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Introduction: Spinal cord injury (SCI) is a traumatic injury resulting in significant life-

changing disability. Elucidating the molecular processes associated with SCI may

help to design novel therapeutics targeted at improving patient outcomes. Current

pharmacological candidates include histone deacetylase (HDAC) inhibitors, whose

anti-inflammatory properties are postulated to be of value in SCI. The objective was

to synthesise the impact of HDAC inhibitors on neurobehavioural outcomes in

preclinical studies of traumatic and non-traumatic SCI and to evaluate the suitability

of HDAC inhibitors for clinical trials in patients with SCI.

Methods: The review was prospectively registered with PROSPERO

(CRD42023477882) and conducted following PRISMA 2020 guidelines.

MEDLINE and Embase were searched. Studies of animal models of traumatic

or non-traumatic SCI evaluating the effect of HDAC inhibition on

neurobehavioural outcomes were eligible for inclusion. Risk of bias was

assessed using the SYRCLE checklist. Screening, data-extraction and risk of

bias assessments were completed in duplicate.

Results: Of 10,549 studies identified, 42 studies met inclusion criteria. Animal

models were rats (n=28), mice (n=13) and rabbits (n=1). SCI models included spinal

cord contusion (n=24), epidural compression (n=2), vascular clip compression

(n=6), hemisection (n=5), ischaemia/reperfusion injury (n=4) and dorsolateral

funiculus crush (n=1). Valproate was the most frequently studied HDAC inhibitor

(n=20), followed by 4-phenylbutyrate (4-PBA; n=7) and RGFP966 (n=3).

Trichostatin A, tubastatin A, entinostat, PCI-34051, scriptaid, CI-994, TMP269,

vorinostat, 3-TYP, SW-100 and ACY1215 were each evaluated in a single study.

Three studies used the sirtuin-1 (HDAC class III) inhibitor EX527 administered with

an activator molecule: melatonin (n=1), MLN4924 (n=1) and oxymatrine (n=1).

Locomotor function was assessed in 98% (41/42) of studies, with improvement in

locomotor outcome reported in 73% (30/41). Pain and anxiety were evaluated in

one study, in which significant improvement was demonstrated.

Conclusion: HDAC inhibitors are associated with functional motor recovery and

improved anxiety and pain scores in preclinical models of SCI. However, the
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results should be interpreted with caution as risk of bias of included studies was

unclear. These results support further investigation of HDAC inhibitors in

preclinical studies before translation into clinical trials.

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/,

identifier CRD42023477882.
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Introduction

Spinal cord injury (SCI) is a significant public health problem

with an estimated 20.6 million individuals affected worldwide and a

global incidence of approximately 0.9 million cases each year (1).

Currently available treatments have limited efficacy and aim to

optimise quality of life rather than reverse the injury (2, 3).

Following the acute management phase, care focuses on

avoidance of complications and on rehabilitation. This continues

for many years after the initial injury. There is therefore an unmet

need for better treatments for SCI.

Pathophysiological classifications divide SCI into primary,

secondary and chronic phases. Primary injury results from

mechanical damage from the initial impact force; secondary injury

follows and is divided into acute and subacute phases. The acute phase

includes pro-apoptotic signalling leading to cellular dysfunction, death

and increased inflammatory cytokine signalling, including tumour

necrosis factor alpha (TNFa) and interleukin-1 beta (IL-1b). This
promotes macrophage, neutrophil and lymphocyte recruitment,

potentiating the inflammatory response. In the subacute phase, cell

death follows intracellular Ca2+ dysregulation, glutamate excitotoxicity

and free radical release, which hinder neuronal regeneration. Cellular

processes in the secondary phase of SCI constitute potential targets for

histone deacetylase (HDAC) inhibition (2, 4–6).

HDACs are enzymes that catalyse the removal of acetyl groups

from lysine residues of histone and non-histone proteins (7). Removal

of acetyl groups from N-terminal tails of histone proteins leads to a

more condensed chromatin structure and decreased gene expression

(8). HDACs can be divided into four classes (I, II, III, IV) (9–11).

Many HDAC inhibitors are pan-inhibitors that target multiple

HDACs in class I and II, such as trichostatin A, vorinostat and

valproate. More selective HDAC inhibitors include class I inhibitors

romidepsin, RGFP966 and entinostat and class III (sirtuin) inhibitors

sirtinol, AK-7, splitomicin and nicotinamide (12). Moreover, there are

inhibitors that are highly selective for specific HDACs, for example

HDAC6-selective inhibitors SW-100 and tubastatin A.

