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genes for rheumatoid arthritis
Xinyu A1,2†, Pengfei Xin3†, Lin Zheng4†, Bo Xu4, Jianye Wang1,2,
Songtao Sun4, Jun Xie4, Chenxin Gao4, Peijun Pan4,
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Shaoqiang Pei1,2, Lei Ran2,4*, Yanqin Bian2,4* and Lianbo Xiao2,4*

1Shanghai University of Traditional Chinese Medicine, Shanghai, China, 2The Research Institute for
Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China, 3Jiangxi
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Introduction: Glycolytic reprogramming has been implicated in rheumatoid

arthritis (RA) pathogenesis, yet the underlying causal genes and epigenetic

mechanisms remain unclear. This study aimed to systematically identify

glycolysis-related genes and their methylation-regulated expression that may

causally influence RA susceptibility.

Methods: We conducted a multi-omics Mendelian randomization (MR) analysis

integrating genome-wide association study (GWAS) summary statistics for RA

(FinnGen, UK Biobank, GCST90129453) with quantitative trait loci (QTLs) for

blood-derived methylation (mQTL), expression (eQTL), and protein abundance

(pQTL). Summary-data-based Mendelian randomization (SMR) and

colocalization analyses were used to identify causal molecular signatures

linking DNA methylation, gene expression, and protein abundance with RA risk.

Replication was performed in independent RA cohorts. In addition, qPCR

validation was conducted in an independent whole-blood cohort (30 RA

patients and 30 healthy controls).

Results: SMR identified 129 CpG sites (75 genes), 28 transcripts, and 9 proteins

significantly associated with RA risk. Seven glycolytic genes—PKD1, SLC2A4,

ALAS1, ALDH7A1, LRFN3, PFKFB2, and PYGB—showed consistent evidence

across methylation, expression, and GWAS datasets. Notably, hypomethylation

at cg07036112 (PKD1; OR = 0.68, 95% CI: 0.59–0.78) and cg06891043 (SLC2A4;

OR = 0.92, 95% CI: 0.89–0.96) was associated with increased gene expression

and increased RA susceptibility. Colocalization supported shared causal variants

at these loci (PP.H4 > 0.5). Additional signals included cg13241645 (ALAS1; OR =

0.72, 95% CI: 0.65–0.80) and cg01380361 (PFKFB2; OR = 1.33, 95% CI: 1.17–1.51).

qPCR confirmed increased PKD1 and SLC2A4 mRNA expression in RA compared

with healthy controls.
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Discussion: This integrative multi-omics MR framework supports an

epigenetically mediated contribution of glycolysis-related regulation to RA

susceptibility and nominates PKD1 and SLC2A4 as robust genetically supported

candidate genes. These findings highlight methylation-linked transcriptional

changes in glycolysis-related pathways implicated in RA and suggest potential

biomarkers and therapeutic targets.
KEYWORDS
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Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disorder

marked by persistent synovitis, progressive joint damage, and

systemic inflammation, affecting approximately 0.5–1% of the

global population (1). Despite advances in biologics and targeted

therapies, many patients continue to experience disease flares and

irreversible joint destruction. Beyond immune dysregulation,

metabolic remodeling has emerged as a fundamental component

of RA pathogenesis. Synovial fibroblasts and infiltrating immune

cells reprogram their metabolism in response to inflammatory and

hypoxic microenvironments, switching from oxidative

phosphorylation to aerobic glycolysis (2, 3). This glycolytic shift

supports energy-intensive processes like proliferation, matrix

degradation, and cytokine production, which exacerbate joint

inflammation. Metabolites such as lactate and succinate also

accumulate locally, serving as signaling molecules that amplify

inflammation and matrix remodeling (4). Consequently,

metabolic adaptation not only sustains pathogenic cell function

but also reshapes the RA synovial ecosystem.

Fibroblast-like synoviocytes (FLS) in RA exhibit a highly

activated phenotype that mimics tumor-like behavior, including

hyperproliferation, invasiveness, and resistance to apoptosis (5).

This phenotype is driven by increased glucose uptake and elevated

expression of glycolytic enzymes, such as HK2, LDHA, and PFKFB3

(6). Similarly, CD4+ and CD8+ T cells within the inflamed

synovium undergo metabolic rewiring that enhances their effector

functions, partly through HIF-1a and mTORC1-mediated

pathways (7, 8). Various regulators—including metabolic enzymes

and signaling proteins—can influence glycolytic switching and

proinflammatory phenotypes in immune cells (7). Glycolytic

inhibition in both FLS and immune cells has been shown to

reduce inflammatory mediator secretion and cell migration,

supporting the rationale for exploring glycolysis-targeted

strategies in RA (9, 10). However, the upstream regulatory

architecture linking genetic susceptibility to these glycolytic

phenotypes in RA remains incompletely understood.

