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Ferroptosis is an iron-dependent form of programmed cell death primarily

characterized by the inactivation of glutathione peroxidase 4 (GPX4),

accumulation of lipid peroxides (LPO), and disruption of intracellular antioxidant

defenses. Recent studies have revealed a close interplay between ferroptosis and

immune-mediated inflammation, both of which contribute significantly to the

pathogenesis of cardiovascular diseases (CVDs). In innate immunity, ferroptotic

cells release damage-associated molecular patterns (DAMPs), such as high-

mobility group box 1 (HMGB1), which activate the TLR–NF-kB signaling pathway,

promote macrophage polarization toward the pro-inflammatory M1 phenotype,

and induce the activation of NOD-like receptor protein 3 (NLRP3) inflammasomes,

thereby amplifying inflammatory responses. In adaptive immunity, Th17 cells

exacerbate cardiomyocyte ferroptosis by upregulating long-chain acyl-CoA

synthetase 4 (ACSL4) via IL-17A secretion, whereas regulatory T cells protect by

stabilizing GPX4 through IL-10. This review systematically delineates the intricate

network linking ferroptosis and immune-mediated inflammation in CVDs,

emphasizing the mechanisms by which ferroptosis modulates immune cell

function, inflammatory cytokine release, and the oxidative stress. Moreover, we

examined the involvement of this interaction in the pathophysiology of various

CVDs, including atherosclerosis, myocardial infarction, myocardial ischemia–

reperfusion injury (MIRI), heart failure, and cardiac arrhythmia. In addition, we

provide a detailed analysis of the clinical translational potential of emerging

therapeutic strategies targeting the ferroptosis–immune-inflammation axis,

including interventions such as iron chelators, antioxidants, inflammation

modulators, small-molecule inhibitors, and herbal compounds. By integrating

the latest findings from basic and clinical research, this review offers novel

insights and a theoretical framework for precision therapy in CVDs.
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1 Introduction

Cardiovascular disease (CVD) is the leading cause of mortality

and disability worldwide. According to the 2024 World Health

Organization report, CVD accounts for 32.1% of all deaths

worldwide, approximately 20.6 million annually, with ischemic

heart disease and stroke comprising the major burden. Despite

advances in contemporary management, including coronary

revascularization and lipid-lowering therapies such as statins, two

critical challenges remain unresolved. First, statin intolerance

significantly limits therapeutic efficacy; nearly 20% of patients fail

to achieve target low-density lipoprotein cholesterol levels or

experience dose-limiting adverse effects, such as myalgia or

hepatotoxicity. Second, the current anti-inflammatory strategies

are suboptimal. The landmark CANTOS trial demonstrated that

the IL-1b monoclonal antibody canakinumab reduced recurrent

major adverse cardiovascular events in post-myocardial infarction

(MI) patients (hazard ratio (HR): 0.85; 95% confidence interval

(CI): 0.74–0.98; P = 0.021) (1); however, prohibitive costs and

increased infection risk precluded its broad application. Similarly,

NOD-like receptor protein 3 (NLRP3) inflammasome inhibitors

(e.g., OLT1177) are undergoing phase II evaluation for systolic

heart failure (HF) (2), underscoring the need for more precise

immunomodulatory approaches. Collectively, these limitations

highlight the incomplete understanding of CVD pathogenesis and

the need to explore novel mechanisms of CVD.

Ferroptosis, a newly recognized form of programmed cell death,

has emerged as a pivotal contributor to cardiovascular diseases (3).

Defined by iron-dependent lipid peroxidation (LPO) and regulated

by key molecules such as glutathione peroxidase 4 (GPX4) and the

cystine/glutamate antiporter system Xc− (4), ferroptosis has been

implicated in cardiomyocyte death during infarction and in

multiple cardiovascular diseases (5). Studies investigating the role

of ferroptosis in myocardial ischemia–reperfusion injury (MIRI)

have primarily focused on the involvement of reactive oxygen

species (ROS) (6), GPX4 (7), autophagy-dependent signaling (8),

and endoplasmic reticulum stress (ERS) (9, 10). Ferroptosis has also

been implicated in diverse cardiac disorders, including HF,

Adr iamyc in- induced card iomyopathy (11) , d i abe t i c

cardiomyopathy (DCM) (12), sepsis-induced cardiac injury (13),

and atrial fibrillation (14).

In parallel with these findings, immune-mediated inflammation

has been increasingly recognized as a central driver of CVD. The

NLRP3 inflammasome–IL-1b axis plays a particularly critical role

in atherosclerosis (AS), where oxidized low-density lipoprotein

(oxLDL) activates NLRP3, leading to IL-1b release, plaque

instability, and thrombosis (15). Importantly, ferroptosis and

inflammation form bidirectional regulatory circuits. Ferroptotic

cells release damage-associated signals that promote macrophage

polarization and cytokine release, while also shaping adaptive

immune responses by modulating T cell function (16, 17).

Conversely, ROS and pro-inflammatory cytokines, including

TNF-a, IL-1b, and IL-6, sensitize cardiomyocytes and vascular

endothelial cells to ferroptosis, perpetuating a vicious cycle (18).
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Therefore, delineating the mechanisms underlying ferroptosis–

immune crosstalk is critical for identifying new therapeutic targets.

This review synthesizes current evidence from molecular pathways

to translational applications, with the aim of advancing precision

therapies for CVD.
2 Molecular interaction mechanisms
of ferroptosis and immune
inflammation

2.1 Overview of ferroptosis

Ferroptosis, first identified by Stockwell et al. in 2012, is a

regulated form of cell death that is distinguished from apoptosis and

necroptosis by its unique biochemical and morphological features

(19). The hallmarks of this condition include aberrant iron

accumulation, disrupted amino acid and lipid metabolism, and

excessive LPO. Morphologically, ferroptotic cells display reduced or

absent mitochondrial cristae, condensed membranes, and a lack of

apoptotic bodies (20). These alterations underscore the mechanistic

and pathological distinctions between ferroptosis and other modes

of cell death.

Ferroptosis has since been implicated in ischemia–reperfusion

injury, hepatic and renal fibrosis, neurodegenerative disorders such

as Alzheimer’s disease, and cancer (6, 20–24). Within the

cardiovascular system, ferroptosis contributes to the death of

cardiomyocytes, endothelial cells, and smooth muscle cells,

thereby influencing diverse cardiovascular diseases (25, 26).

Mechanistically, three major drivers orchestrate ferroptosis:
1. Iron metabolism dysregulation: Elevated iron uptake

through transferrin receptor 1 (TFR1) and divalent metal

transporter 1 (DMT1), combined with ferritin degradation

via autophagy, increases intracellular free iron levels,

promoting hydroxyl radical generation through the

Fenton reaction (27).

2. Antioxidant defense failure: The cystine/glutamate antiporter

system Xc− (comprising SLC7A11/xCT and SLC3A2/4F2hc)

imports cystine for glutathione (GSH) synthesis. GPX4

utilizes GSH to detoxify lipid peroxides (LPO), thereby

preventing ferroptosis. Pharmacological inhibitors, such as

erastin (targeting system Xc−) and RSL3 (inhibiting GPX4),

strongly induce ferroptosis (28). Thus, the Xc−–GSH–GPX4

axis constitutes a central safeguard against ferroptosis.

3. Lipid metabolism reprogramming: Polyunsaturated fatty

acid (PUFA)-containing phospholipids (e.g., PE-AA/AdA)

undergo peroxidation via lipoxygenases (LOXs) and free

radicals, leading to membrane rupture (29). Enzymes such

as acyl-CoA synthetase acyl-CoA synthetase 4 (ACSL4) and

lysophosphatidylcholine acyltransferase 3 (LPCAT3)

r egu l a t e the b i o syn the s i s o f PUFA-enr i ched

phospholipids, thereby determining cellular susceptibility

to ferroptosis (30, 31).
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Together, these mechanisms establish ferroptosis as a tightly

regulated and pathologically relevant mode of cell death.
2.2 Immune-mediated inflammation

The immune system defends the host by eliminating pathogens

and abnormal cells through both innate and adaptive mechanisms

(32). Macrophages, dendritic cells (DCs), and natural killer (NK)

cells play central roles in innate community. Macrophages

recognize pathogen-associated molecular patterns (PAMPs)

through pattern recognition receptors, which activate the NF-kB
signaling pathway and stimulate the release of pro-inflammatory

cytokines, including TNF-a and IL-6. Simultaneously, the assembly

and activation of the NLRP3 inflammasome promote the

matura t ion of IL-1b and IL-18 , fur ther ampl i fy ing

inflammatory responses.

The cyclic GMP–AMP synthase–stimulator of interferon genes

(cGAS–STING) pathway is a key mechanism that links cytosolic

DNA sensing to innate immunity. Under autoimmune conditions,

self-DNA released from damaged cells or neutrophil extracellular

traps is detected by cGAS, which generates cGAMP to activate

STING. Activated STING induces robust expression of type I

interferons (IFN-a/b) and interferon-stimulated genes via the

TBK1–IRF3 axis, forming the characteristic ‘type I interferon

signature.’ Persistent type I interferon signaling not only serves as

a hallmark of systemic lupus erythematosus but also disrupts

immune tolerance, promotes autoantibody production, and

enhances pathogenic T cell responses (e.g., Th17), ultimately

driving chronic inflammation and tissue injury.

DCs, as professional antigen-presenting cells, capture antigens,

undergo maturation, and migrate to lymphoid tissues, where they

present antigens via major histocompatibility complex (MHC)

molecules to activate naive T cells, thereby bridging the innate

and adaptive immunity. NK cells contribute to the regulation of

early inflammation in anti-infection and anti-tumor responses

through cytotoxic activity and the secretion of cytokines, such as

IFN-g.
In adaptive immunity, the differentiation balance of CD4+ T-

cells is critical for controlling inflammation. Th17 cells recruit

neutrophils and exacerbate tissue inflammation through pro-

inflammatory cytokines, including IL-17 and IL-22, whereas

regulatory T (Treg) cells maintain immune tolerance by secreting

inhibitory cytokines, such as IL-10 and TGF-b. Dysregulation of the

Th17/Treg axis is a hallmark of chronic inflammation in various

autoimmune diseases (33).

Inflammation, a core component of the immune response,

manifests as redness, swelling, heat, and pain, serving to eliminate

harmful stimuli and initiate tissue repair. During bacterial infection,

immune cells, especially macrophages, activate NF-kB and NLRP3

inflammasome signaling upon pathogen recognition, releasing large

amounts of pro-inflammatory cytokines and triggering acute

inflammation. In autoimmune diseases, persistent autoantibody-

mediated activation of DCs and macrophages disrupts the Th17/

Treg balance, establishing a chronic inflammatory loop
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characterized by sustained activation of the NF-kB, NLRP3, and
cGAS–STING pathways, ultimately leading to tissue damage and

disease progression. Collectively, immune-mediated inflammation

represents a tightly regulated network of cells and signaling

pathways. Detailed elucidation of these cellular and molecular

mechanisms provides new insights and potential therapeutic

targets for modulating inflammatory responses.