Multiple studies have demonstrated the potential of HDAC

inhibitors to interact with molecular pathways important in the

mechanisms of SCI (6, 13–17). For example, increased HDAC

activity has been detected in nuclear extracts from peripheral blood
02
mononuclear cells after SCI (13) and the neuroprotective properties

of HDAC inhibitors have been demonstrated in a mouse model of

traumatic brain injury, with increased preservation of myelinated

axons and improved neuronal conduction (17). Moreover, in

lipopolysaccharide-stimulated macrophages, trichostatin A has been

found to reduce the expression of pro-inflammatory cytokines IL-6,

TNF-a and IL-1b and increase expression of the immunosuppressive

cytokine IL-10 (14). The anti-inflammatory and neuroprotective

effects of pan-HDAC inhibitors such as trichostatin A, givinostat,

and scriptaid have also been demonstrated across in vitro, animal and

human studies (6, 14–16).

HDAC inhibitors therefore appear to be promising candidates

for adjuvant treatment in SCI. The aim of this systematic review was

to study the impact of HDAC inhibitors on neurobehavioural

outcomes in preclinical studies of traumatic and non-traumatic

SCI and assess potential suitability for clinical trials in SCI patients.
Methods

Study design

The systematic review was prospectively registered with

PROSPERO (CRD42023477882) and conducted adhering to

Preferred Reporting Items for Systematic Reviews and Meta-

Analysis (PRISMA 2020) guidelines (18).

Eligibility criteria
Inclusion criteria
• Animal study

• English language

• Spinal cord injury

• Use of any HDAC inhibitor

• Assessment of any neurobehavioural outcome
Exclusion criteria
• Review or meta-analysis

• Editorial

• Letter
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Fron
• Correction

• Conference abstract

• Full text unavailable
Additional details on the inclusion/exclusion criteria are

presented in Supplementary Table 1.
Information sources

MEDLINE and Embase were searched from inception to 14th

April 2025. MEDLINE and Embase searches were performed using

the Ovid platform (Ovid Technologies, New York, USA).
Search strategy

Initial scoping searches were performed to refine the review

question. The final search strategy was developed over several

iterations to maximise the sensitivity (Supplementary Table 2).

Search sensitivity was assessed using a list of eight articles known

to meet inclusion criteria, with all studies successfully captured.
Selection process

Deduplication was performed using EndNote 21.5 (Clarivate,

Philadelphia, United States). Before title and abstract screening,

pilot screening of 100 studies was conducted to ensure concordance

between screeners. Title and abstract screening was completed by

two blinded researchers (NJ, CC) using Rayyan (Rayyan Systems,

Cambridge, United States). Disagreements were resolved by

discussion. Full text screening was conducted in duplicate by two

blinded researchers (NJ, CC). Reasons for exclusions of full-texts are

presented in Supplementary Table 3.
Data collection

Data extraction was performed in duplicate by two authors (NJ

and CC) in Excel (Microsoft, Washington, United States) using a

piloted extraction table.
Data items

Extracted data points included: author, year, study location,

study characteristics, sample characteristics, injury model,

intervention, neurobehavioural outcomes, time of assessment,

relevant statistical analysis and key findings (Supplementary

Table 4). We included studies that assessed neurobehavioural

outcomes, which are defined as outcomes assessing motor and/or

sensory function. Neurobehavioural outcomes of interest included,
tiers in Immunology 03
but were not limited to, locomotor function measured using the

Basso, Beattie and Bresnahan (BBB) locomotor scale or the Basso

Mouse Scale (BMS), forelimb grip strength and assessments of pain

and anxiety. We excluded studies which exclusively assessed non-

neurobehavioural outcomes such as electrophysiological measures,

autonomic function and histological analysis.
Risk of bias assessment

To assess the risk of bias of included studies, the Systematic

Review Centre for Laboratory Animal Experimentation (SYRCLE)

checklist was used (19). The assessment was conducted in duplicate

by two blinded and independent researchers (Supplementary

Table 5). All disagreements were resolved through discussion.
Synthesis methods

Meta-analysiswasnot feasibledue to theheterogeneity inSCImodel

design, HDAC therapy administration and outcome measurements.

