disorders (22, 23), as the receptor maintains lipid homeostasis

through three primary mechanisms: inhibiting lipid synthesis by

downregulating key enzymes such as stearoyl-CoA desaturase

(SCD1) (24) and acetyl-CoA carboxylase (ACC) (25), promoting

fatty acid b-oxidation by enhancing peroxisome proliferator-

activated receptor a (PPARa) and PPARg coactivator 1a
(PGC1a) pathways (26), and regulating bile acid metabolism by

modulating rate-limiting enzymes like cholesterol 7a-hydroxylase
(CYP7A1) (27, 28). Unlike the farnesoid X receptor (FXR), which

primarily maintains bile acid balance and suppresses lipid synthesis

(29, 30), PXR also regulates the transcription and expression of

drug-metabolizing enzymes and transporters, including uridine

diphosphate glucuronosyltransferases (UGTs), ATP-binding

cassette transporter B1 (ABCB1/MDR-1), and cytochrome P450

3A4 (CYP3A4) (31).

PXR dysfunction triggers a cascade of pathological events: reduced

CYP3A4 expression leads to secondary bile acid accumulation,

disrupting lipid oxidation-synthesis balance; in obesity, PXR

inactivation decreases very low-density lipoprotein (VLDL) secretion,

causing free fatty acid spillover into muscle tissues and exacerbating

peripheral insulin resistance; in cholestatic liver diseases (32), PXR fails

to induce efflux transporters like multidrug resistance-associated

protein 2 (MRP2) and breast cancer resistance protein (BCRP),

resulting in bile acid retention and mitochondrial dysfunction (33,

34). The dysregulation of PXR-mediated lipid metabolism exacerbates

mitochondrial dysfunction through multiple mechanisms. Specifically,

activation by pregnenolone-16a-carbonitrile (PCN) significantly

downregulates critical mitochondrial proteins including proline

dehydrogenase (Prodh), cytochrome c, and Usmg (35, 36), thereby

impairing protein folding quality control and degradation pathways. In

hepatocytes, PXR dysfunction is closely linked to hepatobiliary diseases,

such as primary biliary cholangitis, where toxic bile acids like

lithocholic acid (LCA) inhibit PXR activity, leading to deficient

MRP2 and BCRP expression and further bile acid retention (37). In

drug-induced liver injury (DILI), gut microbiota-PXR protective

mechanisms fail, reducing detoxification capacity and causing drug

metabolite accumulation (38). Interventions, such as probiotic

modulation of bile acid ratios or natural agonists like triptolide, aim

to restore PXR function (39).

PXR dysfunction in the hepatobiliary system also influences

chemotherapy resistance, as microbiota-derived metabolites alter

drug-metabolizing enzyme profiles (40). For instance, reduced IPA

diminishes PXR-mediated CYP3A4 induction, delaying irinotecan

activation, while PXR overexpression may upregulate efflux

transporters like MDR-1, creating multidrug resistance (41, 42).

Studies show that tanshinone IIA can enhance sorafenib

metabolism in hepatocellular carcinoma via PXR activation

(43–45), highlighting the PXR-microbiota axis’s role in reversing

chemoresistance (Figure 1A).
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Gut microbiota and their metabolites have been clinically

applied in gastrointestinal disease treatment (46, 47), with

preclinical studies demonstrating their potential in improving

hepatobiliary disorders (48, 49). Research has identified

microbiota-derived metabolites that modulate PXR transcription

through metagenomics, offering avenues for personalized therapy

(50–52) (Figure 1B).
3 Recent advances in gut microbiota
metabolite-mediated regulation of
PXR activity

PXR, a ligand-activated nuclear receptor, primarily governs the

inducible expression of xenobiotic-handling genes, encompassing

biotransformation enzymes and drug transporters. Compared to

other nuclear transcription factors, PXR assumes a pivotal role in

modulating hepatic drug metabolism (53). In bile acid metabolism,

PXR and FXR form a dynamically balanced regulatory loop: FXR

regulates bile acid synthesis by inhibiting CYP7A1, while PXR

promotes bile acid excretion by inducing CYP3A4. The two

receptors achieve functional coordination through competitive

binding to the promoter regions of common target genes (such as

ABCB11), manifesting as bidirectional regulation of bile acid

homeostasis in liver and biliary disease models (54). In drug
Frontiers in Immunology 03
metabolism, there exists substrate competition between PXR-

