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Deep learning and multi-omics
reveal programmed cell
death-associated diagnostic
signatures and prognostic
biomarkers in gastric cancer
Qiaoying Jin1,2, Zhaobin Chang1, Kangping Chen3, Na Jiang2,
Guoxiu Chen2 and Yonggang Lu1*

1School of Information Science and Engineering, Lanzhou University, Lanzhou, China, 2The Second
Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China, 3School of Computer
Science and Artificial Intelligence, Lanzhou University of Technology, Lanzhou, China
Gastric cancer (GC) is characterized by pronounced molecular and clinical

heterogeneity, creating major challenges for therapeutic decision-making.

Limitations in current molecular classification hinder the development of

personalized therapies, underscoring the need for improved diagnostic and

prognostic frameworks. we conducted an integrated multi-omics analysis of

bulk, single-cell, and spatial transcriptomic data to systematically characterize

three key programmed cell death pathways—pyroptosis, apoptosis, and

necroptosis (collectively abbreviated as PAN). A scoring-based clustering

framework integrating multiple machine learning algorithms was developed to

define high-resolution molecular subtypes and construct a deep learning

signature. A hybrid CNN+BiLSTM model with cross-fusion attention was

applied for transcriptomic feature extraction and subtype classification,

achieving superior performance compared with existing approaches. Validation

in the TCGA cohort confirmed the robustness and biological relevance of our

model. Among the identified subtypes, Subtype 2 showed the most favorable

prognosis. We further established a nine-gene prognostic signature with strong

predictive value. High-risk patients exhibited poor survival, enhanced immune

infiltration, and potential sensitivity to AKT inhibitors, with several drugs, including

gefitinib and paclitaxel, identified as promising candidates. Experimental

validation was conducted using the Human Protein Atlas (HPA) and RT-qPCR

in clinical samples. CFLAR and TNFSF13B were upregulated and PDK4

downregulated in GC, while UACA showed no significant change. Additional

prognostic genes (DFFB, PSMB6, GLP1R, HDAC9, BACH2) displayed expression

patterns largely consistent across HPA, TCGA, and RT-qPCR, with minor

discrepancies likely due to sample size. This study integrates multi-omics and

deep learning with experimental validation, providing insights into programmed

cell death regulation and offering robust biomarkers and therapeutic targets

for GC.
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1 Introduction

Gastric cancer remains a major contributor to cancer-related

deaths globally, with especially high incidence rates in East Asia (1, 2).

Despite ongoing improvements in clinical management, advanced

gastric cancer continues to be associated with a poor prognosis,

highlighting the urgent need to understand its underlying molecular

mechanisms (3). Gastric cancer exhibits remarkable biological

complexity characterized by sustained inflammatory signaling,

immune evasion, and metabolic reprogramming (4–6). These

factors contribute to tumor heterogeneity and therapeutic

resistance, necessitating a more precise stratification of patients and

personalized treatment strategies.

Recent research has spotlighted the role of programmed cell

death (PCD) pathways including PAN in shaping the tumor

immune microenvironment and modulating tumor progression (7,

8). Each PCD pathway contributes uniquely to immune surveillance

and inflammation. For example, pyroptosis triggers a potent

inflammatory response that may enhance tumor immunogenicity

(9), whereas necroptosis and apoptosis exert context-dependent

effects on tumor immunity (10). Moreover, increasing evidence

suggests that these PCD modes are not mutually exclusive but

instead interconnect through shared molecular components,

forming an intricate cell death regulatory network (11–13).

Despite growing interest in PAN, several critical knowledge

gaps remain, particularly in the context of gastric cancer. A major

limitation lies in the absence of comprehensive analyses that

integrate multiple layers of transcriptomic data, including bulk

RNA-seq, single-cell RNA-seq (scRNA-seq), and spatial

transcriptomics—to systematically dissect the molecular landscape

of PAN in gastric tumors (14–16). Most existing studies are

confined to single-omic platforms and thus fail to capture the

complex regulatory networks and cell-type-specific features

underlying. Furthermore, PAN-related prognostic signatures and

their associations with the tumor microenvironment (TME) have

not been fully elucidated (17), and clinically applicable risk models

are still lacking. These limitations hinder the translation of

mechanistic insights into practical tools for clinical decision-

making. Addressing these gaps requires a systems biology

framework that leverages high-throughput datasets and advanced

computational strategies to uncover robust biomarkers and

predictive models for gastric cancer.

To address these challenges, we employed a comprehensive multi-

omics strategy integrating machine learning and transcriptomic

analysis to characterize PAN-related biomarkers in gastric cancer.

Specifically, to identify core PAN-related genes, we applied both

classical clustering algorithms (e.g., K-means, Gaussian Mixture

Model) and deep learning approaches (Convolutional Neural

Network (CNN)+Bidirectional Long Short-Term Memory

(BiLSTM) with cross-fusion attention) to bulk RNA-seq data. These

findings were further validated through single-cell and spatial

transcriptomics, providing cellular and spatial resolution of PAN

activity. We constructed an innovative prognostic model, PANscore,

by integrating Cox regression with a RSF algorithm, which effectively
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stratifies patient prognosis and elucidates the immune infiltration, and

drug sensitivity of PAN, offering a foundation for personalized

therapeutic strategies in gastric cancer and advancing the goals of

precision oncology.
2 Materials and methods

2.1 Data acquisition and processing

The Cancer Genome Atlas (TCGA, https://portal.gdc.

cancer.gov/) provides both clinical annotations and bulk RNA-seq

datasets for gastric cancer patients analyzed in this study, as well as

corresponding data for other cancer types such as breast cancer

(BRCA) and cervical cancer (CESC). To ensure data reliability,

samples with incomplete clinical information were excluded,

resulting in a final dataset comprising 375 gastric cancer samples

and 73 independent healthy control samples. For external

validation, test datasets were downloaded from the Gene

Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/)

database with the accession IDs GSE62254 and GSE66229.

ScRNA-seq data and spatial transcriptomics data were obtained

from GSE183904 and GSE251950, respectively.
2.2 Bulk RNA-seq data were analyzed to
identify PAN-related differentially
expressed genes

The PAN gene set was constructed by systematically integrating

gene lists associated with PAN, obtained from multiple curated

pathway databases, including Reactome, AmiGO 2, and KEGG. To

ensure specificity, redundant genes shared across multiple cell death

pathways were identified and removed, resulting in a non-

overlapping, high-confidence PAN-related gene set that reflects

the distinct yet interconnected nature of these programmed cell

death modalities.
2.3 A scoring-based clustering algorithm
was implemented to analyze PAN-related
gene expression patterns in bulk
transcriptomic

We developed an integrative framework that combines ensemble

clustering and deep learning to predict molecular subtypes of genes.

