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Gastric cancer (GC) is characterized by pronounced molecular and clinical
heterogeneity, creating major challenges for therapeutic decision-making.
Limitations in current molecular classification hinder the development of
personalized therapies, underscoring the need for improved diagnostic and
prognostic frameworks. we conducted an integrated multi-omics analysis of
bulk, single-cell, and spatial transcriptomic data to systematically characterize
three key programmed cell death pathways—pyroptosis, apoptosis, and
necroptosis (collectively abbreviated as PAN). A scoring-based clustering
framework integrating multiple machine learning algorithms was developed to
define high-resolution molecular subtypes and construct a deep learning
signature. A hybrid CNN+BIiLSTM model with cross-fusion attention was
applied for transcriptomic feature extraction and subtype classification,
achieving superior performance compared with existing approaches. Validation
in the TCGA cohort confirmed the robustness and biological relevance of our
model. Among the identified subtypes, Subtype 2 showed the most favorable
prognosis. We further established a nine-gene prognostic signature with strong
predictive value. High-risk patients exhibited poor survival, enhanced immune
infiltration, and potential sensitivity to AKT inhibitors, with several drugs, including
gefitinib and paclitaxel, identified as promising candidates. Experimental
validation was conducted using the Human Protein Atlas (HPA) and RT-gPCR
in clinical samples. CFLAR and TNFSF13B were upregulated and PDK4
downregulated in GC, while UACA showed no significant change. Additional
prognostic genes (DFFB, PSMB6, GLP1R, HDAC9, BACH?2) displayed expression
patterns largely consistent across HPA, TCGA, and RT-gPCR, with minor
discrepancies likely due to sample size. This study integrates multi-omics and
deep learning with experimental validation, providing insights into programmed
cell death regulation and offering robust biomarkers and therapeutic targets
for GC.
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1 Introduction

Gastric cancer remains a major contributor to cancer-related
deaths globally, with especially high incidence rates in East Asia (1, 2).
Despite ongoing improvements in clinical management, advanced
gastric cancer continues to be associated with a poor prognosis,
highlighting the urgent need to understand its underlying molecular
mechanisms (3). Gastric cancer exhibits remarkable biological
complexity characterized by sustained inflammatory signaling,
immune evasion, and metabolic reprogramming (4-6). These
factors contribute to tumor heterogeneity and therapeutic
resistance, necessitating a more precise stratification of patients and
personalized treatment strategies.

Recent research has spotlighted the role of programmed cell
death (PCD) pathways including PAN in shaping the tumor
immune microenvironment and modulating tumor progression (7,
8). Each PCD pathway contributes uniquely to immune surveillance
and inflammation. For example, pyroptosis triggers a potent
inflammatory response that may enhance tumor immunogenicity
(9), whereas necroptosis and apoptosis exert context-dependent
effects on tumor immunity (10). Moreover, increasing evidence
suggests that these PCD modes are not mutually exclusive but
instead interconnect through shared molecular components,
forming an intricate cell death regulatory network (11-13).

Despite growing interest in PAN, several critical knowledge
gaps remain, particularly in the context of gastric cancer. A major
limitation lies in the absence of comprehensive analyses that
integrate multiple layers of transcriptomic data, including bulk
RNA-seq, single-cell RNA-seq (scRNA-seq), and spatial
transcriptomics—to systematically dissect the molecular landscape
of PAN in gastric tumors (14-16). Most existing studies are
confined to single-omic platforms and thus fail to capture the
complex regulatory networks and cell-type-specific features
underlying. Furthermore, PAN-related prognostic signatures and
their associations with the tumor microenvironment (TME) have
not been fully elucidated (17), and clinically applicable risk models
are still lacking. These limitations hinder the translation of
mechanistic insights into practical tools for clinical decision-
making. Addressing these gaps requires a systems biology
framework that leverages high-throughput datasets and advanced
computational strategies to uncover robust biomarkers and
predictive models for gastric cancer.

To address these challenges, we employed a comprehensive multi-
omics strategy integrating machine learning and transcriptomic
analysis to characterize PAN-related biomarkers in gastric cancer.
Specifically, to identify core PAN-related genes, we applied both
classical clustering algorithms (e.g., K-means, Gaussian Mixture
Model) and deep learning approaches (Convolutional Neural
Network (CNN)+Bidirectional Long Short-Term Memory
(BiLSTM) with cross-fusion attention) to bulk RNA-seq data. These
findings were further validated through single-cell and spatial
transcriptomics, providing cellular and spatial resolution of PAN
activity. We constructed an innovative prognostic model, PANscore,
by integrating Cox regression with a RSF algorithm, which effectively
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stratifies patient prognosis and elucidates the immune infiltration, and
drug sensitivity of PAN, offering a foundation for personalized
therapeutic strategies in gastric cancer and advancing the goals of
precision oncology.

2 Materials and methods
2.1 Data acquisition and processing

The Cancer Genome Atlas (TCGA, https://portal.gdc.
cancer.gov/) provides both clinical annotations and bulk RNA-seq
datasets for gastric cancer patients analyzed in this study, as well as
corresponding data for other cancer types such as breast cancer
(BRCA) and cervical cancer (CESC). To ensure data reliability,
samples with incomplete clinical information were excluded,
resulting in a final dataset comprising 375 gastric cancer samples
and 73 independent healthy control samples. For external
validation, test datasets were downloaded from the Gene
Expression Omnibus (GEO, https://www.ncbinlm.nih.gov/geo/)
database with the accession IDs GSE62254 and GSE66229.
ScRNA-seq data and spatial transcriptomics data were obtained
from GSE183904 and GSE251950, respectively.

2.2 Bulk RNA-seq data were analyzed to
identify PAN-related differentially
expressed genes

The PAN gene set was constructed by systematically integrating
gene lists associated with PAN, obtained from multiple curated
pathway databases, including Reactome, AmiGO 2, and KEGG. To
ensure specificity, redundant genes shared across multiple cell death
pathways were identified and removed, resulting in a non-
overlapping, high-confidence PAN-related gene set that reflects
the distinct yet interconnected nature of these programmed cell
death modalities.

