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1Medical Research Center, The Eighth Affiliated Hospital, Southern Medical University (The First
People's Hospital of Shunde, Foshan), Guangdong, China, 2Department of Neurosurgery, The Eighth
Affiliated Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan),
Guangdong, China, 3Oncology Department, Guilin Hospital of the Second Xiangya Hospital, Central
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Background: Cancer-associated fibroblasts (CAFs) play a critical role in

hepatocellular carcinoma (HCC) progression. This study aimed to develop a

CAF-based risk signaturemodel for predicting prognosis and identifying potential

therapeutic targets.

Methods: Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomic

RNA (stRNA) were employed to identify CAF signature genes and their spatial

distribution in HCC tissues. Immunohistochemistry (IHC) was used to validate

candidate protein expression. A CAFs-based risk signature model was developed

using multivariate Cox regression. Functional experiments were performed to

evaluate the role of OLFML2B in the effects of CAFs on HepG2 cell proliferation

and invasion.

Results: scRNA-seq analysis of dataset GSE242889 found CAFs as pivotal

regulators in the HCC microenvironment. Four CAF signature genes

(NDUFA4L, OLFML2B, SEMA5B and RASL12) were negatively correlated with

HCC patient survival. IHC staining further validated significant upregulation of

NDUFA4L, OLFML2B, SEMA5B and RASL12 in HCC tissues. The CAF risk model

constructed based on four CAF signature genes demonstrated prognostic

predictive value for HCC patients. Moreover, silencing OLFML2B markedly

attenuated the CAF-induced proliferation and invasion of HepG2 cells.

Conclusion: This study presents a novel CAF-based risk model that can exhibits

accurately predict the prognosis of HCC patients. Furthermore, knockdown of

OLFML2B attenuates the CAF-induced HCC progression, suggesting it as a

potential therapeutic target.
KEYWORDS

hepatocellular carcinoma, cancer-associated fibroblasts, CAF signature genes, CAF-
based risk signature, prognosis
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1 Introduction

Hepatocellular carcinoma (HCC) ranks as the fourth most

lethal malignancy globally, claiming over 800,000 lives annually

due to its high recurrence rates and limited curative options (1).

Current therapeutic strategies for HCC mainly include surgery,

radiotherapy and chemotherapy. In recent decades, significant

progress has been made in understanding the molecular

mechanisms promoting HCC progression and in exploring

potential therapeutic targets (2–4). However, the heterogeneity of

HCC leads to poor patient outcomes. Therefore, identifying novel

therapeutic targets remains an urgent clinical need.

The tumor microenvironment (TME) serves as a dynamic

orchestrator of HCC progression, where reciprocal interactions

between malignant cells and stromal components contribute to

tumor growth and therapeutic resistance (5). Cancer-associated

fibroblasts (CAFs), predominantly derived from activated hepatic

stellate cells, represent the most abundant cell type within the HCC

TME (6, 7). CAFs provide a favorable internal environment for the

development and malignant progression of HCC by secreting

various cytokines, chemokines, and growth factors, either directly

or indirectly. Furthermore, CAFs reshape the immune

microenvironment by suppressing the activity of immune effector

cells and recruiting immunosuppressive cells, thereby enabling

cancer cells to evade immune surveillance and leading to poor

immunotherapy outcomes (8, 9). Therefore, elucidating the

regulatory role of CAFs in HCC is crucial. This not only

facilitates a deeper understanding of the mechanisms underlying

HCC progression but also holds significant clinical value for

assess ing pat ient prognosis and developing targeted

therapeutic strategies.

The current study aimed to develop a CAF-based risk signature

model for predicting prognosis and immunotherapy response of

HCC patients, as well as identifying potential therapeutic targets.

Four CAF signature genes (NDUFA4L, OLFML2B, SEMA5B and

RASL12) in HCC by utilizing single-cell RNA sequencing (scRNA-

seq) and spatial transcriptomics (stRNA) data. Based on these

genes, the constructed CAF risk model demonstrated prognostic

predictive value for HCC patients. Moreover, functional

experiments further revealed OLFML2B as a key regulator of

CAF-mediated HCC progression, suggesting it as a promising

therapeutic target.
2 Materials and methods

2.1 Data collection and processing

The scRNA-seq dataset GSE242889 was obtained from the

Gene Express ion Omnibus (GEO) database (https : / /

www.ncbi.nlm.nih.gov/gds). This dataset included ten samples:

five HCC samples and five normal tissue samples (10). To ensure

the quality of our analysis, we filtered out single cells expressing

fewer than 200 genes or those with any gene expressed in fewer than
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three cells. Then the percentage of rRNA and mitochondria were

calculated using the PercentageFeatureSet function in the Seurat R

package. After quality control, a total of 9,029 cells were deemed

suitable for further analysis.