Initially, bulk RNA-seq datasets were split into training and test sets,

and pseudo-labels were generated using a voting-based scoring

network that integrates five clustering algorithms (K-Means, GMM

(Gaussian Mixture Model), Agglomerative Clustering, CLARANS

(Clustering Large Applications based on RANdomized Search), and

K-Medoids). To enhance reliability, the pseudo-labels were

biologically validated through analyses of immune infiltration

patterns, checkpoint molecule expression, and drug response
frontiersin.org
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characteristics. These labels were then used to train a classification

model featuring a parallel cross-fusion attention architecture, which

leverages CNNs for spatial information and BiLSTM for capturing

temporal features. The model achieved robust subtype classification

performance, as shown in Figure 1.

2.3.1 Model architecture
The overall workflow for predicting different gene subtypes

using a scoring network constructed by five clustering algorithms is

shown in Figure 1B. Initially, training and test sets are constructed

using bulk RNA-seq datasets, with specific genes, such as X1 and

X2, among Y gene types selected to validate the reliability of the

clustering pseudo-label generation phase and prediction phase of

the designed scoring network. Subsequently, an integrated scoring

network is designed by combining K-Means, GMM, Agglomerative

Clustering, CLARANS, and K-Medoids clustering algorithms.

Pseudo-labels are assigned to each gene using a majority voting

mechanism. The reliability of the clustering phase’s pseudo-labels

was further validated using biological assays such as immune

infiltrating, immune checkpoint genes expression level,

chemotherapy sensitivity. Finally, a parallel cross-fusion network

was constructed, incorporating BiLSTM for sequence modeling and
Frontiers in Immunology 03
CNN for feature extraction. The model was trained using the

dataset with pseudo-labels to achieve classification of different

gene subtypes (Figure 1A).

2.3.2 Pseudo-label generation module
The TCGA and GEO datasets do not provide true label

information. Existing molecular typing methods typically use

clustering algorithms, such as K-Means or Consensus Clustering

(CC), to cluster and reorganize TCGA or GEO data, generating

pseudo-labels for gene sequences, which are then used to train

supervised classification models. However, the reliability of pseudo-

labels generated by a single clustering algorithm remains an open

question. It is well known that the reliability of pseudo-labels during

the clustering phase directly impacts the prediction accuracy of

classification models.

To address this, we developed a novel scoring network using

K-Means, GMM, Agglomerative Clustering (CLARA, Clustering

LARge Applications), CLARANS, and K-Medoids (PAM,

Partitioning Around Medoids) clustering algorithms. In this

network, each gene is assigned a corresponding pseudo-label via a

majority voting mechanism. Specifically, our scoring network

integrates the strengths of different clustering algorithms,
FIGURE 1

Framework overview. (A) The model integrates scoring-based clustering and multi-domain feature fusion to convert complex data into actionable
insights. The framework operates as a deep learning model to stratify patient subtypes. Prognosis predictions also established by machine learning.
(B) Pseudo-label generation Module using Scoring Mechanism in self-supervised mode. Input data are represented by [Key, Value] pairs, where the
key is the feature name and the value corresponds to the numerical score of the feature. Feature names and values are embedded and fed to a
Scoring Clustering architecture without positional encoding. The output of this scoring clustering is Pseudo label. (C) Classification Module using
Multi-scale Cross-attention, for a given gene sequence X, the sequence X is initially fed into a Convolutional Neural Network (CNN) and a
Bidirectional Long Shot-Term Memory (BiLSTM) to extract coding features from the spatial and temporal dimensions. Respectively. Subsequently, a
cross-attention mechanism is employed to align and facilitate information interaction between the spatial and temporal features, thereby fusing the
features across different dimensions, this fusion aims to construct a classifier based on the integrated feature representation. Finally, the fused
features are input into a fully connected (FC) laver to adjust their dimensionality and the classification is performed using a SoftMax function.
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measuring the distribution differences across various datasets from

multiple perspectives. This approach is better suited to adapt to the

complex distributions across different data domains, influenced by

factors such as environment, individual variability, and

drug sensitivity.

Notably, to enhance the stability of clustering results and reduce

ambiguity between data domains, our scoring network standardizes

the distance metric strategies of DBSCAN, K-Medoids, and

Agglomerative Clustering by uniformly employing the Euclidean

distance metric. This standardization ensures consistent distribution

differences across algorithms, both between different sample clusters

and within data points in the same cluster (Figure 1B).
2.3.3 CNN+ BiLSTM parallel cross-fusion
attention classification model

In existing gene sequence prediction methods, machine learning

algorithms such as decision trees, Bayesian classifiers and Support

Vector Machines (SVM) are commonly employed to construct

classification models. However, limited attention has been paid to

the construction of classifiers, particularly ensemble classifiers based

on deep learning models. High-quality classifiers are crucial for

improving prediction accuracy. To this end, this study proposes a

novel ensemble classification model leveraging CNN and BiLSTM to

extract both temporal and spatial encoding information from gene

sequence data. The extracted multi-scale features are then employed

in building the classification model, as shown in Figure 1C.

For a given gene sequence X = x1, x2,…, xnf g, the gene

sequence is used as input to both the CNN and the BiLSTM.

These models extract encoding features from the gene sequence in

both the spatial and temporal dimensions, as illustrated by the

calculation in Equation 1:

Fc = wi(x1, x2,…, xn) + bi

Fg = wj(x1, x2,…, xn) + bj

(
(1)

Here, Fc and Fg represent the encoding features in the spatial

and temporal dimensions, respectively. In this context, a neural

network with three convolutional layers is used to extract the

encoding features in the spatial dimension. wi and wj denote the

weights, which are a set of learnable parameters, and bi and bj
represent the biases.

