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Effective anti-tumor immunity critically depends on functional CD8" T cells, yet
in almost all solid tumors, these cells become dysfunctional, exhausted, or
spatially excluded. This breakdown of immune surveillance arises not only
from cell-intrinsic T cell exhaustion but also from multimodal communication
among tumor, stromal, and immune cells within the tumor microenvironment
(TME). This communication is mediated not only through direct receptor-ligand
interactions but also through a suite of indirect mechanisms, such as metabolic
competition, secretion of immunosuppressive metabolites and cytokines,
extracellular vesicle exchange, and even mitochondrial transfer via tunneling
nanotubes or membrane transfer through T cell trogocytosis. Together, these
suppressive interactions impair CD8" T cell metabolism, effector function, and
persistence, thereby enabling tumor immune evasion. In this review, we
summarize current understanding of how multimodal cell-cell communication,
including immune checkpoints, metabolic reprogramming, and stromal
crosstalk, cooperatively drive CD8* T cell dysfunction. We also highlight
emerging therapeutic strategies aimed at rewiring these suppressive networks,
with emphasis on translational potential. A deeper understanding of the spatial,
molecular, and metabolic context of CD8™ T cell suppression offers new avenues
to enhance the efficacy of cancer immunotherapies.
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1 Introduction

CD8" cytotoxic T lymphocytes (CTLs) are central mediators of anti-tumor immunity,
capable of directly eliminating malignant cells through perforin-granzyme release and Fas-
FasL signaling (1, 2). Their activation requires tumor antigens presentation by dendritic
cells (DCs), co-stimulation signals (e.g., CD28-B7), and pro-inflammation cytokines [e.g.,
interleukin (IL)-12, interferon-gamma (IFN-y)], leading to clonal expansion and cytotoxic
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effector functions acquisition (3). Upon antigen-specific activation,
CTLs proliferate and differentiate into two major subsets: effector
CD8" T cells, characterized by high expression of granzyme,
perforin, and IFN-y, which eliminate target tumor cells; and
memory CD8" T cells that possess self-renewal and multilineage
differentiation capacities, providing a cellular reservoir for long-
term immune surveillance (4, 5).

Under chronic antigen exposure, however, CTLs gradually lose
effector function and upregulate inhibitory receptors such as
programmed cell death protein 1 (PD-1) and cytotoxic T-
lymphocyte associated protein 4 (CTLA-4), this dysfunctional
state is termed T cell exhaustion (3). This trajectory of CD8" T
cell differentiation and dysfunction proceeds through successive
stages: naive T cells — activated T cells — stem-like progenitor of
exhausted T cells (Tpex) — effector-like or intermediate exhausted
T cells — terminal exhausted T cells (6, 7). TME provides spatial
niches that critically shape this progression (8). Tertiary lymphoid
structures (TLS) and perivascular regions, enriched with DCs,
maintain TCF1" Tpex cells, which preserve responsiveness to
immune checkpoint blockade (ICB) (9-12). In contrast, tumor
margins are enriched with CD103" tissue-resident memory T
cells (Trm) associated with favorable patient prognosis, while the
immunosuppressive and hypoxic tumor core drives T cells towards
terminal exhaustion, reinforced by persistent antigen exposure
(13-15).

This dysfunctional state is further exacerbated by
immunosuppressive factors in the TME, including tumor-
associated macrophages (TAMs, e.g., IRF8") (16) and inhibitory
cytokine networks (17), ultimately impairing antitumor immunity.
Preclinical and clinical studies consistently demonstrate that in
solid tumors, CD8" T cells become functionally exhausted and
metabolically impaired due to persistent antigen exposure and
immunosuppressive mechanisms within the TME (18, 19). These
mechanisms include direct inhibition by tumor and stromal cells, as
well as indirect suppression via metabolic competition and soluble
mediators, collectively impairing CD8" T cell function and
antitumor immunity (8, 20, 21).

A critical axis of immune evasion involves direct cell-to-cell
interactions that drive CD8" T cell dysfunction. Tumor cells exploit
a repertoire of inhibitory ligands [e.g., PD-L1, B7 homolog 3 (B7-
H3), and human leukocyte antigen (HLA)-E)] to engage checkpoint
receptors [PD-1, Lymphocyte-activation gene 3 (LAG-3), Natural
killer group 2 member A (NKG2A)] on T cells, thereby blunting
TCR signaling and cytotoxicity activity. Immune cells such as
regulatory T cells (Tregs) and myeloid-derived suppressor cells
(MDSCs) further suppress CTLs through mechanisms including
CTLA-4-mediated blockade of co-stimulation and PD-LI1
expression. Cancer-associated fibroblasts (CAFs) reinforce this
suppression both by expressing ligands such as PD-L1 and
carcinoembryonic antigen-related cell adhesion molecule 1
(Ceacam-1), and by physically restricting CD8" T cells infiltration
into tumor niches. Together, these interactions highlight the
complexity of contact-dependent immunosuppression and
underscore the limitations of current checkpoint
blockade therapies.
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Beyond direct contact, the TME imposes indirect suppression
through metabolic hijacking, stromal crosstalk, and biochemical
perturbations. Tumor cells aggressively outcompete T cells for
essential nutrients including glucose and arginine, while releasing
immunosuppressive metabolites such as lactate, adenosine and
kynurenine. Extracellular vesicles, tunneling nanotubes and T cell
trogocytosis further exacerbate suppression by transferring
inhibitory cargos, such as dysfunctional mitochondria, inhibitory
miRNAs, or even membrane fragments, to T cells. Meanwhile,
cytokines (e.g., TGF-B) and ions (e.g., Mg®", ammonia) disrupt T
cell metabolism, signaling and epigenetic programming. Stromal
components such as CAFs and MDSCs amplify these effects by
remodeling the extracellular matrix, secreting suppressive
cytokines, and inducing hypoxia. Collectively, these processes
create a hostile metabolic and structural niche that sustains T
cell dysfunction.

These multimodal pathways act synergistically to impair CD8"
T cell cytotoxicity and persistence, and spatial access into tumors,
ultimately enabling immune evasion. Overcoming this coordinated
suppression remains a major challenge in current cancer
immunotherapy. In this review, we summarize recent advances in
understanding the mechanisms of multimodal cell-cell
communication, including immune checkpoint signaling,
metabolic interference, and stromal crosstalk, that collectively
drives CD8" T cell dysfunction (Figure 1). We further discuss
emerging therapeutic strategies designed to disrupt these
suppressive networks and restore anti-tumor immunity, with
particular attention to combinatorial approaches with
translational potential. A precise understanding of the spatial and
molecular dynamics of CD8" T cell suppression will be pivotal for
overcoming resistance to current immunotherapies.

2 Direct cell-to-cell interactions
suppressing CD8™ T cell function

The direct interaction between CD8" T cells and other cells in
TME, including tumor cells, other immune cells and CAFs, is
crucial for shaping anti-tumor immune responses. Direct contact
through receptor ligand engagement and immunological synapses
regulates CDS8™ T cell activation, effector function, and exhaustion.
While stimulatory signals enhance cytotoxicity, some interaction
induced inhibitory pathways blunt TCR signaling, cytokine
production, and proliferation. This section reviews how tumor
cells, immune cells, and CAFs suppress CD8" T cells function
through surface expressed inhibitory molecules and checkpoint
receptor-ligand interactions (Figure 2).