2.3 A scoring-based clustering algorithm
was implemented to analyze PAN-related
gene expression patterns in bulk
transcriptomic

We developed an integrative framework that combines ensemble
clustering and deep learning to predict molecular subtypes of genes.
Initially, bulk RNA-seq datasets were split into training and test sets,
and pseudo-labels were generated using a voting-based scoring
network that integrates five clustering algorithms (K-Means, GMM
(Gaussian Mixture Model), Agglomerative Clustering, CLARANS
(Clustering Large Applications based on RANdomized Search), and
K-Medoids). To enhance reliability, the pseudo-labels were
biologically validated through analyses of immune infiltration
patterns, checkpoint molecule expression, and drug response
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characteristics. These labels were then used to train a classification
model featuring a parallel cross-fusion attention architecture, which
leverages CNNs for spatial information and BiLSTM for capturing
temporal features. The model achieved robust subtype classification
performance, as shown in Figure 1.

2.3.1 Model architecture

The overall workflow for predicting different gene subtypes
using a scoring network constructed by five clustering algorithms is
shown in Figure 1B. Initially, training and test sets are constructed
using bulk RNA-seq datasets, with specific genes, such as X1 and
X2, among Y gene types selected to validate the reliability of the
clustering pseudo-label generation phase and prediction phase of
the designed scoring network. Subsequently, an integrated scoring
network is designed by combining K-Means, GMM, Agglomerative
Clustering, CLARANS, and K-Medoids clustering algorithms.
Pseudo-labels are assigned to each gene using a majority voting
mechanism. The reliability of the clustering phase’s pseudo-labels
was further validated using biological assays such as immune
infiltrating, immune checkpoint genes expression level,
chemotherapy sensitivity. Finally, a parallel cross-fusion network
was constructed, incorporating BiLSTM for sequence modeling and

10.3389/fimmu.2025.1690200

CNN for feature extraction. The model was trained using the
dataset with pseudo-labels to achieve classification of different
gene subtypes (Figure 1A).

2.3.2 Pseudo-label generation module

The TCGA and GEO datasets do not provide true label
information. Existing molecular typing methods typically use
clustering algorithms, such as K-Means or Consensus Clustering
(CC), to cluster and reorganize TCGA or GEO data, generating
pseudo-labels for gene sequences, which are then used to train
supervised classification models. However, the reliability of pseudo-
labels generated by a single clustering algorithm remains an open
question. It is well known that the reliability of pseudo-labels during
the clustering phase directly impacts the prediction accuracy of
classification models.

To address this, we developed a novel scoring network using
K-Means, GMM, Agglomerative Clustering (CLARA, Clustering
LARge Applications), CLARANS, and K-Medoids (PAM,
Partitioning Around Medoids) clustering algorithms. In this
network, each gene is assigned a corresponding pseudo-label via a
majority voting mechanism. Specifically, our scoring network
integrates the strengths of different clustering algorithms,

AA Robust Integrative Framework for Gastric Cancer Subtype Stratification via Scoring-Driven Clustering and Multi-Domain Feature Integration
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Framework overview. (A) The model integrates scoring-based clustering and multi-domain feature fusion to convert complex data into actionable
insights. The framework operates as a deep learning model to stratify patient subtypes. Prognosis predictions also established by machine learning.
(B) Pseudo-label generation Module using Scoring Mechanism in self-supervised mode. Input data are represented by [Key, Value] pairs, where the
key is the feature name and the value corresponds to the numerical score of the feature. Feature names and values are embedded and fed to a
Scoring Clustering architecture without positional encoding. The output of this scoring clustering is Pseudo label. (C) Classification Module using
Multi-scale Cross-attention, for a given gene sequence X, the sequence X is initially fed into a Convolutional Neural Network (CNN) and a
Bidirectional Long Shot-Term Memory (BiLSTM) to extract coding features from the spatial and temporal dimensions. Respectively. Subsequently, a
cross-attention mechanism is employed to align and facilitate information interaction between the spatial and temporal features, thereby fusing the
features across different dimensions, this fusion aims to construct a classifier based on the integrated feature representation. Finally, the fused
features are input into a fully connected (FC) laver to adjust their dimensionality and the classification is performed using a SoftMax function.
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measuring the distribution differences across various datasets from
multiple perspectives. This approach is better suited to adapt to the
complex distributions across different data domains, influenced by
factors such as environment, individual variability, and
drug sensitivity.

Notably, to enhance the stability of clustering results and reduce
ambiguity between data domains, our scoring network standardizes
the distance metric strategies of DBSCAN, K-Medoids, and
Agglomerative Clustering by uniformly employing the Euclidean
distance metric. This standardization ensures consistent distribution
differences across algorithms, both between different sample clusters
and within data points in the same cluster (Figure 1B).

2.3.3 CNN+ BiLSTM parallel cross-fusion
attention classification model

In existing gene sequence prediction methods, machine learning
algorithms such as decision trees, Bayesian classifiers and Support
Vector Machines (SVM) are commonly employed to construct
classification models. However, limited attention has been paid to
the construction of classifiers, particularly ensemble classifiers based
on deep learning models. High-quality classifiers are crucial for
improving prediction accuracy. To this end, this study proposes a
novel ensemble classification model leveraging CNN and BiLSTM to
extract both temporal and spatial encoding information from gene
sequence data. The extracted multi-scale features are then employed
in building the classification model, as shown in Figure 1C.

For a given gene sequence X = {x;,x,,...,x,}, the gene
sequence is used as input to both the CNN and the BiLSTM.
These models extract encoding features from the gene sequence in
both the spatial and temporal dimensions, as illustrated by the
calculation in Equation 1:

Fec = wi(x), x5, ...,%,) + b;
1)

Fg = wj(xl,xz,...,xn) + bj

Here, Fc and Fg represent the encoding features in the spatial
and temporal dimensions, respectively. In this context, a neural
network with three convolutional layers is used to extract the
encoding features in the spatial dimension. w; and w; denote the
weights, which are a set of learnable parameters, and b; and bj
represent the biases.