Innate immunity plays a pivotal role in early cardiovascular

injuries. Following myocardial ischemia or endothelial injury,

damage-associated molecular patterns (DAMPs), such as high-

mobility group box 1 (HMGB1) and ATP, activate macrophages

and neutrophils via Toll-like receptors (TLRs) and the NLRP3

inflammasome (34). Macrophages, the central mediators of

inflammation, exhibit phenotypic plasticity: M1 macrophages

release pro-inflammatory cytokines (TNF-a, IL-6, and IL-1b),
whereas M2 macrophages secrete anti-inflammatory mediators

(IL-4 and IL-10). The balance between these subsets determines

whether CVD progresses or regresses (35). For example, M1

macrophages destabilize atherosclerotic plaques (36), whereas IL-

37 mitigates inflammation by suppressing macrophage ferroptosis

via Nrf2 activation (37). Additionally, CRP, IL-6, and TNF-a, which
are produced by innate immune cells, are strongly linked to MI,

coronary artery disease, and stroke (38). Adaptive immunity also

modulates CVD progression. CD4+ Th1 cells exacerbate AS

through interferon-g secretion, whereas Tregs confer protection.

The role of B cells is context-dependent; some subsets produce

protective antibodies that attenuate myocardial injury, whereas

others facilitate atherogenesis (39, 40).

Immune inflammation drives CVD by linking innate and

adaptive immune responses. Its interplay with ferroptosis forms a

vicious cycle that aggravates tissue and cardiovascular injury.
2.3 Molecular pathways of ferroptosis
triggering immune-mediated inflammatory
response

2.3.1 Release of DAMPs
Cardiomyocytes can release DAMPs in response to stress,

hypertension, metabolic syndrome, ischemia–reperfusion injury,

or other pathological stimuli. These DAMPs, including heat shock

protein 60 (HSP60) and HMGB1, initiate sterile inflammatory

responses by engaging pattern-recognition receptors on innate

immune cells. Ferroptosis amplifies cellular immunogenicity by

releasing DAMPs and proinflammatory mediators, thereby

fostering a proinflammatory tissue microenvironment (41).

Among these, HMGB1 is a prototypical DAMP (42). During

ferroptosis, HMGB1 translocates from the nucleus to the

cytoplasm and is released extracellularly, with its release levels

correlating with the severity of ferroptosis. Mechanistically,

HMGB1 binds to TLR4, activating the IKK complex through a

MyD88-dependent pathway, which drives NF-kB nuclear

translocation and the expression of pro-inflammatory cytokines

(43). Consistent with this, Zhu et al. reported that HMGB1 released

from ferroptotic cardiomyocytes robustly activates innate immune
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responses through the TLR4/NF-kB axis (44). Moreover,

neutralization of HMGB1 with specific antibodies attenuates

macrophage-mediated inflammatory responses induced by

ferroptosis (45). In the MIRI model, inhibition of this central

signaling axis significantly alleviates ferroptosis-related

inflammatory damage and improves cardiac function. These

findings establish the HMGB1–TLR4 signaling axis as a critical

mediator of ferroptosis-associated immune inflammation,

highlighting it as a potential therapeutic target for CVDs (46).

2.3.2 Iron ion-mediated inflammation
Excess free iron promotes the generation of hydroxyl radicals

through the Fenton reaction, resulting in direct cellular damage and

activation of NLRP3 inflammasomes, thereby facilitating the

maturation and secretion of IL-1b (47). As a potent

proinflammatory cytokine, mature IL-1b orchestrates the

activation and effector functions of multiple immune cell

populations. In DCM, iron overload is positively correlated with

the extent of cardiac inflammation (48), further implicating iron

dysregulation in the inflammatory pathology of CVD.

2.3.3 Lipid metabolism-mediated inflammation
Oxidized phospholipids (OxPLs) are critical mediators of

macrophage polarization toward the pro-inflammatory M1

phenotype. A hallmark of ferroptosis is the rewiring of lipid

metabolism, accompanied by excessive accumulation of LPO

products. LPO oxidation is a central process in the metabolic

pathways of ferroptosis and serves as a potential mechanism

driving ferroptosis-associated inflammation. OxPLs modulate key

cellular signaling pathways, thereby influencing cellular metabolism

and inflammatory responses . Among these , oxidized

p h o s p h a t i d y l e t h a n o l am i n e (O xPE ) a n d o x i d i z e d

phosphatidylcholine (OxPC) by ferroptotic cells are recognized by

macrophages through scavenger receptors, including CD36 and

TLR2. These OxPLs act as pivotal mediators, promoting

macrophage polarization toward the pro-inflammatory M1

phenotype (49).

Two principal mechanisms have been proposed for OxPL-

induced macrophage M1 polarization (50). 1) NLRP3

inflammasome activation: OxPLs facilitate the assembly and

activation of NLRP3 inflammasomes by interacting with its

components. This process is mediated by intracellular signaling

events, including K+ efflux, Ca²+ flux, ROS accumulation, and

lysosomal damage (51). Activated NLRP3 inflammasomes recruit

and activate caspase-1, which cleaves pro–IL-1b into its mature

form (52). Mature IL-1b subsequently drives macrophage

differentiation from the M0 (unpolarized) state to the M1

phenotype (50). M1 macrophages exhibit enhanced pro-

inflammatory potential, characterized by elevated secretion of

cytokines and increased expression of M1-associated genes

including CXCL10 (52, 53). 2) AMPK–mTORC1 signaling axis:

Under oxidative stress, OxPLs inhibit AMPK activity, leading to the

activation of the mTORC1 signaling pathway. This activation

upregulates the expression of pro-inflammatory cytokines,

including TNF-a and IL-6 (54), and promotes macrophage
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microenvironment (Figure 1).

In summary, ferroptosis amplifies immune-mediated

inflammation through multiple mechanisms, including the release

of DAMPs, iron ion-dependent pathways, and alterations in

lipid metabolism.
2.4 Feedback mechanisms of immune-
mediated inflammation regulating
ferroptosis

Immune-mediated inflammation arises from a complex

network of signaling pathways and molecular interactions (55–

57). Mounting evidence indicates that dysregulated inflammatory

responses critically disrupt iron metabolism and perturb the cellular

redox homeostasis. Pro-inflammatory cytokines modulate ferritin

synthesis, exerting direct effects on intracellular and tissue-level iron

storage (58). Next, we elaborate on the relationship between

immune cells, inflammatory cytokines, and ferroptosis. The roles

of relevant pathways, including NF-kB, inflammasome, and JAK-

STAT signaling, in ferroptosis are discussed in subsequent sections.

2.4.1 Macrophage polarization
M1-type macrophages promote ferroptosis during inflammatory

responses through multiple mechanisms: 1) Cytokine secretion: M1

macrophages secrete pro-inflammatory cytokines that activate

intracellular oxidative stress responses and increase LPO

accumulation, thereby facilitating ferroptosis (16). 2) ROS generation

and antioxidant suppression: M1 macrophages release ROS, which

deplete GSH and inhibit GPX4 activity, thereby disrupting the cellular

antioxidant defense system (16, 59). In addition, TNF-a produced by

M1 macrophages suppresses the activity of the transcription factor

Nrf2, reducing GSH synthesis and weakening oxidative defenses,

ultimately inducing ferroptosis (60). 3) Disruption of iron

homeostasis: M1 macrophages contribute to intracellular iron

overload by upregulating TFR1 and downregulating ferroportin,

thereby promoting free iron accumulation and amplifying the

Fenton reaction (60, 61). Furthermore, M1 macrophages can activate

ACSL4, increasing cellular sensitivity to LPO and promoting

ferroptosis in tumor cells (62).

In contrast, M2 macrophages are anti-inflammatory and

resistant to ferroptosis. They secrete IL-4 and IL-13, which

upregulate the cystine/glutamate antiporter subunit SLC7A11,

thereby enhancing cellular defense against ferroptosis (63).

Clinically, in valvular atrial fibrillation (VAF), an imbalance in

the M1/M2 macrophage ratio is closely associated with the severity

of cardiomyocyte ferroptosis (64).

2.4.2 T-cell subpopulation-mediated regulation
The adaptive immune system, particularly distinct T cell

subpopulations, plays a pivotal role in regulating ferroptosis. By

secreting specific cytokines, different T-cell subsets shape a complex

regulatory network that influences iron metabolism and

ferroptotic signaling.
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Th1 cells promote ferroptosis: Th1 cells promote ferroptosis

primarily through the secretion of IFN-g. IFN-g inhibits the

expression of SLC7A11 by activating the JAK–STAT pathway.

SLC7A11, a key component of system Xc- responsible for cystine

uptake and glutamate export, is essential for GSH synthesis; its

inhibition lowers intracellular cystine levels and impairs GSH

production. This reduction in GSH diminishes GPX4 activity and

hinders the clearance of LPOs, ultimately driving ferroptosis

(65, 66).

Tregs cells inhibit ferroptosis: In contrast, Tregs exert anti-

ferroptotic effects by stabilizing GPX4 and suppressing LPO

through the action of IL-10, via two complementary mechanisms:

1) Direct upregulation of GPX4 through the IL-10R–STAT3 axis:

Binding of IL-10 to its receptor induces STAT3 phosphorylation,

which enhances GPX4 transcription and effectively prevents

ferroptosis (67). 2) Inhibition of ALOX15 via suppression of pro-

inflammatory signals: Through STAT3 activation, IL-10 inhibits
Frontiers in Immunology 05
TNF-a/NF-kB signaling, leading to the downregulation of its

downstream target ALOX15, a key lipoxygenase in LPO, and

thereby blocking ferroptosis (68, 69).

2.4.3 Inflammasome activation
NLRP3 inflammasome assembly not only induces IL-1b release

but also amplifies ferroptosis through NEK7 (NIMA-related kinase

7)-mediated mitochondrial injury (70). As previously described,

activation of the NLRP3 inflammasome triggers caspase-1, which

mediates the maturation and release of IL-1b and IL-18. Caspase-1

also cleaves gasdermin D (GSDMD), initiating pyroptosis, an

inflammatory form of programmed cell death (71). NEK7 serves

as a critical regulator of NLRP3 activation by directly binding to the

leucine-rich repeat (LRR) domain of NLRP3, inducing a

conformational transformation into a disc-like structure. This

enables the recruitment of the adaptor protein ASC, thereby

initiating inflammasome activation (72). NEK7 may also promote
FIGURE 1

Ferroptosis activates immune-inflammatory responses through multiple mechanisms: 1. Release of DAMPs: HMGB1, a prototypical DAMP,
translocates from the nucleus to the cytoplasm and is subsequently released into the extracellular space during ferroptosis. The binding of HMGB1
to TLR4 activates the IKK complex via the MyD88-dependent pathway, which in turn activates NF-kB. Activated NF-kB translocates to the nucleus,
initiating the transcription of pro-inflammatory cytokines. 2. Iron ion–mediated inflammation: Free iron catalyzes the formation of hydroxyl radicals
through the Fenton reaction, directly causing cellular damage and activating NLRP3 inflammasomes. This activation promotes the maturation and
secretion of IL-1b in the macrophages. 3. OxPLs promote macrophage M1 polarization: OxPLs interact with inflammasome components to induce
the assembly and activation of NLRP3 inflammasomes. Activated NLRP3 recruits and activates caspase-1, which cleaves pro–IL-1b into its mature
form. In addition, OxPLs inhibit AMPK activity and enhance mTORC1 signaling, leading to the upregulation of pro-inflammatory cytokine expression.
This figure was created using BioRender (biorender.com).
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NLRP3 activation by sensing mitochondrial ROS (mtROS) (73).