induced CYP3A4 and FXR-regulated UGT1A1 (55, 56). For

instance, rifampicin (a PXR agonist) can inhibit FXR-mediated

bilirubin metabolism, leading to clinical drug interactions, which

necessitates particular attention in the treatment of chronic liver

disease. PXR and CAR exhibit significant synergistic effects in

inducing phase II metabolic enzymes (such as UGT1A1,

SULT2A1), but PXR demonstrates greater specificity in inducing

CYP2B6 (57). The two receptors form a complex by sharing

cofactors (such as RXRa) and initiate a coordinated detoxification

response upon environmental toxin exposure. Notably, CAR is

directly regulated by circadian clock genes, whereas PXR

activation exhibits sustained induction properties (58). This time-

dependent difference determines CAR’s dominant role in circadian

metabolic fluctuations, while PXR is better suited for long-term

drug exposure. As a signal integration hub, PXR forms a dynamic

regulatory module by recruiting coactivators and corepressors,

enabling simultaneous input from FXR, CAR, and PPARg to

achieve integrated regulation of metabolic pathways. In NAFLD

models, the PXR-FXR-CAR tri-receptor network jointly determines

the degree of lipid accumulation in hepatocytes by regulating the

expression of lipid synthesis enzymes and transporters, with PXR

activation partially reversing the lipid metabolic disorder caused by

FXR deficiency (58, 59), highlighting its pivotal nodal role in

disease networks.
FIGURE 1

Gut microbiota metabolite-PXR axis in liver disease pathogenesis and the potential personalized therapeutic regimen development workflow.
(A) Dysregulation of PXR: Impact of gut microbiota metabolites and gut-liver axis on liver metabolic disorders. (B) Potential roles of gut
microbiota metabolites in hepatic metabolic transcription factors and a concise flowchart for personalized therapeutic development.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1692684
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2025.1692684
Recent studies have revealed that the long noncoding RNA

HNF1A antisense 1 (HNF1A-AS1) exhibits dual regulatory

functions in modulating CYP3A4 expression in Huh7 and HepG2

cells. Mechanistically, HNF1A-AS1 acts as an RNA scaffold to bind

both protein arginine methyltransferase 1 and the pregnane X

receptor (PXR), facilitating their interaction and thereby

activating PXR and regulating CYP3A4 transcription through

histone modifications. Consequently, small molecule-mediated

epigenetic regulation holds promise as a novel biomarker for

predicting individual differences in PXR-induced drug

metabolism enzymes (60). Gut microbiota metabolites regulate

PXR activity through two core pathways: direct ligand binding

and epigenetic modulation (61). In the direct activation pathway,

microbial-derived metabolites such as secondary bile acids (3-keto

LCA, DCA) and indole-3-propionic acid (IPA) function as natural

PXR ligands, establishing specific hydrogen bonding interactions

with conserved residues including Arg410 and Gln285 within the

LBD (50). Structural studies have revealed the remarkable
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adaptability of PXR’s binding pocket, exemplified by the 2.65 Å

resolution crystal structure showing 17b-estradiol occupying only a
localized region of the expansive cavity while bridging critical polar

residues through its molecular framework (62). This unique binding

mode underscores PXR’s exceptional capacity to accommodate

diverse endobiotic ligands, a feature distinguishing it from other

nuclear receptors (Figure 2A). Molecular dynamics simulations and

in vitro assays have further demonstrated that carbamazepine

(CBZ) likely acts as a PXR agonist, with Gln285 emerging as a

pivotal interaction site (63). The structural plasticity of PXR-LBD

enables heterodimerization with RXR upon activation, recruitment

of coactivators like SRC-1, and binding to DR4 response elements in

target gene promoters (e.g., CYP3A4, ABCB1) (64), thereby

enhancing hepatic xenobiotic metabolism and suppressing

intestinal NF-kB-mediated inflammation (Figure 2A). Notably,

lithocholic acid derivatives mediate PXR-FXR crosstalk to

regulate CYP7A1 activity (65), while indole compounds

strengthen intestinal barrier function via the PXR-IL-10 axis
FIGURE 2

Recent mechanistic insights into gut microbiota metabolites modulating PXR transcriptional activity and functions. (A) Mechanism of activation of
PXR by intestinally derived metabolites and its effects. In the direct activation pathway, microbial metabolites (e.g., 3-keto LCA, DCA, IPA) act as
natural PXR ligands, binding via hydrogen bonds to conserved residues in the LBD. Activated PXR regulates target gene transcription, including
upregulating CYP3A4, ABCB1, ABCC2, et al. expression and downregulating CYP7A1 expression. (B) Typical intestinally derived metabolites regulate
the pathway of PXR in the liver. Microbial conversion of primary bile acids to secondary ones (e.g., DCA, 3-keto LCA) activates intestinal FXR,
triggering FGF release. FGF modulating PXR through direct phosphorylation and indirect ligand regulation.
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(66, 67). Clinically, competition between metabolites (e.g., TMAO)

and drugs for CYP3A4 binding may precipitate metabolic

disturbances, highlighting the therapeutic implications of

microbiota-PXR interactions.