Recent advances in multi-omics integration have enabled

systematic exploration of gene regulation in complex diseases.
02
Summary-data-based Mendelian randomization (SMR) leverages

genetic variants as instruments to infer causal links between

molecular traits (e.g., DNA methylation, gene expression, protein

abundance) and disease outcomes (11). SMR approaches that

integrate QTL datasets—including methylation quantitative trait

loci (mQTLs), expression quantitative trait loci (eQTLs), and

protein quantitative trait loci (pQTLs)—with GWAS summary

statistics can reveal molecular features causally associated with RA.

While this strategy has been successfully applied to investigate

autophagy and immune pathways in RA, its application to

glycolysis remains limited. In this study, we employed a multi-

layer SMR framework to investigate whether glycolysis-related

molecular features are causally linked to RA risk. By integrating

GWAS data from the FinnGen, UK Biobank, and GCST90129453

cohorts with multi-omics QTL datasets, we aimed to identify key

methylation sites, transcripts, and proteins involved in glycolysis that

may act as upstream drivers of RA pathogenesis. Here, we employ a

multi-omics MR framework to systematically investigate causal roles

of epigenetically regulated glycolytic genes in RA.
Materials and methods

Data sources

The complete study design, including data sources and multi-

omics integration strategy, is summarized in Figure 1. A total of 755

unique glycolysis-related genes were compiled from 22 gene sets

retrieved from theMolecular Signatures Database (MSigDB; https://

www.gsea-msigdb.org/) using the keyword “glycolysis” (12), after

merging and removing duplicates.

Three independent RA genome-wide association study

(GWAS) datasets were used. The primary discovery cohort was

obtained from the FinnGen consortium (Release R12, GWAS ID:

M13_RHEUMA), including 16,314 RA cases and 315,115 controls

of European ancestry. For validation, we used two independent RA

cohorts: (1) the UK Biobank dataset from PheWeb (GWAS ID:

PheCode 714.1 (4,412 cases and 365,085 controls) and (2) the

GWAS Catalog dataset GCST90129453 (8,685 cases and 198,125
frontiersin.org
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controls) (Table 1). All datasets were publicly available and based

on individuals of European descent.

We obtained blood-based cis-eQTL summary statistics from the

eQTLGen Consortium, encompassing data from 31,684 individuals
Frontiers in Immunology 03
(13), derived blood-based mQTL data from a meta-analysis of two

European cohorts—the Brisbane Systems Genetics Study (n = 614)

and the Lothian Birth Cohorts (n = 1,366) (14) that were

standardized using the minfi package with BMIQ normalization,
FIGURE 1

Study design. Schematic overview of integrating GWAS, mQTL, eQTL, and pQTL data to identify causal glycolysis-related genes in RA. QTL,
quantitative trait loci; RA, rheumatoid arthritis; SNPs, single nucleotide polymorphisms; SMR, summary-data-based Mendelian randomization; HEIDI,
heterogeneity in dependent instrument; PP.H3, posterior probability of H3; PP.H4, posterior probability of H4.
TABLE 1 GWAS cohort information.

Trait Disease GWAS ID
Sample size (case/

control)
SNP Count

RA Rheumatoid Arthritis M13_RHEUMA 16314/315115 20,991,655

RA Rheumatoid Arthritis PheCode 714.1 4412/365085 27,640,968

RA Rheumatoid Arthritis GCST90129453 8685/198125 11,323,611
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and extracted blood-based pQTL summary statistics from a large-

scale proteogenomic study involving 10,708 European participants,

as reported by Pietzner et al (15).
SMR analysis

We conducted SMR analysis using the SMR software (v1.3.1), a

method that leverages top associated cis-QTLs to evaluate putative

causal relationships between molecular features—methylation

(mQTL), gene expression (eQTL), protein abundance (pQTL)—

and RA risk. SMR is particularly suited for integrating data from

large, non-overlapping QTL and GWAS datasets.

For each QTL dataset, cis-variants within ±1000 kb of each

probe were selected as instruments, with a genome-wide

significance threshold (p < 5.0 × 10−8). SNPs with allele frequency

differences exceeding 0.2 between QTL and GWAS datasets were

excluded; up to 5% mismatch across all SNPs was tolerated for

inclusion. SMR analysis was performed independently for mQTL-

GWAS, eQTL-GWAS, and pQTL-GWAS combinations. To

account for potential linkage and pleiotropy, the HEIDI

(Heterogeneity In Dependent Instruments) test was applied, with

p_HEIDI > 0.05 indicating no heterogeneity and supporting a

causal interpretation.

We also implemented a multi-SNP version of the SMR test

(–smr-multi), which considers all SNPs in the QTL probe window

(default window =500 kb) with p < 5.0 × 10−8and LD r² < 0.9. Final

candidate loci were defined by the joint significance of

p_SMR_multi < 0.05 and p_HEIDI > 0.05. To validate positive

findings, replication SMR analyses were performed using two

independent RA GWAS datasets: the UK Biobank (PheWeb

714.1) and GCST90129453, using the same significance and

heterogeneity thresholds.

