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Background: Cancer-associated fibroblasts (CAFs) play a critical role in
hepatocellular carcinoma (HCC) progression. This study aimed to develop a
CAF-based risk signature model for predicting prognosis and identifying potential
therapeutic targets.

Methods: Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomic
RNA (stRNA) were employed to identify CAF signature genes and their spatial
distribution in HCC tissues. Immunohistochemistry (IHC) was used to validate
candidate protein expression. A CAFs-based risk signature model was developed
using multivariate Cox regression. Functional experiments were performed to
evaluate the role of OLFML2B in the effects of CAFs on HepG2 cell proliferation
and invasion.

Results: scRNA-seq analysis of dataset GSE242889 found CAFs as pivotal
regulators in the HCC microenvironment. Four CAF signature genes
(NDUFA4L, OLFML2B, SEMA5B and RASL12) were negatively correlated with
HCC patient survival. IHC staining further validated significant upregulation of
NDUFA4L, OLFML2B, SEMA5B and RASL12 in HCC tissues. The CAF risk model
constructed based on four CAF signature genes demonstrated prognostic
predictive value for HCC patients. Moreover, silencing OLFML2B markedly
attenuated the CAF-induced proliferation and invasion of HepG2 cells.
Conclusion: This study presents a novel CAF-based risk model that can exhibits
accurately predict the prognosis of HCC patients. Furthermore, knockdown of
OLFML2B attenuates the CAF-induced HCC progression, suggesting it as a
potential therapeutic target.
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1 Introduction

Hepatocellular carcinoma (HCC) ranks as the fourth most
lethal malignancy globally, claiming over 800,000 lives annually
due to its high recurrence rates and limited curative options (1).
Current therapeutic strategies for HCC mainly include surgery,
radiotherapy and chemotherapy. In recent decades, significant
progress has been made in understanding the molecular
mechanisms promoting HCC progression and in exploring
potential therapeutic targets (2-4). However, the heterogeneity of
HCC leads to poor patient outcomes. Therefore, identifying novel
therapeutic targets remains an urgent clinical need.

The tumor microenvironment (TME) serves as a dynamic
orchestrator of HCC progression, where reciprocal interactions
between malignant cells and stromal components contribute to
tumor growth and therapeutic resistance (5). Cancer-associated
fibroblasts (CAFs), predominantly derived from activated hepatic
stellate cells, represent the most abundant cell type within the HCC
TME (6, 7). CAFs provide a favorable internal environment for the
development and malignant progression of HCC by secreting
various cytokines, chemokines, and growth factors, either directly
or indirectly. Furthermore, CAFs reshape the immune
microenvironment by suppressing the activity of immune eftector
cells and recruiting immunosuppressive cells, thereby enabling
cancer cells to evade immune surveillance and leading to poor
immunotherapy outcomes (8, 9). Therefore, elucidating the
regulatory role of CAFs in HCC is crucial. This not only
facilitates a deeper understanding of the mechanisms underlying
HCC progression but also holds significant clinical value for
assessing patient prognosis and developing targeted
therapeutic strategies.

The current study aimed to develop a CAF-based risk signature
model for predicting prognosis and immunotherapy response of
HCC patients, as well as identifying potential therapeutic targets.
Four CAF signature genes (NDUFA4L, OLFML2B, SEMA5B and
RASL12) in HCC by utilizing single-cell RNA sequencing (scRNA-
seq) and spatial transcriptomics (stRNA) data. Based on these
genes, the constructed CAF risk model demonstrated prognostic
predictive value for HCC patients. Moreover, functional
experiments further revealed OLFML2B as a key regulator of
CAF-mediated HCC progression, suggesting it as a promising
therapeutic target.

2 Materials and methods
2.1 Data collection and processing

The scRNA-seq dataset GSE242889 was obtained from the
Gene Expression Omnibus (GEO) database (https://
www.ncbinlm.nih.gov/gds). This dataset included ten samples:
five HCC samples and five normal tissue samples (10). To ensure
the quality of our analysis, we filtered out single cells expressing
fewer than 200 genes or those with any gene expressed in fewer than
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three cells. Then the percentage of rRNA and mitochondria were
calculated using the PercentageFeatureSet function in the Seurat R
package. After quality control, a total of 9,029 cells were deemed
suitable for further analysis.