2.1 Tumor cell-to-CD8™* T cell interactions

Tumor cells directly inhibit infiltrating CD8" T cells by
engaging multiple inhibitory ligands. The PD-1-PD-LI1 axis
remains a dominant pathway: IFN-y produced by activated T
cells induces PD-L1 expression on tumor cells (22), which in turn
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FIGURE 1

Multifaceted regulation of CD8" T cell function within the TME. (A) Differentiation and exhaustion of CD8" T cells under chronic antigen stimulation.
Effector-like or intermediate exhausted T cells (Teff); Exhausted T cells (Tex); Tissue-resident memory T cells (Trm). (B) The TME exerts dual effects
on CD8" T cells: it can promote T cell activation and effector functions, while simultaneously driving exhaustion and dysfunction. Left panel
(Activation): Dendritic cells prime CD8" T cells through integrated signals, which collectively enhance T cell proliferation, migration, differentiation,
cytokine production, and cytotoxic capacity. Right panel (Suppression): Tumor cells suppress CD8" T cell function through multiple mechanisms: (1)
immunosuppressive ligand-receptor interactions [programmed cell death ligand 1 (PD-L1)-PD-1, transforming growth factor B (TGF-B)-TGF 3
receptor (TGF-BR)]; (2) nutrient competition (glucose, lipids, and amino acids); (3) tumor-derived exosomes; (4) intercellular material transfer via
nanotubes and trogocytosis; (5) cytokines; and (6) release of immunosuppressive cytokines or metabolites (Mg2*, lithium, and ammonia). These
inhibitor cues collectively drive upregulation of checkpoint receptors, diminished proliferation, and self-renewal capacity, reduced cytokine
production, and impaired cytotoxicity, ultimately driving CD8" T cells toward exhaustion. Image created with bioRender.com, with permission.

Created in BioRender. Zhou, P. (2025) https://BioRender.com/e66x2mi.

binds PD-1 on CD8" T cells, delivering potent inhibitory signals
that attenuate TCR signaling (e.g., reduced ZAP70
phosphorylation), cytokine secretion (e.g., IFN-y), and cytotoxic
activity, ultimately driving CD8" T cells into a dysfunctional state.
Similarly, B7 ligands B7-1 (CD80) and B7-2 (CD86) on tumor cells
engage CTLA-4 on activated CD8" T cells, outcompeting CD28 and
thereby blocking co-stimulatory signals required for T cell
activation, leading to CD8" T cell anergy.

Beyond these classical checkpoints, emerging ligand-receptor
pathways are increasingly recognized. B7x-B7-H4, a member of the
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B7 family broadly expressed across tumors, which binds
unidentified inhibitory receptor on activated, but not resting
CD8" T cells (23-25). B7-H4 inhibits CD8" T cell responses at an
early stage primarily by arresting cell cycle progression, suppressing
TCR signaling, and reducing IL-2 production (26). Liver and lymph
node sinusoidal endothelial cell C-type lectin (LSECtin), expressed
in the liver and on multiple tumor types (e.g., melanoma),
suppresses anti-tumor immunity by binding LAG-3 on CD8" T
cells, where its KIEELE motif has been identified as structurally and
functionally essential for LAG-3’s inhibitory capacity. LAG-3
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FIGURE 2
Direct cell-to-cell contact plays a critical role in the suppression of CD8" T cells within the TME. Tumor cells inhibit CTLs by engaging inhibitory
ligands with corresponding receptors, while multiple immune cells, including antigen-presenting cells (APCs), regulatory T cells (Tregs), NK cells
(NKs), and specialized CD8" Tregs, further suppress CD8" T cells through checkpoint molecules like PD-1, CTLA-4, and VISTA. Cancer-associated
fibroblasts (CAFs) uniquely contribute by engaging in direct inhibitory signaling (such as PD-L1-PD-1, Ceacam-1-Tim-3) and by imposing physical
barriers that restrict T cell infiltration. Collectively, this intricate intercellular communication network drives CD8" T cell dysfunction and exhaustion.
Targeting these specific interactions, particularly beyond PD-1 and CTLA-4 (e.g., LAG-3, TIGIT, VISTA, PVRIG, CD96, NKG2A) and disrupting CAF-
mediated suppression represent promising approaches to great reinvigorate CD8" T cell anti-tumor responses. Image created with bioRender.com,
with permission. Created in BioRender. Zhou, P. (2025) https://BioRender.com/kjhgxg8.

signaling inhibits effector T cell function by associating with CD3,
where co-engagement suppresses proliferation, IFN-y secretion, and
calcium mobilization (27, 28).

T cell immunoglobulin and ITIM domain (TIGIT), an Ig
superfamily member specifically expressed in immune cells, binds
CD155 on tumor cells, directly inhibiting effector CD8" T cell
function (27). CD96, which also binds CD155, antagonizes the
activating receptor CD226. Although CD96-mediated intracellular
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signaling remains incompletely characterized, its cytoplasmic ITIM
domain suggests inhibitory potential (29). Notably, CD155" lung
adenocarcinoma (LUAD) cells dramatically reduce IFN-y
production in CD8" T cells, thereby suppressing antitumor
immunity (30). Poliovirus receptor-related protein 2 (PVRL2),
also known as CD112, expressed by tumor cells and tumor-
associated myeloid cells, binds the late-induced inhibitory
receptor PVRIG (CD112R) on activated CD8" T cells. The
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PVRL2-PVRIG axis, mediated by PVRIG’s ITIM domain,
diminishes IL-12 receptor expression, suppresses cytotoxicity, and
promotes CD8" T cell exhaustion (31, 32).

Additional interactions further reinforce this suppressive
network. HLA-E-Qa-1° complexes, presenting specific peptides
processed by endoplasmic reticulum aminopeptidase 1-2 (ERAP1-
2), engage the inhibitory natural killer cell group 2 member A
(NKG2A)-CD94 heterodimer on a subset of CD8" tumor-
infiltrating lymphocytes (TILs), leading to suppression of TCR
signaling and consequent impairment of cytotoxic effector
function (33, 34). Ceacam-1-Tim-3 interactions have also been
implicated, although current support comes primarily from
clinical evidence rather than experimental validation (35).

Collectively, these inhibitory dyads converge to restrain CD8" T
cell cytotoxicity and persistence, underscoring the importance of
multi-targeted checkpoint blockade.