Mitochondrial injury accelerates ferroptosis by increasing

intracellular iron accumulation and LPO production. In a liver

ischemia–reperfusion model, inhibition of the caspase-6–RIPK1–

IkBa axis suppressed NLRP3 activation and hepatocyte ferroptosis

(74). Given the parallels between hepatic and cardiac injuries, this

pathway may be particularly relevant in the context of myocardial

damage (Figure 2).

In summary, immune-mediated inflammation facilitates

ferroptosis through multiple mechanisms, including macrophage

polarization, T cell subset modulation, and inflammasome

activation. These insights offer a novel conceptual framework for

understanding the intricate interplay between inflammation and

ferroptosis (Figure 3).
3 Common regulatory nodes and key
signaling pathways

In certain diseases, ferroptosis and immune-mediated

inflammation intersect at multiple critical regulatory nodes and

signaling pathways, as described in the following sections.
3.1 Nrf2–HO-1 axis

Nrf2, a key antioxidant transcription factor, upregulates genes

such as HO-1, SLC7A11, and ferritin heavy chain 1 (FTH1),

protecting cells from oxidative stress and inflammatory damage.

Nrf2 activators, such as resveratrol, have demonstrated dual

protective effects in models of AS and myocardial ischemia (75).

Beyond its antioxidant role, Nrf2 participates in other critical

pathways, including lipid metabolism, iron homeostasis, and

energy metabolism, which are tightly regulated to modulate the

ferroptosis. Yang et al. reported that polyphyllin I activates the

Nrf2–HO-1–GPX4 axis, causing mitochondrial dysfunction and

promoting ferroptosis to suppress hepatocellular carcinoma (HCC)

progression (76). Xiong demonstrated that IL-27 regulates

macrophage ferroptosis by suppressing the Nrf2–HO-1 signaling

pathway in sepsis-induced acute respiratory distress syndrome (77).

Liu et al. showed that ginsenosides regulate ferroptosis via the Nrf2–

HO-1 and PI3K–AKT–mTOR pathways, reducing ferroptosis in a

mouse model of iron-overloaded aplastic anemia and in Meg-01

megakaryocyte cells in vitro (78). Additionally, neutral

polysaccharides from Gastrodia elata attenuated cerebral

ischemia–reperfusion injury by inhibiting ferroptosis-mediated

neuroinflammation via the Nrf2/HO-1 pathway (79). Moreover,

6-gingerol mitigated ferroptosis and inflammation in DCM by

activating the Nrf2–HO-1 axis (80). Collectively, these studies

highlight the Nrf2/HO-1 axis as a central regulator that

coordinates antioxidant, anti-inflammatory, and anti-ferroptotic

responses. Targeted activation of this pathway mitigates disease

progression across diverse models, from cancer to ischemia–

reperfusion injury, underscoring its broad therapeutic potential.
Frontiers in Immunology 06
3.2 ACSL4–LPCAT3–ALOX15 axis

The ACSL4–LPCAT3–ALOX15 axis is as a central hub for the

interplay between ferroptosis and inflammation. ACSL4 catalyzes

the activation of PUFAs, such as arachidonic acid (AA) and adrenic

acid (AdA), into acyl-CoA derivatives, including AA-CoA and

AdA-CoA (81). LPCAT3 subsequently incorporates these

activated fatty acids into membrane phospholipids, generating key

lipid substrates for ferroptosis (82, 83). ALOX15 selectively oxidizes

these phospholipids to produce peroxides, such as PE-AA-OOH

and PE-AdA-OOH, inducing membrane damage and triggering

ferroptosis (84, 85). The ACSL4–LPCAT3–ALOX15 axis amplifies

inflammatory signaling. ACSL4-derived AA serves as a precursor

for prostaglandins and leukotrienes, ALOX15 products such as 4-

hydroxynonenal (4-HNE) activate the NLRP3 inflammasome, and

LPCAT3 modulates TLR4 signaling by regulating membrane

phospholipid composition. In multiple inflammatory models,

small-molecule inhibitors targeting this axis such as the ACSL4

inhibitor thiazolidinediones and the ALOX15 inhibitor PD146176,

simultaneously suppress ferroptosis and alleviate inflammation

(86). In summary, this signaling axis functions as a central node

that synergistically regulates both ferroptosis and inflammatory

signal amplification by sequentially catalyzing the activation,

esterification, and peroxidation of PUFAs, thereby providing

promising therapeutic targets for related diseases.
3.3 NF-kB pathway

The canonical NF-kB pathway is central to inflammation and

innate immunity (87–89) and engages in complex crosstalk with

ferroptosis. NF-kB activation upregulates TFR1 and downregulates

FTH1, promoting ferroptosis. In contrast, LPO induced by

ferroptosis activates NF-kB, triggering inflammation and

establishing a positive feedback loop. Under inflammatory stimuli,

IkBa is phosphorylated and degraded, allowing NF-kB dimers to

translocate into the nucleus and regulate downstream gene

transcription. NF-kB suppresses the transcription of antioxidant

genes, including GPX4, Quinone Oxidoreductase 1(NQO1), and

heme oxygenase 1(HMOX1), exacerbating oxidative stress and

ferroptosis. Moreover, NF-kB regulates extracellular iron utilization

by modulating lipocalin 2 (LCN2) secretion. Considerable evidence

supports the involvement of NF-kB signaling in ferroptosis (90). For

instance, ubiquitin-specific protease 24 (USP24)-mediated NF-kB
upregulation aggravates ferroptosis in DCM (91). Dimethyl fumarate

(DMF) attenuates neuroinflammation and ferroptosis, improving

cognitive dysfunction in rats with chronic cerebral hypoperfusion

induced by double vessel occlusion via modulation of NF-kB
signaling (92). Ferrostatin-1 (Fer-1), a ferroptosis inhibitor, reduced

LPS-induced cardiac inflammation in a rat model of cardiac

insufficiency by blocking the TLR4–NF-kB pathway, thereby

improving cardiac function and survival (93). Collectively, these

findings highlight the critical role of NF-kB–mediated

inflammatory responses in regulating ferroptosis.
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3.4 JAK–STAT pathway

The JAK–STAT signaling pathway is a major cytokine-

regulated cascade essential for initiating innate immunity,

coordinating adaptive responses, and modulating inflammation

(94). IFN-g is a pivotal cytokine that activates the JAK–STAT1

pathway, inducing the expression of interferon-stimulated genes

(95), and participates in immune surveillance and inflammation

regulation. IFN-g enhances tumor cell sensitivity to ferroptosis

inducers via the JAK–STAT pathway (96, 97). Specifically, IFN-g
inhibits the expression of SLC3A2 and SLC7A11 through the JAK–

STAT–IRF1 axis, thereby promoting ferroptosis in HCC cells (97).

Members of the STAT family also play key roles in ferroptotic

processes. Activated STAT1 can inhibit System Xc--driven

ferroptosis (90), whereas STAT3 promotes intracellular iron

accumulation by upregulating hepcidin and directly regulating

ACSL4 transcription, collectively enhancing cellular susceptibility

to ferroptosis (21, 98, 99). Thus, the JAK–STAT pathway is a critical

functional link between immune regulation and ferroptosis. Recent

studies have demonstrated that the anti-rheumatoid arthritis drug
Frontiers in Immunology 07
genoprofen upregulates iron-regulatory hormones via the classical

JAK2–STAT3 pathway in human hepatocytes and mouse models

(100). Moreover, JAK inhibitors exhibit dual efficacy in suppressing

ferroptosis and alleviating cardiac inflammation in DCM models

(27, 101). In summary, the JAK–STAT pathway functions as a

bidirectional regulatory hub connecting immune responses and

ferroptosis by controlling the key genes involved in iron

metabolism and LPO. Targeted modulation of this pathway offers

therapeutic potential for inhibiting inflammation and intervening

in ferroptosis-related diseases.
3.5 cGAS–STING pathway

The cGAS–STING pathway is a key innate immune sensor that

detects cytoplasmic DNA and triggers type I interferon and

inflammatory responses in the host. It plays a critical role in

DNA damage surveillance and antiviral defense. During

ferroptosis, intracellular DNA damage or abnormal DNA

accumulation can activate the cGAS–STING pathway, triggering
FIGURE 2

Mechanisms by which immune-mediated inflammation regulates ferroptosis: 1. Macrophage polarization: M1 macrophages release pro-
inflammatory cytokines, including TNF-a and IL-6, which enhance intracellular oxidative stress and increase LPO accumulation, thereby promoting
ferroptosis in macrophages. M1 macrophages also produce ROS, further depleting intracellular GSH and inhibiting GPX4 activity, thereby
compromising the cellular antioxidant defense system. Additionally, M1 macrophages disrupt iron homeostasis by upregulating TFR1 and
downregulating ferroportin, leading to intracellular free iron overload and amplification of the Fenton reaction. 2. T cell subpopulation–mediated
regulation: IFN-g secreted by Th1 cells inhibits ferroptosis via activation of the JAK–STAT signaling pathway. In contrast, Tregs maintain GPX4
stability and suppress ferroptosis through IL-10, which exerts its effects via multiple pathways. This figure was created using BioRender
(biorender.com).
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downstream cascades such as NF-kB, which promotes the

production of inflammatory factors and exacerbates ferroptosis

(90). Naringenin has been reported to modulate the cGAS–

STING pathway, alleviating mitochondrial dysfunction and

ferroptosis in MIRI models (102).
3.6 MAPK pathway

The mitogen-activated protein kinase (MAPK) pathway

encompasses key signaling cascades, including ERK, JNK, and

p38, which are essential for cellular responses to stress,

inflammation, and apoptosis. Inflammatory cytokines can activate

MAPK signaling, disrupting intracellular redox homeostasis and

iron metabolism, thereby influencing ferroptosis in the body.

Concurrently, MAPK activation can further enhance the

production of pro-inflammatory factors, amplifying the

inflammatory response (103). Dapagliflozin attenuates MIRI by

reducing ferroptosis via the inhibition of MAPK signaling (104).

Additionally, CTRP12 ameliorates HF following MI by modulating

the TAK1–p38 MAPK/JNK pathway, thereby mitigating apoptosis,

oxidative stress, and inflammation (105) (Figure 4). In summary,

the MAPK pathway establishes a vicious cycle between
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inflammation and ferroptosis, driving disease progression and

representing a highly promising therapeutic target for

intervention. More broadly, the core network governing

ferroptosis–immune inflammation crosstalk is centered on key

hubs, including Nrf2/HO-1 and ACSL4, and is mediated through

bridging pathways such as NF-kB, JAK–STAT, cGAS–STING, and
MAPK. Collectively, these nodes orchestrate redox homeostasis,

iron metabolism, and LPO, thereby coupling the amplification of

inflammatory responses with ferroptosis. This framework provides

a compelling basis for the development of combinatorial

therapeutic strategies for diseases such as cancer and

cardiovascular disorders.
4 Interaction of ferroptosis and
immune-mediated inflammation in
CVDs

4.1 Atherosclerosis

Coronary atherosclerotic heart disease (CHD) is one of the

most prevalent CVDs and commonly manifests as angina pectoris

and MI. AS is the pathological basis of CHD and is recognized as a
FIGURE 3

Schematic illustrating the bidirectional interplay between ferroptosis and immune-mediated inflammation. This figure depicts a self-amplifying loop
underlying inflammatory tissue injury. Left: Ferroptosis promotes immune responses. Ferroptosis releases damage-associated molecular patterns
(DAMPs), lipid peroxidation products (e.g., OxPLs), and free iron, which activate immune pathways such as TLR4/NF-kB and the NLRP3
inflammasome, promoting M1 macrophage polarization. Right: Immunity regulates ferroptosis. The ensuing immune response bidirectionally
modulates the ferroptosis. Pro-inflammatory components (M1 macrophages and Th1 cells) exacerbate ferroptosis by inducing oxidative stress and
iron overload, whereas anti-inflammatory components (M2 macrophages and Tregs) suppress ferroptosis by enhancing the antioxidant defenses.
This reciprocal crosstalk forms a feed-forward loop that amplifies the cellular injury and inflammation. This figure was created using BioRender
(biorender.com).
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chronic inflammatory disorder in which ferroptosis and immune-

inflammatory responses dynamically interact throughout

disease progression.