Therefore, a narrative synthesis following the Synthesis Without Meta-

analysis (SWiM) reporting guidelines was conducted (20). The SWiM

checklist is provided in Supplementary Table 6.

Neurobehavioural outcomes were grouped into locomotor, pain

and anxiety. For each included study, the differences between the

intervention and control group were reported, including statistical

tests where available. Due to the diversity of data, the results were

transformed into a standardised metric of direction of effect

(improvement/deterioration/no effect or conflicting findings)

presented in the form of a table and harvest plots (21–23).
Results

Study selection

A total of 10,549 records were identified from database

searching; 42 studies were included in the final review (Figure 1).
Study characteristics

The majority of studies (67%, 28/42) used rat models of SCI (6,

24–50) with Sprague-Dawley rats being most frequently used

(Figure 2 (24–33, 37, 40–49);. Male animals were used in 50%

(21/42) of studies (6, 25, 27, 31, 33, 38–43, 45, 47, 48, 50–56), female

animals in 40% (17/42) of studies (24, 26, 28, 29, 32, 34–37, 44, 46,

49, 57–61) and 10% (4/42) of studies did not report the sex of

animals used (30, 62–64). Most studies (76%, 32/42) reported the

age of animals used (6, 25, 28, 29, 31–33, 36–38, 40–47, 49–59, 61,

63, 64). The majority (81%, 34/42) of studies investigated SCI at the

thoracic level (6, 25–32, 34, 35, 37, 38, 40–46, 49–59, 61, 62, 64).
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A total of 15 different HDAC inhibitors were used, with

valproate (VPA) the most commonly evaluated (48%, 20/42) (6,

24, 26, 28, 30–32, 34–42, 45, 50, 51, 57). The time of first

administration varied from immediately from before SCI (33, 47,

58, 60), to immediately after SCI (28–31, 35, 38, 44, 46, 54) to seven

days later (51). Dose, duration of administration and total duration

of treatment varied between studies (Supplementary Table 4).
Neurobehavioural outcome assessment

A variety of neurobehavioural outcome measures were used

(Supplementary Table 7). Locomotor function was evaluated in 41
Frontiers in Immunology 04
(98%, 41/42) studies; pain and anxiety were evaluated in one (2%, 1/

42) study (56).

Thirteen different scoring systems of locomotor function were

used (Figure 2). The Basso, Beattie, Bresnahan (BBB) locomotor

score was employed in 29 (69%, 29/42) studies (6, 24–47, 49–51, 54)

and the Basso Mouse Scale (BMS) was used in 9 (21%, 9/42) studies

(52, 53, 55, 57–59, 61, 62, 64).

Assessmentsofpainweremadeusing thevonFreyhairs test (56)and

the thermal paw withdrawal latency test (56). Four tests of anxiety were

used: the elevatedplusmaze test (56), the novelty suppressed feeding test

(56), the forced swimming test (56) and the openfield test (56). The time

of neurobehavioural outcome assessment ranged from 15 minutes (56)

to 13 weeks after administration of an HDAC inhibitor (51).
FIGURE 1

PRISMA flow diagram of study selection (73). After deduplication, 1412 duplicates were removed, leaving 9137 unique studies. Following title and
abstract screening, 8996 studies were removed. The remaining 139 studies were included in full text screening. Full texts were not available for 6
studies. A further 91 studies that did not meet eligibility criteria were excluded.
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Effect of HDAC inhibition on locomotor
function

Improvement in locomotor function was observed in studies

using BBB, BMS, footprint analysis, grid walk test, grip strength,

inclined plane test, narrow beam test, Tarlov score, Toyama mouse

score (TMS) and grooming test (Figure 3).

Locomotor function was assessed in six different SCI models

(Supplementary Table 8). Most studies used the contusion model of

traumatic SCI (57%, 24/42; Figure 2). Improvement in locomotor

outcomes appeared most consistent amongst studies using the

compression (88%, 7/8) and contusion SCI models (78%, 18/23;

Figure 4, Table 1). Studies using ischaemia/reperfusion injury

models also predominantly reported improvement in locomotor

outcomes (75%, 3/4). On the contrary, spinal cord hemisection

studies predominantly reported no effect of HDAC inhibition on

neurobehavioural outcomes.