In addition, bulk RNA-seq data and clinical metadata for HCC
were obtained from The Cancer Genome Atlas (TCGA-LIHC)
(https://portal.gdc.cancer.gov/). After excluding samples with
missing survival data or outcome status, the dataset included 374
tumor samples and 50 normal samples.

2.2 Definition of CAFs

The HCC scRNA-seq data were re-analyzed using the Seurat R
package (11) to systematically characterize the CAFs signature.
First, cells expressing fewer than 300 or more than 7000 genes were
excluded, and the remaining genes were normalized using
SCTransformed. The RunHarmony function was employed to
remove batch effects for the four samples. Non-linear dimension
reduction was performed using the uniform manifold
approximation and projection (UMAP) method, and principal
components with resolutions of 1.2 and 25 were selected. The
single cells were then clustered into different subgroups using the
FindNeighbors and FindClusters functions, with parameters set to
dim = 25 and resolution = 1.2. UMAP dimensional reduction was
further performed using the RunUMAP function. The
FindAllMarkers function was used to define marker genes for
each CAFs cluster, and comparisons were made between different
clusters (minpct = 0.3, logFC = 0.5, and adjusted P < 0.05). CAFs
were annotated based on two marker genes, including ACTA2 and
COL1A2. Additionally, the monocle R software package was used to
analyze the developmental trajectory. Finally, Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analysis was
performed on the marker genes using the clusterProfiler
package (12).

2.3 CAF-related signature genes
identification

DESeq2, edgeR and limma packages (13) were used to identify
differentially expressed genes (DEGs) between normal and HCC
tissues based on [log,(FC)| > 1 and false discovery rate (FDR) < 0.05.
The intersection of DEGs and CAF marker genes was subsequently
determined. These intersecting genes were further evaluated for
prognostic value by generating Kaplan-Meier (KM) survival curves.

2.4 stRNA analysis

The stRNA dataset GSE238264 was obtained from GEO
database (14). Gene unique molecular identifier counts were
normalized and scaled using the Seurat package in the R software.
Then spatial alignment was performed to map target gene
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expression to tissue coordinates, enabling visualization of gene
distribution within the tumor microenvironment.

2.5 Tissue collection and
immunohistochemical assay

Tissue microarray of 30 human hepatocellular carcinoma and
paired adjacent normal tissues (HLiv-HCC060PG-01) were
purchased from Shanghai Outdo Biotech Company (Shanghai,
China). All human tissue studies were approved by the Ethics
Committee of Shanghai Outdo Biotech Company (Approval No.
SHYJS-CP-1304015).

As previously described (15), paraffin-embedded sections were
stained with anti-NDUFA4L2 (Abclonal, Cat# A14288, Wuhan,
China), anti-OLFML2B (Abmart, Cat# PA4139, Shanghai, China),
anti-SEMAS5B (Abmart, Cat# PK92655S), anti-RASL12 (Bioss, Cat#
bs-19738R, Beijing, China). Stained sections were examined and
imaged using a Leica DM4B microscope system.

2.6 Construction and verification of a CAF-
based risk signature model

Univariate Cox regression analyses on CAF signature genes
were performed using the survival R package. Lasso analyses were
applied to remove covariate genes from CAF signature genes.
Subsequently, the coefficients were determined by multivariate
Cox regression analysis, enabling the construction of a CAF-based
risk signature model. Based on this model, HCC patients in the
TCGA cohort were stratified into low-risk and high-risk groups
using the zero-mean normalization method. KM analysis was used
to assess survival differences between the two groups. The
prognostic effect of the risk model over a 5-year period was
assessed using the receiver operator characteristic curve (ROC).

2.7 Nomogram construction

A nomogram integrating the risk signature and clinicopathological
features was developed to predict HCC prognosis. Variables with a P <
0.05, identified through univariate and multivariate Cox regression
analyses, were included in the nomogram. The predictive accuracy of
the nomogram was evaluated using calibration curves.