Plaque formation stage: AS promotes arterial wall thickening

and stiffening due to the accumulation of extracellular matrix,

cholesterol, and cellular debris. Lipid metabolism plays a pivotal

role in the development of plaques. OxLDL induces ferroptosis in

vascular endothelial cells by upregulating TFR1 and acyl-CoA

synthetase ACSL4, thereby exacerbating endothelial injury (106).

Simultaneously, oxLDL activates NLRP3 inflammasomes in

macrophages, amplifying local inflammation and ferroptotic cell

death (34), which further aggravates AS (107).

Plaque progression stage: During plaque progression,

macrophages acquire excess iron through erythrophagocytosis

and subsequently undergo ferroptosis, releasing cholesterol

crystals and oxPLs, thus establishing a vicious cycle (16).

Macrophages in unstable plaques exhibit pronounced ferroptotic

characteristics that correlate positively with the risk of plaque
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rupture (108). Heat shock protein B1 (HSPB1) inhibits oxLDL-

induced ferroptosis in vascular smooth muscle cells (VSMCs) by

suppressing dipeptidyl peptidase 4 (DPP4) via NF-kB, modulating

the interplay between inflammation and ferroptosis, and presenting

a potential therapeutic strategy for AS (109). Additionally, the

metabolite Neu5Ac promotes the degradation of SLC3A2,

inducing ferroptosis in vascular endothelial cells and accelerating

AS progression in ApoE−/− mice. Concurrently, elevated IL-1b and

ICAM-1 expression enhance monocyte adhesion to the

endothelium. Notably, the ferroptosis inhibitor, Fer-1, can reverse

these effects (110). Moreover, IL-23p19 deficiency or Fer-1

treatment improves cardiac remodeling and function by

inhibiting M1 macrophage polarization and ferroptosis (111).

In summary, ferroptosis and immune-mediated inflammation

synergistically contribute to AS and CVD pathogenesis by targeting

macrophages, endothelial cells, and VSMCs. Consequently, anti-

ferroptosis interventions, such as HSPB1 modulation and Fer-1

administration, represent promising therapeutic strategies.
FIGURE 4

Ferroptosis and immune-mediated inflammation share several key signaling pathways: 1. Nrf2–HO-1 axis: Nrf2 upregulates the expression of genes
such as HO-1, SLC7A11, and FTH1, providing protection against oxidative stress and inflammation. Nrf2 also participates in lipid metabolism, iron
homeostasis, and energy metabolism, thereby regulating ferroptosis. 2. ACSL4–LPCAT3–ALOX15 axis: ACSL4 catalyzes the conjugation of
intracellular PUFAs with CoA to form acyl-CoA derivatives. LPCAT3 transfers PUFA–CoA to lyso-phosphatidylethanolamine (lyso-PE), generating PE–
PUFA. ALOX15 selectively oxidizes PE–PUFA to produce peroxidized derivatives. The accumulation of these peroxidized phospholipids compromises
membrane integrity, ultimately triggering ferroptosis. In addition, ACSL4, ALOX15, and LPCAT3 independently contribute to inflammation via
arachidonic acid (AA), 4-hydroxynonenal (4-HNE), and TLR4 signaling. 3. NF-kB pathway: NF-kB activation upregulates TFR1 and downregulates
ferritin heavy chain (FTH1), promoting ferroptosis. LPO generated during ferroptosis can activate NF-kB, triggering inflammation and establishing a
positive feedback loop. 4. JAK–STAT signaling: Engagement of the IFN-g receptor activates the JAK–STAT1 pathway, which induces downstream
genes and proteins that promote both ferroptosis and inflammation. 5. cGAS–STING pathway: Intracellular DNA damage or aberrant DNA
accumulation activates the cGAS–STING pathway, triggering downstream cascades, such as NF-kB, thereby promoting inflammatory factor
production and exacerbating ferroptosis. 6. MAPK pathway: Inflammatory cytokines activate MAPK signaling, disrupting intracellular redox
homeostasis and iron metabolism, thus influencing ferroptosis. Concurrently, MAPK activation enhances the production of proinflammatory factors,
amplifying the inflammatory response. This figure was created using BioRender (biorender.com).
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4.2 Myocardial infarction

MI is a life-threatening condition caused by acute coronary

artery obstruction, resulting in insufficient blood supply to the

myocardium and subsequent necrosis. Accumulating evidence

indicates that ferroptosis plays a critical role in this pathway.

Under hypoxic or ischemic conditions, GPX4 activity is

suppressed, whereas HIF-1a upregulates the iron transporter

TFR1. These alterations collectively promote LPO accumulation

and intracellular iron overload, thereby inducing ferroptosis in

cardiomyocytes (112–114). Ferroptosis not only directly mediates

cardiomyocyte death but also triggers secondary inflammatory

responses, exacerbating cardiac dysfunction and adverse

remodeling. Accordingly, the inhibition of ferroptosis has

emerged as a potential therapeutic strategy for preserving cardiac

function following MI (115). Notably, Sestrin2, upregulated in MI

patients with anxiety and depression, provides protection against

inflammation, oxidative stress, and ferroptosis in experimental

models via activation of the LKB1/AMPK signaling pathway (116).
4.3 Myocardial ischemia–reperfusion injury

In patients with MI, percutaneous coronary intervention (PCI)

restores blood flow; however, reperfusion can paradoxically

exacerbate myocardial injury, a phenomenon known as MIRI.

MIRI represents a classic pathological process in which

ferroptosis closely interacts with immune-mediated inflammation.

Although blood flow is restored, reperfusion triggers a massive

burst of ROS in cardiomyocytes, initiating ferroptosis (117).

Furthermore, DAMPs, such as HMGB1 and ATP, released from

injured cells activate innate immune responses. This activation

promotes IL-17 production and neutrophil recruitment, thereby

exacerbating cardiac injury (118, 119). Evidence indicates a

reciprocal, self-propagating cycle between ferroptosis and

inflammation. Initial ferroptotic cell death activates NF-kB and

JNK signaling, leading to the production of inflammatory factors

that feedback to intensify ERS and further drive ferroptosis,

progressively amplifying tissue injury (117). For instance, NF-kB
activation exacerbates myocardial damage by increasing ROS levels

and promoting ferritin degradation (120). Similarly, JNK pathway

activation contributes significantly to propagating the inflammatory

response init iated by ferroptosis (120) . Importantly ,

pharmacological interventions, such as glycyrrhizin, can

simultaneously suppress ferroptosis and inflammation through

the HMGB1-TLR4-GPX4 axis, highlighting this pathway as a

promising therapeutic target (44).
4.4 Heart failure

HF encompasses clinical syndromes arising from structural or

functional cardiac alterations, and is characterized by impaired

ventricular filling, reduced ejection capacity, and insufficient cardiac

output to meet tissue metabolic demands. This results in pulmonary
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and/or systemic congestion and inadequate organ perfusion. HF

represents the terminal stage of diverse cardiovascular disorders

and involves low-grade immune-mediated inflammation (121). In

cardiomyocytes, iron accumulation triggers ferroptosis and the

release of DAMPs, such as HMGB1, which promotes immune cell

infiltration. These immune cells exacerbate injury by secreting pro-

inflammatory factors and releasing additional iron, thereby

sustaining a cycle of oxidative stress and ferroptosis that drives

myocardial fibrosis, ventricular remodeling, and HF progression

(122, 123).

Pressure overload-induced myocardial hypertrophy is a

common etiology of HF. Mechanical stress from pressure

overload, such as aortic constriction or hypertension, induces

intracellular iron accumulation and ferroptosis in cardiomyocytes,

establishing a self-perpetuating cycle of cardiomyocyte death.

Moreover, myocardial iron overload contributes to cardiomyocyte

loss, exacerbates fibrosis, and impairs the cardiac function.

Lipidomic and RNA sequencing analyses by Wang et al. revealed

elevated phosphatidylethanolamine (PE) and Acsl4 expression in

mice with TAC-induced HF. Overexpression of Acsl4 in

cardiomyocytes amplified ferroptosis-induced pressure overload

dysfunction. Mechanistically, Acsl4-dependent ferroptosis

activates inflammatory necroptosis pathways, increasing IL-1b
production, and IL-1b neutralization post-TAC improves cardiac

function in Acsl4 transgenic mice (124). In a rat HFmodel, puerarin

inhibited ferroptosis and protected against pressure overload-

induced cardiomyocyte injury (125). GPX4 downregulation is

strongly associated with cardiomyocyte ferroptosis and has

important implications for HF pathology. Researchers using

single-cell sequencing identified “ferroptosis-susceptible”

cardiomyocytes with low GPX4 expression in the failing heart,

which exhibited heightened susceptibility to ferroptosis (126). The

IL-6–STAT3 pathway also contributes to inflammation and iron

homeostasis, which may lead to endothelial injury and iron

overload. Elabela, an endogenous peptide hormone, attenuates

iron-induced ferroptosis, myocardial remodeling, fibrosis, and

cardiac dysfunction in hypertensive mice via IL-6–STAT3–GPX4

modulation (127).

At the same time, dysregulated lipid metabolism and iron

homeostasis synergist ical ly drive ferroptosis , causing

cardiomyocyte injury and dysfunction (128). In HF, particularly

in diabetes or obesity, myocardial fatty acid oxidation is elevated,

resulting in LPO accumulation and providing a substrate for

ferroptosis (129). The iron-regulated protein (IRP)–iron-

responsive element (IRE) system maintains intracellular iron

homeostasis. Oxidative stress and hypoxia can disrupt IRP

activity, creating an iron imbalance that further promotes

ferroptosis (130). Collectively, these mechanisms contribute to

cardiomyocyte injury and progressive cardiac dysfunction.

In summary, the “ferroptosis–inflammation” vicious cycle

represents a critical pathological mechanism underlying HF. This

cycle is initiated by iron overload and LPO, amplified by key

regulators such as ACSL4 and GPX4, and reinforced by

inflammatory signals, including IL-1b and STAT3, collectively

driving myocardial remodeling and functional decline.
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4.5 Other CVDs

4.5.1 Atrial fibrillation
Atrial fibrillation (AF) is a common cardiovascular disorder in

the elderly. Atrial tissue from patients with valvular AF (VAF)

showed substantial iron accumulation and GPX4 downregulation,

which correlated positively with inflammatory infiltration.