2.2 Immune cell-to-CD8" T cell
interactions

Multiple immune cell populations within the TME suppress
CD8" T cell function through direct contact. Antigen-presenting
cells (APCs), including DCs and macrophages, inhibit CD8" T cells
through classic immune evasion pathways, like PD-L1-PD-1 axis
(36-39). APCs also express VISTA (V-domain immunoglobulin
suppressor of T cell activation), functioning as a ligand for
immunoglobulin-like domains 1 (LRIG1) on CD8" T cells in a
“trans” configuration, contributing to T cell inhibition and
quiescence (40-42). Furthermore, constitutive expression of
CD80-CD86 on APCs allows binding of CTLA-4 on activated
CD8" T cells (43, 44). CTLA-4 not only transmits intrinsic
inhibitory signals but also, on Tregs, mediates the trans-
endocytosis and degradation of CD80-CD86 from the APC
surface, thereby limiting co-stimulation for other T cells (43, 45).
Follicular dendritic cells (FDCs) express CD112 and CD155, which
engage TIGIT on TILs, promoting a dysfunctional state
characterized by high co-expression of PD-1, and diminished
production of IFN-y, tumor necrosis factor-alpha (TNF-o), and
IL-2 (46). Natural Killer (NK) cells upregulate PD-L1 upon tumor
recognition and IL-18 stimulation, generating PD-L1™ NK cells that
directly suppress CD8" T cell proliferation in PD-L1-PD-1-
dependent manner (47). CD45RA™ CCR7™ (C-C motif chemokine
receptor 7) Tregs exhibit upregulated CD80/CD86 expression
alongside reduced HLA-DR, enabling potent suppression of CD8"
T cell function through dual mechanisms: IL-10 secretion and cell-
contact-dependent inhibition mediated by CD80/CD86-CTLA-4
interaction, as evidenced by diminished IFN-y, granzyme B
production, and proliferation (48). Herpes virus entry mediator
(HVEM, also TNFRSF14), a member of the TNF receptor
superfamily expressed by both immune and non-immune cells
that is frequently upregulated in malignancies, engages B and T
lymphocyte attenuator (BTLA) on T cells to trigger co-inhibitory
signaling, thereby suppressing TCR-mediated activation and
impairing cytotoxic effector function (49, 50). Intriguingly, CD8"
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T cells themselves may acquire suppression function. For example, a
subset of CD8" T cells, identified in humans as CD8*HLA-DR* T
cells, can adopt regulatory functions, further constraining effector
responses (51). LRIG1, expressed on CD8" T cells, interact with
VISTA in cis or trans to suppresses anti-tumor immunity by
inducing quiescence in CD8" T cells and limiting the
development of effector T cells from progenitor and memory-like
cells (40). In summary, the effectiveness of CD8" T cells in
controlling tumors are significantly limited by an inhibitory
interaction established immunosuppressive network in the TME.

2.3 CAFs-to-CD8* T cell interactions

CAFs suppress CD8" T cell function through both checkpoint
signaling and structural modulation of the TME. CAFs frequently
express PD-L1 (52), reciprocally upregulated through crosstalk with
tumor cells via contact or soluble factors, which directly binds PD-1
on CD8" T cells and correlates with poor prognosis in cancers like
esophageal carcinoma. Like tumor cells and FDCs, CAFs also
express CD155 and CD112, engaging TIGIT on TILs. TIGIT"
PD-1" T cells exhibit reduced IFN-y, TNF-0,, and IL-2 production
and impaired cytotoxicity, marking dysfunctional CD8" T effector
memory cells (Tgy) cells. Dual blockade of TIGIT and PD-1
reverses this exhaustion, restoring antitumor responses (46). In
hepatic tissues, LSECtin on hepatic CAFs engages LAG-3 on CD8"
T cells via the KIEELE motif, recruiting inhibitory signals through
CD3 to suppress proliferation, IFN-7y, and calcium flux, dampening
antitumor immunity (27). Moreover, CAFs express other
immunosuppressive ligands: Ceacam-1 binds TIM-3 on CD8" T
cells, reinforcing exhaustion (27, 53). Beyond checkpoint ligands,
CAFs remodel the extracellular matrix, restrict CD8" T cells
infiltration, and secret cytokines and exosomes that further
impair function.

Through these diverse roles, CAFs act as key regulators of immune
exclusion and resistance to immunotherapy. Targeting CAFs-CD8" T
cells interactions represents a promising strategy for successful cancer
immunotherapies combination with checkpoint blockade.

2.4 Therapeutic strategies targeting direct
cell-cell interactions

Immune checkpoints such as PD-1 and CTLA-4 are critical
regulators of immune tolerance, preventing excessive immune
activation. Tumors exploit this mechanism through ligand
overexpression (e.g., PD-L1) to suppress T-cell function and
facilitate immune escape. ICB therapies targeting PD-1-PD-L1,
CTLA-4, and LAG-3 have significantly improved survival in
multiple cancers (54, 55). However, complete response rates remain
limited (56), largely due to tumor heterogeneity and the complexity of
the immunosuppressive in TME, underscoring the need for stratified
and context-specific immunotherapy approaches (15).

The functional state of CD8" T cells, which serve as the core
effector cells in antitumor immunity, is not shaped by a single signal

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1691746
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Chen et al.

but instead by integrated crosstalk with diverse cell populations in
the TME (57, 58). Accordingly, immunotherapy strategies are
shifting from a T cell-centric focus toward approaches that
modulate the cellular interactions within the TME to promote
effective antitumor immunity. The central therapeutic goal is to
enhance T cell recognition and effector function while
simultaneously blocking tumor immune evasion pathways.

Immune checkpoint inhibitors (ICIs) represent the most direct
strategy (49). Anti-PD-1-PD-L1 antibodies restore effector functions
of CD8" T cells (such as cytokine secretion and cytotoxicity) by
disrupting PD-L1-PD-1 inhibitory axis (49). Beyond classical ICIs,
novel checkpoints such as TIGIT have been identified (59, 60). While
anti-TIGIT monotherapy or combination therapy with anti-PD-1 has
shown potential in some clinical trials, these approached remain
insufficient to fully reinvigorate CD8" T cells, particularly in patients
with advanced or high tumor burden (61, 62). To enhance TIGIT-
targeted immunotherapy, combination regimens are being developed,
including anti-CTLA-4 or anti-vascular endothelial growth factor
(VEGF) agents in triple blockade (e.g, TIGIT + PD-1-PD-L1 +
CTLA-4 or + VEGF), or combinations with chemotherapy (59). In
addition, multiple bispecific and trispecific antibodies have also entered
clinical development, showing preliminary potential in
overcoming resistance.

Beyond checkpoint inhibition, targeting interactions between
CD8" T cells and other immune cells offers additional therapeutic
avenues (57). For example, anti-CTLA-4 antibodies (e.g.,
ipilimumab) function in part by depleting intertumoral Tregs,
thereby relieving suppression on CD8" T cells (63). Additionally,
combination therapy with doxorubicin and IL-12 has been shown
to shift receptor signaling in tumor infiltrating CD8" T cells toward
immunostimulatory pathways while reducing Treg infiltration, thus
enhancing local effector activity (64).