2.8 Differentially expressed genes analysis
and pathway enrichment analysis

DEGs between low-risk and high-risk HCC groups were
identified using the edgeR package, with thresholds of |[FC| > 1.5
and adjusted P < 0.05. Volcano plots showed changes in expression
of all genes, while heatmaps highlighted specific DEGs.
Subsequently, enrichment analyses for Gene Ontology (GO)
terms and KEGG pathways were performed on the DEGs.
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2.9 Immune landscape analysis based on
the CAFs-based risk signature model

As previously described (16), we utilized the CIBERSORT
algorithm to comprehensively assess the correlation between risk
profiles and the tumor immune microenvironment (TIME). The
estimate R package was employed to calculate the stromal, immune
and estimated (stromal + immune) scores, enabling assessment of
microenvironmental differences across risk groups. In addition, we
estimated the proportion of 22 immune cell subtypes using the
TCGA cohort-based CIBERSORT algorithm.

2.10 CAFs culture

Human primary liver CAFs were obtained from Meisen
Chinese Tissue Culture Collections. CAFs were cultured in
DMEM containing 10% FBS. The purity of CAFs was confirmed
by immunofluorescence staining. Conditioned media (CM)
collected from passages 2-5 of primary CAFs were used for
further experiments.

2.11 Immunofluorescence

Cells were fixed with 4% formaldehyde and permeabilized with
PBS containing 0.1% Triton X-100. Primary antibodies against
Vimentin (Proteintech, Cat #60330) or o-SMA (Proteintech, Cat
#80008) were incubated overnight at 4 °C. Following incubation
with secondary antibody (1 hour, room temperature), nuclei were
counterstained with DAPIL. Images were captured using a laser

confocal microscope.

2.12 Cell transfection

CAFs were transiently transfected with 100 nM siRNAs
targeting OLFML2B (si-OLFML2B) or control siRNA (NC) using
the TransIT-X2 system (Mirus Bio, USA), according to the
manufacturer’s instructions. The siRNAs targeting OLFML2B
were obtained from GenePharma (Shanghai, China) with the
following sequences: NC, UUCUCCGAACGUGUCACGU; sil-
OLFML2B, GGACCAACACUCCAAACAATT; si2-OLFML2B,
CCACACAGCCACCCAGCAATT; si3-OLFML2B,
CCAACUAUUACUACGGCAATT. Transfection efficiency was
confirmed by western blotting.

2.13 Western blotting

Western blotting was performed as described previously (17).
Briefly, protein lysates were separated by SDS-polyacrylamide gels
and transferred to PVDF membranes. Primary antibodies included
anti-OLFML2B (Abmart, Cat# PA4139) or anti-GAPDH antibody
(Abclonal, Cat# ACO002). Subsequently, the membranes were
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incubated with horseradish peroxidase-conjugated secondary
antibodies and visualized using enhanced chemiluminescence.

2.14 Cell viability assay

HepG2 cells were plated into a 96-well plate at a density of 2 x
10° cells/well and cultured in DMEM medium or corresponding
CM. After 24, 48, and 96 hours of incubation, 10 pL of CCK-
8 reagent (Dojindo, Japan) diluted in serum-free medium was
added to each well. Following 1 hour of incubation, absorbance
was measured at 450 nm using a microplate reader.

2.15 Cell invasion assay

HepG2 cells pretreated with CM for 48 hours were subjected to
invasion assays using 24-well Transwell chambers pre-coated with
6% Matrigel (Corning, USA). A total of 3 x 10* HepG2 cells
suspended in 100 pL serum-free DMEM were seeded into the
upper chamber, while 600 pL. DMEM medium with 5% FBS was
added to the lower chamber. After incubation at 37 °C for 24 hours,
invaded cells on the lower membrane surface were fixed, stained,
and quantified.

2.16 Statistical analysis

All statistical analyses were performed using R software (version
4.3.2). The statistical analyses of immunohistochemical staining
were performed in GraphPad (version 8.0). The Wilcoxon test was
used to compare the two groups, and Spearman or Pearson
correlation was used for the correlation matrices. Survival
differences in KM curves were evaluated using the log-rank test.
Statistical significance was defined as P < 0.05; ns, not significant.