In addition, bulk RNA-seq data and clinical metadata for HCC

were obtained from The Cancer Genome Atlas (TCGA-LIHC)

(https://portal.gdc.cancer.gov/). After excluding samples with

missing survival data or outcome status, the dataset included 374

tumor samples and 50 normal samples.
2.2 Definition of CAFs

The HCC scRNA-seq data were re-analyzed using the Seurat R

package (11) to systematically characterize the CAFs signature.

First, cells expressing fewer than 300 or more than 7000 genes were

excluded, and the remaining genes were normalized using

SCTransformed. The RunHarmony function was employed to

remove batch effects for the four samples. Non-linear dimension

reduction was performed using the uniform manifold

approximation and projection (UMAP) method, and principal

components with resolutions of 1.2 and 25 were selected. The

single cells were then clustered into different subgroups using the

FindNeighbors and FindClusters functions, with parameters set to

dim = 25 and resolution = 1.2. UMAP dimensional reduction was

further performed using the RunUMAP function. The

FindAllMarkers function was used to define marker genes for

each CAFs cluster, and comparisons were made between different

clusters (minpct = 0.3, logFC = 0.5, and adjusted P < 0.05). CAFs

were annotated based on two marker genes, including ACTA2 and

COL1A2. Additionally, the monocle R software package was used to

analyze the developmental trajectory. Finally, Kyoto Encyclopedia

of Genes and Genomes (KEGG) enrichment analysis was

performed on the marker genes using the clusterProfiler

package (12).
2.3 CAF-related signature genes
identification

DESeq2, edgeR and limma packages (13) were used to identify

differentially expressed genes (DEGs) between normal and HCC

tissues based on |log2(FC)| > 1 and false discovery rate (FDR) < 0.05.

The intersection of DEGs and CAF marker genes was subsequently

determined. These intersecting genes were further evaluated for

prognostic value by generating Kaplan-Meier (KM) survival curves.
2.4 stRNA analysis

The stRNA dataset GSE238264 was obtained from GEO

database (14). Gene unique molecular identifier counts were

normalized and scaled using the Seurat package in the R software.

Then spatial alignment was performed to map target gene
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expression to tissue coordinates, enabling visualization of gene

distribution within the tumor microenvironment.
2.5 Tissue collection and
immunohistochemical assay

Tissue microarray of 30 human hepatocellular carcinoma and

paired adjacent normal tissues (HLiv-HCC060PG-01) were

purchased from Shanghai Outdo Biotech Company (Shanghai,

China). All human tissue studies were approved by the Ethics

Committee of Shanghai Outdo Biotech Company (Approval No.

SHYJS-CP-1304015).

As previously described (15), paraffin-embedded sections were

stained with anti-NDUFA4L2 (Abclonal, Cat# A14288, Wuhan,

China), anti-OLFML2B (Abmart, Cat# PA4139, Shanghai, China),

anti-SEMA5B (Abmart, Cat# PK92655S), anti-RASL12 (Bioss, Cat#

bs-19738R, Beijing, China). Stained sections were examined and

imaged using a Leica DM4B microscope system.
2.6 Construction and verification of a CAF-
based risk signature model

Univariate Cox regression analyses on CAF signature genes

were performed using the survival R package. Lasso analyses were

applied to remove covariate genes from CAF signature genes.

Subsequently, the coefficients were determined by multivariate

Cox regression analysis, enabling the construction of a CAF-based

risk signature model. Based on this model, HCC patients in the

TCGA cohort were stratified into low-risk and high-risk groups

using the zero-mean normalization method. KM analysis was used

to assess survival differences between the two groups. The

prognostic effect of the risk model over a 5-year period was

assessed using the receiver operator characteristic curve (ROC).
2.7 Nomogram construction

A nomogram integrating the risk signature and clinicopathological

features was developed to predict HCC prognosis. Variables with a P <

0.05, identified through univariate and multivariate Cox regression

analyses, were included in the nomogram. The predictive accuracy of

the nomogram was evaluated using calibration curves.
2.8 Differentially expressed genes analysis
and pathway enrichment analysis

DEGs between low-risk and high-risk HCC groups were

identified using the edgeR package, with thresholds of |FC| ≥ 1.5

and adjusted P < 0.05. Volcano plots showed changes in expression

of all genes, while heatmaps highlighted specific DEGs.