CAFs present another major challenge to restrict CD8" T cell
infiltration and function by constructing both physical and biochemical
barriers (65). Overcoming CAF-mediated immunosuppression is thus
critical for restoring CD8" T cell-mediated antitumor activity (66). In
triple-negative breast cancer (TNBC), CAFs are particularly important
therapeutic targets. Huo et al. engineered a CAF-targeted nanosystem
co-loaded with a TGF-B inhibitor (LY3200882) and PD-L1 siRNA.
Upon matrix metalloproteinase-2 (MMP2)-responsive release,
LY3200882 preferentially modulates CAF activity, reducing
extracellular matrix deposition and enhancing T-cell infiltration.
Simultaneously, PD-L1 siRNA downregulates PD-L1 expression in
both tumor cells and CAFs. This dual-action strategy effectively
reverses CAF-driven immunosuppression, remodels the TME, and
suppresses TNBC progression (67).

3 Indirect suppression via TME

The TME exerts profound indirect suppression on CD8" T cell
responses, orchestrating a complex network of metabolic,
biochemical and structural barriers that shape anti-tumor
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immunity. Mounting evidence indicates that tumors co-opt
multifaceted pathways, including metabolic reprogramming,
cytokine induction, receptor modulation, and immune checkpoint
activation, to systemically impair CD8" T cell effector function,
thereby fostering tumor progression. These immunosuppressive
circuits are increasingly recognized as critical drivers of tumor
immune evasion, positioning them as attractive therapeutic targets
for restoring anti-tumor immunity. This section focuses on indirect
TME-driven suppression, delineating how tumor cells and stromal
elements orchestrate CD8" T cell suppression through metabolic
competition (e.g., nutrient deprivation), intercellular communication
(eg. exosomes, tunneling nanotubes, or trogocytosis), and
microenvironmental perturbations (eg. cytokine networks, ionic
imbalances, or ammonia accumulation) (Table 1). Collectively,
these mechanisms establish an immunosuppressive niche that
subverts CD8" T cell surveillance and therapeutic efficacy.

3.1 Tumor-CD8™" T cell nutrient
competition

The availability of nutrients within the TME has emerged as a
pivotal determinant of CD8" T cell function. Compelling evidence
indicates that enhanced nutrient uptake, glycolytic flux, and
oxidative metabolism collectively potentiate CD8" T cell
proliferation and effector differentiation within tumors. This
metabolic adaptation is essential for sustaining anti-tumor
responses. Nevertheless, the TME frequently imposes profound
metabolic constraints, including nutrient deprivation and lipid
accumulation, that directly impair CD8" T cell effector responses
and immune surveillance. Strategies to overcome these barriers
show therapeutic promise.

3.1.1 Glucose

Glucose metabolism plays a pivotal role in the TME, impacting
both tumor progression and the functional capabilities of TILs
(Figure 3). Tumor cells exploit the Warburg effect, consuming
glucose and releasing lactate, which drives extracellular acidosis,
hypoxia, disordered vasculature, and dense extracellular matrix
within the TME (69, 73, 79, 114, 115). This nutrient competition
restricts glucose availability to TILs, resulting in mitochondrial
dysfunction and altered lipid metabolism, ultimately hindering T cell
effector function and persistence. To sustain growth, tumor cells
upregulate glucose transporters such as GLUT1 and GLUTS3, and
avidly consuming glucose and glutamine to promote T cell exhaustion
and immune evasion (73, 74). In renal cell carcinoma, elevated tumor
glycolysis corelates with reduced effector CD8" T cells (75). Nutrient
deprivation triggers AMP-activated protein kinase (AMPK) activation,
while suppressing mTOR thereby disrupting T cell differentiation
(116). Moreover, dysregulation of glucose metabolism through
pathways such as PI3K/AKT/mTOR signaling further impacts T cell
activation, Ca*" signaling, and O-GlcNAcylation, all of which are
essential for T cell effector function (76, 77, 117).
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TABLE 1 Indirect regulation of CD8" T cell dysfunction and exhaustion by the TME.

Classification of indirect suppression Mechanisms and conclusions

Glucose
Tumor-CD8" T cell nutrient
competition

Lipids

Amino Acid
Exosomes

Nanotubes and
Trogocytosis

In the tumor microenvironment, cancer cells or myeloid cells (68) outcompete CD8" T cells for glucose via the
Warburg effect (69), leading to lactate accumulation (70, 71), acidosis, and metabolic stress (72), by upregulate
glucose transporters GLUT1 and GLUTS3 (73, 74), or elevated glucose metabolism (75). This nutrient deprivation
impairs T cell mitochondrial function, mTOR signaling (76, 77), and effector responses, while promoting
exhaustion markers (PD-1, LAG-3) and epigenetic dysfunction (72, 78-80). Targeting this metabolic competition
may enhance immunotherapy efficacy (81).

Very-long-chain acyl-CoA dehydrogenase (VLCAD) (82), long-chain fatty acids (LCFAs) (83), arachidonic acid
(82), lipid droplet (84), prostaglandin E2 (85), or PCSK9-63 impair CD8" T cell activity.

Depletion of arginine (86-88), alanine (89), glutamine (89), tryptophan (90), or accumulation of adenosine (91,
92), L-ornithine (90) suppress T cell activation, proliferation, and cytokine production.

Exosomes inhibit the function of CD8" T cells and enhance their apoptosis by delivering immunosuppressive
molecules (e.g., cytokines (93, 94), regulatory miRNAs (93, 95, 96), and metabolic modulators (97)) or
transmitting signals via direct contact (93, 94).

Transfer of mitochondria (98), nutrients depletion (99) or “self-inhibition” (100) through acquisition of inhibitory
ligands or “antigen loss” (101, 102), collectively rewire T cell metabolism and blunt antigen recognition, thereby
hindering CD8" T cell function.

Cytokines

Tons and Metabolites

Inhibitory cytokines predominantly impair CD8" T cell proliferation and effector function, including TGF- (103),
IL-2 (104), IL-6 (105), IL-18R (106), IL-27 (107), or IL-10 (108, 109) and IL-35 (110).

Dysregulated Mg2+ (111), Lithium (112) and ammonia (113) levels interfere with T cell function and mechanisms.

Emerging evidence challenges the notion that immune
dysfunction arises solely from tumor-driven nutrient deprivation.
Reinfeld et al. demonstrated that myeloid cells, rather than T cells or
tumor cells, exhibit the highest glucose uptake, while tumor cells
preferentially rely on glutamine metabolism (68). These distinct
metabolic programs are governed by intrinsic cellular programming
mechanisms including differential mTORCI activity and metabolic
gene expression, rather than extracellular nutrient competition (68).
Moreover, inhibiting glutamine metabolism was further shown to
enhance glucose uptake across multiple cell types, suggesting a
feedback mechanism between glucose and glutamine utilization.
These findings emphasizes that immune metabolic dysfunction in
the TME is shaped not only by nutrient deprivation but also by cell
type-specific cellular metabolic programming, providing novel
directions for metabolism-based therapeutic strategies.

Beyond nutrient depletion, additional metabolic barriers,
including lactate accumulation, acidic pH, hypoxia, and elevated
ROS, further contribute to T cell dysfunction by reprogramming
metabolism and upregulating immune checkpoint expression (72).
Notably, PD-L1 blockade has been shown to enhance T cell
infiltration and metabolic fitness in glycolysis-low tumors (78).
Conversely, inhibition of lactate dehydrogenase (LDHA) impairs
CD8" T cell migration, proliferation, and effector functions (70),
while blockade of OGR1 in melanoma restores CD8" T cell
cytotoxic activity (71).