In addition to evaluating QTL-disease associations, we used

SMR to infer causal relationships between methylation and gene

expression (mQTL–eQTL), as well as between gene expression and

protein abundance (eQTL–pQTL). For mQTL–eQTL SMR, CpG

sites were treated as exposures and gene transcripts as outcomes,

providing insights into epigenetic regulation of expression. For

eQTL–pQTL SMR, transcript levels were modeled as exposures

and protein abundance as outcomes. These integrative analyses

aimed to uncover regulatory cascades and prioritize key glycolytic

genes contributing to RA susceptibility.
Co-localization analysis

To verify whether QTL signals and RA GWAS associations

share a common causal variant, we performed co-localization

analysis using the Bayesian framework implemented in the R

package coloc. This method estimates the posterior probability for

five mutually exclusive hypotheses: H0 (no association with either

trait), H1 (association with QTL only), H2 (association with GWAS

only), H3 (both traits associated but with distinct causal variants),

and H4 (both traits associated and sharing the same causal variant).
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Evidence for co-localization was defined by either PP.H4 > 0.5 when

the prior probability p12 was set to 5 × 10−5, or PP.H3 < 0.5 when

p12 was set to 1 × 10−5 (16).

Co-localization analyses were independently conducted for

mQTL-GWAS, eQTL-GWAS, and pQTL-GWAS pairs. Following

published protocols, genomic regions were using the same ±500 kb

(mQTL) or ±1000 kb (eQTL/pQTL) windows described above (17–

19). Summary-level data for each QTL-GWAS pair were extracted

and formatted according to coloc requirements. Only loci with

significant SMR results and without evidence of heterogeneity

(p_HEIDI > 0.05) were included in the co-localization step to

reduce spurious associations.
Ethics approval and consent

Ethics review statement. This study involving human

participants was reviewed and approved by the Ethics Committee

of Shanghai Guanghua Hospital of Integrative Medicine. All

procedures complied with the Declaration of Helsinki and

relevant national regulations. All participants (or legal guardians,

where applicable) provided written informed consent prior to

enrollment and prior to collection of study specimens (peripheral

blood samples for whole-blood RNA extraction). Recruitment,

sample collection, and clinical assessments were conducted at

Shanghai Guanghua Hospital of Integrative Medicine.
Patient cohorts and whole-blood qPCR
validation

We recruited 30 RA patients and 30 age- and sex-matched

healthy controls from Shanghai Guanghua Hospital of Integrative

Medicine. Peripheral blood was collected into EDTA tubes. Total

RNA was extracted from whole blood, and 1 mg RNA was reverse

transcribed into cDNA. PKD1 and SLC2A4 mRNA levels were

quantified by SYBR Green–based qPCR using ACTB (b-actin) as
the reference gene. Relative expression was calculated by the

2^–DCt method (DCt = Ct(target) – Ct(ACTB)).
Statistical analysis

We conducted statistical analyses in R (v4.4.3) for all

computational/omics components and in GraphPad Prism

(v10.4.1) for qPCR validation and graphing. We generated

Manhattan plots with “ggplot2” and “ggrepel”, and forest plots

with “forestplot”. We produced locus and effect plots using

modified SMRLocusPlot and SMREffectPlot functions from Zhu

et al (20). For the whole-blood qPCR dataset, relative expression

values (2^–DCt) of PKD1 and SLC2A4 were first assessed for

normality using the Shapiro–Wilk test. Group comparisons

between RA and HC were performed using two-tailed unpaired t-

tests when normality was not grossly violated; otherwise, the

Mann–Whitney U test was applied. qPCR data are summarized
frontiersin.org
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as mean ± standard deviation (SD). Unless stated otherwise, P

values are two-sided with a = 0.05.
Results

Association of glycolysis-related CpG
methylation with RA risk

To investigate the potential association between CpG site

methylation and RA, we performed SMR analysis by integrating

whole-blood mQTL data with GWAS summary statistics from the

FinnGen R12 cohort. A total of 129 CpG sites located within 75

glycolysis-related genes were identified as significantly associated

with RA (p_SMR < 0.05, p_SMR_multi < 0.05, p_HEIDI > 0.05), as

shown in Supplementary Table S1.
Frontiers in Immunology 05
Colocalization analysis further revealed that 40 of these CpG

sites, corresponding to 21 genes, showed strong evidence of sharing

a causal variant with RA GWAS signals (PP.H4 > 0.5 and PP.H3 <

0.5). These colocalized signals are summarized comprehensively in

Figure 2, with detailed representative examples illustrated in

Supplementary Figure S1. Among the notable findings,

methylation at cg06711259 (located in JOSD1) was positively

associated with RA risk (OR = 1.08, 95% CI [1.03–1.13]), while

another CpG within the same gene, cg19658332, exhibited a

negative association (OR = 0.88, 95% CI [0.82–0.95]).