3 Results

3.1 CAFs play a critical role in the HCC
tumor microenvironment

The scRNA-seq expression profile GSE242889 obtained from
the GEO datasets was used for analysis. Firstly, the levels of various
parameters including feature, count, mitochondria (MT) and
hemoglobin (HB) were examined in each cell (Figure 1A). After
filtering, a total of 9,029 cells were obtained for subsequent analysis.
Unsupervised clustering based on gene expression profiles
identified 28 distinct cell clusters (Figure 1B). These clusters were
further annotated into 13 cell subtypes: macrophages, three
dendritic cell subsets, cancer cells, endothelial cells, monocytes, B
cells, T cells, CAFs, kupffer cells, NK cells and mast cells
(Figure 1C). Our analysis revealed that CAFs constituted
approximately 10% of the total cell population (Figure 1D).
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Subtype annotation accuracy was validated by assessing intra-
subset transcriptional homogeneity and marker gene localization.
The uniform expression patterns observed within annotated
subsets, along with the distinct profiles across subsets, confirmed
robust classification (Figure 1E). To further confirm the precision of
the cell type annotation, we analyzed the distribution of cell-specific
markers. This analysis showed that the distribution was
correct (Figure 1F).

To further investigate intercellular relationships, cell trajectory and
cell communication analyses were performed among macrophages,
malignant cells, Kupffer cells and CAFs. The cell trajectory analysis
revealed that cancer cells occupied the leading position, while
malignant cells and CAFs were located at the trailing end of the
trajectory (Figure 1G). Moreover, CAF signature genes exhibited
elevated expression levels in late trajectory phases (Figure 1H). Cell-
cell communication analysis highlighted CAFs as central interactors
within the tumor microenvironment, acting as both primary signal
receivers and key influencers in the network (Figure 1I). From these
analyses, a total of 501 CAF marker genes were identified
(Supplementary Table S1). KEGG analysis showed that these genes
were significantly enriched in pathways such as PI3K-AKT signaling
pathway, vascular smooth muscle contraction and ECM-receptor
interaction (Figure 1J). These findings suggest that CAFs exert
pivotal regulatory roles in the HCC microenvironment.

3.2 Expression of four CAF signature genes
negatively correlates with prognosis in
HCC patients

To identify CAF signature genes in HCC, DESeq2, edgeR and
limma packages were employed to screen for DEGs between normal
and HCC tissues. Figures 2A, B showed effective separation between
normal and HCC tumor samples. Volcano plots further illustrated
the global distribution of DEGs (Figure 2C). By intersecting these
three different R packages, 768 overlapping DEGs were identified
(Figure 2D). These 768 DEGs were then intersected with the 501
CAF marker genes, yielding 11 candidate CAF signature genes
(Supplementary Table S2). Prognostic screening of these 11 genes in
the TCGA cohort further identified that four CAF signature genes
(NDUFA4L2, OLFML2B, SEMA5B and RASL12) were negatively
correlated with the survival of HCC patients (Figures 2E, F).
Genomic profiling of these four genes revealed a low frequency of
single-nucleotide variant mutations. Specifically, SEMA5B and
OLFML2B exhibited limited co-mutation events, whereas no
mutations were detected in NDUFA4L2 or RASLI12
(Supplementary Figure S1). Moreover, stRNA analyses revealed
that the transcript counts in tumor tissues were markedly higher
than those in normal tissues (Supplementary Figures S2A, B).
Further analysis demonstrated that the four CAF signature genes
exhibited a uniform distribution and elevated expression in HCC
tissues compared with normal tissues (Figures 2G, S2C). Together,
these findings suggest that the four CAF signature genes are actively
involved in the progression of HCC.
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FIGURE 1

CAFs as a key influencer in the HCC TME. (A) nFeature, nCount, mitochondria (MT) and hemoglobin (HB) levels in per cell from the GSE242789
cohort. (B) UMAP plots of single cell clusters in HCC tumor. (C) UMAP plots of annotated cell types. (D) Relative proportions of cell types in HCC
tumors. (E) Heatmap of gene signatures across cell types (Wilcoxon test). (F) UMAP plots of marker genes for malignant cells (ALB and TTR),
endothelial cells (CDH5 and PECAM1), macrophages (CD68 and CD163) and CAFs (ACTA2 and COL1A2). (G) Trajectory analysis of macrophages,
malignant cells, Kupffer cells, and CAFs. (H) Heatmap of signature genes along with the pseudotime trajectory. (I) Cellular communication analysis in
the HCC microenvironment. (J) KEGG pathway enrichment analysis of CAF signature genes.
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FIGURE 2

Expression of four CAF signature genes negatively correlates with prognosis in HCC patients. (A, B) PCA and clustering heatmap of normal and
tumor samples. (C) Volcano plot of DEGs between normal and tumor samples. (D) Venn diagram of DEGs. (E) UMAP plot showing the expression of
NDUFA4L2, OLFML2B, SEMA5B and RASL12 in CAFs. (F) Survival analysis of NDUFA4L2, OLFML2B, SEMA5B and RASL12 in HCC patients. (G) Spatial
distribution of the four CAF signature genes in HCC tissues.