Together, glucose dysregulation in the TME not only hinders T
cell effector functions but also increases the immune checkpoint
expression and exhaustion, constituting a key mechanism of tumor
immune evasion. These insights underscore the therapeutic
potential of reprograming glucose metabolism by enhancing T
cell glycolytic capacity, restraining tumor glycolysis, or targeting
glutamine-glucose metabolic crosstalk, to overcome metabolic
barriers and enhance immunotherapeutic efficacy (81).
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3.1.2 Lipids

The interplay between lipids and CD8" T cell dysfunction
within the TME has attracted growing interest, revealing complex
mechanisms by which lipid accumulation and metabolism shape
anti-tumor immunity. Lipid metabolism dichotomizes into
opposing immunomodulatory pathways within the TME: one
suppresses CD8" T cell effector function (118-120), while the
other sustains or enhances CD8" T cell activation (121). This
section highlights the specific immunosuppressive lipids present
in the TME and delineate the mechanisms by which they impair
CD8" T cell activity (Figure 3). For example, intrapancreatic CD8"
T cells exhibit downregulation of very-long-chain acyl-CoA
dehydrogenase (VLCAD), exacerbating the accumulation of
lipotoxic long-chain fatty acids (LCFAs) and VLCFAs (82).
Metabolic reprogramming through enforced VLCAD expression
enhanced intratumorally T cell survival and persistence in a
pancreatic ductal adenocarcinoma (PDA) mouse model,
overcoming a major immunotherapy hurdle (82). LCFAs such as
palmitate impede CD8" T cell proliferation and effector cytokine
production (83). Among unsaturated fatty acids, oleic acid and
linoleic acid exert divergent effects on tumor progression: linoleic
acid reprograms tumor-infiltrating CD8" T cells from an exhausted
phenotype towards a memory-like state, potentiating their effector
function (122). Arachidonic acid induces ferroptosis in tumor cells
but may concurrently trigger ferroptosis in tumor-infiltrating CD8"*
T cells (82). The TME induces lipid droplet accumulation in
dysfunctional CD8" TILs through acetyl-CoA carboxylase-
mediated metabolic reprogramming (84). Prostaglandin E2
impairs IL-2 sensing in human CD8" T cells, promoting oxidative
stress and ferroptosis (85). Cholesterol and its derivatives critically
modulate CD8" T cell function in context-dependent manner:
cholesterol enhances TCR signaling, yet tumor cells derived
PCSK9 dysregulates CD8" T cell cholesterol metabolism, thereby
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FIGURE 3

Metabolic Reprogramming in the TME Driving CD8" T Cell Dysfunction. Glucose, lipid, and amino acid metabolism in the TME collectively impair
CD8* T cell function through nutrient competition, metabolite accumulation, and inhibitory signaling (1). Tumor cells and myeloid cells mediated
glucose uptake and lactate accumulation suppress glycoses and mTOR activity in T cells. (2) Accumulation of long-chain fatty acids (LCFAs) and lipid
abnormalities within T cells causes lipotoxicity and mitochondrial dysfunction. (3) Amino acid depletion by enzymes such as arginase 1 (ARG1) and
IDO disrupts TCR signaling and generates immunosuppressive metabolites such as adenosine. These metabolic pathways collectively drive T cell
dysfunction and represent potential therapeutic targets. Image created with bioRender.com, with permission. Created in BioRender. Zhou, P. (2025)

https://BioRender.com/8h0fjul.

suppressing TCR signaling (123), while the oxysterol 27-
hydroxycholesterol facilitates metastasis, an effect potently
suppressed by CYP27A1 inhibition (124). Notably, in pancreatic
tumors, CD8" T cell accumulation of LCFAs impairs mitochondrial
function and fatty acid catabolism, recapitulating the proliferative
and cytokine defects observed upon in vitro palmitate treatment
(82). Rather than serving as an energy source, these accumulated
lipids impair mitochondrial function and induce transcriptional
reprogramming of lipid metabolism pathways, ultimately
hampering CD8" T cell metabolic fitness and anti-tumor
activity (82).

3.1.3 Amino acid

The TME orchestrates a complex metabolic interplay where
amino acid availability profoundly impacts the functionality of
CD8" T cells through diverse mechanisms (Figure 3). Amino
acids serve as critical substrates for various cellular processes such
as protein synthesis, epigenetic modifications (e.g., SAM-dependent
methylation), and energy metabolism, making them highly
contested resources between tumor cells and T cells. For example,
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in activated T cells, extracellular alanine is preferentially utilized for
protein synthesis rather than catabolism. Arginine catabolism by
arginase 1 (ARG1) and inducible nitric oxide synthase (iNOS)
impairs TCR function by downregulating the CD3§& chain
expression (86). Moreover, ARG1-containing extracellular vesicles
can traffic to draining lymph nodes, where their uptake by dendritic
cells suppresses antigen-specific T-cell proliferation, as
demonstrated in ovarian carcinoma models (87, 88). Adenosine
further compromises T cell function and metabolic fitness through
the A2AR/PKA/mTORCI1 pathway, dampening both peripheral
and tumor-infiltrating CD8" T cells (91, 92). Alanine deprivation
delays the activation of naive and memory T cells (125), although it
has limited effects on T cell effector function. In contrast, glutamine
deprivation restricts metabolic flexibility, while SLC7A11, a multi-
pass transmembrane protein, driven cysteine depletion promotes
oxidative stress (89). L-ornithine has been shown to suppress T cell
functionality, as observed in murine models of chronic viral
infection where altered expression of hepatic urea cycle enzymes
results in L-ornithine accumulation, leading to the inhibition of
virus-specific CD8" T cell responses (126). Similarly, tryptophan
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depletion triggers GCN2-mediated stress responses that suppress
mTOR signaling, further restricting T cell activity (90).

Collectively, these metabolic perturbations disrupt T cell
activation, proliferation, and the production of effector molecules,
thereby contributing to immunotherapy resistance. Targeting this
metabolic axis offers novel therapeutic strategies, such as inhibiting
ARGI or GLS in combination with immune checkpoint blockade,
may restore amino acid homeostasis and reinvigorate antitumor
immunity. Such strategies highlight a promising frontier that
integrates metabolic and immunological intervention to overcome
treatment resistance.

3.2 Exosomes

In various cancers, exosomes derived from tumor cells or
stromal cells carry molecular cargo that induces dysfunction or
exhaustion of CD8" T cells, thereby facilitating tumor progression
and resistance to immunotherapy. Exosomes suppress CD8" T cell
function and promote their apoptosis through two primary
mechanisms: (1) delivery of immunosuppressive molecules and
(2) ligand-receptor interactions that trigger contact-
dependent signaling.