To facilitate the alignment and information exchange between

features from different dimensions, a cross-attention mechanism is

employed to establish interactions between the temporal and spatial

encoding features. The goal is to fuse these encoding features and

use the fused features to construct the classifier. The feature fusion

computation between dimensions is given by Equation 2:

Fcg = softmax
Fc · FgTffiffiffi

d
p

� �
(Fc + Fg) (2)

Here, Fcg denotes the fused features, which encapsulate both the

temporal and spatial dimensional encoding semantics. d represents

the feature dimension, and T denotes the transpose operation.
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Finally, the fused encoding features from both the temporal and

spatial dimensions are used as input to a fully connected layer (FC-layer),

where the dimensionality of the fused features is adjusted. Softmax is

used as the classification function. To optimize the performance of the

temporal-spatial parallel fusion classification model, a cross-entropy

loss function is used to compute the loss between the predicted labels

P = p1, p2,…, pkf g and the clustering pseudo-labels Y =

y1, y2,…, ykf g. The reliability of the clustering pseudo-labels is further
validated through subsequent biological analyses.
2.4 Screening of optimal PAN-related gene

To identify gastric cancer specific signature genes, LASSO and

random forest algorithms were independently applied, leveraging

their complementary advantages in feature selection efficiency and

model stability (18, 19). LASSO regression was conducted via the

“glmnet” package, introducing an L1 regularization term to

constrain model complexity and facilitate the selection of

informative features by penalizing less relevant or redundant

genes. Concurrently, Random Forest, through the construction

and aggregation of multiple decision trees, was employed to

evaluate feature importance and identify the most discriminative

gene candidates. The overlapping genes derived from these two

machine learning approaches were subsequently defined as hub

PAN-related genes in gastric cancer.
2.5 Data collection of somatic variants and
copy number variants

Given its correlation with neoantigen load, Tumor mutational

burden (TMB) has become a widely used metric for assessing

potential benefit from immunotherapy. To assess its clinical

relevance, we conducted stratified survival analyses to examine

the association between TMB and patient prognosis. Somatic

mutation profiling was performed using the “maftools” R package

(20). The analysis identified the top 30 genes with the highest

mutation frequencies, offering insights into mutation patterns

associated with gastric cancer subgroups. The copy number

variation landscape was comprehensively analyzed using the

“DNAcopy” and “VariantAnnotation” R packages.
2.6 Immune cell infiltration

We utilized a comprehensive suite of bioinformatics tools—

including quanTIseq, ESTIMATE, MCPcounter, single-sample

Gene Set Enrichment Analysis (ssGSEA) and xCell—to assess

immune status differences among the molecular subtypes (21–24).

These approaches enabled a detailed characterization of immune

cell infiltration within the TME. Furthermore, we investigated

the associations between molecular subtypes and immune
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checkpoint gene expression to elucidate potential implications for

immunotherapeutic responsiveness (25, 26).
2.7 Single-cell RNA-seq analysis and cell-
cell interaction mapping of PAN-related
gene in gastric cancer

To elucidate the cellular heterogeneity and regulatory networks in

gastric cancer, we conducted a comprehensive scRNA-seq analysis

using the dataset from GSE183904. Our analysis employed the

“Seurat” and “SingleR” R packages, following a series of

standardized quality control procedures. Low-quality cells were

filtered out using the “PercentageFeatureSet” function based on

mitochondrial gene percentage and unique molecular identifier

(UMI) counts. The remaining cells were processed using the

“SCTransform” function for normalization, variance stabilization,

and removal of technical artifacts. The “RunPCA” function was

employed to perform principal component analysis (PCA) on

highly variable genes for dimensionality reduction. Cell clusters

were identified based on transcriptional profiles using the

“FindNeighbors” and “FindClusters” functions, and annotation of

cell types was performed using the “SingleR” functions,

supplemented by well-characterized marker genes from previous

studies (27). To reconstruct cellular developmental trajectories,

we performed pseudotemporal ordering using the Monocle

package. We delineated distinct cell populations through clustering

and constructed a single-cell expression matrix to elucidate the

developmental states of cells. By analyzing dynamic gene

expression patterns, we inferred the differentiation trajectories of

cells. We employed the CytoTRACE algorithm to quantitatively

evaluate the developmental potential of individual cells (28, 29).

Concurrently, we utilized CellChat to investigate cell-cell

communication networks (30). By leveraging its integrated

CellChatDB ligand-receptor interaction database, we systematically

identified cell type-specific signaling patterns and characterized the

dynamics of intercellular communication. This approach detected

significantly overexpressed ligands and receptors within distinct cell

populations, enabling the inference of enhanced intercellular

signaling pathways.

To further investigate gastric cancer at single-cell resolution, we

employed the SCENIC pipeline (31) for gene regulatory network

inference and validated key gene expression patterns across

different cell populations using dataset GSE183904. Our analytical

workflow included: (1) stringent quality control by excluding cells

with >25% mitochondrial gene content or extreme gene counts

(<500 or >6000 genes); (2) data normalization using Seurat’s

“NormalizeData” function with default parameters; (3) expression

matrix standardization via “ScaleData”; and (4) dimensionality

reduction through PCA was applied to the top 3,000 highly

variable genes for dimensionality reduction, followed by t-SNE

visualization (using 30 principal components) implemented with

the “RunTSNE” function.
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2.8 Processing and analysis of the spatial
transcriptome data

To characterize the spatial gene expression architecture in gastric

cancer, we analyzed spatial transcriptomics data (GSE251950)

from GEO, comprising filtered feature-barcode matrices and

corresponding spatial coordinates. The data processing pipeline

included normalization and scaling using SCTransform (Seurat

v4.0) (32), followed by dimensionality reduction via PCA

(RunPCA) and t-SNE visualization (top 30 PCs) to reveal global

expression patterns. We then performed clustering (resolution=0.5)

to identify spatially coherent transcriptomic domains. For cellular

resolution analysis, we implemented the Spacexr package (33) to

deconvolute Visium spots, first creating reference profiles

(create.RCTD) and then executing deconvolution (run.RCTD) in

full mode to estimate the cellular composition of each spot, thereby

enabling comprehensive mapping of cell type distributions within the

tissue architecture.
2.9 RSF-driven prognostic model
construction and assessment

First, univariate Cox regression analysis was performed to

identify survival-associated genes based on gene expression levels.