To facilitate the alignment and information exchange between
features from different dimensions, a cross-attention mechanism is
employed to establish interactions between the temporal and spatial
encoding features. The goal is to fuse these encoding features and
use the fused features to construct the classifier. The feature fusion
computation between dimensions is given by Equation 2:

T
Fcg = softmax (FC\'/I;g ) (Fc + Fg) (2)

Here, Fcg denotes the fused features, which encapsulate both the
temporal and spatial dimensional encoding semantics. d represents
the feature dimension, and T denotes the transpose operation.
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Finally, the fused encoding features from both the temporal and
spatial dimensions are used as input to a fully connected layer (FC-layer),
where the dimensionality of the fused features is adjusted. Softmax is
used as the classification function. To optimize the performance of the
temporal-spatial parallel fusion classification model, a cross-entropy
loss function is used to compute the loss between the predicted labels
P={p;,psp---px} and the clustering pseudo-labels Y=
{¥1>¥2> ---» Vi } The reliability of the clustering pseudo-labels is further
validated through subsequent biological analyses.

2.4 Screening of optimal PAN-related gene

To identify gastric cancer specific signature genes, LASSO and
random forest algorithms were independently applied, leveraging
their complementary advantages in feature selection efficiency and
model stability (18, 19). LASSO regression was conducted via the
“glmnet” package, introducing an L1 regularization term to
constrain model complexity and facilitate the selection of
informative features by penalizing less relevant or redundant
genes. Concurrently, Random Forest, through the construction
and aggregation of multiple decision trees, was employed to
evaluate feature importance and identify the most discriminative
gene candidates. The overlapping genes derived from these two
machine learning approaches were subsequently defined as hub
PAN-related genes in gastric cancer.

2.5 Data collection of somatic variants and
copy humber variants

Given its correlation with neoantigen load, Tumor mutational
burden (TMB) has become a widely used metric for assessing
potential benefit from immunotherapy. To assess its clinical
relevance, we conducted stratified survival analyses to examine
the association between TMB and patient prognosis. Somatic
mutation profiling was performed using the “maftools” R package
(20). The analysis identified the top 30 genes with the highest
mutation frequencies, offering insights into mutation patterns
associated with gastric cancer subgroups. The copy number
variation landscape was comprehensively analyzed using the
“DNAcopy” and “VariantAnnotation” R packages.

2.6 Immune cell infiltration

We utilized a comprehensive suite of bioinformatics tools—
including quanTIseq, ESTIMATE, MCPcounter, single-sample
Gene Set Enrichment Analysis (ssGSEA) and xCell—to assess
immune status differences among the molecular subtypes (21-24).
These approaches enabled a detailed characterization of immune
cell infiltration within the TME. Furthermore, we investigated
the associations between molecular subtypes and immune
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checkpoint gene expression to elucidate potential implications for
immunotherapeutic responsiveness (25, 26).

2.7 Single-cell RNA-seq analysis and cell-
cell interaction mapping of PAN-related
gene in gastric cancer

To elucidate the cellular heterogeneity and regulatory networks in
gastric cancer, we conducted a comprehensive scRNA-seq analysis
using the dataset from GSE183904. Our analysis employed the
“Seurat” and “SingleR” R packages, following a series of
standardized quality control procedures. Low-quality cells were
filtered out using the “PercentageFeatureSet” function based on
mitochondrial gene percentage and unique molecular identifier
(UMI) counts. The remaining cells were processed using the
“SCTransform” function for normalization, variance stabilization,
and removal of technical artifacts. The “RunPCA” function was
employed to perform principal component analysis (PCA) on
highly variable genes for dimensionality reduction. Cell clusters
were identified based on transcriptional profiles using the
“FindNeighbors” and “FindClusters” functions, and annotation of
cell types was performed using the “SingleR” functions,
supplemented by well-characterized marker genes from previous
studies (27). To reconstruct cellular developmental trajectories,
we performed pseudotemporal ordering using the Monocle
package. We delineated distinct cell populations through clustering
and constructed a single-cell expression matrix to elucidate the
developmental states of cells. By analyzing dynamic gene
expression patterns, we inferred the differentiation trajectories of
cells. We employed the CytoTRACE algorithm to quantitatively
evaluate the developmental potential of individual cells (28, 29).
Concurrently, we utilized CellChat to investigate cell-cell
communication networks (30). By leveraging its integrated
CellChatDB ligand-receptor interaction database, we systematically
identified cell type-specific signaling patterns and characterized the
dynamics of intercellular communication. This approach detected
significantly overexpressed ligands and receptors within distinct cell
populations, enabling the inference of enhanced intercellular
signaling pathways.

To further investigate gastric cancer at single-cell resolution, we
employed the SCENIC pipeline (31) for gene regulatory network
inference and validated key gene expression patterns across
different cell populations using dataset GSE183904. Our analytical
workflow included: (1) stringent quality control by excluding cells
with >25% mitochondrial gene content or extreme gene counts
(<500 or >6000 genes); (2) data normalization using Seurat’s
“NormalizeData” function with default parameters; (3) expression
matrix standardization via “ScaleData”; and (4) dimensionality
reduction through PCA was applied to the top 3,000 highly
variable genes for dimensionality reduction, followed by t-SNE
visualization (using 30 principal components) implemented with
the “RunTSNE” function.
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2.8 Processing and analysis of the spatial
transcriptome data

To characterize the spatial gene expression architecture in gastric
cancer, we analyzed spatial transcriptomics data (GSE251950)
from GEO, comprising filtered feature-barcode matrices and
corresponding spatial coordinates. The data processing pipeline
included normalization and scaling using SCTransform (Seurat
v4.0) (32), followed by dimensionality reduction via PCA
(RunPCA) and t-SNE visualization (top 30 PCs) to reveal global
expression patterns. We then performed clustering (resolution=0.5)
to identify spatially coherent transcriptomic domains. For cellular
resolution analysis, we implemented the Spacexr package (33) to
deconvolute Visium spots, first creating reference profiles
(create.RCTD) and then executing deconvolution (run.RCTD) in
full mode to estimate the cellular composition of each spot, thereby
enabling comprehensive mapping of cell type distributions within the
tissue architecture.