Bioinformatics analyses have revealed a significant association

between ferroptosis-related genes and immune infiltration in VAF

(131). Jin et al. investigated the relationship between AF,

ferroptosis, and inflammation (132). Yu et al. reported significant

iron accumulation and GPX4 downregulation in the left atrial

tissues of AF patients, associated with myocardial fibrosis (133).

GPX4 expression is also positively correlated with inflammatory

markers, including TNF-a and IL-1b (134).

4.5.2 Diabetic cardiomyopathy
DCM is a diabetes-associated cardiac complication that initially

presents with left ventricular hypertrophy and diastolic dysfunction

and later progresses to HF, characterized by systolic impairment. Its

pathogenesis involves multiple mechanisms, including

inflammation, advanced glycation end products (AGEs),

angiotensin II, and ferroptosis, all of which contribute to

cardiomyocyte injury and functional decline. Hyperglycemia

drives LPO accumulation in cardiomyocytes and shifts energy

metabolism from glycogenolysis to fatty acid oxidation, thereby

enhancing lipotoxicity and triggering ferroptosis. The suppression

of Nrf2 activity and GPX4 expression further weakens the cellular

defense against ferroptotic stress. Ferroptosis releases ROS and

DAMPs, which reinforce oxidative injury and sustain a self-

perpetuating cycle that accelerates DCM progression. Under

hyperglycemic conditions, AGEs promote ferroptosis in

cardiomyocytes and activate macrophage inflammation through

RAGE signaling, amplifying this deleterious feedback loop (135). In

a mouse model of diabetic myocardial injury, FACL4 expression

and iron accumulation were elevated, whereas GPX4 levels

declined. Canagliflozin attenuates inflammation and ferroptosis

by activating AMPK, thereby reducing cardiomyocyte lipotoxicity

in DCM (136). Clinically, serum ferroptosis biomarkers, such as

MDA, correlate with the severity of diastolic dysfunction in diabetic

patients (137), underscoring the pivotal contribution of ferroptosis

and inflammation to DCM pathogenesis (80).

4.5.3 Aortic aneurysms and dissection
Aortic aneurysms and coarctation are severe cardiovascular

disorders characterized by inflammation and VSMC injury.

Research indicates that ferroptosis is a key mechanism underlying

vascular smooth muscle cell (VSMC) death and subsequent

degeneration of the aortic media. In ascending thoracic aortic

aneurysms/acute Stanford type A aortic dissection (ATAA/

ATAAD) and abdominal aortic aneurysms (AAA), VSMC

ferroptosis directly compromises the structural integrity of the

vascular wall (138). Concurrently, ferroptosis activates

inflammatory responses, induces cytokine release, and upregulates

matrix metalloproteinase-9 (MMP-9), which degrades the
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extracellular matrix, collectively exacerbating arterial wall

destruction (139). Moreover, imbalances in iron metabolism,

whether due to cellular dysfunction from iron deficiency (140) or

iron-induced cell death caused by iron overload (141), disrupt

VSMC homeostasis, ultimately promoting aortic intima-media

thickening and structural damage to the arterial wall.

In summary, the interplay between ferroptosis and

inflammation synergistically drives aortic medial degeneration,

playing a critical role in the pathological progression of aortic

aneurysms and dissections. Figure 5 illustrates the core

mechanisms of ferroptosis–immune interactions in cardiovascular

diseases and their associated therapeutic targets.
5 Therapeutic strategies and
prospects for targeting the ferroptosis
and immune–inflammation in CVDs

5.1 Iron metabolism modulators

Deferoxamine is a classic iron chelator that is widely used to

reduce tissue iron accumulation and deposition. It has been shown

to decrease plaque burden in AS models (106). Combined treatment

with N-acetylcysteine and deferoxamine improves cardiac function

in Wistar rats following non-reperfusion acute myocardial

infarction (AMI) (142). Deferoxamine protects against MIRI by

chelating iron and inhibiting ferroptosis (143). Yang et al. reported

that deferoxamine combined with sevoflurane post-treatment

attenuated MIRI by restoring mitochondrial autophagy via HIF-

1/BNIP3 signaling in GK rats (144). A systematic evaluation by

Lamichhane indicated that deferoxamine reduces myocardial

oxidative stress by inhibiting iron-dependent LPO and ROS

generation, protecting cardiomyocytes during extracorporeal

circulation procedures (CPB) (145). These studies strongly

support the potential clinical application of deferoxamine.

Deferiprone, an orally active bidentate hydroxypyridone iron

chelator, forms stable iron complex. It exhibits anti-inflammatory

properties and reduces fibroblast migration in vitro (146). Long-

term deferiprone treatment improves myocardial magnetic

resonance imaging findings and reduces the risk of developing or

worsening heart disease (147). Sarina Entezari et al. reviewed iron

chelation therapy, noting that deferiprone effectively penetrates cell

membranes, removes excess cardiac iron, offers better

cardioprotection than deferoxamine, and improves left ventricular

ejection fraction (148).

Ferrostatin-1 (Fer-1) is a potent and selective ferroptosis

inhibitor that prevents cell death by blocking lipid membrane

damage through a reductive mechanism. Fer-1 partially inhibits

iron deposition and LPO, alleviating atherosclerotic lesions in

ApoE-/- mice fed a high-fat diet (107). It suppresses

cardiomyocyte ferroptosis post-MI through Nrf2 pathway

activation (149) and significantly reduces MIRI in rats by

lowering Fe²+ levels, decreasing ACSL4 expression, and

attenuating mitochondrial damage (150). In a hypoxia/

reoxygenation model simulating MIRI, treatment with Fer-1
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significantly improved the viability of neonatal mouse

cardiomyocytes 24 h after reoxygenation (151). In SIRT3

conditional knockout (cKO) mice, Fer-1 targeted mitochondrial

iron–sulfur clusters and ouabain-sensitive enzymes, improving

cardiac function and ameliorating HF over 14 days (152).

Moreover, Fer-1-mediated inhibition of ferroptosis improves AF

outcomes (153).

Liproxstatin-1 is a selective ferroptosis inhibitor. Su et al.

observed that male ApoE-/- mice with radiation-associated

atherosclerosis (RAA) exhibited increased plaque burden,

endothelial cell loss, and elevated LPO, all of which were

ameliorated by Liproxstatin-1, suggesting its potential in AS

management (154). Chengshen et al. demonstrated that

Liproxstatin-1 modulates post-MI ferroptosis and immune

responses, reducing macrophage (CD68) counts, promoting M2

polarization, diminishing inflammation, decreasing myocardial

fibrosis and markers such as a-SMA, collagen I, and collagen III,

ultimately improving cardiac remodeling in rats. Collectively, these

findings indicate that Liproxstatin-1 represents a potential

therapeutic agent for mitigating adverse remodeling following MI

(155). Additionally, Liproxstatin-1 protects against MIRI by

restoring GPX4 levels and reducing voltage-dependent anion

channel 1 (VDAC1) expression (156).
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Mitochondrial iron transport protein (mitoferrin-2), a

mitochondrial iron transport protein, is an emerging therapeutic

target. Inhibition of this pathway attenuates iron-induced

ferroptosis and STING-dependent inflammation, as demonstrated

in preclinical studies (157). Furthermore, Wang et al. reported that

mitoferrin-2 deficiency prevents mitochondrial endothelial injury

caused by iron overload and attenuates AS (158).

In summary, although iron chelators show therapeutic potential

in CVDs, their clinical translation remains challenging. Key

obstacles include limited translatability from animal models to

humans and a lack of long-term safety data beyond short-term

efficacy assessments.

Hepcidin, a liver-secreted peptide hormone, is a central

regulator of systemic iron homeostasis. It binds to the iron efflux

protein ferroportin and inhibits cellular iron export. Elevated serum

iron levels stimulate hepcidin secretion, reducing iron release from

cells into the serum and extracellular fluid. Conversely, low

hepcidin levels increase iron export from hepatocytes and

macrophages, increasing plasma iron and transferrin saturation

(159). Hepcidin modulation affects iron metabolism and has direct

implications for CVD. In patients with stable coronary artery

disease, hepcidin levels are negatively correlated with total and

cardiovascular mortality, suggesting that lower hepcidin levels may
FIGURE 5

Schematic diagram illustrating the core mechanisms of ferroptosis–immune interactions in cardiovascular diseases and their therapeutic targets. This
figure summarizes the vicious cycle in which ferroptosis and immune-mediated inflammation mutually reinforce each other, collectively driving the
progression of various cardiovascular diseases initiated by stimuli such as myocardial ischemia and hypoxia. Solid arrows represent the principal
molecular mechanisms and signaling pathways involved in disease pathogenesis, including ferroptosis (e.g., TFR1, GPX4, and LPO), immune-
mediated inflammation (e.g., DAMPs, TNF-a, and NF-kB pathway), and their intersections. Dashed arrows denote therapeutic interventions targeting
critical pathways, such as NLRP3 inhibitors, GPX4 transactivators, and ferroptosis inhibitors. Disease outcomes: This pathogenic network culminates
in cardiovascular disorders, including myocardial infarction, myocardial ischemia–reperfusion injury, heart failure, and atrial fibrillation. This figure
was created using BioRender (biorender.com).
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increase CVD risk (160). Reducing hepcidin may enhance iron

absorption and utilization, alleviating anemia and potentially

benefiting patients with CVD (161). Aboelsaad et al. reported that

lower iron-regulatory hormone levels were linked to a higher risk of

HF, particularly HF with preserved ejection fraction (HFpEF), and

diastolic dysfunction in older adults without anemia (162).

However, the precise role of ferritin in AS pathogenesis remains

unclear (163).
5.2 Antioxidant defense enhancers

5.2.1 GPX4-targeted interventions
GPX4-targeted interventions include GPX4 transactivators and

adenovirus-mediated GPX4 overexpression. GPX4 transactivators

enhance GPX4 activity by binding to its transactivation site. By

increasing GPX4 activity, these agents efficiently scavenge LPOs,

inhibit the initiation and progression of ferroptosis, and promote

cell survival, particularly in cells that are susceptible to oxidative

stress. A GPX4 variant activator mitigated myocardial injury in a

mouse model of adriamycin-induced cardiotoxicity. Consequently,

GPX4 activation represents a promising therapeutic approach for

treating myocardial injury (164).

Adenovirus-mediated GPX4 overexpression has been reported

to significantly attenuate STING-induced ferroptosis and improve

cardiac functional recovery in MIRI (165). Additionally, GPX4

targeting alleviated ferroptosis and delayed AAA formation.

GPX4 also modulates macrophage/monocyte migration and

activation in AAA in mouse tissues. In vitro studies have further

demonstrated that GPX4 overexpression inhibits IL-6-induced

activation of the JAK1–STAT3 signaling pathway in VSMCs,

thereby reducing the generation of pro-inflammatory

macrophages (166).

Collectively, experimental evidence demonstrates that both

GPX allosteric activators and GPX4 overexpression effectively

suppress ferroptosis and inflammation, underscoring their

therapeutic potential in CVDs. However, the potential toxicity

associated with sustained GPX4 overexpression requires careful

consideration of the therapeutic strategy. Moreover, although

studies using adenoviral vectors have shown efficacy in animal

models, their translatability to humans and the risk of provoking

robust immune responses warrant further investigations.