Subsequently, a RSF (34) model was constructed using the selected

genes, and the importance of each gene was ranked according to its

contribution to the model’s predictive performance. The model’s

predictive performance was evaluated over time using the

Concordance Index (C-index). As the ensemble of decision trees

expanded, the model’s prediction error progressively diminished

and ultimately reached a stable plateau, underscoring the model’s

robustness and reliability. Key variables with significant impacts on

survival prediction were further selected based on their importance

scores. Patients were stratified into high-risk and low-risk

groups based on the risk scores derived from the RSF model. This

stratification was achieved using maximally selected rank statistics,

which identified the optimal cutoff value to maximize the survival

differences between the two groups. Kaplan-Meier analysis revealed

significant survival disparity between these risk strata. The

prognostic robustness of this classification was subsequently

confirmed in an independent validation cohort, demonstrating

consistent survival trends across datasets.
2.10 Chemotherapeutic response profiling

To evaluate differential drug sensitivity between risk groups, we

analyzed 10 clinically-relevant gastric cancer therapeutics from the

GDSC database (v2.0). Using the pRRophetic R package (35), we

computed and compared half-maximal inhibitory concentrations

(IC50) across risk strata, enabling systematic assessment of

chemotherapy response patterns.
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2.11 Immunohistochemical analysis and
RT-qPCR validation

We validated the expression profiles of the four diagnostic and

nine prognostic genes in gastric cancer (GC) using the Human

Protein Atlas (HPA; https://www.proteinatlas.org/). Furthermore,

RT-qPCR was employed to examine gene expression in clinical

samples, which included five GC tissues and five matched adjacent

non-tumor tissues. Total RNA was extracted with TRIzol reagent,

and its purity and concentration were measured using a

NanoPhotometer N50. cDNA was synthesized from the extracted

RNA with the SweScript First Strand cDNA Synthesis Kit

(Servicebio, China). Quantitative PCR was performed using the

2× Universal Blue SYBR Green qPCR Master Mix (Servicebio,

China) in accordance with the manufacturer’s protocol. The

2−DDCt method was applied to calculate relative gene expression

levels, using GAPDH as the endogenous control. All primer

sequences were synthesized by Tsingke (Beijing, China) and are

listed in Supplementary Table 3.
3 Results

3.1 Overlap analysis of genes profiled from
bulk data

The PAN gene set was derived by integrating PAN genes from

Reactome, AmiGO 2, and KEGG, with overlapping genes removed
Frontiers in Immunology 06
to obtain a non-redundant, high-confidence signature. Key

apoptotic regulators included BAD, BIRC3, CASP8, CFLAR,

E2F1, FOXO3, FOXO4, BCL2L1, BCL2, BBC3, AVEN, BCL6,

JUN, HDAC9, IRF9, TFDP1, TNFRSF10A, TRAF2. pyroptosis-

related genes were identified as CASP8, CARD8, GSDMA,

GZMB, IFI27, IRGM, NFKBIA, NINJ1, OTULIN, PANX.

Necroptosis-associated factors such as BIRC3, CASP8, CFLAR,

NFKBIA, TNFRSF10A, TRAF2, BCL2, BCL2L1 and USP25 were

also included. Moreover, several genes participated simultaneously

in PAN, underscoring their critical role in PAN regulation

(Supplementary Table 2).
3.2 Machine learning-based identification
of molecular subgroups and predictive
gene signatures in gastric cancer

We identified molecular subgroups by employing a voting-

based scoring network that integrates five clustering algorithms—

K-Means, GMM, CLARANS, Agglomerative Clustering, and K-

Medoids—thereby enhancing the robustness and consistency of

subtype classification. We independently identified three subtypes

from five clustering algorithms, and the number of subtypes was

determined by comprehensively referring to the cluster prediction

silhouette score and previous research experience (Figure 2).

Through comparative analysis with established clustering

methodologies including Consensus Clustering, Agglomerative

Clustering (CLARA), CLARANS, Gaussian Mixture Models
FIGURE 2

The sample similarity of each subtype was assessed by calculating the Silhouette score and comparative analysis of clustering performance.
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(GMM), K-means clustering and K-Medoids clustering (PAM), our

scoring network clustering algorithm demonstrated superior

performance with the highest clustering score, confirming its

effectiveness as a clustering approach (Figure 2).

The heatmap displays gene expression profiles across samples,

where rows correspond to genes and columns to individual samples.

A blue-to-red color gradient indicates expression levels, with blue

denoting low and red indicating high expression. The dendrogram on

the left represents hierarchical clustering of samples based on gene

expression, revealing distinct clusters potentially corresponding to

different molecular subgroups (Figure 3A). The expression patterns

and predictive efficiency of these genes were further evaluated in the

training set. KDM5D showed significant upregulation in Subgroup 1

compared to both Subgroup 2 and Subgroup 3, whereas SLC16A4

was downregulated. Additionally, CFLAR expression was elevated in

Subgroup 2 relative to Subgroup 3, while UACA exhibited

downregulation (Figure 3B). Based on gene expression patterns, the

t-SNE plot illustrates three distinct subgroups, with samples

represented as colored dots (Subgroup 1: red, Subgroup 2: blue,

Subgroup 3: orange). The clear separation among subgroups suggests

distinct molecular characteristics (Figure 3C). Kaplan-Meier survival

curves for the three subgroups over a 10-year period show differences

in survival probabilities. Despite clear molecular distinctions between

subgroups, Kaplan-Meier analysis demonstrated no statistically

significant survival differences (Figure 3D). To identify robust

prognosis biomarkers, we implemented a dual machine learning

approach combining LASSO regression (Figure 3E) for feature

selection and random forest analysis (Figure 3F) for non-linear

feature importance assessment. Through intersection analysis of

both algorithms, we identified eight consensus diagnostic genes

(KDM5D, CFLAR, UACA, SLC16A4, IFIH1, PIK3CG, TNFSF13B

and PDK4) that demonstrated consistent predictive value across

both methodologies.
3.3 Classification module using multi-scale
cross-attention

Figure 4A illustrates the expression profiles of feature genes

across samples of different molecular subtypes. Within the

heatmap, gene expression is displayed with genes on the y-axis

and samples on the x-axis. The color coding reflects a variety of

clinical and molecular characteristics, including survival status

(alive or deceased), patient age, histological stage, sample

grouping, and the expression levels of specific genes. The Receiver

Operating Characteristic (ROC) curves in Figure 4B reveal the

model’s excellent classification performance in distinguishing

between different molecular subtypes, with the Area Under the

Curve (AUC) values close to 1, indicating a high level of diagnostic

accuracy. The accuracy rates (Train-Acc and Test-Acc) of different

model variants on the training and testing datasets, respectively

(Supplementary Table 1). These model variants are part of an

ablation study conducted on the Multi-scale Cross-attention

classification model. Ablation study is a model evaluation method

that systematically removes or replaces certain parts of the model to
Frontiers in Immunology 07
understand the impact of these parts on the overall performance.