While current research has firmly established that CYP3A4

enhancer methylation potently suppresses CYP3A4 expression via

PXR-mediated mechanisms (with rifampicin-independent

regulation) (68), the epigenetic modulation of PXR expression in

hepatocytes by gut-derived SCFAs remains an emerging frontier

(69). Mechanistic studies reveal that butyrate, a selective HDAC

class I/II inhibitor (70), orchestrates PXR transcriptional activation

may through two synergistic pathways: (1) site-specific acetylation

of H3K9/K14 at the PXR promoter, and (2) GPR43-dependent

sequestration of HDAC3 in the cytoplasm (71, 72). These findings

are consistent with the broader paradigm that microbially derived

SCFAs remodel hepatic chromatin architecture through HDAC

inhibition (73), thereby simultaneously suppressing inflammatory

cascades and potentiating PXR signaling (74). Nevertheless, critical

knowledge gaps persist in deciphering the precise epigenetic

orchestration between SCFA signaling and PXR regulatory

networks in liver metabolism.

Microbial metabolite dysbiosis directly disrupts PXR function

through three key pathways. First, LCA accumulation occurs due to

gut microbiota imbalance, where LCA acts as a PXR antagonist

(75), inhibiting lipid breakdown signaling and reducing the LCA/

DCA ratio (normally PXR-activating), resulting in increase in SCD1

expression and exacerbating hepatic triglyceride deposition (76).

Second, reduced IPA levels diminish PXR’s inhibitory effect on

AKR1B10, thereby activating the ACC/SCD1 lipid synthesis

pathway (77). Third, butyrate depletion impairs PXR function, as

butyrate enhances PXR-RXRa dimerization by inhibiting HDAC3

(78). The carboxy-terminal domain of PXR contains a LBD that

undergoes conformational changes upon binding specific ligands

(e.g., rifampicin or aflatoxin), promoting PXR-RXRa heterodimer

formation (79), cytoplasmic-nuclear translocation, and binding to

direct repeat (DR) or estrogen receptor (ER) response elements in

target gene promoters (80). Butyrate deficiency reduces PXR

transcriptional activity, leading to impaired fatty acid oxidation

(81). These mechanisms collectively demonstrate how microbiota-

derived metabolites critically regulate PXR-dependent

metabolic pathways.

Additionally, gut microbiota metabolites exert fine-tuned

regulation of PXR activity through the FXR/FGF19 signaling axis,

a key indirect regulatory network maintaining bile acid homeostasis

(82). The molecular mechanism involves microbial conversion of

primary bile acids into secondary bile acids (e.g., DCA, 3-keto LCA)

that activate intestinal FXR, triggering FGF19/15 secretion (83).

This hormone-like factor reaches the liver via portal circulation,

binds to FGFR4-b-Klotho complexes, and suppresses CYP7A1

expression through RAS-RAF-MEK-ERK cascades (84). This

process couples with PXR function through dual mechanisms:

ERK-mediated phosphorylation of PXR/RXRa directly modulates

transcriptional activity (85), while FGF19-maintained bile acid

homeostasis indirectly regulates PXR-driven CYP3A4 expression
Frontiers in Immunology 05
by altering endogenous ligand concentrations (82, 86, 87)

(Figure 2B). Under physiological conditions, this network forms a

negative feedback loop where FXR-FGF19 inhibits excessive bile

acid synthesis while PXR promotes detoxification (82).

Pathologically, microbiota dysbiosis disrupts this balance, leading

to bile acid accumulation and aberrant PXR activation that may

cause drug metabolism disorders or hepatic inflammation

(1, 88, 89). The elucidated “microbiota metabolite-FXR-FGF19-

PXR” axis offers novel therapeutic targets (e.g., FGF19 biologics in

clinical trials) and a framework for personalized medicine

considering drug-microbiota interactions (Figure 2B). Notably,

organ-specific PXR signaling exists: lithocholic acid activates

hepatic PXR to upregulate CYP3A11 (90), while microbial-

derived IPA preferentially stimulates intestinal PXR (Mdr1

upregulation) without hepatic effects, unlike hypericin which

activates both tissues.

The dynamic interplay between TLR4/NF-kB and PXR

pathways, mediated by gut microbiota-derived metabolites,

constitutes a critical regulatory axis that maintains equilibrium

between drug metabolism and inflammatory responses (91).