5.2.2 FSP1–CoQ10 system
Ferroptosis-suppressor protein 1 (FSP1) is a recently identified

ferroptosis inhibitor that operates independently of GPX4. FSP1

enhances cellular resistance to ferroptosis via the coenzyme Q10

(CoQ10) system. CoQ10, a lipid-soluble antioxidant, supports FSP1

activity by catalyzing the reduction of ubiquinone (CoQ10) to

ubiquinol (CoQ10-H2) and trapping free radicals generated

during LPO. This NAD(P)H-dependent reaction in the cellular

membrane is critical for ferroptosis resistance (167). Its activity

depends on N-terminal myristoylation, which facilitates membrane

localization and more effective ferroptosis inhibition (168, 169).
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Vitamin K2, a cofactor of FSP1, is a potent ferroptosis inhibitor.

It may confer protection against AS and vascular calcification

through multiple mechanisms (170), including the inhibition of

VSMC calcification and anti-apoptotic effects via the GAS6–AXL

pathway (171). The CoQ10 analog idebenone reduces cardiac

hypertrophy in Friedreich’s ataxia patients and demonstrates

cardioprotective effects (172). Pan et al. reported that CoQ10

attenuates macrophage-mediated cardiac inflammation following

MI through the NLRP3/IL-1b pathway. Plasma CoQ10 levels were

lower in MI patients than in controls (0.46 ± 0.10 vs. 0.76 ± 0.31 mg/
mL). CoQ10 supplementation significantly enhanced cardiac

functional recovery at 1- and 3-months post-PCI. In mouse

models, MI mice treated with CoQ10 showed improved survival

(61.90% vs. 42.85%) and marked attenuation of myocardial fibrosis,

hypertrophy, and dysfunction compared with vehicle-treated

controls. CoQ10 also significantly reduced the recruitment of pro-

inflammatory CCR2+ macrophages to the infarcted myocardium

and suppressed NLRP3–IL-1b pathway activation. This suggests

that CoQ10 promotes early post-MI cardiac recovery by

modulating macrophage-mediated inflammation (173). CoQ10

has also been extensively studied in HF, where it improves

mitochondrial function and antioxidant defense and mitigates

oxidative stress (174).

5.2.3 Nrf2 activator
The Nrf2 activator bardoxolone methyl protects against MIRI

by reducing oxidative stress and cardiomyocyte apoptosis via the

activation of the Nrf2–HO-1 signaling pathway (175). Similarly,

bardoxolone attenuates oxidative stress and inflammatory

responses through Nrf2 activation, providing protective effects in

chronic HF patients (176). McCullough reviewed bardoxolone’s

beneficial effects on cardiovascular and renal functions in patients

with type 2 diabetes mellitus and chronic kidney disease (177).

Collectively, these studies suggest that bardoxolone may serve as a

therapeutic agent for CVD, particularly through its capacity to

mitigate oxidative stress and inflammatory responses.
5.3 Inflammation-targeted interventions

5.3.1 NLRP3 inhibitors
MCC950 is a potent and selective NLRP3 inhibitor. Zeng et al.

reported that MCC950 reduces the serum levels of pro-

inflammatory cytokines, including TNF-a, IL-1b, IL-6, and IL-18,

by suppressing NLRP3 inflammasome activation. This attenuation

of inflammatory responses and pyroptosis in AS models

subsequently mitigates disease progression (178). MCC950 also

decreases AS plaque size and macrophage content without

affecting the serum lipid levels (178). Zheng et al. found that

MCC950 alleviated post-resuscitation myocardial dysfunction and

improved survival in rat models of cardiac arrest and resuscitation

(179). In a mouse model of MI, MCC950 significantly reduced

myocardial fibrosis, improved cardiac remodeling, and enhanced

cardiac function, highlighting its potential therapeutic effect during
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post-MI recovery (180). Furthermore, MCC950 mitigated

isoproterenol-induced cardiac dysfunction by inhibiting

cardiomyocyte senescence and oxidative stress. MCC950 restored

ejection fraction, reduced cardiac hypertrophy, and improved

cardiac function in ISO-treated mice (181). Collectively, these

studies demonstrate that MCC950, a selective NLRP3

inflammasome inhibitor, holds significant therapeutic potential in

AS, MI, and HF models.

Dapansutrile is an oral small-molecule selective NLRP3

inhibitor with a favorable safety and tolerability profile in HF

patients, though its efficacy requires further evaluation. A Phase

1B randomized, double-blind, dose-escalation, single-center study

assessed the safety and pharmacodynamics of patients with stable

HFrEF (New York Heart Association Classes II–III). Subjects were

randomized in a 4:1 ratio to receive dapansutrile for up to 14 days

across three sequential ascending dose cohorts (500 mg, 1,000 mg,

or 2,000 mg), with 10 patients per group. Clinical assessments,

biomarker measurements, transthoracic echocardiography, and

maximal cardiopulmonary exercise testing were performed at

baseline, day 14, and day 28. Thirty participants (20 males)

completed 13 (12–14) days of treatment. The results revealed

that, compared with baseline, the clinical and laboratory

parameters on day 14 indicated stability, with no significant

differences within the combined dapansutrile group or across the

dose cohorts. In the dapansutrile cohort, left ventricular ejection

fraction improved from 31.5% (27.5–39.0%) to 36.5% (27.5–45,

P = 0.039), and exercise time increased from 570 s (399.5–627.0 s)

to 616 s (446.5–688.0 s, P = 0.039) (2). Thus, these findings provide

preliminary safety evidence for NLRP3 inhibition in HFrEF patients

who may be intolerant to nonsteroidal anti-inflammatory drugs

(NSAIDs) or glucocorticoids. Additionally, Aliaga et al.

demonstrated that dapansutr i le preserves adrenergic

responsiveness and prevents left ventricular diastolic dysfunction

in a mouse model of reperfused anterior wall MI, suggesting its

potential to prevent HF development in ischemic cardiomyopathy

(182). Yang et al. reported that dapansutrile treatment ameliorated

HFpEF and reduced atrial fibrosis and inflammation in a rat model

of HF (183). These findings suggest that dapansutrile represents a

promising yet unproven therapeutic approach for HF, and its

efficacy and clinical value require further validation in

multicenter, large-scale trials.

5.3.2 IL-6 inhibitor
Tocilizumab, an anti-IL-6 receptor antibody, shows potential

for treating CVDs. It may improve cardiac function by inhibiting

inflammatory responses and attenuating myocardial injury

following MI (184), and may enhance myocardial salvage in

patients with acute ST-segment elevation myocardial infarction

(STEMI) (185).

Pottebaum et al. investigated tocilizumab in antibody-mediated

rejection (AMR) after heart transplantation. Tocilizumab markedly

improved biventricular systolic function, likely by reducing

endothelial and intravascular macrophage activation and cytokine

production, providing preliminary evidence of its therapeutic

potential in HF (186). In the randomized, double-blind, placebo-
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controlled ASSAIL-MI trial, tocilizumab significantly increased the

Myocardial Salvage Index (MSI) in STEMI patients, while also

elevating IL-6, IL-8, and IL-1ra levels. These findings suggest that

tocilizumab may confer cardioprotection by mitigating ischemia–

reperfusion injury in STEMI (187) (Table 1).

In summary, whether through iron chelators, enhancers of

antioxidant defenses, or inhibitors of inflammasomes and

immune-inflammatory mediators, these interventions hold

potential protective effects against CVDs. However, limitations

such as reliance on animal models, small sample sizes in human

studies, and incomplete understanding of specific mechanisms leave

some findings unresolved or contradictory to each other. Therefore,

more extensive studies are warranted.
5.4 Traditional Chinese medicine and its
monomers

Traditional Chinese medicine (TCM) has played a pivotal role

in Chinese healthcare for thousands of years. Several herbs and

bioactive compounds, including ginseng, Pueraria mirifica,

curcumin, astragaloside IV, and resveratrol, have been shown to

inhibit ferroptosis and modulate immune-mediated inflammation

in CVD.

5.4.1 Ginseng
Ginseng, cultivated predominantly in China’s Changbai

Mountain region, exhibits potent antioxidant and anti-

inflammatory properties, enhances immune function, and acts as

a ferroptosis inhibitor in the body. Ginsenoside Re mitigates MIRI

and suppresses ferroptosis via the miR-144-3p–SLC7A11 axis (188).

Ginsenoside Rg3 attenuates cardiac MIRI-induced ferroptosis via

the KEAP1–Nrf2–GPX4 signaling pathway (189). Ginsenoside Rb1

protects against adriamycin-induced cardiotoxicity by inhibiting

autophagy and ferroptosis (190). Additionally, Ginsenoside Rg1

inhibits macrophage polarization, thereby reducing MIRI

associated with cardiac inflammation (191). Panax quinquefolius

L. saponins suppress the TLR4–MyD88–NF-kB pathway, inhibiting

NLRP3 inflammasome activation and protecting against MIRI from

no-flow injury (192). Pretreatment with ginsenoside Rg3 also

inhibited the RhoA–ROCK pathway, further attenuating

ferroptosis and cardiac injury induced by high-altitude, low-

pressure hypoxia in mice (193). Moreover, ginseng exerts

cardioprotective effects post-MI by reducing myocardial fibrosis

and inflammation via the SIRT1 signaling pathway (194). In

summary, the experiments indicate that ginseng and its

monomers exert a protective effect against cardiovascular system

diseases by inhibiting ferroptosis and reducing inflammation.

5.4.2 Puerarin
Puerarin, a flavonoid glycoside extracted from the root of wild

kudzu (Pueraria lobata), promotes blood circulation, alleviates

blood stasis, enhances microcirculation, dilates coronary and

cerebral vessels, and reduces myocardial oxygen consumption. In

aortic tissue and serum from AS mice, puerarin downregulated a-
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TABLE 1 Drugs and small molecule inhibitors targeting the ferroptosis-immune-mediated inflammation axis in the treatment of CVDs.
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SMA and inflammatory cytokines IL-6 and IL-8, suppressing

VSMC proliferation and inflammation, potentially through the

miR-29b-3p–IGF1 pathway (195). Puerarin-V protects the

myocardium from isoprenaline-induced MI in mice via

modulation of the PPAR-Υ–NF-kB pathway (196). Puerarin

downregulates VDAC1, inhibiting ferroptosis and protecting

against MIRI (197). Additionally, it suppresses NLRP3

inflammasome activation to prevent MIRI, likely via the SIRT1–

NF-kB pathway (198). Puerarin mitigates pressure overload-

induced HF by alleviating ferroptosis (125) and protects against

sepsis-induced MI through AMPK-mediated ferroptosis signaling

(199). Collectively, these findings identify puerarin as a protective

agent against AS and MIRI by modulating inflammatory and

ferroptotic pathways, thereby preventing subsequent HF.

5.4.3 Curcumin
Curcumin, a natural phenolic antioxidant derived from turmeric

rhizomes (Curcuma longa), exhibits anti-inflammatory effects relevant

to AS therapy (200). It restores cholesterol transport homeostasis and

modulates inflammatory responses inM1macrophages, preventing AS

progression (201). Curcumin may also regulate the balance between

M1 and M2 macrophages during AS treatment (202). In a rat MI

model, curcumin mitigated cardiotoxicity and improved myocardial

function (203). Pretreatment with curcumin enhances cardiac

contractility and attenuates myocardial and renal injuries by

reducing inflammation and oxidative stress (204). Curcumin also

alleviates MIRI by inhibiting ferroptosis, autophagy, and apoptosis

via the HES1 pathway (205) and SIRT1–AKT–FoxO3a axis (8). Ceria

nano-enzymes conjugated with curcumin can attenuate sepsis-induced

cardiac injury by suppressing ferroptosis and inflammation (206).