The results from the ablation study indicate that the model

combining CNN+BiLSTM performs the best on the test dataset,

suggesting that considering both forward and backward sequence

information along with convolutional feature extraction are key

factors in enhancing the model’s performance within the Multi-

scale Cross-attention classification model framework.
3.4 Generalization of the CNN+BiLSTM
classification model

To comprehensively evaluate the model’s performance, we

further tested its generalizability on two independent external

datasets. Receiver Operating Characteristic (ROC) curves for

different subtypes demonstrated robust classification performance,

with Area Under the Curve (AUC) values of 0.88, 0.96, and 0.93,

respectively. These high AUC values indicate that the model

effectively distinguishes among the subtypes (Figure 4C). Kaplan-

Meier survival curves revealed significant differences in survival

outcomes among the subtypes, suggesting that the model can

accurately stratify patients based on prognosis (Figure 4D). A

heatmap of the feature gene expression profiles across subtypes

illustrated distinct molecular signatures for each group. These

patterns facilitate the identification of subtype-specific feature genes

and provide insights into the underlying biological heterogeneity

(Figure 4E). Collectively, these results demonstrate that the model

possesses strong classification capability across different breast cancer

subtypes, can effectively distinguish prognostic differences, and

identify relevant molecular features. These findings offer a

valuable foundation for further investigations into the molecular

mechanisms of breast cancer and the development of personalized

therapeutic strategies.

The classification results of the model on the CESC dataset

comprehensively demonstrate its generalization performance, as

reflected by training and testing accuracy, loss curves, ROC curves,

survival analysis, and feature gene expression heatmaps. The model

exhibits strong performance in distinguishing between different

subtypes and accurately identifying subtype-specific feature genes.

However, Kaplan-Meier survival analysis reveals no statistically

differences among the subtypes, indicating potential limitations

of the model in prognostic prediction. Despite this, the findings

provide important evidence for further exploration of the

molecular mechanisms of cervical squamous cell carcinoma and

support the development of personalized treatment strategies

(Supplementary Figure 1).
3.5 Validation optimal genes in scRNA
transcriptome and spatial transcriptome

To investigate the cellular context of candidate feature genes

in gastric cancer, we analyzed their expression patterns using

scRNA-seq data. The t-SNE plot (Figure 5A) revealed distinct

clusters corresponding to various cell types within the tumor
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microenvironment, including epithelial and immune cell

populations. As shown in the dot plot (Figure 5B), PDK4, UACA

and CFLAR showed predominant expression in endothelial

cells, while CFLAR and TNFSF13B were highly expressed in
Frontiers in Immunology 08
macrophages and monocytes. Notably, UACA and PDK4

demonstrated significant expression in immune cells (particularly

T cells), suggesting potential immunomodulatory functions.

In contrast, SLC16A4, IFIH1, PIK3CG and KDM5D exhibited
FIGURE 3

Identification of three distinct subtypes and key clustering genes in DEGs. (A) Heatmap analysis of PAN-related gene clusters and their
clinicopathological correlations (Stage I-II: early cancer, curable; Stage III: Locally advanced cancer; Stage IV: spread widely or metastasized). (B)
Volcano plots for multiple groups were drawn to show the differentially expressed genes in tumor subtypes tissue, up is high expression, down is
low expression. (C) t-SNE dimensionality reduction analysis. (D) Survival analysis of molecular clusters. (E) Cross-validation curve of MSE versus log(l)
in LASSO regression. Dashed lines indicate the l with minimum MSE and the l within one standard error. (F) The RF importance score of these
different expression genes among three subtypes.
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relatively low and restricted expression patterns. Violin plots and

t-SNE expression maps (Figure 5C) further validated these cell-type

specific expression profiles, underscoring their potential roles in

gastric cancer heterogeneity and immune microenvironment

remodeling. The analysis reveals important insights into the cell-

specific functions of candidate biomarkers, potentially guiding

precision therapy development.

To characterize the spatial transcriptomic landscape of gastric

cancer, we analyzed spatial transcriptomics data from gastric cancer

samples (GSE251950, GEO database). Pathologist-validated

annotations confirmed spatial correlations between programmed

cell death and malignant tumor regions. Louvain clustering based

on spatial transcriptomic profiles identified twelve distinct cellular

clusters (Figures 6A, B). Integration with scRNA-seq data enabled

deconvolution of seven clusters, revealing their cellular composition.

Clusters 3, 5, 8 and 9 showed predominant localization in epithelial-

rich regions, while macrophage-enriched clusters (0, 1, and 4) and

other immune cell populations demonstrated distinct spatial

distributions (Figure 6C). Expression mapping of the eight feature

genes across major cell types revealed: macrophage and NK cells were

primarily localized in cluster 7, with T cells concentrated in cluster 6

(Figure 6C). Genes including UACA and CFLAR exhibited elevated

expression in epithelial cells, macrophages and endothelial cells,
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suggesting involvement in tumor-immune crosstalk. While

SLC16A4 showed universally low expression, CFLAR demonstrated

selective enrichment in T cells and NK cells. These spatially resolved

expression patterns corroborated our scRNA-seq findings, further

validating the cellular specificity and heterogeneity of the identified

marker genes (Figure 6D, Supplementary Figure 2).
3.6 Endothelial cell crosstalk and
pseudotime trajectory analysis

To elucidate the biological functions of endothelial cells in

intercellular communication, we examined the extent and

intensity of their connections with other cell types. Our findings

indicated that endothelial cells are prominently engaged in a higher

frequency of interactions, especially with immune cells and tissue

stem cells, suggesting potential cooperative roles in these cellular

networks (Figure 7A). Further analysis of ligand–receptor

interactions revealed that endothelial cells communicate with

other cell populations through specific signaling pathways

(Figure 7B). In terms of signal reception, immune T cells more

frequently interacted with endothelial cells via defined ligand–

receptor pairs. Moreover, signaling pathways associated with
FIGURE 4

Performance evaluation of the CNN+BiLSTM classification module with multi-scale cross-attention in gastric cancer, and its scalability in the TCGA-
BRCA cohort. (A) Distribution of input sample features used for model training and evaluation in gastric cancer. (B) ROC Curves of the CNN+BiLSTM
model with multi-scale cross-attention. (C) The receiver operating characteristic curves (ROCs) of CNN+ BiLSTM classifier. (D) Kaplan Meier plot of
the three subgroups identified by the classifier. (E) Expression patterns of the 10-gene profile are displayed, with predicted subgroup labels
(generated by the CNN+BiLSTM classifier) annotated in the upper bar.
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endothelial cell communication, such as APP, CXCL, PECAM1,