When grouped by HDAC inhibitor class, most studies evaluated

pan-HDAC (valproate, 4-PBA, trichostatin A, scriptaid) and class I

HDAC inhibitors (RGFP966, entinostat, PCI-34051, CI-994). The

most consistent improvement in neurobehavioural outcomes was

demonstrated for class IIb HDAC inhibitors (tubastatin A, SW-100,

ACY1215; 100%, 3/3), followed by pan-HDAC inhibitors (79%, 23/29)
Frontiers in Immunology 05
and class I HDAC inhibitors (67%, 4/6; Table 2). Moreover, when

grouped by HDAC inhibitor used, improvement in locomotor

function was seen in studies using 4-PBA, VPA, RGFP966, CI-994,

SW-100, entinostat, tubastatin A and ACY1215 (Figure 5).
Valproate

Administration of VPA was associated with improved

neurobehavioural outcomes in 80% (16/20) of studies (6, 24, 26,

28, 30–32, 34–37, 39–42, 45). However, four studies reported no

significant difference in functional outcomes between treatment and

control groups at any time point (38, 50, 51, 57).

Abetmatsu et al. (2010) assessed VPA treatment alone and in

combination with a neural stem cell transplant and identified

conflicting findings (51). Mice that received neural stem cell

treatment alone and those that received it in combination with

VPA showed significant improvement in locomotor function

compared to untreated SCI mice (51). However, mice treated with

VPA alone showed no improvement in locomotor function (BBB

score) compared to untreated SCI mice. Conflicting results were also

seen when assessing the combinatorial efficacy of VPA delivered on

chitosan nanoparticles compared to VPA administered alone. In one
FIGURE 2

Of 42 included studies, 28 (67%) used rat models (6, 24–47), 13 (31%) used mice (51–59, 61–64) and 1 (2%) study used Japanese white rabbits (60).
(A) Animal model. (B) Sex. (C) Age. (D) Level of spinal cord injury. (E) HDAC inhibitor used. (F) Mode of HDAC inhibitor administration. (G) Locomotor
function test. (H) SCI model.
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study, after treatment with VPA on chitosan nanoparticles, BBB

scores were significantly improved (40). However, VPA or chitosan

nanoparticle treatment alone resulted in no improvement in BBB

score at any time point assessed (40). In the second study, BBB scores

were significantly increased in the VPA and chitosan nanoparticles

group and in the VPA-only group (41).
4-phenylbutyrate

Improvement in neurobehavioural outcomes was observed in

all seven studies using 4-PBA (29, 33, 43, 44, 48, 53, 60). For

example, 4-PBA treatment was associated with significantly

improved locomotor function (BBB score) in rats after ischaemia/

reperfusion SCI both alone and when used simultaneously with

xenon postconditioning (33). Moreover, Zhou et al. (2016) reported

4-PBA treatment administered immediately after SCI followed by

daily administration for two weeks significantly improved BBB

score 6–14 days after injury in rats following vascular clip

compression SCI (44). Furthermore, Lanza et al. (2019) reported

a significant improvement in BMS score in mice treated with 4-PBA

following SCI (53). Additionally, He et al. (2017) demonstrated the

maximum angle at which an animal can maintain its grip on an

inclined plane was significantly increased in diabetic rats with SCI

who were treated with 4-PBA (29).
Class I HDAC inhibitors (RGFP966,
entinostat, CI-994, PCI-34051)

RGFP966 was used in three studies with two (67%)

demonstrating improvement in locomotor scores including BBB,
Frontiers in Immunology 06
BMS and TMS following contusional SCI in mice and rats

compared to untreated SCI animals (25, 59). Another study by

Sanchez et al. (2018) used a hemisection SCI model and showed no

difference in hindlimb movements (BMS scores) between mice

treated with RGFP966 and the untreated SCI group (61).

One study of entinostat demonstrated improvement in

locomotor function assessed using BMS score and forelimb grip

strength in mice following a compression SCI (52). Another study

in which CI-994 was administered once daily for 14 days after

induction of a dorsal hemisection SCI demonstrated overall

improvement in several measures of locomotor function

including BMS score, narrow beam walk test, horizontal grid walk

test and ladder walk test in treated mice (64).