Microbial immunomodulators such as peptidoglycan fragments

(GlcNAc-MurNAc) activate NF-kB signaling through TLR2/NOD

pathways (92), thereby inducing the production of key pro-

inflammatory cytokines including IL-1b and TNF-a—a mechanism

well-characterized in inflammatory bowel disease (IBD) and type 2

diabetes (93). This microbial-immune interaction is further

modulated by direct molecular crosstalk: the NF-kB p65 subunit

physically binds to PXR to inhibit its DNA-binding activity, while

PXR activation in turn exerts negative transcriptional control over

NF-kB (94). This bidirectional regulatory network exemplifies how

microbiota metabolites fine-tune the delicate balance between

xenobiotic processing and immune homeostasis.

Different microbiota metabolites exhibit differential regulatory

effects on this network: SCFAs (e.g., butyrate) enhance histone

acetylation at the PXR promoter region by inhibiting HDACs,

partially counteracting NF-kB’s inhibitory effects, whereas

trimethylamine N-oxide (TMAO) exacerbates metabolic

disturbances by promoting hepatic sinus endothelial cell

capillaryization and dysfunction, thereby modulating macrophage

polarization (95). TMAO derived from gut microbiota exacerbates

NAFLD progression by damaging the gut-liver axis, and targeting

TMAOmay offer alternative therapeutic strategies for NAFLD (95).

Based on these findings, two intervention strategies have shown

clinical potential: (1) using plant-derived bioactive compounds,

such as baicalin, to selectively inhibit the TLR4/NF-kB pathway

and restore PXR function (96); and (2) modulating microbial

communities through fecal microbiota transplantation (FMT) or

specific probiotics (e.g., butyrate-producing bacteria) to reestablish

TLR4-PXR balance (97, 98) and mitigate the metabolic toxicity of

xenobiotics like chemotherapeutic agents.

In conclusion, gut-derived metabolites directly or indirectly

modulate PXR to regulate bile acid homeostasis and xenobiotic

metabolism/transport, providing critical insights for personalized

therapeutic strategies.
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4 Gut-derived modulators of PXR
activity

The gut microbiota orchestrates a complex regulatory network

through secondary bile acids (e.g., lithocholic acid [LCA],

deoxycholic acid [DCA]) and short-chain fatty acids (e.g.,

butyrate), which directly and indirectly modulate PXR activity.

Secondary bile acids like LCA and DCA serve as endogenous

PXR ligands, activating the receptor to upregulate drug-

metabolizing enzymes (e.g., CYP3A4/2B) while suppressing

CYP7A1 to maintain cholesterol homeostasis (99, 100). Notably,

Bacteroides stercoris may influence drug pharmacokinetics by

modulating GUDCA and GCDCA levels, which induce CYP3A1

expression in primary rat hepatocytes. Although known PXR-

activating bile acids (including LCA, CDCA, DCA, and CA)

showed no significant differences between groups in this study,

existing research primarily focuses on unconjugated bile acids, with

activation potency ordered as: 3-keto LCA > LCA > CDCA/DCA >

CA (99, 100). Additionally, UDCA and TUDCA have been reported

to activate PXR and induce CYP3A4 expression, though their

precise mechanisms remain incompletely elucidated.

SCFAs, as microbial metabolites, enhance metabolic activity in

liver organoids, including promoting CYP3A4 expression (101).

Butyrate, in particular, contributes to PXR modulation by inhibiting

HDACs (102), thereby enhancing PXR-mediated transcriptional

regulation of glucose transport proteins GLUT2 (103), P-

glycoprotein (ABCB1) (104), accelerating cholesterol metabolism and

transport (104, 105). Post-gastrectomy studies reveal an adaptive LCA-

PXR axis, where increased endogenous LCA levels and elevated

Bacteroides fragilis abundance correlate with upregulated hepatic

CYP3A11 expression (90, 106, 107), suggesting a compensatory

protective mechanism against bile acid overload (108). Another

notable modulator, indole-3-propionic acid (IPA), a tryptophan

metabolite produced by Clostridium sporogenes (109), acts as a PXR

ligand to downregulate TNF-a and upregulate tight junction proteins,

thereby maintaining gut barrier integrity (110), though its effects on

CYP3A enzyme activity require further investigation.