ICAM and JAM were more active in endothelial cells. Among the

incoming signals, CCL, VISFATIN, PECAM1, ESAM and NOTCH

were more prominently expressed in endothelial cells (Figure 7C).
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Trajectory analysis of endothelial cells differentiation using

Monocle 2 (Figure 7D) demonstrated that endothelial cells followed

a differentiation path progressing from bottom to top along the

pseudotime axis. During the initial phases of development, cells
FIGURE 5

Single-cell transcriptomic profiling of candidate feature genes in gastric cancer. (A) t-SNE visualization of major gastric tumor microenvironment cell
types: epithelial cells, T cells, B cells, NK cells, monocytes, macrophages, endothelial cells, and tissue stem cells. (B) Feature gene expression
patterns across cell types, showing PDK4, UACA, CFLAR, SLC16A4, TNFSF13B, IFIH1, PIK3CG and KDM5D. Dot size indicates expression prevalence;
color gradient represents expression intensity. (C) Violin plots and t-SNE feature maps showing the expression distribution of each gene at the
single-cell level, revealing distinct cell-type-specific expression patterns and potential functional roles in gastric cancer.
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expressing key genes were relatively rare, but their prevalence

significantly increased as development progressed. CytoTRACE

analysis further delineated the developmental trajectory and origin of

endothelial cells, indicating that the majority of endothelial cells were

situated at more advanced stages of development.
3.7 Characterization of the tumor
microenvironment via signature gene
profiling

To further investigate the therapeutic relevance, the expression

profiles of immune checkpoint genes were examined among
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the three molecular subtypes. As illustrated in Figure 8A,

significant subtype-specific differences were observed in several

immune checkpoint molecules, including HLA-DOA, HLA-A,

KIR3DL3, BTN2A1, TNFRSF4, and HLA-DMB (P < 0.001);

HLA-C, HLA-G, and HLA-B (P < 0.01); and CD70, ADORA2A,

CD226, HLA-DQA1, and KIR2DS4 (P < 0.05). These results

indicate that the molecular subtypes may differ in their

immunoregulatory landscapes and potential responsiveness to

immune checkpoint blockade, providing a rationale for subtype-

specific immunotherapeutic strategies.

To comprehensively characterize the tumor immune

microenvironment, we integrated multiple deconvolution

approaches—quanTIseq, ESTIMATE, MCPcounter, ssGSEA, xCell,
FIGURE 6

Validation marker genes in spatial transcriptomics data. (A, B) t-SNE projection of spatially resolved spot clusters in a gastric cancer patient sample.
(C) tSNE visualization of the main cell type for each spot. (D) The distribution of PDK4, UACA, CFLAR, SLC16A4, TNFSF13B, IFIH1, PIK3CG and
KDM5D expression across different cells types.
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and CIBERSORTx—to evaluate immune infiltration and functional

immune signatures. The quanTIseq method identified significant

differences in infiltration levels for seven major immune cell subsets:

B cells, Macrophages, NK cells, Tregs, Neutrophils and Dendritic cells
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(Figure 8B). Using the ESTIMATE algorithm, we assessed immune

infiltration (stromal score, immune score, and ESTIMATE score) and

tumor purity. Subgroup 1 and Subgroup 2, Subgroup 2 and Subgroup

3 significant differences in stromal or immune cell components were
FIGURE 7

Analysis of endothelial cell communication and developmental trajectories. (A) Number and intensity of intercellular interactions between
Endothelial_cells and other cell populations. (B) Bubble plot of ligand–receptor pairs from various cell types targeting Endothelial_cells. (C) Overview
of signaling pathways mediating communication between Endothelial_cells and surrounding cell types. (D) Differentiation trajectory of
Endothelial_cells, showing pseudotime progression and cluster distribution along the developmental timeline.
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found between the two subgroups, indicating comparable tumor

purity (Figure 8C). Subgroup 1 had lower immune cell infiltration

levels compared to Subgroup 3, suggesting a little differences immune

response. MCPcounter analysis demonstrated distinct immune
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infiltration profiles across subgroups. Figure 8D displayed highly

significant differences among three subtypes (“P”<0.0001). Using

ssGSEA, 16 types of infiltrating immune cells were evaluated. All

listed cell types exhibited significant differences, indicating marked
FIGURE 8

Tumor microenvironmental landscapes across the three molecular subtypes. (A) Comparative analysis of immune checkpoint gene expression across
subtypes. (B) Immune cell composition inferred by quanTIseq: boxplots and heatmaps illustrating subtype-specific abundance patterns. (C) The
ESTIMATE algorithm was employed to calculate tumor purity and stromal/immune infiltration scores. (D) Immune infiltration profiles derived from
MCPcounter: boxplots comparing immune cell subsets between subtypes. (E) ssGSEA-based analysis of immune-related signatures across molecular
subtypes. (F) xCell-derived immune cell abundance comparisons among the three subtypes. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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variations in their respective scores among the three subgroups.

These findings further suggest substantial differences in the

biological characteristics or functional states of these cell types

across the subgroups, which may reflect distinct underlying

biological processes or disease-associated states (Figure 8E). Using

xCell, significant differences in infiltration scores were found for

multiple cell types, including Epithelial cells, immature Dendritic cells

(iDCs), and Megakaryocyte-Erythroid Progenitor cells (MEPs)

exhibit the highest scores, whereas Activated Dendritic cells

(aDCs), Fibroblasts, and Class-switched Memory B cells show the

lowest in Subgroup 2. In contrast, Subgroup 3 is characterized by

elevated scores in Astrocytes, Chondrocytes, Hematopoietic Stem

Cells (HSCs), and Pericytes (Figure 8F). Across all analyses, immune

infiltration levels were significantly different between the two

molecular subtypes, with Subgroup 2 generally exhibiting higher

immune cell infiltration.