In contrast, Hendrix et al. (2020) administered PCI-34051 to

mice following spinal cord hemisection and found no effect of

treatment on locomotor recovery assessed using the BMS

score (57).
Class IIb inhibitors (tubastatin A, SW-100,
ACY1215)

Zheng et al. (2020) demonstrated improvement in BMS score

and footprint patterns in mice treated with tubastatin A compared

to untreated mice, suggesting improvement in hindlimb weakness

after SCI at 28 days after injury (55). Another study evaluating SW-

100 demonstrated improved locomotor function (BMS score) after

administration of SW-100 alongside miR-34a-5p inhibitor

delivered in exosomes following a contusion SCI (62). A study by

Dai et al. (2024) found that treatment with ACY1215 led to

significant improvement in locomotor scores (BBB) in SCI rats

compared to untreated SCI rats (49).
FIGURE 3

Effect of HDAC inhibition on locomotor function grouped by locomotor outcome. Adapted from Bhatti et al. (2021) (22).
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Class III inhibitors (EX527, 3-TYP)

All studies using EX527 used a sirtuin activator compound to

investigate whether activation of the sirtuin pathway may have

beneficial effects in improving the locomotor function following SCI.

In all three studies, addition of EX527 which is a sirtuin 1 inhibitor led

to reduction in BBB scores reflecting poorer motor function compared

to the SCI + sirtuin activator alone group (27, 46, 47).

In a study assessing 3-TYP in mice, BMS score in the treated

group was not significantly different from that of the untreated-SCI

mice (58).
Frontiers in Immunology 07
Other HDAC inhibitors (trichostatin A,
scriptaid, TMP269)

Trichostatin A (class I and II HDAC inhibitor) treatment was

associated with age-dependent opposite effects in mice after SCI: in

older animals it was associated with significantly higher foot slip

cumulative error score in a horizontal ladder test corresponding to

poor locomotor function, whilst the opposite was observed in young

mice (63).

Studies using scriptaid (class I and IIb HDAC inhibitor) in mice

following hemisection SCI demonstrated no difference in functional
FIGURE 4

Effect of HDAC inhibition on locomotor function grouped by SCI model type.
TABLE 1 Summary of locomotor outcomes in included studies by SCI
model.

SCI model
Number of
studies

Effect
direction

Contusion 23
Improvement: 18
No effect: 4
Deterioration: 1

Compression 8
Improvement: 7
No effect: 1
Deterioration: 0

Ischaemia/Reperfusion
injury

4
Improvement: 3
No effect: 0
Deterioration: 1

Spinal cord hemisection 5
Improvement: 2
No effect: 3
Deterioration: 0

Dorsolateral funiculus
crush

1
Improvement: 0
No effect: 1
Deterioration: 0
TABLE 2 Summary of locomotor outcomes in included studies by HDAC
class. No class IV-selective HDAC inhibitors were used in the included
studies.

HDAC inhibitor
class

Number of
studies

Effect
direction

Class I 6
Improvement: 4
No effect: 2
Deterioration: 0

Class IIa 1
Improvement: 0
No effect: 0
Deterioration: 1

Class IIb 3
Improvement: 3
No effect: 0
Deterioration: 0

Class III 4
Improvement: 0
No effect: 3
Deterioration: 1

Pan-HDAC inhibitors* 29
Improvement: 23
No effect: 6
Deterioration: 0
*Pan-HDAC inhibitors: inhibit more than one class of HDACs: valproate (class I and IIa),
trichostatin A (class I and II), scriptaid (class I and IIb).
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outcomes between treated and control groups (61). However, one

study of mice treated with TMP269 (class IIa HDAC inhibitor)

showed reduced hindlimb movement compared with vehicle-

treated group that was maintained for up to 6 weeks after

injury (54).
Effect of HDAC inhibition on pain and
anxiety

One study assessed the effects of vorinostat on pain and anxiety

following contusion SCI. It used two outcome measures for pain:

the von Frey filament test and the thermal paw withdrawal latency

test and four outcome measures for anxiety: the elevated plus maze

test, the novelty suppressed feeding test, the forced swimming test

and the open field test. Both tests for pain demonstrated significant

improvement after HDAC inhibitor treatment. In the assessment of

anxiety behaviours, none of the tests used reached statistical

significance but they all demonstrated direction of effect

favouring vorinostat treatment (56).
Risk of bias assessments

Only one (2%, 1/42) study adequately generated and applied the

allocation sequence. A total of 62% (26/42) of studies reported

baseline characteristics. The allocation sequence was adequately

concealed in 5% (2/42) of studies. None of the included studies

reported whether animals were randomly housed during the

experiment. One (2%, 1/42) study reported the investigators were

blinded. None of the studies reported if the animals were selected at

random for the outcome assessment. The outcome assessor was

blinded in 69% (29/42) of studies. Incomplete outcome data were
Frontiers in Immunology 08
adequately addressed in 74% (31/42) of studies. Selective outcome