The promiscuous nature of PXR, as a multi-ligand nuclear

receptor, is underscored by its species-specific ligand-binding

pocket—with only 75-80% amino acid sequence homology

observed in the LBD across different species (111, 112). This

structural divergence suggests significant interspecies variation in

PXR ligand specificity (112, 113), a characteristic that further

emphasizes the receptor’s pivotal role in bridging gut microbiota-

derived signals (including bile acids, SCFAs, and other microbial

metabolites) with host metabolic and detoxification pathways, as

systematically documented in Table 1.
5 Regulation of PXR by clinically
common drugs

PXR regulates numerous clinically used drugs beyond its

prototype ligands (91, 123). Dexamethasone serves as a PXR
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activator in both mice and humans, as demonstrated by Pascussi

et al. in 2001 and Yueh et al. in 2005 (124, 125). Notably, some

drugs exhibit species-specific PXR activation patterns. For instance,

phenobarbital enhances steroid receptor coactivator-1 binding to

human PXR (hPXR) but fails to interact with mouse pregnane X

receptor (mPXR) (126). The antifungal clotrimazole binds to hPXR

at 10 mM concentrations, stimulating coactivator recruitment and

enhancing PXR-target gene transcription (127), while showing

weaker activation effects in rat and mouse PXR (128).

Recent studies (as of 2025) highlight PXR’s primary regulation

over the following drug categories: CYP3A4 substrate drugs, where

PXR preferentially induces CYP3A4 expression (accounting for

approximately 30% of hepatic P450 enzymes) (129), accelerating

the self-metabolic clearance of antibiotics like rifampicin and

affecting the metabolic rates of warfarin and oral contraceptives.

For example, PXR activation by rifampicin can increase warfarin

metabolism, elevating the risk of anticoagulant therapy failure (130).

CYP2B6 and CYP2C9 substrate drugs are regulated by PXR in

synergy with constitutive androstane receptor (CAR), influencing

the metabolism of antiepileptic drugs like phenobarbital, with

clinical dosages adjusted based on receptor polymorphisms (e.g.,

CAR rs2307424) (131, 132). Transporter-dependent drugs are

affected by PXR-induced expression of MDR1 (ABCB1) and

MRP2 (ABCC2), regulating the enterohepatic circulation and

biliary excretion of digoxin, as well as the hepatic concentration

and myopathy risk of statins (via OATP1B1 transport). Bile acid-

related drugs are indirectly regulated by PXR through modulation of

bile acid metabolic enzymes (e.g., AKR1D1), influencing the

generation of secondary bile acids and the efficacy of

immunomodulatory drugs in liver cancer treatment (133).

Glucocorticoids and anti-inflammatory drugs are affected by PXR

polymorphisms (134), which can reduce glucocorticoid metabolic

rates and impact the hepatoprotective effects of traditional Chinese

medicine components like triptolide (135). PXR activation-induced

drug interactions have become a clinical focus, such as the 47%

increase in oral contraceptive failure rates when combined with St.

John’s wort, prompting the FDA to require warning labels on related

product inserts (136). Emerging research suggests that targeting PXR

antagonists or modulating its signaling pathways may offer new

strategies for personalized medicine.
6 Clinical significance and future
perspectives

6.1 Microbial metabolite-mimetic drug
development

IPA, a microbial indole metabolite, has been identified as a PXR

activator, paving the way for novel drug development strategies.

Through structural optimization, researchers have successfully

designed the first non-cytotoxic PXR agonist, the lead compound

FKK5/FKK6 (later named CVK003) (137). This compound directly

binds to the PXR receptor, inducing PXR-target gene expression in

cell cultures, human organoids, and mouse models. In humanized
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PXR transgenic mice, CVK003 significantly reduced pro-

inflammatory cytokine levels (138). Further structural

modification studies revealed that removing the benzenesulfonyl

group shifted receptor binding specificity from PXR to the aryl

hydrocarbon receptor (AhR), while losing PXR activation

capability. Conversely, adding imidazopyridine maintained PXR

binding and transcriptional activation (139, 140). These findings

not only provide a theoretical basis for developing novel PXR

modulators but also establish a research paradigm for

understanding interactions between PXR and other xenobiotic-

sensing transcription factors (141, 142).
6.2 Personalized therapy for liver diseases

PXR overactivation is associated with the progression of

NAFLD, and microbiota-targeted regulation may offer a new

therapeutic approach. Studies show that PXR dysfunction
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disrupts bile acid metabolic balance, exacerbating hepatic lipid

accumulation and inflammatory responses, thereby promoting the

transition from NAFLD to non-alcoholic steatohepatitis (NASH).

Additionally, abnormal PXR activation can impair intestinal barrier

function, promoting endotoxin translocation and further

aggravating hepatic metabolic disorders. Modulating gut

microbiota structure—such as increasing SCFA-producing

probiotics—can restore bile acid metabolic homeostasis and

indirectly inhibit excessive PXR activation, thereby reducing

hepatic lipid peroxidation and insulin resistance. For example,

prebiotics like inulin derivatives have been shown to reshape the

gut microenvironment and enhance hepatic detoxification, offering

new directions for personalized NAFLD treatment (143, 144).