In the first route, exosomes transport inhibitory factors
including cytokines [e.g., TGF-B (93), IL-8 (94)], regulatory
miRNAs [e.g., microRNAs (93, 95) and circRNA (96)], and
metabolic modulators (97) (e.g., lactate dehydrogenase LDHA
and lactate). These cargos collectively impair T cell activation,
disrupt inflammatory signaling pathways (eg. STAT1-IFN-y) and
compromise glycolytic metabolism. In the second route, exosome
surface ligands, including PD-L1 (127) and FasL, engage
corresponding receptors on CD8" T cells, driving exhaustion or
apoptosis. Together, these coordinated immunosuppressive actions
establish exosomes as critical mediators of T cell dysfunction in
cancer, while also presenting potential therapeutic targets for
enhancing immunotherapies. Recent studies demonstrate the
breadth of this regulation. For example, Fan Xu et al. showed that
IL-8 in exosomes derived from prostate cancer cells hyperactivates
peroxisome proliferators-activated receptors (PPARa) in recipient
CD8" T cells, which downregulates GLUT1 and hexokinase 2 to
reduce glucose utilization while upregulating Carnitine O-
palmitoyltransferase 1 and peroxisomal acyl-coenzyme A oxidase
1 to enhance fatty acid catabolism, ultimately exacerbating CD8" T
cell starvation and promoting cellular exhaustion (94). Non-small
cell lung cancer (NSCLC) cells release circUSP7 via exosome
secretion, which upregulates SHP2 expression by sponging miR-
934, thereby inhibiting CD8" T cell secretion of IFN-y, TNF-a,
granzyme B, and perforin and ultimately suppressing CD8" T cell
function (128). Another example is the exosome circCCARI1, which
is taken up by CD8" T cells and induces CD8" T cell dysfunction by
stabilizing PD-1 protein (96). Collectively, these studies delineate a
complex network whereby tumor and stromal cell-derived
exosomes carry diverse molecular cargos, including circRNAs,
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cytokines and proteins, that induce CD8" T cell dysfunction, in
addition offering novel opportunities for therapeutic targets.

3.3 Nanotubes and trogocytosis

The contribution of nanotubes and trogocytosis in regulating
CD8" T cell function within the TME has become an emerging area,
particularly regarding intercellular mitochondrial transfer and its
consequences on T cell efficacy. Mitochondrial dysfunction in CD8"
T cells represents a fundamental driver of T cell exhaustion in
tumor contexts, making these intercellular communication
mechanisms highly relevant to tumor immune evasion.

Current evidence reveals that nanotube-mediated mitochondrial
transfer exhibits dual functionality. On one hand, nanotubes can
restore T cell metabolic activity by delivering functional mitochondria;
on the other hand, tumor cells often exploit this progress to transfer
dysfunctional mitochondria containing mutations or oxidative
damage, thereby promoting T cell failure. The principal inhibitory
mechanisms of nanotubes toward CD8" T cells encompass metabolic
subversion through mitochondrial hijacking (98) and nutrient
deprivation (99). Using multimodal imaging and metabolic
profiling, Tanmoy Saha et al. demonstrated that cancer cells hijack
mitochondria from immune cells via tunneling nanotubes,
simultaneously depleting immune cell function while metabolically
empowering tumor cells (129). In contrast, Jeremy G. Baldwin et al.
showed that bone marrow stromal cells transfer healthy mitochondria
to CD8" T cells through intercellular nanotubes, thereby restoring
CD8" T cell function and promoting anti-tumor responses (98).
Together, these findings highlight the complex, context-dependent
role of nanotubes in immune regulation and underscore their
potential as therapeutic targets in cancer immunotherapy.

Trogocytosis, the direct transfer of membrane fragments and
regulatory molecules during cell-cell contact, also play a crucial role
on T cell function. In the TME, CD8" T cells that acquire inhibitory
molecules from APCs or tumor cells can undergo suppression of
cytokine production and proliferation through reverse signaling
(45). Mechanistically, trogocytosis in CD8" T cells, where they
acquire inhibitory ligands or pMHC complexes, can promote
immune evasion, leading to T cell exhaustion mainly through
“self-inhibition” (100) and “antigen loss” (101). For example, Lu
et al. demonstrated that activation of trogocytosis in intratumoral
CTL through the ATF3-CH25H axis dampened the anti-tumor
immune response (100). Notably, CD8" T cells engage in cell-to-cell
material exchange by obtaining pMHC from APCs or tumor cells in
a TCR-dependent manner, may themselves become targets for
killing by neighboring CD8" T cells (101, 102). While
trogocytosis may prolong antigen receptor engagement and
transiently enhance activation, sustained or excessive trogocytosis
promote exhaustion (130). From a translational perspective,
engineering CAR-T cells to resistant trogocytosis or to avoid the
acquisition of inhibitory signals could improve their persistence and
therapeutic efficacy in tumors (100, 131).
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3.4 Cytokines

Multiple studies have elucidated the pivotal roles of cytokine
signaling and the inhibitory receptor upregulation in driving CD8"
T cell dysfunction within the TME. Cytokines impair CD8" T cell
proliferation, cytotoxicity (e.g., granzyme B and perforin
expression), and effector functions by inducing exhaustion,
metabolic inhibition, and apoptosis. For example, TGF- and IL-
2 suppress CD8" T cell proliferation and cytotoxic activity (103,
104). Mechanistically, TGF-B reduces CXCR3 expression by
binding to the CXCR3 promoter through Smad2, thereby
diminishing CD8" T cell responsiveness to CXCL10. Ablation of
the TGF-P receptor I (ALK5) restores CXCR3 expression, enhances
T cell infiltration and cytotoxicity, and promotes tumor regression,
these effects are partially reversed by CXCR3 blockade.
Furthermore, chronic TGF-B1 signaling orchestrates terminal
dysfunction of CD8" T cells through stable epigenetic
reprogramming (17). Rebalancing TGF-B1-BMP signaling, for
instance with BMP4 agonist SB4, preserves effector-memory
programs, reduces exhaustion marker expression, enhances anti-
tumor responses, and synergizes with ICB by restoring T cells
responsive state.

IL-2 plays pivotal roles in regulating CD8" T cell proliferation,
effector function, exhaustion, memory formation, and metabolic
adaptability (132). Recent findings underscore the context-
dependent effects of IL-2: while elevated IL-2 transiently enhance
the proliferation and effector functions of CD25™ CD8" T cells, they
also accelerate exhaustion (133-135). In chronic stimulatory
settings such as tumor microenvironments, sustained IL-2
signaling drives CD8" T cell exhaustion through STAT5-mediated
tryptophan hydroxylase 1 upregulation, generating 5-
hydroxytryptophan that promotes inhibitory receptor expression
and suppress effector function, revealing a conserved metabolic-
epigenetic axis of T cell dysfunction in both mouse and human
systems (104). Clinically, high-dose interleukin-2 (HD IL-2) has
been employed for the treatment of advanced melanoma and renal
cell carcinoma (136, 137), whereas low-dose recombinant human
IL-2 selectively modulates the abundance of regulatory T (T.)
cells, follicular helper T (Tgy) cells and IL-17-producing helper T
(TH,;) cells (138). Through these effects, IL-2 promotes the
development and survival of T, cells while inhibiting the
differentiation of Tgy and TH;; subsets, thereby reshaping the
immune milieu. Currently, multiple IL-2-based products are under
clinical and pre-clinical investigation, requiring evaluation of their
effects to reprogram dysfunctional state of anti-tumor CD8" T cells.
Modulation of CD8" T cell exhaustion programs by IL-2 to
promote the generation of effector cells with stem-like properties
provides the immunological rationale for the combination therapy
of IL-2 with PD-1 blockade (136, 139). Furthermore, engineered IL-
2 partial agonists have been shown to preserve the stem-like
properties and mitochondrial fitness of CD8" T cells, thereby
enhancing anti-tumor immunity (140). In parallel, IL-6-STAT3
signaling, activated by STK31, also promotes CD8" T cell
exhaustion in tumors (105), while IL-18 released in the TME
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through inflammasome activation drives T-cell exhaustion via
IL2-STAT5 and AKT-mTOR signaling downstream of IL-
18R (106).