2.9 RSF-driven prognostic model
construction and assessment

First, univariate Cox regression analysis was performed to
identify survival-associated genes based on gene expression levels.
Subsequently, a RSF (34) model was constructed using the selected
genes, and the importance of each gene was ranked according to its
contribution to the model’s predictive performance. The model’s
predictive performance was evaluated over time using the
Concordance Index (C-index). As the ensemble of decision trees
expanded, the model’s prediction error progressively diminished
and ultimately reached a stable plateau, underscoring the model’s
robustness and reliability. Key variables with significant impacts on
survival prediction were further selected based on their importance
scores. Patients were stratified into high-risk and low-risk
groups based on the risk scores derived from the RSF model. This
stratification was achieved using maximally selected rank statistics,
which identified the optimal cutoff value to maximize the survival
differences between the two groups. Kaplan-Meier analysis revealed
significant survival disparity between these risk strata. The
prognostic robustness of this classification was subsequently
confirmed in an independent validation cohort, demonstrating
consistent survival trends across datasets.

2.10 Chemotherapeutic response profiling

To evaluate differential drug sensitivity between risk groups, we
analyzed 10 clinically-relevant gastric cancer therapeutics from the
GDSC database (v2.0). Using the pRRophetic R package (35), we
computed and compared half-maximal inhibitory concentrations
(IC50) across risk strata, enabling systematic assessment of
chemotherapy response patterns.
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2.11 Immunohistochemical analysis and
RT-gPCR validation

We validated the expression profiles of the four diagnostic and
nine prognostic genes in gastric cancer (GC) using the Human
Protein Atlas (HPA; https://www.proteinatlas.org/). Furthermore,
RT-qPCR was employed to examine gene expression in clinical
samples, which included five GC tissues and five matched adjacent
non-tumor tissues. Total RNA was extracted with TRIzol reagent,
and its purity and concentration were measured using a
NanoPhotometer N50. cDNA was synthesized from the extracted
RNA with the SweScript First Strand ¢cDNA Synthesis Kit
(Servicebio, China). Quantitative PCR was performed using the
2x Universal Blue SYBR Green qPCR Master Mix (Servicebio,
China) in accordance with the manufacturer’s protocol. The
2744 method was applied to calculate relative gene expression
levels, using GAPDH as the endogenous control. All primer
sequences were synthesized by Tsingke (Beijing, China) and are
listed in Supplementary Table 3.

3 Results

3.1 Overlap analysis of genes profiled from
bulk data

The PAN gene set was derived by integrating PAN genes from
Reactome, AmiGO 2, and KEGG, with overlapping genes removed
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to obtain a non-redundant, high-confidence signature. Key
apoptotic regulators included BAD, BIRC3, CASP8, CFLAR,
E2F1, FOX03, FOX04, BCL2L1, BCL2, BBC3, AVEN, BCL6,
JUN, HDACY, IRF9, TFDP1, TNFRSF10A, TRAF2. pyroptosis-
related genes were identified as CASP8, CARDS, GSDMA,
GZMB, IFI27, IRGM, NFKBIA, NINJ1, OTULIN, PANX.
Necroptosis-associated factors such as BIRC3, CASP8, CFLAR,
NFKBIA, TNFRSF10A, TRAF2, BCL2, BCL2L1 and USP25 were
also included. Moreover, several genes participated simultaneously
in PAN, underscoring their critical role in PAN regulation
(Supplementary Table 2).

3.2 Machine learning-based identification
of molecular subgroups and predictive
gene signatures in gastric cancer

We identified molecular subgroups by employing a voting-
based scoring network that integrates five clustering algorithms—
K-Means, GMM, CLARANS, Agglomerative Clustering, and K-
Medoids—thereby enhancing the robustness and consistency of
subtype classification. We independently identified three subtypes
from five clustering algorithms, and the number of subtypes was
determined by comprehensively referring to the cluster prediction
silhouette score and previous research experience (Figure 2).
Through comparative analysis with established clustering
methodologies including Consensus Clustering, Agglomerative
Clustering (CLARA), CLARANS, Gaussian Mixture Models
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The sample similarity of each subtype was assessed by calculating the Silhouette score and comparative analysis of clustering performance.
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(GMM), K-means clustering and K-Medoids clustering (PAM), our
scoring network clustering algorithm demonstrated superior
performance with the highest clustering score, confirming its
effectiveness as a clustering approach (Figure 2).

The heatmap displays gene expression profiles across samples,
where rows correspond to genes and columns to individual samples.
A blue-to-red color gradient indicates expression levels, with blue
denoting low and red indicating high expression. The dendrogram on
the left represents hierarchical clustering of samples based on gene
expression, revealing distinct clusters potentially corresponding to
different molecular subgroups (Figure 3A). The expression patterns
and predictive efficiency of these genes were further evaluated in the
training set. KDM5D showed significant upregulation in Subgroup 1
compared to both Subgroup 2 and Subgroup 3, whereas SLC16A4
was downregulated. Additionally, CFLAR expression was elevated in
Subgroup 2 relative to Subgroup 3, while UACA exhibited
downregulation (Figure 3B). Based on gene expression patterns, the
t-SNE plot illustrates three distinct subgroups, with samples
represented as colored dots (Subgroup 1: red, Subgroup 2: blue,
Subgroup 3: orange). The clear separation among subgroups suggests
distinct molecular characteristics (Figure 3C). Kaplan-Meier survival
curves for the three subgroups over a 10-year period show differences
in survival probabilities. Despite clear molecular distinctions between
subgroups, Kaplan-Meier analysis demonstrated no statistically
significant survival differences (Figure 3D). To identify robust
prognosis biomarkers, we implemented a dual machine learning
approach combining LASSO regression (Figure 3E) for feature
selection and random forest analysis (Figure 3F) for non-linear
feature importance assessment. Through intersection analysis of
both algorithms, we identified eight consensus diagnostic genes
(KDM5D, CFLAR, UACA, SLC16A4, IFIH1, PIK3CG, TNFSF13B
and PDK4) that demonstrated consistent predictive value across
both methodologies.