Future therapies combining PXR modulators with microbiota

interventions may become key to overcoming NAFLD treatment

bottlenecks (145). Probiotic interventions can also restore PXR

function inhibition caused by antibiotics, improving metabolic

variations of drugs like cyclosporine (146).
TABLE 1 PXR-modulating chemicals confirmed from microbial metabolites and their biological functions.

Category Chemical
Regulatory

role
Species Key function Reference

Direct regulatory

Butyrate Activator Human Facilitating transcriptional activation and
improving ABCB1 mRNA stability

(104, 114, 115)

Rat Enhancing PXR - mediated transcriptional
activation and alleviates liver cirrhosis

(102)

LCA Activator Human Hepatic PXR is activated by LCA to counteract
the hepatotoxic effects of bile acid overload

(100)

Activates intestinal PXR, which induces
intestinal FGF19 expression to negatively
feedback inhibit hepatic bile acid synthesis

(116)

Mouse Induces hepatic detoxification machinery and
in a PXR-dependent manner

(117)

3-keto LCA Activator Human Alleviate the hepatotoxicity caused by bile acid
overload and maintain cholesterol metabolic
balance

(99, 100, 118, 119)

Mouse Alleviate the hepatotoxicity caused by bile acid
overload and maintain cholesterol metabolic
balance

(99, 100, 118, 119)

DCA Activator Mouse Upregulating drug-metabolizing enzymes such
as CYP3A4/2B to facilitate hydroxylation
detoxification of bile acids

(99)

IPA Activator Human, mouse Suppresses hepatic inflammatory cytokine
production via PXR activation while enhancing
intestinal barrier function to attenuate
microbiota-derived toxin translocation to the
liver

(110, 120)

Skatole (3-
methylindole)

Partial agonist and
low affinity ligand

Human Increases the expression and activity of
CYP3A4 in human intestinal cells, but has no
such effect in human hepatocytes

(119)

Indirect
regulatoryPAMPs)

Lipopolysaccharides
(LPS)

Repressor Mouse Induces NF-kB activation may suppress PXR
expression, thereby compromising its
regulatory capacity for drug-metabolizing
enzymes (e.g., CYP3A4).

(121, 122)

Peptidoglycan Repressor Mouse (74, 92)
LCA, lithocholic acid; DCA, deoxycholic acid; IPA, Indole-3-propionic acid; PXR, pregnane X receptor; NF-kB, nuclear factor kappaB; CYP, Cytochrome P450. PAMPs, Pathogen-associated
molecular patterns.
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PXR’s dual role in liver disease progression and protection exhibits

significant complexity. Regarding disease progression, PXR activation

promotes hepatic lipid synthesis and fatty acid uptake while

simultaneously inhibiting fatty acid b-oxidation, culminating in lipid

accumulation and steatosis (147). Mechanistically, PXR drives this

process through transcriptional upregulation of Solute carrier family

27 member 4 (SLC27A4), thereby accelerating NAFLD progression

(148). In contrast, emerging evidence suggests protective roles for PXR

modulation. Preclinical studies demonstrate that selective PXR

modulators (e.g., hyodeoxycholic acid, HDCA) may improve

metabolic function in early-stage disease (149). Furthermore, PXR

activation mitigates drug-induced liver injury (DILI) through

multifaceted mechanisms including enhanced detoxification

regulation, anti-inflammatory effects, anti-apoptotic signaling, and

improved bile acid excretion. Notably, PXR’s involvement in NAFLD

remains controversial, with substantial discrepancies between preclinical

and clinical findings. While PXR activation shows opposing effects on

gluconeogenesis between rodents and humans (150), consistent

evidence from HFHC diet-induced mouse models demonstrates that

PXR activation triggers key NAFLD/NASH hallmarks including

steatosis, inflammation, and lipotoxicity (22). This paradox may stem

from PXR’s cell-specific expression pattern - as a hepatocyte-

predominant nuclear transcription factor, its limited expression in

Kupffer cells and hepatic stellate cells has resulted in insufficient

research on its immune-modulatory roles in these cell populations.

Collectively, these findings highlight the need for comprehensive studies

to clarify PXR’s stage- and cell-specific functions in NAFLD/NASH

pathogenesis. Future research should particularly address how PXR

modulation in non-hepatocyte populations influences disease

progression across different metabolic contexts.

The natural agonist ursolic acid activates PXR, significantly

upregulating the phosphorylation of acetyl-CoA carboxylase

(ACC), thereby inhibiting lipogenesis (151). This mechanism is

closely linked to PXR’s transcriptional regulation of lipid

metabolism genes, possibly involving indirect control of targets

like stearoyl-CoA desaturase 1 (SCD1) (152). Additionally,

excessive PXR activation is associated with NAFLD progression,

and ursolic acid, as a PXR modulator, may offer new therapeutic

strategies for metabolic liver diseases by balancing bile acid

metabolism and improving intestinal barrier function. Future

research could explore the synergistic effects of ursolic acid with

other PPAR subtypes (e.g., PPARg) to optimize its anti-lipidogenic

efficacy (153). Mechanistic studies on the gut microbiota

metabolite-PXR axis may further elucidate its role in metabolic

liver disease progression.