3.3 CAFs signature genes are highly paired adjacent normal tissues. The results showed that the levels of

expressed in HCC tissues NDUFA4L2, SEMA5B, OLFML2B and RASL12 were significantly

increased in HCC tissues compared to the normal group

Immunohistochemical staining was performed to validate the  (Figures 3A-C). These data indicate that CAF signature genes
expression of CAFs signature genes in human HCC tissues and  may serve as potential therapeutic targets for HCC.
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3.4 CAFs-based risk signature model
exhibits significant prognostic predictive
value for HCC patients

To evaluate the prognostic utility of the CAF risk signature
model, HCC patients in the TCGA cohort were stratified into low-
and high-risk groups (Figure 4A). KM survival analysis revealed
that patients in the low-risk group exhibited both longer survival
times and higher survival probabilities compared with those in the
high-risk group (Figures 4B, C). Multivariate Cox regression
analysis was performed on variables such as age, gender, tumor
stage, and risk score. This confirmed the risk score serves as an
independent prognostic predictor in the TCGA cohort (Figure 4D).
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To further enhance clinical applicability, we constructed a
nomogram that integrated risk scores with clinicopathological
variables to predict 1-, 3-, and 5-year overall survival in HCC
patients (Figure 4E). Calibration plots demonstrated strong
concordance between predicted and observed survival outcomes,
indicating robust predictive performance of the model
(Figure 4F). Furthermore, gene expression profiling revealed
that RAP2A, NDUFA4L2, OLFML2B and SEMA5B were
markedly upregulated in the high-risk group, whereas CASQ2,
FMO3 and MYHI11 were overexpressed in the low-risk group
(Figure 4G). These findings underscore the clinical significance of
the CAFs risk signature model in terms of prognostic stratification
for HCC patients.
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FIGURE 4

Prognostic value of CAF-based risk signature model in HCC. (A) Classification of TCGA HCC patients into low- and high- risk groups based on the
risk model. (B) Survival status of HCC patients in between low- and high-risk groups. (C) KM curves of the risk signature. (D) Multivariate COX
regression analysis for age, gender, stage and risk score. (E) The nomogram for predicting 1-, 3-, and 5-years overall survival. (F) ROC curves of the
nomogram. (G) Statistical analysis of differences in CAFs signature genes between low- and high-risk groups. n.s. no significant difference, *P < 0.05,
**P < 0.01, ***P < 0.001 compared to the low-risk group.
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3.5 Pathway enrichment analysis of DEGs
in the CAF-based risk signature model

The TCGA cohorts was utilized to identify DEGs between low-risk

and high-risk groups. As Figures 5A, B show, A total of 623

DEGs were

identified, including 399 upregulated and 224 downregulated genes in
the high-risk group. GO enrichment analysis indicated that

upregulated genes were primarily involved in inflammation, hypoxia

and fibrosis processes, including myeloid leukocyte organization,

macrophage activation, extracellular matrix organization and
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response to hypoxia. Conversely, downregulated genes were enriched

in pathways related to immunoglobulin production and immune
mediator synthesis (Figure 5C). KEGG pathway enrichment analysis

revealed that the cAMP signaling pathway, calcium signaling pathway,

and Wnt signaling pathway were significantly upregulated in the high-
risk group, whereas mucin type O-glycan biosynthesis and Hedgehog
signaling pathway were significantly downregulated (Figure 5D). The
results suggest that the CAF-based risk signature prediction model

provides valuable insights for exploring the molecular mechanisms

underlying HCC progression.
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cohort. (C, D) GO-BP and KEGG enrichment analysis of DEGs.

Frontiers in Immunology

09

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1690174
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Qian et al.