3.3 Classification module using multi-scale
cross-attention

Figure 4A illustrates the expression profiles of feature genes
across samples of different molecular subtypes. Within the
heatmap, gene expression is displayed with genes on the y-axis
and samples on the x-axis. The color coding reflects a variety of
clinical and molecular characteristics, including survival status
(alive or deceased), patient age, histological stage, sample
grouping, and the expression levels of specific genes. The Receiver
Operating Characteristic (ROC) curves in Figure 4B reveal the
model’s excellent classification performance in distinguishing
between different molecular subtypes, with the Area Under the
Curve (AUC) values close to 1, indicating a high level of diagnostic
accuracy. The accuracy rates (Train-Acc and Test-Acc) of different
model variants on the training and testing datasets, respectively
(Supplementary Table 1). These model variants are part of an
ablation study conducted on the Multi-scale Cross-attention
classification model. Ablation study is a model evaluation method
that systematically removes or replaces certain parts of the model to
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understand the impact of these parts on the overall performance.
The results from the ablation study indicate that the model
combining CNN+BiLSTM performs the best on the test dataset,
suggesting that considering both forward and backward sequence
information along with convolutional feature extraction are key
factors in enhancing the model’s performance within the Multi-
scale Cross-attention classification model framework.

3.4 Generalization of the CNN+BiLSTM
classification model

To comprehensively evaluate the model’s performance, we
further tested its generalizability on two independent external
datasets. Receiver Operating Characteristic (ROC) curves for
different subtypes demonstrated robust classification performance,
with Area Under the Curve (AUC) values of 0.88, 0.96, and 0.93,
respectively. These high AUC values indicate that the model
effectively distinguishes among the subtypes (Figure 4C). Kaplan-
Meier survival curves revealed significant differences in survival
outcomes among the subtypes, suggesting that the model can
accurately stratify patients based on prognosis (Figure 4D). A
heatmap of the feature gene expression profiles across subtypes
illustrated distinct molecular signatures for each group. These
patterns facilitate the identification of subtype-specific feature genes
and provide insights into the underlying biological heterogeneity
(Figure 4E). Collectively, these results demonstrate that the model
possesses strong classification capability across different breast cancer
subtypes, can effectively distinguish prognostic differences, and
identify relevant molecular features. These findings offer a
valuable foundation for further investigations into the molecular
mechanisms of breast cancer and the development of personalized
therapeutic strategies.

The classification results of the model on the CESC dataset
comprehensively demonstrate its generalization performance, as
reflected by training and testing accuracy, loss curves, ROC curves,
survival analysis, and feature gene expression heatmaps. The model
exhibits strong performance in distinguishing between different
subtypes and accurately identifying subtype-specific feature genes.
However, Kaplan-Meier survival analysis reveals no statistically
differences among the subtypes, indicating potential limitations
of the model in prognostic prediction. Despite this, the findings
provide important evidence for further exploration of the
molecular mechanisms of cervical squamous cell carcinoma and
support the development of personalized treatment strategies
(Supplementary Figure 1).

3.5 Validation optimal genes in scRNA
transcriptome and spatial transcriptome

To investigate the cellular context of candidate feature genes
in gastric cancer, we analyzed their expression patterns using
scRNA-seq data. The t-SNE plot (Figure 5A) revealed distinct
clusters corresponding to various cell types within the tumor
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different expression genes among three subtypes.

macrophages and monocytes. Notably, UACA and PDK4
demonstrated significant expression in immune cells (particularly
T cells), suggesting potential immunomodulatory functions.
In contrast, SLC16A4, IFIH1, PIK3CG and KDM5D exhibited

microenvironment, including epithelial and immune cell
populations. As shown in the dot plot (Figure 5B), PDK4, UACA
and CFLAR showed predominant expression in endothelial
cells, while CFLAR and TNFSF13B were highly expressed in
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relatively low and restricted expression patterns. Violin plots and
t-SNE expression maps (Figure 5C) further validated these cell-type
specific expression profiles, underscoring their potential roles in
gastric cancer heterogeneity and immune microenvironment
remodeling. The analysis reveals important insights into the cell-
specific functions of candidate biomarkers, potentially guiding
precision therapy development.

To characterize the spatial transcriptomic landscape of gastric
cancer, we analyzed spatial transcriptomics data from gastric cancer
samples (GSE251950, GEO database). Pathologist-validated
annotations confirmed spatial correlations between programmed
cell death and malignant tumor regions. Louvain clustering based
on spatial transcriptomic profiles identified twelve distinct cellular
clusters (Figures 6A, B). Integration with scRNA-seq data enabled
deconvolution of seven clusters, revealing their cellular composition.
Clusters 3, 5, 8 and 9 showed predominant localization in epithelial-
rich regions, while macrophage-enriched clusters (0, 1, and 4) and
other immune cell populations demonstrated distinct spatial
distributions (Figure 6C). Expression mapping of the eight feature
genes across major cell types revealed: macrophage and NK cells were
primarily localized in cluster 7, with T cells concentrated in cluster 6
(Figure 6C). Genes including UACA and CFLAR exhibited elevated
expression in epithelial cells, macrophages and endothelial cells,
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suggesting involvement in tumor-immune crosstalk. While
SLC16A4 showed universally low expression, CFLAR demonstrated
selective enrichment in T cells and NK cells. These spatially resolved
expression patterns corroborated our scRNA-seq findings, further
validating the cellular specificity and heterogeneity of the identified
marker genes (Figure 6D, Supplementary Figure 2).