Bile salt hydrolase (BSH) is a core enzyme in gut microbiota

that converts primary bile acids to secondary ones, such as DCA,

which indirectly affects PXR signaling by activating the FXR (154).

Engineered BSH+ lactic acid bacteria may enhance bile acid

metabolic efficiency, promoting PXR-dependent expression of

hepatic detoxification enzymes (e.g., CYP3A4) and improving

metabolic disorders (155). Recombinant BSH lactic acid bacteria

not only improve gut colonization (with 2–3-fold upregulation of

adhesion protein expression) but also regulate host immune

microenvironments through SCFA secretion (156). Butyrate and
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other SCFAs have been shown to inhibit PXR transcriptional

activity via HDAC inhibition.
6.3 Clinical prospects for PXR-targeted
personalized therapy

In precision PXR modulation, building on the molecular design

experience of the lead compound CVK003 (138), future strategies may

include developing “smart-responsive” PXR modulators, such as pH/

enzyme-sensitive prodrugs for targeted intestinal release (e.g., colon-

specific delivery systems) and dual-functional molecules (e.g., PXR-

FXR co-agonists) to synchronize bile acid synthesis and detoxification

pathways (157). Ultrasound dynamics is a technology that utilizes

ultrasonic energy to regulate drug delivery and enhance therapeutic

efficacy. Its core mechanism lies in leveraging the physical effects of

ultrasound—such as cavitation, mechanical vibration, and thermal

effects—to alter tissue or cell membrane permeability, thereby

facilitating targeted drug delivery or activating drug activity (158).

When existing PXR modulators fail to achieve therapeutic effects, our

department employs ultrasound dynamics to stimulate PXR

modulators, thereby activating PXR function. This approach serves

to modulate liver immunity, accelerate drug and bile acid metabolism,

and ultimately alleviate liver immune diseases. Assessment models

integrating fecal secondary bile acid profiles (DCA/LCA ratio), serum

CYP3A4 activity, and gut microbiota BSH gene abundance could

enable stratified treatment (159, 160). In host-microbiota co-

intervention systems, optimizing BSH+ lactic acid bacteria

colonization (via adhesion peptide integration), metabolic profiles

(precisely regulating SCFA/DCA ratios), and immunomodulatory

functions (e.g., carrying IL-10 anti-inflammatory genes) could

provide personalized probiotic/prebiotic combinations (161, 162).

Multi-omics technologies may predict PXR-responsive bacterial

strains, analyze host-microbe interaction networks, and assess

hepatocyte PXR pathway states, ultimately offering systematic

solutions for PXR-targeted therapy.
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activation of human pregnane X receptor PXR by isomeric mono-methylated indoles in
intestinal and hepatic in vitro models. Toxicol Lett. (2020) 324:104–10. doi: 10.1016/
j.toxlet.2020.02.010

120. Venkatesh M, Mukherjee S, Wang H, Li H, Sun K, Benechet AP, et al. Symbiotic
bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor
PXR and Toll-like receptor 4. Immunity. (2014) 41:296–310. doi: 10.1016/
j.immuni.2014.06.014

121. Xu D-X, Chen Y-H, Wang J-P, Sun M-F, Wang H, Wei L-Z, et al. Perinatal
lipopolysaccharide exposure downregulates pregnane X receptor and Cyp3a11
expression in fetal mouse liver. Toxicol Sci. (2005) 87:38–45. doi: 10.1093/toxsci/kfi239

122. Xu D-X, Wei W, Sun M-F, Wu C-Y, Wang J-P, Wei L-Z, et al. Kupffer cells and
reactive oxygen species partially mediate lipopolysaccharide-induced downregulation
of nuclear receptor pregnane x receptor and its target gene CYP3a in mouse liver. Free
Radic Biol Med. (2004) 37:10–22. doi: 10.1016/j.freeradbiomed.2004.03.021

123. Chang TKH, Waxman DJ. Synthetic drugs and natural products as modulators
of constitutive androstane receptor (CAR) and pregnane X receptor (PXR).Drug Metab
Rev. (2006) 38:51–73. doi: 10.1080/03602530600569828

124. LuG-R,WangR-Z, ZhaoX-Y, Xu J-E, HuangC-K, SunW, et al. The CYP3A inducer
dexamethasone affects the pharmacokinetics of sunitinib by accelerating its metabolism in rats.
Chem Biol Interact. (2024) 403:111228. doi: 10.1016/j.cbi.2024.111228