Furthermore, curcumin reduces the development of thoracic aortic

aneurysms by inhibiting inflammation and vascular endothelial growth

factor (VEGF) expression (207). These findings indicate that curcumin

exerts protective effects against CVDs by inhibiting ferroptosis and

modulating anti-inflammatory pathways.

5.4.4 Astragaloside IV
Astragalus (Astragalus membranaceus) enhances spleen and

middle Jiao function, elevates Yang, and supports immune

defense. Astragaloside IV, the principal bioactive component,

exhibits anti-inflammatory, cardioprotective, and antifibrotic

effects . It ameliorates myocardial fibrosis , suppresses

inflammatory responses, reduces oxidative stress, regulates

myocardial energy metabolism, improves contractility, and

prevents cardiomyocyte apoptosis (208–211). Astragaloside IV

modulates the MAPK–NF-kB signaling pathway to alleviate AS in

LDL receptor-deficient (Ldlr−/−) mice (212), and inhibits the TLR4–

MyD88–NF-kB pathway to prevent acute MI (213). Combined

treatment with astragaloside IV and tanshinone IIA inhibits the

STING pathway, reducing MIRI (214), and improving myocardial

metabolism, and decreasing inflammation in HFpEF mice (215).

Astragaloside IV also attenuates CD36-mediated ferroptosis,

improving myocardial function in DCM rats (216) and mitigating

3,4-benzopyrene-induced AAAs by modulating macrophage-driven

inflammation (217). In summary, Astragaloside IV preserves
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cardiovascular function by exerting anti-inflammatory effects and

inhibiting ferroptosis.

5.4.5 Resveratrol
Resveratrol, a stilbene polyphenol, exerts cardioprotective,

antioxidant, anti-inflammatory, antiviral, hepatoprotective,

antitumor, and immunomodulatory effects. Pitavastatin–resveratrol

bio-nanocomplexes counteract hyperhomocysteinemia-induced AS

by blocking ferroptosis-associated lipid deposition (218). Resveratrol

regulates the KAT5–GPX4 pathway to inhibit ferroptosis, thereby

reducing cardiac injury in a rat MI model (219). It mitigates oxidative

stress and suppresses ferroptosis, thereby providing protection

against MIRI (220). Similarly, modulation of the VDAC1–GPX4

pathway alleviates ferroptosis and protects against MIRI (221).

Resveratrol also inhibits ferroptosis and slows HF progression via

SIRT1/p53 activation (222). However, direct evidence that resveratrol

improves atrial myocardial fibrosis or prevents atrial fibrillation

remains insufficient (131). Regarding its anti-inflammatory effects,

long-term resveratrol administration reduces monocyte infiltration

and attenuates angiotensin II (AngII)-induced atherosclerotic plaque

formation in ApoE−/− mice (223). Additionally, resveratrol

suppresses inflammation via the TLR4–NF-kB pathway, mitigating

MIRI in rats (224), and improves cardiac function in patients with

systolic HF by modulating inflammatory processes (225).

Furthermore, the upregulation of HMOX1 by resveratrol decreases

extracellular matrix degradation, apoptosis, autophagy, and

inflammation in vascular smooth muscle cells, thereby inhibiting

the progression of AAA (226) (Table 2).
6 Discussion and future research
directions

Ferroptosis, immune-mediated inflammation, and their

intricate interplay are increasingly recognized as central drivers of

diverse pathologies. This review comprehensively examines

dynamic crosstalk in the context of CVDs. We synthesized the

current knowledge on the underlying mechanisms, key signaling

pathways, and immunomodulatory effects of specific CVDs,

including AS, MI, MIRI, HF, and arrhythmias. Furthermore, we

critically evaluate emerging therapeutic strategies, such as iron

chelators, antioxidants, inflammatory modulators, small-molecule

inhibitors, and natural compounds, targeting this axis. This

synthesis provides a foundational framework for understanding

the pathophysiology and advancing the treatment of ferroptosis-

and inflammation-driven CVDs.

The interplay between ferroptosis and immune-mediated

inflammation holds considerable promise for CVD treatment;

however, several challenges remain. The precise molecular

mechanisms underlying ferroptosis have not yet been fully

elucidated, particularly across different CVD subtypes, in which

ferroptosis may operate via distinct pathways (30, 64).

Immune-mediated inflammation is a critical driver of disease

pathogenesis. Key immune cells, including macrophages, DCs, NK
Frontiers in Immunology 19
cells, and Th17/Treg subsets, orchestrate the initiation,

amplification, and resolution of inflammatory responses,

primarily through core signaling pathways, such as NF-kB, the
NLRP3 inflammasome, and cGAS–STING. Among these, DCs

serve a bridging role, and the balance of Th17/Treg cells is central

to regulating immune inflammation. This review highlights the

pivotal roles of immune cells and inflammatory pathways in

cardiovascular pathology. From macrophage polarization

imbalance and NLRP3 inflammasome activation to T cell subset

dysregulation, these factors collectively form the pathological basis

for cardiovascular inflammation.

Nonetheless, key questions regarding immune-mediated

mechanisms in the cardiovascular microenvironment remain

unresolved: 1) How do mitochondrial stress and neutrophil

extracellular traps (NETs) specifically regulate the activation of

the cGAS–STING pathway and its downstream type I interferon

response at different stages of AS? 2) How do injury-related

molecular patterns precisely control spatiotemporal dynamics of

macrophage polarization? 3) Beyond the Th1/Treg imbalance, do

metabolic interactions between resident immune cells (e.g., cardiac

macrophages) and circulating immune cells determine the ultimate

outcome of myocardial repair versus fibrosis?

Furthermore, the bidirectional regulatory roles of different B

cell subsets in cardiovascular inflammation are unclear. In-depth

exploration of these questions will provide new directions for

developing immune-targeted interventions for diseases such as AS

and myocardial fibrosis.

However, several issues remain controversial. First, experimental

animal models are not sufficiently refined and have inherent

limitations. Current model generation methods, such as drug

induction and gene knockout, may not fully replicate the

multifactorial pathogenesis of human diseases. Moreover, species-

specific differences in pathological characteristics, disease progression,

genetics, metabolism, and immune responses limit the ability of these

models to reflect the true complexity observed in human patients,

complicating the translation of these findings into clinical practice.

Second, the clinical efficacy of ferroptosis inhibitors, modulators of

immune-mediated inflammatory responses, antioxidant defense

enhancers, small-molecule inhibitors, traditional Chinese medicines,

and their monomers in treating CVDs requires further validation

through randomized controlled trials and large-scale multicenter

double-blind studies (227, 228). Moreover, the integration of

ferroptosis modulation with immunoregulatory strategies to develop

cohesive therapeutic regimens represents a critical avenue for future

research. Notably, this may include: 1) Multi-omics integration:

Constructing single-cell maps of ferroptosis-immunomodulation (e.g.,

transcriptomic and proteomic profiling within atherosclerotic plaque

microenvironments) to elucidate mechanistic links and identify novel

therapeutic targets for AS, MI, and related disorders. 2) Closed-loop

diagnostic and therapeutic system: Leveraging real-time monitoring of

serum ferroptosis markers and inflammatory biomarkers, such as IL-

18, combined with artificial intelligence algorithms and individualized

treatment plans to enable precision therapy. For instance, bionic

nanoparticles (CD47+) loaded with Fer-1 can be engineered to target

MI sites and mitigate cardiomyocyte ferroptosis.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1691705
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


TABLE 2 Traditional Chinese medicine and its monomer components targeting the ferroptosis-immune-mediated inflammation axis in the treatment of CVDs.

Traditional Chinese Disease Mechanism Model/Patients Key findings References

1. Ginsenoside Re significantly reduced cardiac damage
caused by ferroptosis during MI/RI and glutathione
decline.

(188)

1. Ginsenoside Rg3 improved cardiac function and
infarct size in mouse with MI/RI. 2. Increased the
expression of the ferroptosis-related protein GPX4 and
inhibited iron deposition in mouse with MI/R injury.
3. Attenuate OGD/R-induced ferroptosis in H9C2 cells.

(189)

1. Rg1 significantly attenuated myocardial inflammation,
inhibited M1 macrophage polarization and reduced
cardiac fibrosis during MI/R injury.
2. Inhibited the activation of the AIM2 inflammasome in
vitro.

(191)

1. PQS reducing ischemia, infarction and NR area;
2. improving cardiac function;
3. preventing pathological morphology changes of
myocardium;
4. depressing leukocytes’ aggregation and adhesion.

(192)

1. Ginsenoside Rg3 mitigates cardiac injury induced by
high-altitude hypobaric hypoxia exposure.
2. Reduces inflammation and ferroptosis

(193)

Panax ginseng attenuated myocardial fibrosis and
inflammation and protect cardiac function after
myocardial infarction.

(194)

Rb1 attenuated Dox induced cardiac dysfunction,
myocardium hypertrophy and interstitial fibrosis.

(190)

1. Puerarin reduced the expression of a-SMA and the
inflammatory proteins. 2. Decreased hVSMC
proliferation, and migration.

(195)

1. Puerarin-V exerts cardioprotective effects against ISO-
induced MI in mouse. Puerarin-V significantly improves
ventricular wall infarction, decreases the incidence of
mortality, and inhibits the levels of myocardial injury
markers. 2. Reduced cell death and suppressed the
inflammation cytokines expression.

(196)
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W
an

g
e
t
al.

10
.3
3
8
9
/fim

m
u
.2
0
2
5
.16

9
170

5

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

2
0
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components

Ginsenoside Re MIRI Regulated miR-144-3p/SLC7A11 level WKY rat MIRI model/H9c2 cells/
endothelial progenitor cells (EPCs)

Ginsenoside Rg3 MIRI 1. Activated the Nrf2 signaling pathway
2. Regulated the keap1/Nrf2 signaling
pathway

C57BL/6 mouse MIRI model/OGD/R
H9c2 cell model

Ginsenoside Rg1 MIRI Inhibited macrophage M1 polarization by
inhibiting AIM2 inflammasome activation

SD rat MIRI model/BMDM

Panax quinquefolius L.
Saponins
(PQS)

MIR No-Reflow (NR) Inhibited the activation of NLRP3
inflammasome via TLR4/MyD88/NF-kB
signaling

Wistar rat MIRI model

Ginsenoside Rg3 Cardiac injury induced
by high-altitude hypobaric
hypoxia exposure

Suppressed ferroptosis through inhibition
of the RhoA/ROCK signaling pathway

HACI C57 BL/6J mouse model

Panax ginseng MI 1. Promoted SIRT1 expression
2. Significantly suppressed NLRP3-
caspase1 inflammasome and TGFBR1/
Smads signaling

C57BL/6 mouse MI model/CFs and
RAW264.7 cells

Ginsenoside Rb1 Doxorubicin induced
cardiotoxicity

Suppressed autophagy and ferroptosis DIC C57BL/6 mouse model

puerarin AS Regulated miR-29b-3p/IGF1 pathway APoE−/− mouse AS model/hVSMC AS
cell model

Puerarin-V MI Regulated PPAR-Υ/NF-kB Pathway.
activated of PPAR-g, inhibited NF-kB
signaling

Isoproterenol (ISO)-induced C57BL/6
mouse MI model/human coronary artery
endothelial cell (HCAECs)
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Traditional Chinese Disease Mechanism Model/Patients Key findings References

eatment with puerarin mitigated cardiomyocyte
ptosis, restored redox balance, preserved
chondrial energy production and maintained
chondrial function following MI/RI.