Subsequently, enrichment analyses for Gene Ontology (GO)

terms and KEGG pathways were performed on the DEGs.
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2.9 Immune landscape analysis based on
the CAFs-based risk signature model

As previously described (16), we utilized the CIBERSORT

algorithm to comprehensively assess the correlation between risk

profiles and the tumor immune microenvironment (TIME). The

estimate R package was employed to calculate the stromal, immune

and estimated (stromal + immune) scores, enabling assessment of

microenvironmental differences across risk groups. In addition, we

estimated the proportion of 22 immune cell subtypes using the

TCGA cohort-based CIBERSORT algorithm.
2.10 CAFs culture

Human primary liver CAFs were obtained from Meisen

Chinese Tissue Culture Collections. CAFs were cultured in

DMEM containing 10% FBS. The purity of CAFs was confirmed

by immunofluorescence staining. Conditioned media (CM)

collected from passages 2–5 of primary CAFs were used for

further experiments.
2.11 Immunofluorescence

Cells were fixed with 4% formaldehyde and permeabilized with

PBS containing 0.1% Triton X-100. Primary antibodies against

Vimentin (Proteintech, Cat #60330) or a-SMA (Proteintech, Cat

#80008) were incubated overnight at 4 °C. Following incubation

with secondary antibody (1 hour, room temperature), nuclei were

counterstained with DAPI. Images were captured using a laser

confocal microscope.
2.12 Cell transfection

CAFs were transiently transfected with 100 nM siRNAs

targeting OLFML2B (si-OLFML2B) or control siRNA (NC) using

the TransIT-X2 system (Mirus Bio, USA), according to the

manufacturer’s instructions. The siRNAs targeting OLFML2B

were obtained from GenePharma (Shanghai, China) with the

following sequences: NC, UUCUCCGAACGUGUCACGU; si1-

OLFML2B, GGACCAACACUCCAAACAATT; si2-OLFML2B,

CCACACAGCCACCCAGCAATT ; s i 3 - O L FML 2 B ,

CCAACUAUUACUACGGCAATT. Transfection efficiency was

confirmed by western blotting.
2.13 Western blotting

Western blotting was performed as described previously (17).

Briefly, protein lysates were separated by SDS-polyacrylamide gels

and transferred to PVDF membranes. Primary antibodies included

anti-OLFML2B (Abmart, Cat# PA4139) or anti-GAPDH antibody

(Abclonal, Cat# AC002). Subsequently, the membranes were
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incubated with horseradish peroxidase-conjugated secondary

antibodies and visualized using enhanced chemiluminescence.
2.14 Cell viability assay

HepG2 cells were plated into a 96-well plate at a density of 2 ×

103 cells/well and cultured in DMEM medium or corresponding

CM. After 24, 48, and 96 hours of incubation, 10 µL of CCK-

8 reagent (Dojindo, Japan) diluted in serum-free medium was

added to each well. Following 1 hour of incubation, absorbance

was measured at 450 nm using a microplate reader.
2.15 Cell invasion assay

HepG2 cells pretreated with CM for 48 hours were subjected to

invasion assays using 24-well Transwell chambers pre-coated with

6% Matrigel (Corning, USA). A total of 3 × 104 HepG2 cells

suspended in 100 µL serum-free DMEM were seeded into the

upper chamber, while 600 µL DMEM medium with 5% FBS was

added to the lower chamber. After incubation at 37 °C for 24 hours,

invaded cells on the lower membrane surface were fixed, stained,

and quantified.
2.16 Statistical analysis

All statistical analyses were performed using R software (version

4.3.2). The statistical analyses of immunohistochemical staining

were performed in GraphPad (version 8.0). The Wilcoxon test was

used to compare the two groups, and Spearman or Pearson

correlation was used for the correlation matrices. Survival

differences in KM curves were evaluated using the log-rank test.

Statistical significance was defined as P < 0.05; ns, not significant.
3 Results

3.1 CAFs play a critical role in the HCC
tumor microenvironment

The scRNA-seq expression profile GSE242889 obtained from

the GEO datasets was used for analysis. Firstly, the levels of various

parameters including feature, count, mitochondria (MT) and

hemoglobin (HB) were examined in each cell (Figure 1A). After

filtering, a total of 9,029 cells were obtained for subsequent analysis.