125. Yueh M-F, Kawahara M, Raucy J. High volume bioassays to assess CYP3A4-
mediated drug interactions: induction and inhibition in a single cell line. Drug Metab
Disposition. (2005) 33:38–48. doi: 10.1124/dmd.104.001594

126. Li L, Welch MA, Li Z, Mackowiak B, Heyward S, Swaan PW, et al. Mechanistic
insights of phenobarbital-mediated activation of human but not mouse pregnane X
receptor. Mol Pharmacol. (2019) 96:345–54. doi: 10.1124/mol.119.116616

127. Jones SA, Moore LB, Shenk JL, Wisely GB, Hamilton GA, McKee DD, et al. The
pregnane X receptor: a promiscuous xenobiotic receptor that has diverged during
evolution. Mol Endocrinol. (2000) 14:27–39. doi: 10.1210/mend.14.1.0409

128. Bertilsson G, Heidrich J, Svensson K, Asman M, Jendeberg L, Sydow-Bäckman M,
et al. Identification of a human nuclear receptor defines a new signaling pathway for CYP3A
induction. Proc Natl Acad Sci U S A. (1998) 95:12208–13. doi: 10.1073/pnas.95.21.12208

129. Pandey SK, Verma S, Upreti S, Mishra A, Yadav N, Dwivedi-Agnihotri H. Role
of cytochrome P450 3A4 in cancer drug resistance: challenges and opportunities. Curr
Drug Metab. (2024) 25:235–47. doi: 10.2174/0113892002312369240703102215

130. Salem M, El-Bardissy A, Elshafei MN, Khalil A, Mahmoud H, Fahmi AM, et al.
Warfarin-rifampin-gene (WARIF-G) interaction: A retrospective, genetic, case-control
study. Clin Pharmacol Ther. (2023) 113:1150–9. doi: 10.1002/cpt.2871

131. Wyen C, Hendra H, Siccardi M, Platten M, Jaeger H, Harrer T, et al.
Cytochrome P450 2B6 (CYP2B6) and constitutive androstane receptor (CAR)
polymorphisms are associated with early discontinuation of efavirenz-containing
regimens. J Antimicrobial Chemother. (2011) 66:2092–8. doi: 10.1093/jac/dkr272

132. Ayuso P, Neary M, Chiong J, Owen A. Meta-analysis of the effect of CYP2B6,
CYP2A6, UGT2B7 and CAR polymorphisms on efavirenz plasma concentrations. J
Antimicrobial Chemother. (2019) 74:3281–90. doi: 10.1093/jac/dkz329

133. Chaudhry AS, Thirumaran RK, Yasuda K, Yang X, Fan Y, Strom SC, et al.
Genetic variation in aldo-keto reductase 1D1 (AKR1D1) affects the expression and
activity of multiple cytochrome P450s. Drug Metab Disposition. (2013) 41:1538–47.
doi: 10.1124/dmd.113.051672

134. Li Y, Buckley D, Wang S, Klaassen CD, Zhong X-B. Genetic polymorphisms in
the TATA box and upstream phenobarbital-responsive enhancer module of the
UGT1A1 promoter have combined effects on UDP-glucuronosyltransferase 1A1
transcription mediated by constitutive androstane receptor, pregnane X receptor, or
glucocorticoid receptor in human liver. Drug Metab Disposition. (2009) 37:1978–86.
doi: 10.1124/dmd.109.027409

135. Xu Y, Zhang Y-F, Chen X-Y, Zhong D-F. CYP3A4 inducer and inhibitor
strongly affect the pharmacokinetics of triptolide and its derivative in rats. Acta
Pharmacol Sinica. (2018) 39:1386–92. doi: 10.1038/aps.2017.170
Frontiers in Immunology 12
136. Jiang Y, Zhou Y, Song S, Fan S, Gao Y, Li Y, et al. St. John’s wort exacerbates
acetaminophen-induced liver injury by activation of PXR and CYP-mediated
bioactivation. Toxicol Sci. (2022) 190:54–63. doi: 10.1093/toxsci/kfac094
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pregnane X receptor using microbial metabolite mimicry. EMBO Mol Med. (2020) 12:
e11621. doi: 10.15252/emmm.201911621

138. Li H, Illés P, Karunaratne CV, Nordstrøm LU, Luo X, Yang A, et al.
Deciphering structural bases of intestinal and hepatic selectivity in targeting
pregnane X receptor with indole-based microbial mimics. Bioorg Chem. (2021)
109:104661. doi: 10.1016/j.bioorg.2021.104661
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