reporting was noted in 12% (5/42) of studies. A total of 19% (8/42)

studies chose insufficient control groups which may have

contributed to selection bias. Overall, the risk of bias was

therefore unclear (Supplementary Table 5).
Discussion

Summary of main findings

The aim of this review was to synthesise the evidence on the

effect of HDAC inhibitors on neurobehavioural outcomes in

preclinical models of SCI. We found that the majority of class I,

class IIb and pan-HDAC inhibitors were associated with beneficial

effects on neurobehavioural outcomes in animal models of SCI. The

only exceptions were trichostatin A, scriptaid and PCI-34051 which

had unclear effect on locomotor function, and TMP269 which was

associated with poorer functional recovery after SCI. Class III

inhibitors appeared to have no effect or be associated with poorer

locomotor function following SCI.
Differences in HDAC inhibitor mechanisms
of action and heterogeneity in
neurobehavioural outcomes

Class I and IIb HDAC inhibitors appeared to exhibit the most

consistent neuroprotective effects following SCI. Their mechanisms

of action are similar and include reduction of inflammatory and

apoptotic signalling and promotion of autophagy through increased

microtubular transport and decreased neuronal endoplasmic

reticular stress at the site of SCI (Supplementary Table 10) 6, 36, 60).
FIGURE 5

Summary of effect of HDAC inhibition on locomotor function grouped by HDAC inhibitor assessed in each study. A more detailed summary table
grouped by HDAC inhibitor class can be found in the Supplementary Table 9.
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For example, Zheng et al. (2020) studied class IIb HDAC

inhibitors and found that HDAC6 expression increases at the SCI

site and is associated with impaired autophagy and increased

neuronal apoptosis. Inhibition of HDAC6 appears to increase

tubulin acetylation, supporting motor protein recruitment and

retrograde transport in neurones. This is particularly important

for autophagy (55), with failure associated with increased neuronal

apoptosis. Class IIb HDAC inhibitors may therefore promote

neuronal survival following SCI (65).

Class I HDAC inhibitors appear to have significant anti-

inflammatory effects. For example, HDAC3 was found to

significantly contribute to SCI pathogenesis, particularly through

its role in activation of the inflammatory response (6). Inhibiting

class I HDACs, especially HDAC3, was found to reduce microglial

activation and restrict production of pro-inflammatory cytokines

(TNF-a, IL-1b, IL-6) (6). An increase in sirtuin 1 expression is

associated with HDAC3 inhibition (25). This is consistent with the

findings from our review that inhibition of class III HDACs (of

which sirtuin 1 is an example) had either no effect or was associated

with poorer functional recovery following SCI (25, 66). Moreover,

Sanchez et al. (2018) demonstrated that HDAC3 inhibition

promotes a shift from the M1-like macrophage phenotype to

anti-inflammatory, pro-regenerative M2-like phenotype further

supporting the role of class I HDACs in inflammation following

SCI (61).

In addition, valproate, which predominantly inhibits class I

HDACs, has been associated with increased expression of BDNF

and GDNF neurotrophic factors in vitro , promoting

neuroregeneration and counterbalancing the inhibitory

environment for neuronal growth driven by Nogo-A (34, 67).

Therefore, HDAC3 (class I HDAC) and HDAC6 (class IIb

HDAC) appear particularly promising targets in the context of SCI

treatment and more studies of selective HDAC3 (e.g. RGFP966)

and HDAC6 (e.g. SW-100, ACY1215) inhibitors are needed to

elucidate their mechanism and efficacy in improving neurological

function following SCI.

Interestingly, HDAC5 inhibition seems to have an important

role in regulation of pain following SCI. The mechanism behind this

effect may be related to reduction in Nav1.7 channel expression

following targeted protein degradation (56). As Nav1.7 channels are

known to play an important role in nociception, HDAC5 inhibition

represents a promising research avenue, even beyond spinal cord

injury (56).

In contrast, class IIa HDAC inhibition (e.g. TMP269) appears to

promote inflammation at the injury site, an effect associated with a

shift in macrophage polarisation towards the M1-type (54). This

may explain why the HDAC inhibitors which target both class I and

class IIa/IIb HDACs (VPA, trichostatin A) do not always appear to

be associated with definitive or significant improvement in

functional outcomes following SCI in included studies.