In replication analyses using GWAS datasets from the UK

Biobank and GCST90129453 cohorts, we did not observe

significant associations meeting validation criteria in the UK

Biobank dataset. However, we validated six CpG sites—

cg26105232 (IL2RA), cg12444328 (LHX9), cg20945261

(NUP210), cg07568117 and cg07036112 (PKD1), and cg23514324
FIGURE 2

Associations between methylation of glycolysis-related CpG sites and RA risk (whole-blood mQTL meta-analysis; FinnGen R12 RA GWAS). Forest
plot of 40 CpG sites with strong colocalization evidence (PP.H4 > 0.5, PP.H3 < 0.5); ORs and 95% CIs are shown.
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(PPARG)—in the GCST90129453 cohort (p_SMR < 0.05,

p_SMR_multi < 0.05, and p_HEIDI > 0.05). These replicated

associations are summarized in Table 2, with full results available

in Supplementary Tables S2–S3. Collectively, these methylation

changes suggest epigenetic modulation of glycolytic pathways,

potentially exacerbating RA inflammation.
Association of glycolysis-related gene
expression with RA risk

We performed SMR analysis to examine the association

between glycolysis-related gene expression (eQTLs) and RA using

the FinnGen R12 GWAS dataset. A total of 28 genes met the criteria

for statistical significance (p_SMR < 0.05, p_SMR_multi < 0.05, and

p_HEIDI > 0.05), with detailed results provided in Supplementary

Table S4. Among these, 11 genes showed evidence of colocalization

between gene expression and RA GWAS signals, defined by

posterior probabilities PP.H4 > 0.5 and PP.H3 < 0.5. These genes

and their corresponding SMR estimates are summarized in

Supplementary Table S5, and the associations are visualized in

Figure 3. Colocalization examples are shown in Supplementary

Figure S2. Together, these expression patterns are consistent with

glycolytic reprogramming in RA and implicate transport and

signaling nodes alongside counter-regulatory effects.

Effect direction was evaluated using odds ratios (ORs).

Increased expression of genes such as SLC2A4 (OR = 2.18, 95%

CI [1.25–3.79]) and CXCL8 (OR = 1.13, 95% CI [1.04–1.24]) was

associated with higher RA risk, whereas higher expression of

CHEK2 (OR = 0.62, 95% CI [0.45–0.86]) and PNMT (OR = 0.57,

95% CI [0.39–0.84]) was associated with lower risk.

Validation analyses were performed using two independent

GWAS datasets (UK Biobank and GCST90129453). Among the

28 identified genes, significant associations for SLC66A3 were

consistently observed across both datasets, and PKD1 was also

validated in the GCST90129453 cohort. Replication analysis results

are summarized in Table 2; comprehensive statistical details are

available in Supplementary Tables S6, S7.
Frontiers in Immunology 06
Association of glycolysis-related protein
abundance with RA risk

To evaluate whether protein abundance of glycolysis-related

genes is associated with RA, SMR analysis was conducted using

blood-derived pQTL data and FinnGen R12 GWAS summary

statistics. A total of nine proteins, including AGAP2, B3GALT6,

FBP1, INSL5, MDK, PGP, SIRPB1, TGFBI, and TYRO3, were

identified as significantly associated with RA (p_SMR < 0.05,

p_SMR_multi < 0.05, and p_HEIDI > 0.05). Full results are

reported in Supplementary Table S8. Among them, five proteins

(TGFBI, SIRPB1, FBP1, TYRO3, and MDK) showed positive

associations with RA risk, while four (AGAP2, B3GALT6, INSL5,

and PGP) were negatively associated.

Colocalization analysis indicated that three proteins

(B3GALT6, TYRO3, and PGP) exhibited strong evidence of

shared causal variants with RA GWAS loci (PP.H4 > 0.5 and

PP.H3 < 0.5). These results are summarized in Supplementary

Table S9 and illustrated in Figure 4 and Supplementary Figure S3.

No statistically significant associations were confirmed upon

replication in either the UK Biobank or GCST90129453 RA

cohorts (p_SMR ≥ 0.05 or p_HEIDI ≤ 0.05), with replication

results detailed in Supplementary Tables S10–S11. In aggregate,

the protein-level signals nominate biologically plausible candidates

but warrant cautious interpretation and validation across

independent cohorts.
Integration of blood mQTL and eQTL data
related to glycolysis and RA GWAS

To assess whether CpG site methylation may regulate the

expression of glycolysis-related genes implicated in RA, SMR

analysis was performed using blood mQTLs as exposures and

eQTLs as outcomes. The analysis focused on genes previously

identified through independent mQTL–GWAS and eQTL–GWAS

associations. Significant associations between methylation and

expression were identified for seven genes—PKD1, SLC2A4,
TABLE 2 SMR validation of glycolysis-related mQTL and eQTL signals for rheumatoid arthritis in independent RA GWAS cohorts.