Unsupervised clustering based on gene expression profiles

identified 28 distinct cell clusters (Figure 1B). These clusters were

further annotated into 13 cell subtypes: macrophages, three

dendritic cell subsets, cancer cells, endothelial cells, monocytes, B

cells, T cells, CAFs, kupffer cells, NK cells and mast cells

(Figure 1C). Our analysis revealed that CAFs constituted

approximately 10% of the total cell population (Figure 1D).
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Subtype annotation accuracy was validated by assessing intra-

subset transcriptional homogeneity and marker gene localization.

The uniform expression patterns observed within annotated

subsets, along with the distinct profiles across subsets, confirmed

robust classification (Figure 1E). To further confirm the precision of

the cell type annotation, we analyzed the distribution of cell-specific

markers. This analysis showed that the distribution was

correct (Figure 1F).

To further investigate intercellular relationships, cell trajectory and

cell communication analyses were performed among macrophages,

malignant cells, Kupffer cells and CAFs. The cell trajectory analysis

revealed that cancer cells occupied the leading position, while

malignant cells and CAFs were located at the trailing end of the

trajectory (Figure 1G). Moreover, CAF signature genes exhibited

elevated expression levels in late trajectory phases (Figure 1H). Cell-

cell communication analysis highlighted CAFs as central interactors

within the tumor microenvironment, acting as both primary signal

receivers and key influencers in the network (Figure 1I). From these

analyses, a total of 501 CAF marker genes were identified

(Supplementary Table S1). KEGG analysis showed that these genes

were significantly enriched in pathways such as PI3K-AKT signaling

pathway, vascular smooth muscle contraction and ECM-receptor

interaction (Figure 1J). These findings suggest that CAFs exert

pivotal regulatory roles in the HCC microenvironment.
3.2 Expression of four CAF signature genes
negatively correlates with prognosis in
HCC patients

To identify CAF signature genes in HCC, DESeq2, edgeR and

limma packages were employed to screen for DEGs between normal

and HCC tissues. Figures 2A, B showed effective separation between

normal and HCC tumor samples. Volcano plots further illustrated

the global distribution of DEGs (Figure 2C). By intersecting these

three different R packages, 768 overlapping DEGs were identified

(Figure 2D). These 768 DEGs were then intersected with the 501

CAF marker genes, yielding 11 candidate CAF signature genes

(Supplementary Table S2). Prognostic screening of these 11 genes in

the TCGA cohort further identified that four CAF signature genes

(NDUFA4L2, OLFML2B, SEMA5B and RASL12) were negatively

correlated with the survival of HCC patients (Figures 2E, F).

Genomic profiling of these four genes revealed a low frequency of

single-nucleotide variant mutations. Specifically, SEMA5B and

OLFML2B exhibited limited co-mutation events, whereas no

mutat ions were de tec ted in NDUFA4L2 or RASL12

(Supplementary Figure S1). Moreover, stRNA analyses revealed

that the transcript counts in tumor tissues were markedly higher

than those in normal tissues (Supplementary Figures S2A, B).

Further analysis demonstrated that the four CAF signature genes

exhibited a uniform distribution and elevated expression in HCC

tissues compared with normal tissues (Figures 2G, S2C). Together,

these findings suggest that the four CAF signature genes are actively

involved in the progression of HCC.
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FIGURE 1

CAFs as a key influencer in the HCC TME. (A) nFeature, nCount, mitochondria (MT) and hemoglobin (HB) levels in per cell from the GSE242789
cohort. (B) UMAP plots of single cell clusters in HCC tumor. (C) UMAP plots of annotated cell types. (D) Relative proportions of cell types in HCC
tumors. (E) Heatmap of gene signatures across cell types (Wilcoxon test). (F) UMAP plots of marker genes for malignant cells (ALB and TTR),
endothelial cells (CDH5 and PECAM1), macrophages (CD68 and CD163) and CAFs (ACTA2 and COL1A2). (G) Trajectory analysis of macrophages,
malignant cells, Kupffer cells, and CAFs. (H) Heatmap of signature genes along with the pseudotime trajectory. (I) Cellular communication analysis in
the HCC microenvironment. (J) KEGG pathway enrichment analysis of CAF signature genes.
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3.3 CAFs signature genes are highly
expressed in HCC tissues