Similarly to class IIa inhibition, class III HDAC inhibition

increases oxidative damage in neurones, promotes apoptosis and

reduces autophagy following SCI. However, activators of class III

HDACs (melatonin, MLN4924, oxymatrine) improve functional

outcomes following SCI (25, 27, 46, 47, 68).
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Opportunities for translational clinical trials

To date, no clinical trials assessing effects of HDAC inhibitors

on functional outcomes following SCI have been conducted. The

only clinical trial assessing an HDAC inhibitor in patients after SCI

was conducted by Drewes et al. (1994) and assessed the effects of

valproate treatment on chronic central pain after SCI (69).

Overall, class I and IIb HDAC inhibitors appear to have

beneficial effects on locomotor function, pain and anxiety after

SCI in animals suggesting that HDAC inhibition may have potential

to improve patient outcomes in clinical trials. The review identified

VPA and 4-PBA as having the most favourable neurobehavioural

outcomes amongst the reviewed studies with 80% of studies using

VPA and 100% of studies using 4-PBA reporting improvement in

neurobehavioural outcomes making them the best candidates for

further studies. However, due to the high heterogeneity and unclear

risk of bias observed in those studies, more preclinical evidence is

required. Additionally, it may be useful to assess the effects of other

FDA-approved HDAC inhibitors (Supplementary Table 11) on

neurobehavioural outcomes in animal models of SCI, given that

the toxicity profiles of these drugs are already well-understood,

which may simplify translation of preclinical evidence into future

clinical trials.
Limitations

Firstly, limited reporting, scored using the SYRCLE risk of bias

assessments, affects certainty about the quality of the results of

included studies. This limits certainty of conclusions. Selection bias,

performance bias and detection bias related questions, including

adequate generation of the allocation sequence, baseline

characteristics, blinding of caregivers and investigators and details

on housing of animals were poorly reported. Therefore, risk of bias

was unclear. Lack of adequate reporting appears to be an issue with

many preclinical studies and is thought to be related to a historical

lack of strict reporting requirements for animal studies. A

systematic review by Bhatti et al. (2021) advocated for the

widespread use of the Animal Research: Reporting of In Vivo

Experiments (ARRIVE) guidelines to improve the quality of

evidence from preclinical studies (22, 70).

In addition, the included studies are highly heterogenous. There

is significant variability in SCI models used, timing and route of

administration of HDAC inhibitors. There were also significant

differences in the severity and mechanism of SCI between models.

For example, it is recognised that in the contusion model there may

be axonal sparing, which can be falsely interpreted as neuronal

regeneration at the lesion site. On the other hand, hemisectional SCI

should not cause axonal sparing at the lesion site and any observed

regeneration can be more confidently attributed to effects of the

studied treatment (71).

The selectivity of HDAC inhibitors differs amongst the drugs

included in the review. The current evidence suggests that the main

HDACs that should be targeted in SCI are HDAC3 and HDAC6.

The most studied inhibitor in context of SCI was valproate. This
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targets both class I and class II HDACs, which may explain

contradictory results in some of the studies.

Furthermore, certain methods of HDAC inhibitor delivery may

be difficult to implement in the clinical environment. For example,

intrathecal delivery is technically challenging and carries higher

risks of infection and neurological toxicity compared to other

methods of administration (72).
Future directions

To generate more robust and translatable evidence, there is a

need for larger, well-reported preclinical studies of HDAC

inhibitors. Secondly, standardised SCI models for testing HDAC

inhibitors may help to alleviate heterogeneity observed within each

HDAC inhibitor group studied. Moreover, standardisation of the

dose, time and route of administration is also important. In

addition, there is a need for more mechanistic studies of HDAC3

and HDAC6 inhibitors which have significant potential for SCI

treatment and are limited by few studies of their neurobehavioural

effects and mechanism of action compared to 4-PBA and valproate.
Conclusion

Class I and class IIb HDAC inhibitors are associated with

functional locomotor recovery and improved pain and anxiety

scores in preclinical models of SCI. By contrast, class III HDAC

inhibitors and class IIa HDAC inhibitors are associated with either

no effect or deterioration in functional recovery after SCI. However,

due to unclear risk of bias in all included studies and high

heterogeneity amongst study characteristics, the results should be

interpreted with caution. Nevertheless, these findings may be

helpful in recognising promising targets for future translational

research, including HDAC3 and HDAC6.
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