The analysis indicates that TME plays a crucial part in

influencing heterogeneous immune response and potentially

guiding personalized immunotherapy strategies in gastric cancer.
3.8 Genomic mutation profiling

The efficacy of immunotherapy is influenced by multiple

factors, including the infiltration patterns of immune cells in the

TME and the mutational landscape of tumors. We hypothesized

that the distinct molecular subtypes may exhibit differential tumor

progression patterns and varied responses to immunotherapy. Since

somatic mutations can generate neoantigens that enhance tumor-

specific immune recognition, they represent promising targets for

personalized immunotherapeutic strategies (36). To explore this,

we analyzed the somatic mutation profiles in gastric cancer patients

to identify potential neoantigen sources. Figures 9A-C illustrates the

top 30 genes exhibiting the most frequent mutations across the

cohorts. Among them, ACVR2A, PLEC, ARID1A, ZFHX4, FAT3,

and LRP1B showed significantly higher mutation frequencies in

Subgroups 1 and 3. Notably, OBSCN mutations were exclusive to

Subgroup 1. The mutation rate of KMT2D exhibited a decreasing

trend from Subgroup 1 to 3 to 2, while the remaining genes

displayed no statistically significant differences. Additionally,

differentially mutated genes (DMGs) were enriched in Subgroups

1 and 3, indicating a cumulative impact of low-frequency variants,

which may contribute to subtype-specific immunogenicity.

Among the three subtypes, genes such as PTK2, BCL2L11, and

E2F1 exhibited high frequencies of copy number variations (CNVs).

Notably, Subtype 1 showed elevated mutation frequencies on

chromosomes 8 and 20, with copy number gains appearing to be

more common than losses. Differences were observed in the

distribution and frequency of CNV gains and losses among the

subtypes. For instance, Subtype 2 was characterized by a unique

alteration in NINJ1, along with increased frequencies of copy number

losses in PPP3C, TNFRSF10A, and ERP44. In Subtype 3, the distinct

alteration involved HTRA1, accompanied by elevated frequencies of

copy number losses in PPP3C, TNFRSF10A, and DFFB. These
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differences may reflect the molecular characteristics of each subtype

and provide insights into potential therapeutic targets (Figures 9D-F).
3.9 Immunohistochemical analysis and RT-
qPCR validation diagnosis marker genes

We utilized immunohistochemical images sourced from the

Human Protein Atlas database (HPA) to evaluate the protein

expression levels of the four aforementioned marker genes. Our

analysis compared protein expression in normal tissues and GC

tissues to identify potential differences (Figure 10). The findings

revealed that CFLAR and PDK4 exhibited significantly elevated

protein expression in OC tissues compared to normal GC tissues

(Figure 10A). However, PDK4 and UACA have low expression levels

in GC tissues. TNFSF13B demonstrated expression with moderate

staining intensity in GC tissues, whereas in normal gastric tissues, it

exhibited lower levels of staining. In addition to UACA, the data

study of the TCGA cohort found that it was consistent with the

immunohistochemical trend (Figure 10B). Additionally, we assessed

the expression levels of these genes in gastric cancer (GC) versus

adjacent noncancerous tissues using RT-qPCR (Figure 10C). The

results were consistent with the HPA database, showing that CFLAR

and TNFSF13B were upregulated in GC tissues, whereas PDK4 was

downregulated. In contrast, the expression of UACA showed no

significant difference between GC and adjacent tissues, which was

inconsistent with the Immunohistochemical results. This discrepancy

may be attributed to the relatively small sample size in the

Immunohistochemical results underscoring the need for further

validation studies to confirm these observations.
3.10 Establishment and verification of a
PAN gene-based prognostic model

To develop a prognostic model incorporating PAN-related

genes, we employed Cox regression analysis coupled with

Random Survival Forest to optimize the selection of prognostic

differentially expressed genes in gastric cancer. Univariate Cox

regression identified genes significantly associated with overall

survival (P < 0.05, HR ≠ 1), as shown in Figure 11A.

Subsequently, RSF analysis ranked the top 15 survival-associated

genes according to their importance scores, with higher values

reflecting a greater contribution to predictive performance

(Figure 11B). Figure 11C illustrates the time-dependent predictive

accuracy of the RSF model, which maintained a high and stable

concordance index (C-index), indicating strong prognostic

capability. With increasing numbers of decision trees, we

observed a consistent reduction in error rate that eventually

reached a stable plateau (Figure 11D), demonstrating its

robustness and stability. Among the top-ranked genes, PDK4,

IFH1, DFFB, HDAC9, GZMB, PSMB6, HTRA1, PSMB5, and

BACH2 emerged as key contributors to survival prediction

(Figure 11E), and were selected for further model construction
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and validation. f (t ∣ x) = f0(t) × exp (coef1 gene 1 +coef2 gene 2 + ⋯
+coef9 gene 9), where f (t ∣ x) represents the risk function at time t,

conditioned on the covariates x; f0(t) is the baseline risk function;

coefn is the coefficient of each predictive variable factor; and genen is

the gene affecting survival.
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Our prognostic model achieved outstanding discrimination

(AUCs: 0.966-0.992 across 1–5 years) and effectively stratified

patients into clinically distinct risk groups. Both primary and

validation cohorts showed significantly reduced survival in high-

risk patients (Figures 11F, G). The optimal risk cutoff (50.61)
FIGURE 9

Landscape of single nucleotide variations (SNV) and CNV variation frequencies in three different groups. (A-C) The mutation frequency of top 30
genes, mutant spectrum characteristics and TMB distribution in three subgroups, respectively. (D-F) The CNV variation frequency of top 30 genes
and the location on 23 chromosomes in subgroup 1, 2 and 3, respectively.
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maximized survival separation between groups (Figures 11H, I),

confirming robust predictive performance.
3.11 Drug sensitivity prediction

To evaluate the clinical utility of our PAN-based model, we

analyzed IC50 values of common anticancer drugs in gastric

cancer samples. Eight drugs showed differential sensitivity

between the higher and lower PAN scoring groups (Figure 12).

The high-PANscore group exhibited greater sensitivity to AKT

inhibitor VIII, Dasatinib, and Lapatinib (lower IC50), while

demonstrating potential resistance to Gefitinib, Imatinib,

Paclitaxel, Etoposide, and Rapamycin (higher IC50). These

results suggest our model may guide personalized therapy

selection in gastric cancer patients.