3.6 Endothelial cell crosstalk and
pseudotime trajectory analysis

To elucidate the biological functions of endothelial cells in
intercellular communication, we examined the extent and
intensity of their connections with other cell types. Our findings
indicated that endothelial cells are prominently engaged in a higher
frequency of interactions, especially with immune cells and tissue
stem cells, suggesting potential cooperative roles in these cellular
networks (Figure 7A). Further analysis of ligand-receptor
interactions revealed that endothelial cells communicate with
other cell populations through specific signaling pathways
(Figure 7B). In terms of signal reception, immune T cells more
frequently interacted with endothelial cells via defined ligand-
receptor pairs. Moreover, signaling pathways associated with
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patterns across cell types, showing PDK4, UACA, CFLAR, SLC16A4, TNFSF13B, IFIH1, PIK3CG and KDM5D. Dot size indicates expression prevalence;
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endothelial cell communication, such as APP, CXCL, PECAMI, Trajectory analysis of endothelial cells differentiation using
ICAM and JAM were more active in endothelial cells. Among the ~ Monocle 2 (Figure 7D) demonstrated that endothelial cells followed
incoming signals, CCL, VISFATIN, PECAMI, ESAM and NOTCH  a differentiation path progressing from bottom to top along the
were more prominently expressed in endothelial cells (Figure 7C).  pseudotime axis. During the initial phases of development, cells
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KDMS5D expression across different cells types.

expressing key genes were relatively rare, but their prevalence
significantly increased as development progressed. CytoTRACE
analysis further delineated the developmental trajectory and origin of
endothelial cells, indicating that the majority of endothelial cells were
situated at more advanced stages of development.

3.7 Characterization of the tumor
microenvironment via signature gene
profiling

To further investigate the therapeutic relevance, the expression
profiles of immune checkpoint genes were examined among

Frontiers in Immunology

the three molecular subtypes. As illustrated in Figure 8A,
significant subtype-specific differences were observed in several
immune checkpoint molecules, including HLA-DOA, HLA-A,
KIR3DL3, BTN2A1, TNFRSF4, and HLA-DMB (P < 0.001);
HLA-C, HLA-G, and HLA-B (P < 0.01); and CD70, ADORA2A,
CD226, HLA-DQAI1, and KIR2DS4 (P < 0.05). These results
indicate that the molecular subtypes may differ in their
immunoregulatory landscapes and potential responsiveness to
immune checkpoint blockade, providing a rationale for subtype-
specific immunotherapeutic strategies.

To comprehensively characterize the tumor immune
microenvironment, we integrated multiple deconvolution
approaches—quanTIseq, ESTIMATE, MCPcounter, ssGSEA, xCell,
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and CIBERSORTx—to evaluate immune infiltration and functional
immune signatures. The quanTIseq method identified significant
differences in infiltration levels for seven major immune cell subsets:
B cells, Macrophages, NK cells, Tregs, Neutrophils and Dendritic cells

Frontiers in Immunology

(Figure 8B). Using the ESTIMATE algorithm, we assessed immune
infiltration (stromal score, immune score, and ESTIMATE score) and
tumor purity. Subgroup 1 and Subgroup 2, Subgroup 2 and Subgroup
3 significant differences in stromal or immune cell components were
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FIGURE 8

Tumor microenvironmental landscapes across the three molecular subtypes. (A) Comparative analysis of immune checkpoint gene expression across
subtypes. (B) Immune cell composition inferred by quanTlseq: boxplots and heatmaps illustrating subtype-specific abundance patterns. (C) The
ESTIMATE algorithm was employed to calculate tumor purity and stromal/immune infiltration scores. (D) Immune infiltration profiles derived from

MCPcounter: boxplots comparing immune cell subsets between subtypes. (E)

subtypes. (F) xCell-derived immune cell abundance comparisons among the three subtypes.

found between the two subgroups, indicating comparable tumor
purity (Figure 8C). Subgroup 1 had lower immune cell infiltration
levels compared to Subgroup 3, suggesting a little differences immune
response. MCPcounter analysis demonstrated distinct immune

Frontiers in Immunology 13

ssGSEA-based analysis of immune-related signatures across molecular
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

infiltration profiles across subgroups. Figure 8D displayed highly
significant differences among three subtypes (“P”<0.0001). Using
ssGSEA, 16 types of infiltrating immune cells were evaluated. All
listed cell types exhibited significant differences, indicating marked
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variations in their respective scores among the three subgroups.
These findings further suggest substantial differences in the
biological characteristics or functional states of these cell types
across the subgroups, which may reflect distinct underlying
biological processes or disease-associated states (Figure 8E). Using
xCell, significant differences in infiltration scores were found for
multiple cell types, including Epithelial cells, immature Dendritic cells
(iDCs), and Megakaryocyte-Erythroid Progenitor cells (MEPs)
exhibit the highest scores, whereas Activated Dendritic cells
(aDCs), Fibroblasts, and Class-switched Memory B cells show the
lowest in Subgroup 2. In contrast, Subgroup 3 is characterized by
elevated scores in Astrocytes, Chondrocytes, Hematopoietic Stem
Cells (HSCs), and Pericytes (Figure 8F). Across all analyses, immune
infiltration levels were significantly different between the two
molecular subtypes, with Subgroup 2 generally exhibiting higher
immune cell infiltration.

The analysis indicates that TME plays a crucial part in
influencing heterogeneous immune response and potentially
guiding personalized immunotherapy strategies in gastric cancer.

3.8 Genomic mutation profiling

The efficacy of immunotherapy is influenced by multiple
factors, including the infiltration patterns of immune cells in the
TME and the mutational landscape of tumors. We hypothesized
that the distinct molecular subtypes may exhibit differential tumor
progression patterns and varied responses to immunotherapy. Since
somatic mutations can generate neoantigens that enhance tumor-
specific immune recognition, they represent promising targets for
personalized immunotherapeutic strategies (36). To explore this,
we analyzed the somatic mutation profiles in gastric cancer patients
to identify potential neoantigen sources. Figures 9A-C illustrates the
top 30 genes exhibiting the most frequent mutations across the
cohorts. Among them, ACVR2A, PLEC, ARID1A, ZFHX4, FAT3,
and LRP1B showed significantly higher mutation frequencies in
Subgroups 1 and 3. Notably, OBSCN mutations were exclusive to
Subgroup 1. The mutation rate of KMT2D exhibited a decreasing
trend from Subgroup 1 to 3 to 2, while the remaining genes
displayed no statistically significant differences. Additionally,
differentially mutated genes (DMGs) were enriched in Subgroups
1 and 3, indicating a cumulative impact of low-frequency variants,
which may contribute to subtype-specific immunogenicity.