QTL type¹ Probe ID/Gene ID Symbol p_SMR p_SMR_multi p_HEIDI OR_SMR (95% CI)

mQTL# cg26105232 IL2RA 4.41E-02 4.41E-02 7.25E-01 0.84 (0.71–1.00)

mQTL# cg12444328 LHX9 3.94E-02 4.73E-02 7.30E-01 0.87 (0.77–0.99)

mQTL# cg20945261 NUP210 4.11E-02 1.45E-02 6.53E-01 1.10 (1.00–1.21)

mQTL# cg07568117 PKD1 2.48E-02 3.76E-02 7.19E-01 0.91 (0.85–0.99)

mQTL# cg07036112 PKD1 4.65E-02 4.65E-02 8.87E-01 0.87 (0.76–1.00)

mQTL# cg23514324 PPARG 3.53E-03 8.82E-03 7.42E-01 0.91 (0.86–0.97)

eQTL$ ENSG00000162976 SLC66A3 1.27E-03 3.30E-02 9.02E-01 1.26 (1.09–1.44)

eQTL# ENSG00000008710 PKD1 3.39E-02 3.39E-02 6.48E-01 1.39 (1.03–1.87)

eQTL# ENSG00000162976 SLC66A3 4.67E-04 5.75E-03 2.71E-01 1.20 (1.08–1.33)
1: Superscripts denote the RA GWAS cohort used in the SMR validation: #: GCST90129453 RA cohort; $: UK Biobank RA cohort;
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ALAS1, ALDH7A1, LRFN3, PFKFB2, and PYGB—covering 12

distinct CpG sites. SMR associations met the criteria of p_SMR <

0.05, p_SMR_multi < 0.05, and p_HEIDI > 0.05. The complete

analysis results are presented in Supplementary Table S12, and

selected findings are shown in Supplementary Table S5.

Representative examples include cg07036112 at the PKD1 locus

(OR = 0.68, 95% CI 0.59–0.78), where lower methylation was linked

to increased PKD1 expression and subsequently increased RA risk.

Similarly, cg06891043 at the SLC2A4 locus (OR = 0.92, 95% CI

0.89–0.96) demonstrated hypomethylation associated with higher

SLC2A4 expression and increased RA risk. Additional signals—

cg13241645 at ALAS1 (OR = 0.72, 95% CI 0.65–0.80), cg01380361

at PFKFB2 (OR = 1.33, 95% CI 1.17–1.51), and multiple CpGs in

PYGB—consistently indicated epigenetic mechanisms driving

glycolytic gene expression that collectively contribute to RA

susceptibility (Table 3).
Integration of RA GWAS with glycolysis-
related pQTL and eQTL data

To explore whether the expression of key glycolysis-related

genes affects protein abundance relevant to RA, we performed an

integrative SMR analysis combining pQTL and eQTL data.

However, no statistically significant causal relationships (p_SMR

< 0.05, p_SMR_multi < 0.05, and p_HEIDI > 0.05) were identified
Frontiers in Immunology 07
between gene expression levels and downstream protein abundance.

Therefore, no eQTL–pQTL SMR analysis was pursued further. The

distribution of pQTL–RA associations across chromosomes is

displayed in Figure 5, highlighting the genomic locations of key

proteins (e.g., TYRO3, PGP, MDK) that reached nominal

significance (p_SMR_multi < 0.05), although not validated at the

multi-omics integration level.
Multi-omics integration and chromosomal
distribution of candidate glycolytic genes
associated with RA

To identify glycolysis-related candidate genes supported by

convergent evidence across molecular layers, we integrated

summary data from mQTL, eQTL, and RA GWAS using SMR

analysis (Figures 6a, b). Seven genes—ALAS1, ALDH7A1, LRFN3,

PFKFB2, PKD1, PYGB, and SLC2A4—demonstrated significant

associations across at least two omics layers and mapped to distinct

genomic loci. These results revealed directionally consistent

associations between mQTL and eQTL signals, with partial

protein-level trends reinforcing biological plausibility. Notably,

cg07036112 (PKD1) and cg06891043 (SLC2A4) exhibited suggestive

colocalization evidence with RA signals (PP.H4 > 0.5 and PP.H3 <

0.5), indicating potential shared causal variants. For instance, lower

methylation at cg07036112 was associated with elevated PKD1
FIGURE 4

Associations between glycolysis-related protein abundance and RA risk (blood pQTL; FinnGen R12 RA GWAS). Forest plot of nine proteins identified
by pQTL–GWAS SMR; ORs and 95% CIs are shown.
FIGURE 3

Associations between expression of glycolysis-related genes and RA risk (blood cis-eQTLGen; FinnGen R12 RA GWAS). Forest plot of 11 genes
meeting SMR/HEIDI criteria; ORs and 95% CIs are shown, with colocalization support indicated (PP.H4 > 0.5).
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expression, consequently increasing RA risk (OR = 0.68, 95%