3.12 Protein expression and RT-qPCR
detection of prognostic signatures

Analysis of HPA and TCGA-STAD data revealed differential

expression patterns of IFIH1, DFFB, PSMB6, PSMB5, and BACH2.
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Specifically, DFFB and PSMB6 exhibited significantly higher

expression in control samples, whereas GLP1R was upregulated

in HCC tissues (Figures 13A, B). No significant differences were

observed in HDAC9 and BACH2 expression levels between groups

(Figures 13A, B). RT-qPCR validation confirmed these findings,

demonstrating significant differences in gene expression between

gastric cancer (GC) and control samples, consistent with the HPA

and TCGA-STAD datasets (Figure 13C). However, HDAC9 and

PSMB6 did not reach statistical significance (P > 0.05), which may

be attributed to limited sample size.
4 Conclusions and discussion

In this study, we systematically investigated the interplay

among three programmed cell death pathways to define a

PAN-related molecular landscape in gastric cancer. While the

three molecular subtypes defined by these genes did not show

statistically significant differences in overall survival (Figure 3D),

this finding is itself insightful. It highlights that the primary value of

this molecular subtyping lies not in direct prognosis prediction, but

in its power to resolve the profound heterogeneity of gastric cancer.
FIGURE 10

Immunohistochemical analysis of the HPA database and expression validation of marker genes. (A) Immunohistochemical staining of PDK4, CFLAR,
UACA, and TNFSF13B in normal gastric tissues and gastric cancer (GC) tissues. (B) mRNA expression levels of the indicated genes in the TCGA-STAD
dataset. (C) Validation of their expression by RT-qPCR. ns, not significant; *P< 0.05; ***P< 0.001.
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These subtypes exhibited starkly distinct tumor microenvironment

(TME) profiles, genomic alteration patterns, and predicted

drug sensitivities (as shown in Figures 8, 9). This stratification

provided the essential biological context to identify the key genes
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and mechanisms that drive aggressive disease within this

heterogeneous landscape. In other words, the subtyping

uncovered the “source of heterogeneity”, which we then leveraged

to build a refined and highly predictive tool.
FIGURE 11

Construction and evaluation of the prognostic model based on the RSF algorithm. (A) Univariate Cox regression analysis identified survival-
associated genes based on expression levels. (B) Gene importance ranking derived from the RSF model, with higher scores indicating greater
contributions to predictive performance. (C) Time-dependent C-index evaluation of model performance. (D) The error rate of the RSF model
decreased and eventually stabilized with an increasing number of decision trees, indicating strong model robustness and stability. (E) Top-ranked
genes were identified as key variables with significant impacts on survival prediction. (F) In the training set, Kaplan-Meier analysis revealed
significantly worse survival in high- versus low-risk patients. (G) Consistent survival trends were observed between risk groups in the validation
cohort. (H) Risk score distribution clearly distinguished between high-risk and low-risk samples. (I) Optimal risk cutoff (50.61) derived from maximally
selected rank statistics, maximizing intergroup survival difference.
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The experimental validation of our computational findings,

particularly the consistent upregulation of CFLAR and

downregulation of PDK4 in gastric cancer tissues, provides a solid

foundation for proposing their mechanistic roles (15). CFLAR

(c-FLIP) is a critical anti-apoptotic regulator that competes with

caspase-8 for binding to FADD, thereby inhibiting the extrinsic

apoptosis pathway. Its significant overexpression in our GC cohorts

suggests a potent mechanism by which tumor cells may evade this

form of cell death. Intriguingly, CFLAR has also been implicated in

modulating necroptosis. We hypothesize that in GC, CFLAR

overexpression creates a cell death “rheostat,” preferentially

shutting down apoptosis and potentially diverting cell fate

towards other PAN modalities, thereby contributing to tumor

survival and therapeutic resistance.

Conversely, the downregulation of PDK4 points to a profound

metabolic reprogramming. PDK4 phosphorylates and inactivates the

pyruvate dehydrogenase complex (PDH), thereby preventing the

entry of pyruvate into the mitochondrial TCA cycle. Its suppression

in GC suggests a shift towards enhanced mitochondrial oxidative

phosphorylation. Since efficient mitochondrial function is linked to

the generation of reactive oxygen species (ROS) and other signals that

can trigger pyroptosis, we speculate that PDK4 downregulation

may be an adaptive mechanism to reduce mitochondrial stress

and avoid this inflammatory form of cell death (5, 9). This would

allow the tumor to grow without eliciting a robust immune response,

aligning with the immune-evasive phenotypes we observed in high-

risk groups.
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Building on these mechanistic insights from individual genes, we

integrated them into the PANscore. The model’s outstanding

prognostic accuracy (5-year AUC of 0.992) demonstrates that the

collective derangement of these interconnected cell death and

metabolic pathways is a powerful determinant of patient outcomes.

The PANscore, therefore, moves beyond simple subtype classification

to quantify a tumor’s functional state of “PAN resistance.” This state

is characterized not by the absence of immune cells, but by an

inability to effectively execute immunogenic cell death, leading to an

inflamed yet immunosuppressed TME, as our data show (11, 12, 37).

This aligns with emerging evidence that machine learning can

capture such latent biological variation in high-dimensional

transcriptomic data (17).

This mechanistic framework directly informs the therapeutic

vulnerabilities we identified. The efficacy of AKT inhibitors in high-

PANscore patients may lie in AKT’s known role in regulating both

metabolism and cell survival, potentially forcing a lethal rewiring in

these already dysregulated tumors (1). Similarly, the potential

resistance to Gefitinib could be explained by the robust anti-

apoptotic shield provided by high CFLAR and other PANscore

components, underscoring the need for combination therapies that

co-target these resistance mechanisms. Our drug sensitivity analysis

thus supports the development of stratified therapeutic approaches

based on this quantitative risk assessment (1, 44).

Our study provides a robust multi-omics landscape of PAN in

GC, which directly points to the testable mechanistic hypotheses

outlined above (2, 7, 10). The key limitation is the lack of functional
FIGURE 12

Drug sensitivity stratification in gastric cancer. *P< 0.05; ***P< 0.001.
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validation for these hypotheses. Specifically, future work must

experimentally determine whether CFLAR indeed functions as the

proposed rheostat controlling the apoptosis-necroptosis switch in GC

cells, and whether restoring PDK4 expression can sensitize tumors to
Frontiers in Immunology 19
pyroptosis-inducing therapies. Employing genetic perturbations in

vitro and in vivo will be crucial to establish causality within the PAN

network and to translate our computational insights into targeted

therapeutic strategies (3, 4, 6).
FIGURE 13

Immunohistochemical analysis of the HPA database and expression validation of prognostic genes. (A) Immunohistochemical staining of IFIH1, DFFB,
HDAC9, GZMB, PSMB6, HTRA1, PSMB5, and BACH2 in normal gastric tissues and gastric cancer (GC) tissues. (B) Expression levels of these genes in
the TCGA-STAD dataset. (C) Validation of their expression by RT-qPCR. ns, not significant; *P< 0.05; ***P< 0.001.
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