Among the three subtypes, genes such as PTK2, BCL2L11, and
E2F1 exhibited high frequencies of copy number variations (CNVs).
Notably, Subtype 1 showed elevated mutation frequencies on
chromosomes 8 and 20, with copy number gains appearing to be
more common than losses. Differences were observed in the
distribution and frequency of CNV gains and losses among the
subtypes. For instance, Subtype 2 was characterized by a unique
alteration in NINJ1, along with increased frequencies of copy number
losses in PPP3C, TNFRSF10A, and ERP44. In Subtype 3, the distinct
alteration involved HTRA1, accompanied by elevated frequencies of
copy number losses in PPP3C, TNFRSF10A, and DFFB. These

Frontiers in Immunology

14

10.3389/fimmu.2025.1690200

differences may reflect the molecular characteristics of each subtype
and provide insights into potential therapeutic targets (Figures 9D-F).

3.9 Immunohistochemical analysis and RT-
gqPCR validation diagnosis marker genes

We utilized immunohistochemical images sourced from the
Human Protein Atlas database (HPA) to evaluate the protein
expression levels of the four aforementioned marker genes. Our
analysis compared protein expression in normal tissues and GC
tissues to identify potential differences (Figure 10). The findings
revealed that CFLAR and PDK4 exhibited significantly elevated
protein expression in OC tissues compared to normal GC tissues
(Figure 10A). However, PDK4 and UACA have low expression levels
in GC tissues. TNFSF13B demonstrated expression with moderate
staining intensity in GC tissues, whereas in normal gastric tissues, it
exhibited lower levels of staining. In addition to UACA, the data
study of the TCGA cohort found that it was consistent with the
immunohistochemical trend (Figure 10B). Additionally, we assessed
the expression levels of these genes in gastric cancer (GC) versus
adjacent noncancerous tissues using RT-qPCR (Figure 10C). The
results were consistent with the HPA database, showing that CFLAR
and TNESF13B were upregulated in GC tissues, whereas PDK4 was
downregulated. In contrast, the expression of UACA showed no
significant difference between GC and adjacent tissues, which was
inconsistent with the Immunohistochemical results. This discrepancy
may be attributed to the relatively small sample size in the
Immunohistochemical results underscoring the need for further
validation studies to confirm these observations.

3.10 Establishment and verification of a
PAN gene-based prognostic model

To develop a prognostic model incorporating PAN-related
genes, we employed Cox regression analysis coupled with
Random Survival Forest to optimize the selection of prognostic
differentially expressed genes in gastric cancer. Univariate Cox
regression identified genes significantly associated with overall
survival (P < 0.05, HR # 1), as shown in Figure 11A.
Subsequently, RSF analysis ranked the top 15 survival-associated
genes according to their importance scores, with higher values
reflecting a greater contribution to predictive performance
(Figure 11B). Figure 11C illustrates the time-dependent predictive
accuracy of the RSF model, which maintained a high and stable
concordance index (C-index), indicating strong prognostic
capability. With increasing numbers of decision trees, we
observed a consistent reduction in error rate that eventually
reached a stable plateau (Figure 11D), demonstrating its
robustness and stability. Among the top-ranked genes, PDK4,
IFH1, DFFB, HDACY9, GZMB, PSMB6, HTRA1, PSMB5, and
BACH2 emerged as key contributors to survival prediction
(Figure 11E), and were selected for further model construction
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Landscape of single nucleotide variations (SNV) and CNV variation frequencies in three different groups. (A-C) The mutation frequency of top 30
genes, mutant spectrum characteristics and TMB distribution in three subgroups, respectively. (D-F) The CNV variation frequency of top 30 genes
and the location on 23 chromosomes in subgroup 1, 2 and 3, respectively.

and validation. f (t | x) = fo(f) x exp (coef, gene 1 +coef, gene 2 + -
+coefy gene 9), where f (t | x) represents the risk function at time ¢,
conditioned on the covariates x; fO(t) is the baseline risk function;
coef,, is the coefficient of each predictive variable factor; and gene,, is

the gene affecting survival.
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Our prognostic model achieved outstanding discrimination
(AUGs: 0.966-0.992 across 1-5 years) and effectively stratified
patients into clinically distinct risk groups. Both primary and
validation cohorts showed significantly reduced survival in high-
risk patients (Figures 11F, G). The optimal risk cutoff (50.61)
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Immunohistochemical analysis of the HPA database and expression validation of marker genes. (A) Immunohistochemical staining of PDK4, CFLAR,
UACA, and TNFSF13B in normal gastric tissues and gastric cancer (GC) tissues. (B) mRNA expression levels of the indicated genes in the TCGA-STAD
dataset. (C) Validation of their expression by RT-qPCR. ns, not significant; *P< 0.05; ***P< 0.001.

maximized survival separation between groups (Figures 11H, I),
confirming robust predictive performance.

3.11 Drug sensitivity prediction

To evaluate the clinical utility of our PAN-based model, we
analyzed IC50 values of common anticancer drugs in gastric
cancer samples. Eight drugs showed differential sensitivity
between the higher and lower PAN scoring groups (Figure 12).
The high-PANscore group exhibited greater sensitivity to AKT
inhibitor VIII, Dasatinib, and Lapatinib (lower IC50), while
demonstrating potential resistance to Gefitinib, Imatinib,
Paclitaxel, Etoposide, and Rapamycin (higher IC50). These
results suggest our model may guide personalized therapy
selection in gastric cancer patients.

3.12 Protein expression and RT-qPCR
detection of prognostic signatures

Analysis of HPA and TCGA-STAD data revealed differential
expression patterns of IFIH1, DFFB, PSMB6, PSMB5, and BACH2.
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Specifically, DFFB and PSMB6 exhibited significantly higher
expression in control samples, whereas GLP1R was upregulated
in HCC tissues (Figures 13A, B). No significant differences were
observed in HDAC9 and BACH?2 expression levels between groups
(Figures 13A, B). RT-qPCR validation confirmed these findings,
demonstrating significant differences in gene expression between
gastric cancer (GC) and control samples, consistent with the HPA
and TCGA-STAD datasets (Figure 13C). However, HDAC9 and
PSMB6 did not reach statistical significance (P > 0.05), which may
be attributed to limited sample size.