Cytokine pathways also intersect with inhibitory receptor
regulation. IL-27 upregulates PD-1 expression via STATI
signaling yet paradoxically sustains CD8" T cell activity and
synergizes with PD-1- PD-L1 blockade (107). Although IL-10 is
classically categorized as immunosuppressive through its ability to
induce inhibition, recent work suggests that IL-10 alleviates T cell
exhaustion by promoting oxidative phosphorylation (OXPHOS) in
PD-1* TIM-3" CD8" T cells. An IL-10-Fc fusion protein acts
through IL-10 receptors on T cells to specifically enhance
OXPHOS, proliferation and cytotoxicity in this subset, thereby
reversing exhaustion and enhancing anti-tumor response (108,
109). Conversely, Treg-derived IL-10 and IL-35 cooperatively
upregulate the expression of multiple inhibitory receptors and
drive BLIMP1-dependent exhaustion of tumor infiltration CD8"
T cells, further impeding antitumor immunity (110).

Collectively, these findings underscore the central role of
cytokine-mediated signaling networks and inhibitory receptor
upregulation in orchestrating CD8" T cell dysfunction within
TME, emphasizing the therapeutic potential of targeting these
pathways to reinvigorate anti-tumor immunity.

3.5 lons and metabolites (Mg2*, Lithium
and Ammonia)

The immune function of CD8" T cells is profoundly affected by
various ions and metabolites that modulate signaling and metabolic
fitness. Magnesium (Mg**) functions as a critical second messenger
that regulates CD8" T cell activity through metabolic circuits that
sustain effector functions. Deficiency of intracellular free Mg*"
impairs NKG2D receptor expression on both NK cells and CD8"*
T cells, thereby compromising cytotoxic responses against
pathogens such as Epstein-Barr virus (111). Lithium, widely used
in psychiatric treatment, also exerts immunomodulatory effects on
CD8" T cells. Mechanistically, cytoplasmic lactate promotes
lysosomal proton influx, meanwhile lithium prevents lysosomal
acidification by inhibiting vacuolar ATPase, thereby restoring
diacylglycerol-PKC8 signaling to recruit monocarboxylate
transporter 1 to mitochondria. This enabled lactic acid transport
into mitochondria for CD8" T-cell energy production (112).
Ammonia functions as a potent immunosuppressive metabolite
within the TME. Elevated ammonia levels reprogram T cell
metabolism, leading to exhaustion and proliferation arrest (113).
Mechanistically, ammonia accumulation increases lysosomal pH,
impairs lysosomal ammonia trapping capacity. This causes
ammonia reflux into mitochondria, triggering mitochondrial
damage and subsequent cell death (141). Collectively, these
findings highlight distinct roles for ions and metabolites in
shaping CD8" T anti-tumor immunity.

Indirect suppression in the TME operates through tightly
interconnected metabolic, vesicular, structural, and cytokine
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mediated pathways. These circuits converge CD8" T cells to impair
metabolism, signaling, and effector function, driving exhaustion
and immune escape. Understanding and therapeutically targeting
these mechanisms will be essential for restoring durable anti-
tumor immunity.

3.6 Integrative strategies to restore T cell
function

The progress of immunotherapy has been driven by advances in
immune checkpoint research, leading to the clinical approval of
adoptive T cell therapy (142, 143). However, CAR-T cell therapies
show limited efficacy in many solid tumors and are often linked to
immune-related adverse events (144-146). Studies have shown that
impaired mitochondrial quality in TILs reduces cytokine secretion
and increases the expression of co-inhibitory receptors, while
tertiary lymphoid structures in several cancers characterized by
chronic inflammatory signaling (147). Moreover, the TME
frequently lacks the pro-inflammatory cues or innate immune
activation required for optimal T cell priming and expansion,
thereby constraining therapeutic efficacy.

To overcome these barriers, emerging strategies aim to
synergize innate immune activation with pro-inflammatory
stimuli, extending therapeutic benefit beyond checkpoint
inhibition, including nutritional interventions (148), oncolytic
viruses (149), cGAS-STING agonists (150, 151), cytokine therapy
(152), mitochondrial function modulation (153), and vaccine
development (149, 154). Addressing metabolic dysregulation,
such as lactic acid accumulation in TME (155-157), is
particularly critical for maintaining T-cell stemness, emphasizing
the importance of mitochondrial fitness in adoptive transfer
approaches. Although IL-2 monotherapy showed early promise in
metastatic renal cell carcinoma (RCC) and melanoma, its clinical
utility was limited by toxicity and Treg activation, prompting a shift
toward combination regimens (158, 159). Similarly,
pharmacological activation of K* channels, such as with riluzole,
a non-specific activator of the KCa3.1 channel, enhances cisplatin
uptake in colorectal cancer patients with cisplatin resistance (160).

Improving the efficacy of ICIs requires addressing secondary
inhibitory barriers in the TME, including immune-suppressive
metabolite accumulation (113), nutrient competition (68), ion
imbalances (e.g., high potassium environment), hypoxia, and
acidosis-related metabolic hindrances (161, 162). Overcoming
these multifactorial constraints is essential for fully unleashing the
cytotoxic potential of T cells. Preclinical studies demonstrate that
multi-targeted approaches can enhance antitumor efficacy, such as
M?7824, a bifunctional fusion protein simultaneously targeting PD-
L1 and TGF-B (163). In addition, innovative platforms such as
nanotube- and exosome-based drug delivery systems (164) and
CRISPR-Cas9-based genetic engineering (165) are expanding
therapeutic possibilities in personalized gene therapy.
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4 Discussion

Effective antitumor immunity critically depends on functional
CD8" T cells, whose suppression within the TME constitutes a
major immune escape mechanism. This suppression occurs
through two major routes: (1) Direct cell-to-cell interactions,
including tumor cell-CD8" T cell contact (e.g., PD-L1-PD-1),
inhibitory signals from CAFs, and immune cell crosstalk (e.g.,
DC-macrophage-T cell interactions); and (2) Indirect TME-
driven mechanisms, such as metabolic competition (nutrient
deprivation), intercellular communication (exosomes, tunneling
nanotubes, T cell trogocytosis), and microenvironmental
perturbations involving immunosuppressive cytokine networks
(TGF-B), ionic imbalances (e.g., Mg®" deficiency), and metabolite
accumulation (e.g., ammonia).