CI 0.59–0.78), suggesting an epigenetically mediated activation

mechanism. Similarly, for ALAS1 and ALDH7A1, hypomethylation

correlated with upregulated gene expression, with ALAS1 (OR = 0.72,

95% CI 0.65–0.80) and ALDH7A1 (OR = 0.35, 95% CI 0.27–0.46)

showing significant associations with RA.
Colocalization and SMR effect size analyses
of PKD1 and SLC2A4

SMR analyses were performed to assess the association between

RA GWAS signals and genetically regulated expression and

methylation levels of glycolysis-related genes. Two genes, PKD1

and SLC2A4, showed statistically significant results in both eQTL-

and mQTL-based SMR tests. In Figure 7, PKD1 (chromosome 16)
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demonstrated significant colocalization between RA-associated

variants and both eQTL (ENSG00000008710) and mQTL

(cg07036112) signals (Figures 7a, b). Similarly, SLC2A4

(chromosome 17) showed consistent results for eQTL

(ENSG00000181856) and mQTL (cg06891043) loci (Figures 7c, d).

All loci passed the HEIDI test (P > 0.05), and SMRmulti-test P-values

for each gene were below 0.05. To further evaluate the relationship

between QTL effect sizes and RA association signals, SMR EffectPlot

analyses were conducted. As shown in Figure 8, the effect sizes of top

cis-mQTLs and eQTLs for both PKD1 (Figure 8a) and SLC2A4

(Figure 8b) exhibited linear trends with corresponding GWAS effect

sizes. For PKD1, the mQTL probe cg07036112 and the eQTL

transcript ENSG00000008710 showed p_SMR_multi values of

0.04058 and 0.01707, respectively. For SLC2A4, cg06891043 and

ENSG00000181856 had p_SMR_multi values of 0.00088 and

0.00577, respectively. Top associated SNPs with high linkage
FIGURE 5

Manhattan plot of pQTL–GWAS SMR results for RA (blood pQTL; FinnGen R12 RA GWAS). Proteins meeting the SMR multi-test threshold are labeled.
TABLE 3 mQTL - eQTL SMR analysis results: potential regulatory relationships.

Expo ID Outco Gene p_SMR p_SMR_multi p HEIDI OR SMR (95% CI)

cg13241645 ALAS1 3.39E-09 3.39E-09 8.15E-01 0.72(0.65-0.8)

cg22547559 ALDH7A1 9.51E-15 9.51E-15 5.98E-01 0.35(0.27-0.46)

cg15658249 LRFN3 6.74E-08 6.74E-08 4.06E-01 2.9(1.97-4.26)

cg01380361 PFKFB2 8.85E-06 8.85E-06 2.24E-01 1.33(1.17-1.51)

cg07036112 PKD1 2.24E-08 2.24E-08 7.43E-02 0.68(0.59-0.78)

cg02174639 PYGB 1.51E-10 1.51E-10 6.98E-01 0.03(0.01-0.08)

cg02738255 PYGB 5.51E-11 5.51E-11 1.43E-01 0.03(0.01-0.09)

cg04267284 PYGB 7.57E-10 7.57E-10 8.67E-01 0.02(0.01-0.08)

cg04348305 PYGB 5.35E-09 5.35E-09 4.10E-01 0.03(0.01-0.09)

cg06421707 PYGB 2.87E-08 2.87E-08 6.92E-01 65.29(14.92-285.66)

cg07328115 PYGB 2.91E-17 2.91E-17 3.73E-01 0.07(0.04-0.13)

cg06891043 SLC2A4 1.50E-05 4.11E-04 7.54E-02 0.92(0.89-0.96)
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disequilibrium (r²) were consistently aligned across datasets. These

findings indicated alignment of genetic association signals at both

epigenetic and transcriptional levels for PKD1 and SLC2A4 with RA

susceptibility loci.
Whole-blood PKD1 and SLC2A4 mRNA
expression in RA versus healthy controls

In the independent whole-blood validation cohort, qPCR

analysis demonstrated that both PKD1 and SLC2A4 mRNA levels

were significantly elevated in RA patients compared with healthy

controls (HC) (Figure 9). Relative expression was quantified as

2−DCt values normalized to ACTB (b-actin). For PKD1, the mean

relative expression was 1.47 ± 0.10 in RA compared with 1.34 ± 0.18

in HC (P = 0.0007). For SLC2A4, the mean relative expression was

2.12 ± 0.20 in RA compared with 1.38 ± 0.16 in HC (P < 0.0001).
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Discussion

In this study, we conducted a comprehensive multi-omics MR

analysis integrating GWAS with mQTLs, eQTLs, and pQTLs to

identify glycolysis-related genes causally associated with RA. Our

results revealed significant associations for 129 CpG sites, 28

transcripts, and 9 proteins with RA risk. Among these, 40 CpG

sites, 11 transcripts, and 3 proteins showed robust colocalization.