4 Conclusions and discussion

In this study, we systematically investigated the interplay
among three programmed cell death pathways to define a
PAN-related molecular landscape in gastric cancer. While the
three molecular subtypes defined by these genes did not show
statistically significant differences in overall survival (Figure 3D),
this finding is itself insightful. It highlights that the primary value of
this molecular subtyping lies not in direct prognosis prediction, but
in its power to resolve the profound heterogeneity of gastric cancer.
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FIGURE 11

Construction and evaluation of the prognostic model based on the RSF algorithm. (A) Univariate Cox regression analysis identified survival-
associated genes based on expression levels. (B) Gene importance ranking derived from the RSF model, with higher scores indicating greater
contributions to predictive performance. (C) Time-dependent C-index evaluation of model performance. (D) The error rate of the RSF model
decreased and eventually stabilized with an increasing number of decision trees, indicating strong model robustness and stability. (E) Top-ranked
genes were identified as key variables with significant impacts on survival prediction. (F) In the training set, Kaplan-Meier analysis revealed
significantly worse survival in high- versus low-risk patients. (G) Consistent survival trends were observed between risk groups in the validation
cohort. (H) Risk score distribution clearly distinguished between high-risk and low-risk samples. (I) Optimal risk cutoff (50.61) derived from maximally

selected rank statistics, maximizing intergroup survival difference.

These subtypes exhibited starkly distinct tumor microenvironment

(TME) profiles, genomic alteration patterns, and predicted
drug sensitivities (as shown in Figures 8, 9). This stratification
provided the essential biological context to identify the key genes
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and mechanisms that drive aggressive disease within this
heterogeneous landscape. In other words, the subtyping
uncovered the “source of heterogeneity”, which we then leveraged
to build a refined and highly predictive tool.
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FIGURE 12

Drug sensitivity stratification in gastric cancer. *P< 0.05; ***P< 0.001.

The experimental validation of our computational findings,
particularly the consistent upregulation of CFLAR and
downregulation of PDK4 in gastric cancer tissues, provides a solid
foundation for proposing their mechanistic roles (15). CFLAR
(c-FLIP) is a critical anti-apoptotic regulator that competes with
caspase-8 for binding to FADD, thereby inhibiting the extrinsic
apoptosis pathway. Its significant overexpression in our GC cohorts
suggests a potent mechanism by which tumor cells may evade this
form of cell death. Intriguingly, CFLAR has also been implicated in
modulating necroptosis. We hypothesize that in GC, CFLAR
overexpression creates a cell death “rheostat,” preferentially
shutting down apoptosis and potentially diverting cell fate
towards other PAN modalities, thereby contributing to tumor
survival and therapeutic resistance.

Conversely, the downregulation of PDK4 points to a profound
metabolic reprogramming. PDK4 phosphorylates and inactivates the
pyruvate dehydrogenase complex (PDH), thereby preventing the
entry of pyruvate into the mitochondrial TCA cycle. Its suppression
in GC suggests a shift towards enhanced mitochondrial oxidative
phosphorylation. Since efficient mitochondrial function is linked to
the generation of reactive oxygen species (ROS) and other signals that
can trigger pyroptosis, we speculate that PDK4 downregulation
may be an adaptive mechanism to reduce mitochondrial stress
and avoid this inflammatory form of cell death (5, 9). This would
allow the tumor to grow without eliciting a robust immune response,
aligning with the immune-evasive phenotypes we observed in high-
risk groups.
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Building on these mechanistic insights from individual genes, we
integrated them into the PANscore. The model’s outstanding
prognostic accuracy (5-year AUC of 0.992) demonstrates that the
collective derangement of these interconnected cell death and
metabolic pathways is a powerful determinant of patient outcomes.
The PANscore, therefore, moves beyond simple subtype classification
to quantify a tumor’s functional state of “PAN resistance.” This state
is characterized not by the absence of immune cells, but by an
inability to effectively execute immunogenic cell death, leading to an
inflamed yet immunosuppressed TME, as our data show (11, 12, 37).
This aligns with emerging evidence that machine learning can
capture such latent biological variation in high-dimensional
transcriptomic data (17).

This mechanistic framework directly informs the therapeutic
vulnerabilities we identified. The efficacy of AKT inhibitors in high-
PANscore patients may lie in AKT’s known role in regulating both
metabolism and cell survival, potentially forcing a lethal rewiring in
these already dysregulated tumors (1). Similarly, the potential
resistance to Gefitinib could be explained by the robust anti-
apoptotic shield provided by high CFLAR and other PANscore
components, underscoring the need for combination therapies that
co-target these resistance mechanisms. Our drug sensitivity analysis
thus supports the development of stratified therapeutic approaches
based on this quantitative risk assessment (1, 44).

Our study provides a robust multi-omics landscape of PAN in
GC, which directly points to the testable mechanistic hypotheses
outlined above (2, 7, 10). The key limitation is the lack of functional
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FIGURE 13
Immunohistochemical analysis of the HPA database and expression validation of prognostic genes. (A) Immunohistochemical staining of IFIH1, DFFB,
HDAC9, GZMB, PSMB6, HTRAL, PSMB5, and BACH2 in normal gastric tissues and gastric cancer (GC) tissues. (B) Expression levels of these genes in
the TCGA-STAD dataset. (C) Validation of their expression by RT-gqPCR. ns, not significant; *P< 0.05; ***P< 0.001.

validation for these hypotheses. Specifically, future work must
experimentally determine whether CFLAR indeed functions as the

proposed rheostat controlling the apoptosis-necroptosis switch in GC

cells, and whether restoring PDK4 expression can sensitize tumors to

Frontiers in Immunology

pyroptosis-inducing therapies. Employing genetic perturbations in
vitro and in vivo will be crucial to establish causality within the PAN
network and to translate our computational insights into targeted
therapeutic strategies (3, 4, 6).
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