Within this suppressive networks, CD8" T cell function is
progressively impaired by diverse suppressive cues. Recent studies
highlight that tumors directly suppress CD8" T cells via inhibitory
ligand-receptor interactions, most prominently through the PD-1-
PD-L1 axis and the CTLA-4-B7-1 (CD80)-B7-2 (CD86) pathway
(56, 86, 166, 167). Additionally, APCs and CAFs suppress CD8" T
cell function by engaging CTLA-4 on activated CD8" T cells,
thereby constraining the availability of co-stimulatory signals. ICB
therapies targeting PD-1-PD-L1, CTLA-4, and LAG-3 have
improved survival in multiple cancers (54, 55). However,
complete and durable responses remain limited, largely due to
tumor heterogeneity, compensatory pathways, and the
multifaceted suppressive networks in the TME (56, 168, 169).
These limitations underscore the need for complementary or
combinatorial strategies that extend beyond classical checkpoint
inhibition. A2AR antagonists counteract adenosine-mediated
immunosuppression in the TME, thereby restoring T cell-
mediated tumor killing (170, 171). Currently, several A2AR
antagonists (e.g., AZD4635, CPI-444, AB928) have advanced into
Phase II clinical development for indications including prostate
cancer and NSCLC (172). Notably, although these candidates vary
in developmental stage and tumor type, they demonstrate
synergistic effects when combined with PD-1/PD-L1 inhibitors,
exhibiting superior antitumor activity compared to either agent
alone (171). These findings highlight the potential of targeting
metabolic pathways and nutrient competition presents promising
avenue to enhance effector responses (169, 173, 174).

Despite these advances, our understanding of how direct and
indirect communication networks suppress CD8" T cells in TME
remain incomplete. A key challenge lies in decoding these
interactions at sufficient resolution, cutting-edge platforms such as
spatial resolved transcriptomics, single-cell CRISPR screening (175),
nanotherapeutics (176, 177) are now being leveraged to dissect TME-
T cell interaction at cellular and molecular levels. Likewise, clinical
strategies like CAR-T cell therapy (178, 179) and bispecific antibodies
(180) provided translational opportunities for targeting these
networks. In particularly, extracellular vesicle-mediated signaling
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(e.g., exosomes and tunneling nanotubes) represents an
underexplored mechanism of tumor-driven immune evasion and a
potential strategy of novel therapeutic targets.

Importantly, the functional state of CD8" T cells is tightly
dictated by their local microenvironment niche, which is defined by
spatial position and communicative interactions with neighboring
cells. Ligand-receptor pairs are emerging as critical determinants of
these intercellular communication (181, 182). Advances in single-
cell and spatial multi-omics allow the dissection of these networks
at both cellular and molecularly levels (183). In the parallel,
advanced computational framworks enable the systematic analysis
of immune infiltration, inference of cell phenotypes, spatial
mapping of cellular interactions, and discovery of novel cell-cell
communication events, with tools such as CellTalker, PyMINEr,
CCCExplorer, SoptSC, NicheNet, CellPhoneDB, CellChat, and
CSOmap (184-186).

Another major clinical challenge is the early prediction of
immunotherapy efficacy (187). Platforms such as the gel-liquid
interface co-culture model have recapitulated human immunity and
tumor microenvironment interactions and identified circulating
tumor-reactive T cells as biomarkers of treatment response in
lung cancers (188). Integration of such ex vivo systems with
omics and computational pipelines may accelerate biomarkers
discovery.

Therapeutic strategies is increasingly focused on multi-target
synergistic interventions (54). Dual-blockade strategies, such as
combined PD-1-PD-L1 and TIGIT blockade (189), and tri-
blockade regimes, integrating epigenetic modulators (e.g., HDAC
inhibitors) with anti-angiogenic agents and PD-1 antibodies, have
shown promise in refractory solid tumors by simultaneously
remodeling the TME and restoring T cell function (190). Beyond
blockade, and emerging therapeutic approach aims to sustain
long-term T-cell function by preventing over-activation. An
Fc-attenuated LAG-3-TCR bispecific antibody has been
engineered to suppress T cell activity independently of MHC-II,
demonstrating therapeutic potential in autoimmune models and
offering a new avenue for sustaining T-cell function in cancer
immunotherapy (191).

Collectively, the intrinsic cellular composition of the TME,
coupled with pervasive immune evasion and multifaceted
crosstalk, highlights the need for integrative therapeutic strategies
that simultaneously target direct inhibitory interactions, metabolic
competition, and intercellular communication.
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Glossary

TME Tumor microenvironment TILs Tumor-infiltrating lymphocytes

CTLs Cytotoxic T lymphocytes APCs Antigen-presenting cells

DCs Dendritic cells VISTA V-domain immunoglobulin suppressor of T cell activation
IL-12 interleukin-12 LRIG1 Ligand for immunoglobulin-like domains 1
IFN-y Interferon-gamma FDCs Follicular dendritic cells

PD-1 Programmed cell death protein 1 TNF-ou Tumor necrosis factor-alpha

CTLA-4 Cytotoxic T-lymphocyte associated protein 4 NK Natural Killer

Tmp Memory precursor T cells CCR7 C-C motif chemokine receptor 7

Tpex Progenitor of exhausted T cells HVEM Herpes virus entry mediator

TLS Tertiary lymphoid structures BTLA B and T lymphocyte attenuator

TCF1 T-cell factor 1 ICIs Immune checkpoint inhibitors

ICB Immune checkpoint blockade VEGF Vascular endothelial growth factor

Trm Tissue-resident memory T cells TNBC Triple-negative breast cancer

TAMs Tumor-associated macrophages MMP2 Matrix metalloproteinase-2

TGF-BR Transforming growth factor B receptor GLUT1 Glucose transporters glucose transporter 1
B7-H3 B7 homolog 3 AMPK AMP-activated protein kinase

HLA Human leukocyte antigen LDHA Lactate dehydrogenase

LAG-3 Lymphocyte-activation gene 3 VLCAD Very-long-chain acyl-CoA dehydrogenase
NKG2A Natural killer group 2 member A LCFAs Long-chain fatty acids

Tregs Regulatory T cells PDA Pancreatic ductal adenocarcinoma

MDSCs Myeloid-derived suppressor cells ARG1 Arginine catabolism by arginase 1

CAFs Cancer-associated fibroblasts PPARa peroxisome proliferators-activated receptors
Ceacam-1 Carcinoembryonic antigen-related cell adhesion molecule 1 NSCLC Non-small cell lung cancer

ZAP70 Zeta-chain-associated protein kinase 70 iNOS Inducible nitric oxide synthase

LSECtin Liver and lymph node sinusoidal endothelial cell C-type lectin STAT3 Signal Transducer and Activator of Transcription 3
LUAD Lung adenocarcinoma Mg™* Magnesium

PVRL2 Poliovirus receptor-related protein 2 OXPHOS Oxidative phosphorylation

ERAP1-2 Endoplasmic reticulum aminopeptidase 1-2 scTCR-seq Single-cell T cell receptor sequencing.
NKG2A Natural killer cell group 2 member A
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