Notably, PKD1 and SLC2A4 demonstrated consistent multi-layer

associations, supported by replication in independent RA cohorts.

Additionally, integrative SMR between mQTLs and eQTLs

identified potential epigenetic regulation of glycolysis-related

targets, including PYGB, PFKFB2, and ALAS1. These findings

support a causal chain from genetic variation through epigenetic

regulation and transcriptional alterations to RA susceptibility,

strengthening mechanistic links between glycolysis-related

regulation and RA.
FIGURE 6

Manhattan plots of QTL–GWAS SMR results for RA (FinnGen R12 RA GWAS). (a) whole-blood mQTL; (b) blood cis-eQTL. Key loci (e.g., PKD1 and
SLC2A4) are labeled.
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Notably, several loci contained multiple associated CpG sites

within the same gene (e.g., PYGB), and in some cases CpGs within

one gene showed opposing directions of association (e.g., JOSD1).

Such convergent signals may reflect coordinated, biologically

meaningful regional regulation (e.g., promoter/enhancer

methylation changes acting in concert to influence transcription).
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Alternatively, multiple CpG ‘hits’ can arise from correlated

methylation structure and linkage disequilibrium at a locus,

where nearby probes share the same underlying genetic signal

rather than representing independent functional effects.

Accordingly, we interpret multi-CpG patterns as supportive of

locus involvement but avoid assuming that each CpG has an

independent causal role; targeted experimental dissection (e.g.,

site-specific epigenetic editing) will be needed to resolve CpG-

level functionality.

PKD1 emerged as a prominent candidate gene potentially

implicated in RA pathogenesis. PKD1 encodes polycystin-1,

involved in key inflammatory signaling pathways such as

VEGFR2 and NF-kB activation (21, 22). Recent evidence

highlighted PKD1’s role in RA synovial inflammation through

promoting fibroblast migration and vascular permeability (23).

Consistent experimental findings demonstrated that PKD1

knockdown attenuated arthritis severity, further suggesting its

pathogenic relevance (24). Interestingly, in cancer studies, PKD1

acts as a tumor suppressor, underscoring its complex context-

dependent functions (25). Our SMR analysis revealed a significant

causal association between the PKD1 gene and RA risk. Specifically,

the methylation site cg07036112 within PKD1 exhibited significant

negative regulatory effects in mQTL-eQTL analysis, with

methylation levels inversely correlated with PKD1 expression.

This negative regulation potentially leads to elevated PKD1

expression, thereby increasing RA susceptibility. Supporting these

findings, whole-blood qPCR in an independent cohort

demonstrated higher PKD1 mRNA expression in RA patients

than in healthy controls, reinforcing its potential as a

circulating biomarker.

SLC2A4, encoding the insulin-regulated glucose transporter

GLUT4, is classically recognized for its role in metabolic tissues

(26). Our MR analysis provided strong evidence linking genetic

variants influencing hypomethylation at cg06891043 with increased

SLC2A4 expression, consequently increasing RA risk. This finding

supports a pathogenic role, where elevated SLC2A4 expression

contributes to enhanced glycolytic flux may contribute to

increased glucose uptake capacity in RA-relevant immune and

stromal pathways, potentially exacerbating inflammation and

invasiveness (27, 28). Furthermore, structural and docking studies

in oncology contexts indicated that modulation of SLC2A4 might

influence glycolytic adaptation and cell survival under

inflammatory conditions (29), highlighting its relevance to RA

pathology. Therapeutically, interventions targeting GLUT4

expression or its regulatory mechanisms may offer promising

strategies to mitigate the metabolic dysfunction underlying RA.

Consistent with our genetic and epigenetic results, our whole-blood

qPCR validation confirmed increased SLC2A4 mRNA expression in

RA patients compared with healthy controls, in line with the

direction of effect inferred from the multi-layer MR and

QTL analyses.

This whole-blood qPCR validation provides a conceptually

aligned translational bridge to our blood-derived mQTL/eQTL

evidence by confirming that PKD1 and SLC2A4 transcripts are

increased in RA blood. Nevertheless, because this validation is
FIGURE 7

Regional association and colocalization plots for PKD1 and SLC2A4
(blood mQTL/eQTL and FinnGen R12 RA GWAS). (a, b) PKD1; (c, d)
SLC2A4. Evidence of shared causal variants is indicated by PP.H4 > 0.5.
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FIGURE 8

SMR EffectPlot analysis for PKD1 and SLC2A4 (blood mQTL/eQTL and FinnGen R12 RA GWAS). Scatter plots show consistency between QTL effect
sizes and RA GWAS effect sizes for methylation and expression. (a) PKD1: blood mQTL (left) and eQTL (right). (b) SLC2A4: blood mQTL (left) and
eQTL (right).
FIGURE 9

Whole-blood PKD1 and SLC2A4 mRNA expression in RA and healthy controls. Relative expression (2−DCt, ACTB-normalized) in RA (n = 30) and
healthy controls (n = 30); data are mean ± SD; two-tailed unpaired t-tests.
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cross-sectional and not genotype-stratified, it does not by itself

establish that the observed expression differences are genetically

mediated in the same individuals, nor does it resolve cell-type

specificity. Future studies integrating paired genotyping with

leukocyte subset–resolved transcriptomics and RA-relevant tissues

(e.g., synovium) will be valuable to further connect the QTL layer to

disease biology.