3.6 Association between CAF-related risk
and the immune landscape in HCC
patients

To further evaluate the clinical utility of the CAF-based risk
signature model, we assessed its predictive value for

immunotherapy responsiveness. ESTIMATE analysis revealed
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significantly elevated stromal, immune, and combined (stromal +
immune) scores in the high-risk group of the TCGA cohort
(Figures 6A, B). Furthermore, TIMER analysis indicated an
increase in various cell types in the high-risk HCC group,
including regulatory T cells regulatory and MO macrophages,
compared to the low-risk group, whereas CD4 resting memory T
cells were significantly more abundant in the low-risk group
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FIGURE 6

CAFs-based risk signature model predicts immunotherapy response in HCC patients. (A) Comparison of the proportions of 22 immune cell types in
HCC tissues from the TCGA cohort. (B) Stromal, immune and estimate scores between low- and high-risk groups. (C, D) Proportions and differences
of 22 immune cell types between low- and high-risk groups. *P<0.05, **P<0.01 compared to the low-risk group.
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(Figures 6C, D). In summary, these findings suggest that high-risk
patients are characterized by an immunosuppressive TME, which
may influence their responsiveness to immunotherapy.

3.7 OLFML2B knockdown in CAFs
attenuates its tumor-promoting effects on
HepG2 cell proliferation and invasion

Given the strong association between OLFML2B overexpression
in CAFs and poor prognosis in HCC, we next evaluated its functional
role using siRNA-mediated knockdown. Among the three siRNAs
used, siRNA2 and siRNA3 significantly reduced OLFML2B protein
levels in primary CAFs (Figure 7A). CM collected from control CAFs
and OLFML2B-silenced CAFs were used to treat HepG2 cells. CCK-8
assays revealed that OLFML2B-silenced CAFs significantly
suppressed HepG2 cell proliferation compared to control CM
(Figure 7B). Similarly, Transwell invasion assays demonstrated that
control CAF-CM promoted HepG2 invasiveness, whereas OLFML2B
knockdown abrogated this effect (Figures 7C, D). These results
demonstrate that OLFML2B is a key mediator of CAF-driven
tumor progression, underscoring its potential as a therapeutic
target for disrupting CAF-cancer cell crosstalk in HCC.

4 Discussion

HCC ranks among the most prevalent malignancies globally
worldwide and is characterized by high morbidity and mortality

A

10.3389/fimmu.2025.1690174

rates. Despite significant therapeutic advances in recent years, the
prognosis of HCC patients remains poor, highlighting the need for
novel therapeutic strategies (18, 19). Increasing evidence indicates
that the TME, particularly CAFs, plays a pivotal role in
hepatocarcinogenesis and disease progression (20, 21). However,
the lack of validated CAF signature genes has limited the
development of effective CAF-targeted interventions. Therefore, it
is of critical importance to construct a new CAF risk model for
predicting the prognosis of HCC patients and exploring potential
therapeutic targets. In this study, we employed multi-omics analysis
to identify four CAF signature genes and established a CAF-based
risk model that showed significant prognostic value for HCC
patients. Furthermore, functional validation confirmed OLFML2B
as a key regulator of CAFs-mediated HCC progression, indicating
its potential as a therapeutic target.

CAFs, as the most abundant component in HCC, play a crucial
role in tumor progression and patient prognosis by regulating
intercellular communication and remodeling the extracellular
matrix (ECM). Recently, integrated multi-omics analyses have
been employed to unravel the heterogeneity of CAF clusters in
HCC and to construct various CAF-based prognostic models for
predicting patient outcomes. Previous studies have constructed
CAF-related genes based on RNA-seq data and Microarray data,
utilizing algorithms xCell and MCPcounter, as well as WGCNA,
and subsequently validated their potential in prognostic assessment
of HCC (22, 23). Yu et al. identified six candidate genes associated
with CAF clusters using scRNA-seq and bulk RNA-seq data and
constructed a CAF-related risk model for prognostic prediction in
HCC (24). These studies have provided valuable insights into the
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FIGURE 7

Knockdown of OLFML2B attenuates CAF-induced proliferation and invasion of HepG2 cells. (A) Immunofluorescence staining of o.-SMA, VIMENTIN
and DAPI in CAFs isolated from HCC mice. Scale bars = 100 um. (B) Western blot analysis of OLFML2B expression in CAFs transfected with
OLFML2B-targeting siRNAs. (C) Quantification of OLFML2B expression (n =3). (D) CCK-8 assay showing the proliferation of HepG2 cells cultured
with CM from control or OLFML2B-silenced CAFs (n =3). (E, F) Transwell assay demonstrating the invasion of HepG2 cells cultured with CM from
control or OLFML2B-silenced CAFs. Scale bars = 20 um. (n =3). Data are presented as mean + S.D., *P < 0.05, ***P < 0.001 compared to the control