(197)

erarin reduced myocardial infarct size, serum CK-
activity, and apoptotic cell death, and improved
ac structural damage and dysfunction.
arin protected against MI/R injury.

(198)

arin inhibited myocyte loss during HF. (125)

arin protects against sepsis-induced myocardial
y.

(199)

erarin May increase the ability of M1 macrophages
ndle harmful lipids. 2. May support cholesterol
eostasis and exert an anti-atherosclerotic effect.

(201)

erarin decreased cell necrosis, apoptosis and
ced infarct size.
hibited cardiotoxicity to ameliorate myocardial
ction.

(203)

arin improved cardiac contractility and attenuated
cardial and renal injury.

(204)

r pretreatment inhibited ferroptosis, autophagy
ctivation and oxidative stress.
proved mitochondrial dysfunction.
tenuated apoptosis

(205)

umin attenuated MIRI-induced ferroptosis,
tosis and autophagy.

(8)

nanozyme coordination with curcumin for
ment of sepsis-induced cardiac injury

(206)

umin attenuates the development of thoracic aortic
rysm.

(207)

(Continued)
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Puerarin MIRI Inhibited ferroptosis through
downregulation of VDAC1

C57BL/6 mouse MIRI model/H9c2 cell
H/R model

Pret
ferro
mito
mito

MIRI 1. Inhibited the NLRP3 inflammasome
2. Regulated the SIRT1/NF-kB pathway

C57BL/6 mouse MIRI model 1. P
MB
card
Pue

HF 1. Regulation of Nox4 signaling
2. Inhibited ferroptosis

SD rat HF model/H9c2 cells Pue

Sepsis-induced myocardial
injury

Regulated AMPK-mediated ferroptosis
signaling

SD rat sepsis-induced myocardial injury
model

Pue
inju

Curcumin AS 1. Increases cholesterol efflux through the
PPARg-ABCA1/CD36 pathway
2. Upregulated CD36 and AP2 to induce
LDL uptake and lipid accumulation

Murine macrophage line RAW264.7 cells 1. P
to h
hom

AMI Reduced apoptosis and oxidative stress
damage

Wistar rat MIRI model 1. P
redu
2. In
infa

Cardiac dysfunction and
myocardial injury

Reduced TNF-a and MDA SD rat RIRI model Pue
myo

MIRI 1. Inhibited caspase-3 activity,
upregulated the Bcl-2/Bax ratio, inhibited
MPTP over-opening 2. Increased P62,
LC3II/I, NDUFB8 and UQCRC2
expression
3.Upregulated the p-AMPK/AMPK
ratio 4. Increased HES1 expression.

H9c2 cell A/R injury model 1. C
over
2. Im
3. A

MIRI 1. Regulated Sirt1/AKT/FoxO3a signaling SD rat MIRI model/H9c2 cell A/R injury
model

Cur
apop

Ceria nanozyme coordination
with curcumin

Sepsis-induced cardiac injury 1. Inhibited ferroptosis and inflammation
2. Reduced oxidative damage

C57BL/6 mouse sepsis-induced cardiac
injury model/H9c2 cells/RAW264.7 cells

Ceri
trea

Curcumin Thoracic aortic aneurysm
(TAA)

1. Suppressed of VEGF expression 2.
suppressed inflammatory factor
expression

Wistar rat TAA model/Patients with
degenerative aortic aneurysms

Cur
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r
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Traditional Chinese Disease Mechanism Model/Patients Key findings References

-IV decreased the levels of serum lipids, reduced
e area and increased plaque stability in HFD-
ed LDLR−/− mouse. 2. Decreased the levels of
matory cytokines

(212)

iate acute myocardial infarction (213)

-IIA and As-IV alleviates myocardium injury in
.
-IIA and As-IV reduced myocardial cell apoptosis,
tive stress and inflammation.

(214)

galoside IV alleviates inflammation and improves
ardial metabolism in HFpEF mouse.

(215)

tragaloside IV ameliorated myocardial injury and
ved contractile function, attenuated lipid
ition.
tragaloside IV decreased CD36 expression and
ited lipid accumulation and ferroptosis in PA-
ed cardiomyocytes.

(216)

ased AAA formation, and reduced macrophage
ation and expression of matrix metalloproteinase

(217)

statin and resveratrol bio-nanocomplexes against
homocysteinemia-induced atherosclerosis.

(218)

veratrol relieves myocardial injury in MI rats.
veratrol alleviates inflammation and ferroptosis in
ts.

(219)

ratrol protects against MIRI. (220)

(221)

(Continued)
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Astragaloside IV AS Down-regulated MAPK/NF-kB signaling
pathway

LDLR−/− mouse AS model 1. AS
plaqu
induc
inflam

AMI Inhibited the TLR4/MyD88/NF-kB
signaling pathway

SD rat AMI model Allev

MIRI Inhibited the STING pathway C57BL/6 mouse MIRI model/HL1 cell
hyposia reoxygenation model

1. Ta
MIRI
2. Ta
oxida

HF Decreasing the expression of plasma
inflammatory markers GDF15, CRP,
IL1RL1, and MCP-1, NLRP3, IL-1b,
Caspase-1, and IL-6

C57BL/6N mouse HF model Astra
myoc

DCM Downregulated CD36-mediated
ferroptosis

SD rat diabetes model/H9c2 cells 1. As
impr
depo
2. As
inhib
induc

AAA 1. Abrogated nuclear factor-kB (NF-kB)
activation and oxidative stress
2. Inhibited Bap-induced RAW264.7
macrophage cells activation by inhibiting
oxidative stress and NF-kB activation
through increased phosphorylation of
phosphatidylinositol 3-kinase (PI3-K)/
AKT

C57/B6J mouse AAA model/RAW264.7
cells

Decr
infiltr

Resveratrol AS Inhibited macrophage ferroptosis,
Alleviated lipid accumulation and
inflammation

ApoE−/− mouse AS model/RAW264.7
cells, endothelial cell (EC) line and
vascular smooth muscle cell (VSMC) line

Pitav
hype

MI Inhibited ferroptosis via inducing KAT5/
GPX4

SD rat MI model/oxygen-glucose
deprivation (OGD)-induced H9c2
cardiomyocyte injury model

1. Re
2. Re
MI ra

MIRI Reduced oxidative stress and attenuated
ferroptosis

SD rat MIRI model/OGD/R H9c2 cell
model

Resve

MIRI Inhibited of the VDAC1/GPX4 pathway
o
s
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C57BL/six mouse MIRI model/A/R H9c2
cell injury model

1. Resveratrol pretreatment effectively attenuated MIRI.
2. Resveratrol pretreatment inhibited MIRI-induced
ferroptosis.

pathway Sirt1 knockout C57BL/6J mouse in aortic
coarctation heart failure model.
Using isoproterenol to establish HiPSC
cell model.

Resveratrol improved cardiac function in mouse and
decelerated ferroptosis and fibrosis progression in heart
failure.

(222)

GSH ApoE−/− mouse (Ang)-II-induced AS
model/THP-1 cells

Resveratrol attenuate atherosclerosis at least, in part, by
inhibiting monocyte differentiation and pro-
inflammatory cytokines production.

(223)

signaling.
ltration and

SD rat MIRI model Resveratrol attenuates the inflammatory reaction induced
by I/R injury.

(224)

ory processes in NYHA class II-III HFrEF patients Resveratrol improved several parameters of heart
function, exercise tolerance and quality of life.

(225)

educed
dation,
Inflammation

SD rat AAA model/VSMCs were induced
by Ang II to construct the
microenvironment of AAA.

1. Resveratrol ameliorated Ang II-induced VSMC
dysfunction.
2. Resveratrol suppressed the development of AAA.

(226)

thelial progenitor cells; BMDM, Bone marrow-derived macrophages; HACI, high-altitude cardiac injury; CFs, cardiac fibroblasts; DIC, doxorubicin induced
L1, the mouse cardiac muscle cell line; RIRI, renal ischemia-reperfusion injury; HF, heart failure.
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HF 1. Activated the Sirt1/p53
2. Inhibited ferroptosis

AS Mediated up-regulation o

MIRI 1. Inhibited TLR4/NF-kB
2. Inhibited neutrophil in
TNF- a production

HF Moderated the inflamma
patients with HFrEF

AAA Upregulated HMOX1 to
extracellular matrix degra
apoptosis, autophagy, and

OGD, oxygen-glucose deprivation; NYHA, New York Heart Association; WKY, Wistar–Kyoto; EPCs, end
cardiotoxicity; H/R, hypoxia/reoxygenation; A/R, anoxia/reoxygenation; TAA, thoracic aortic aneurysm; H
f
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The concept of personalized medicine should be more effectively

implemented in CVD management to deliver patient-specific

interventions. Genetic research is likely to illuminate new directions

and controversies regarding ferroptosis-driven inflammation. For

example, a 2024 large-scale genome-wide association study (Eur

Heart J) identified the GPX4 locus (rs713041) as significantly

associated with coronary artery disease risk (odds ratio: 1.32, P = 3.1

× 10−8), suggesting that GPX4 variants may elevate coronary heart

disease risk via ferroptosis modulation (229). Furthermore, a dose–

response relationship has been observed between iron metabolism-

related genes (e.g., TFR2 rs7385804) and circulating levels of the

inflammatory marker IL-6, supporting a mechanistic link between

iron homeostasis and inflammation.

However, some evidence challenges the notion that ferroptosis

directly drives inflammatory responses. Although ALOX15

polymorphisms influence LPO, they show no direct association

with NLRP3 inflammasome activation (P = 0.17), implying that

LPO may modulate inflammation through alternative pathways.

Additionally, in populations of African descent, no co-localization

was observed between specific FTH1 gene variants and inflammatory

markers, suggesting potential population-specific differences in how

iron metabolism genes influence inflammatory processes (229).

Despite these unresolved issues, the combined modulation of

ferroptosis and immune responses remains a promising strategy for

treating CVD. Future research should strengthen the theoretical

framework and provide practical guidance for precision

cardiovascular therapeutics.
7 Conclusions

The interplay between ferroptosis and immune-mediated

inflammatory responses has garnered increasing attention in CVD

and MI research. As our understanding of their roles in disease

progression deepens, it has become evident that these processes are

not only independent pathological mechanisms but also components

of a highly intertwined and complex network. Ferroptosis, a recently

characterized form of regulated cell death, primarily induces cell death

through iron overload and LPO, while immune-mediated

inflammation further amplifies tissue damage. The crosstalk between

these two processes may play a pivotal role in the pathogenesis of CVD,

offering novel avenues for research and potential therapeutic

interventions in the future. Through a comprehensive investigation

in this field, new strategies for the prevention and treatment of CVDs

are likely to emerge, ultimately improving patient quality of life and

clinical outcomes. Therefore, continuous monitoring of advances in

ferroptosis and immune modulation is essential to facilitate the

integration of basic research with clinical applications and address

the increasingly complex challenges posed by CVDs.
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