Other glycolysis-related genes, including PFKFB2, PYGB, and

ALAS1, emerged with significant associations. Epigenetic regulation

at the PFKFB2 locus suggests modulation of macrophage glycolysis

and inflammation resolution mechanisms (30, 31). Similarly, PYGB

expression, driven by genetic variation, might sustain cellular

energy supply and inflammatory cell survival, paralleling roles

previously described in cancer metabolism (32, 33). ALAS1,

identified via mQTL-eQTL integration, potentially links

mitochondrial heme biosynthesis with autophagic and AMPK

signaling pathways essential for cellular survival under

inflammatory stress (34). Together, these genes highlight

glycolytic pathway complexity in RA, each offering mechanistic

insights and therapeutic opportunities.

Functionally, the prioritized genes map onto distinct functional

modules of glycolysis-related biology in RA. SLC2A4 (GLUT4)

supports glucose uptake, PFKFB2 regulates a key rate-controlling

step of glycolytic flux via fructose-2,6-bisphosphate, and PYGB

enables glycogen mobilization to supply glycolytic substrates.

Together, these findings are consistent with a disease-relevant

shift toward increased glucose utilization observed in activated

immune cells and pathogenic stromal populations in RA.

Although not all highlighted targets are core glycolytic enzymes

(e.g., PKD1 may influence metabolic programs via inflammatory

signaling), the convergent genetic/QTL evidence supports

dysregulated glucose metabolism as an integrated component of

RA immunometabolism.

Our study systematically applied multi-omics MR integration,

identifying molecular signatures across methylation, expression,

and protein levels, surpassing single-layer analyses. Integration of

GWAS with mQTL, eQTL, and pQTL datasets prioritized key

glycolytic genes including PKD1, SLC2A4, PFKFB2, PYGB, and

ALAS1, supported by robust SMR and colocalization analyses (11,

35). This comprehensive approach provided insights into

methylation–expression and expression–protein regulatory

cascades, exemplifying the methodological strength and

robustness of the findings.

Despite the overall consistency of PKD1 and SLC2A4 signals,

several other loci identified in FinnGen could not be replicated in

the UKB or GCST90129453 RA cohorts. This lack of replication is

likely multifactorial. Differences in sample source and collection

(e.g. population-based volunteer cohort in UKB vs. health registry-

based cohort in FinnGen) and cohort size/power (FinnGen’s >16k

RA cases vs. UKB’s ~4.4k) may contribute to diminished signal

detection in validation sets. It is also possible that varying

phenotype definitions and subtle population genetic differences

between cohorts affected the reproducibility of certain

associations. We have thus interpreted non-validated loci with

caution, recognizing that limited power or heterogeneity across
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cohorts could explain their absence of replication. This explicit

consideration of cross-cohort differences highlights the robustness

of the PKD1 and SLC2A4 findings while acknowledging the

limitations and context for loci that did not replicate.

Several limitations should be considered. Firstly, our analyses

primarily relied on European-derived QTL and GWAS datasets,

potentially limiting generalizability to other populations. Secondly,

although rigorous methods minimized pleiotropy, residual

horizontal pleiotropy in summary-level data cannot be excluded.

Thirdly, using blood-derived QTL data may inadequately represent

synovial-specific regulatory events. Future tissue-specific and

single-cell omics studies are needed. Lastly, our whole-blood

qPCR validation was based on a relatively modest sample size,

which may limit the precision of the effect estimates and warrants

confirmation in larger, independent cohorts. Further validation

through diverse populations and functional experiments

remains necessary.

In conclusion, this integrative multi-omics MR analysis

identifies PKD1, SLC2A4, and additional glycolysis-related genes

as putative causal regulators of rheumatoid arthritis. By linking

genetic variation to epigenetic and transcriptional changes

associated with RA risk, these findings clarify mechanisms of

metabolic reprogramming and nominate candidates for

biomarker development and metabolism-targeted therapy,

including potential repurposing of modulators of PKD1 or

GLUT4. Looking forward, longitudinal cohorts, multimodal

omics, and artificial intelligence/machine learning (AI/ML)–

enabled analytics may refine causal inference, improve patient

stratification, and accelerate precision medicine in RA.
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