group.
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role of CAFs in HCC. However, the identification of CAF-related
genes was primarily based on statistical associations, lacking
experimental validation. In this study, we integrated scRNA-seq,
stRNA and bulk RNA-seq to systematically define marker genes.
Through rigorous DEG intersection analysis and survival-
association screening, we identified four key CAF-signature genes
(NDUFA4L2, OLFML2B, SEMA5B, and RASL12). Furthermore, we
validated their expression at the protein level using IHC. Previous
studies have reported that high expression of these genes is
associated with poor prognosis in multiple cancers, including
glioma, gastric cancer and colorectal cancer, and mediates
resistance to HER2-positive breast cancer (25-29). In addition,
knockdown of NDUFA4L2 in HCC cells has been shown to
suppress tumor growth and metastasis (30), which is consistent
with our findings of elevated NDUFA4L2, OLFML2B, SEMA5B,
and RASLI2 expression in HCC tissues and their significant
negative correlation with patient survival. In summary, our
findings highlight the value of these CAF-signature genes as
potential therapeutic targets in HCC. The multi-dimensional data
integration and experimental validation provide evidence to
support the practical application of a CAF-based risk model for
predicting HCC prognosis.

Our GO and KEGG enrichment analysis revealed pathways
such as ECM-receptor interaction, response to hypoxia and Wnt
signaling, all of which are functionally relevant to HCC. The ECM-
receptor interaction pathway has been shown to promote ECM
remodeling and enhance invasive capacity of HCC cells (31).
Hypoxia-related responses are also critically involved in HCC, as
hypoxic stress induces HIF-lo-dependent transcriptional
programs that facilitate angiogenesis, metabolic reprogramming
and immune evasion, ultimately contributing to poor prognosis
(32). In addition, dysregulated Wnt/B-catenin signaling has been
linked to stemness, tumor initiation, and therapy resistance in HCC
(33). Taken together, these findings indicate that the enriched
pathways are mechanistically linked to HCC progression, thereby
reinforcing the biological relevance of our CAF-based signature.

CAFs closely interact with immune cells in the HCC stroma to
stimulate their pro-tumorigenic capacity. Studies have found that
CAFs promote immune tolerance in HCC by conferring tolerogenic
characteristics on Dendritic Cells, promoting T cell anergy, and
inducing regulatory T cells (Tregs) differentiation (34, 35). In this
study, the high-risk group exhibited higher levels of immune cell
infiltration and a more significant infiltration of immunosuppressive
Tregs, aligning with previous findings by Dong et al (36). These
findings may be beneficial for the development of personalized
immunotherapy strategies.

OLFML2B is an extracellular matrix protein containing an
olfactomedin-like domain, which plays a critical role in intercellular
adhesion and tumorigenesis. Studies have shown that OLFML2B is
upregulated in multiple cancers, and its high expression is closely
associated with poor prognosis, tumor stage, TME remodeling, and
immune cell infiltration (37-39). In recent years, OLFML2B has been
found play a significant role in the progression of HCC. It holds
promise as a diagnostic biomarker, particularly showing potential in
predicting incidence of HCC during the cirrhotic stage (40).
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Moreover, the latest research has revealed that OLFML2B is
upregulated in senescent CAFs and identified as one of the key
prognostic genes associated with senescent CAFs. A CAF senescence
score model, constructed based on OLFML2B and nine other genes,
can accurately predict the prognosis of HCC patients (41). Although
previous studies have identified the association between OLFML2B
and the malignant progression of HCC, its underlying oncogenic
mechanisms remain unclear. In the present study, we demonstrate
that knockdown of OLFML2B in CAFs attenuates its tumor-
promoting effects on HepG2 cell proliferation and invasion,
suggesting that OLFML2B is a potential therapeutic target in HCC.

In summary, we used open scRNA-seq and stRNA data to
identify four CAF signature genes (NDUFA4L2, OLFML2B,
SEMA5B and RASL12) significantly negatively associated with
HCC. The CAF-based risk signature model predicts survival and
reflects the immune landscape of the TME. Furthermore, functional
validation revealed that OLFML2B is a key regulator of CAF-
mediated HCC progression. Together, our findings provide novel
insights into CAF-driven mechanisms and potential therapeutic
targets in HCC.
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