Immunohistochemical staining was performed to validate the

expression of CAFs signature genes in human HCC tissues and
Frontiers in Immunology 06
paired adjacent normal tissues. The results showed that the levels of

NDUFA4L2, SEMA5B, OLFML2B and RASL12 were significantly

increased in HCC tissues compared to the normal group

(Figures 3A–C). These data indicate that CAF signature genes

may serve as potential therapeutic targets for HCC.
FIGURE 2

Expression of four CAF signature genes negatively correlates with prognosis in HCC patients. (A, B) PCA and clustering heatmap of normal and
tumor samples. (C) Volcano plot of DEGs between normal and tumor samples. (D) Venn diagram of DEGs. (E) UMAP plot showing the expression of
NDUFA4L2, OLFML2B, SEMA5B and RASL12 in CAFs. (F) Survival analysis of NDUFA4L2, OLFML2B, SEMA5B and RASL12 in HCC patients. (G) Spatial
distribution of the four CAF signature genes in HCC tissues.
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3.4 CAFs-based risk signature model
exhibits significant prognostic predictive
value for HCC patients

To evaluate the prognostic utility of the CAF risk signature

model, HCC patients in the TCGA cohort were stratified into low-

and high-risk groups (Figure 4A). KM survival analysis revealed

that patients in the low-risk group exhibited both longer survival

times and higher survival probabilities compared with those in the

high-risk group (Figures 4B, C). Multivariate Cox regression

analysis was performed on variables such as age, gender, tumor

stage, and risk score. This confirmed the risk score serves as an

independent prognostic predictor in the TCGA cohort (Figure 4D).
Frontiers in Immunology 07
To further enhance clinical applicability, we constructed a

nomogram that integrated risk scores with clinicopathological

variables to predict 1-, 3-, and 5-year overall survival in HCC

patients (Figure 4E). Calibration plots demonstrated strong

concordance between predicted and observed survival outcomes,

indicating robust predictive performance of the model

(Figure 4F). Furthermore, gene expression profiling revealed

that RAP2A, NDUFA4L2, OLFML2B and SEMA5B were

markedly upregulated in the high-risk group, whereas CASQ2,

FMO3 and MYH11 were overexpressed in the low-risk group

(Figure 4G). These findings underscore the clinical significance of

the CAFs risk signature model in terms of prognostic stratification

for HCC patients.
FIGURE 3

Expression levels of CAF signature genes in paired adjacent normal and HCC tissues. (A) NDUFA4L2, OLFML2B, SEMA5B and RASL12 staining.
(B, C) Quantification of NDUFA4L2, OLFML2B, SEMA5B and RASL12 expression (n = 30). Data are presented as mean ± S.D., **P < 0.01, ***P < 0.001,
compared to the normal group.
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FIGURE 4

Prognostic value of CAF-based risk signature model in HCC. (A) Classification of TCGA HCC patients into low- and high- risk groups based on the
risk model. (B) Survival status of HCC patients in between low- and high-risk groups. (C) KM curves of the risk signature. (D) Multivariate COX
regression analysis for age, gender, stage and risk score. (E) The nomogram for predicting 1-, 3-, and 5-years overall survival. (F) ROC curves of the
nomogram. (G) Statistical analysis of differences in CAFs signature genes between low- and high-risk groups. n.s. no significant difference, *P < 0.05,
**P < 0.01, ***P < 0.001 compared to the low-risk group.
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3.5 Pathway enrichment analysis of DEGs
in the CAF-based risk signature model

The TCGA cohorts was utilized to identify DEGs between low-risk

and high-risk groups. As Figures 5A, B show, A total of 623 DEGs were

identified, including 399 upregulated and 224 downregulated genes in

the high-risk group. GO enrichment analysis indicated that

upregulated genes were primarily involved in inflammation, hypoxia

and fibrosis processes, including myeloid leukocyte organization,

macrophage activation, extracellular matrix organization and
Frontiers in Immunology 09
response to hypoxia. Conversely, downregulated genes were enriched

in pathways related to immunoglobulin production and immune

mediator synthesis (Figure 5C). KEGG pathway enrichment analysis

revealed that the cAMP signaling pathway, calcium signaling pathway,

and Wnt signaling pathway were significantly upregulated in the high-

risk group, whereas mucin type O-glycan biosynthesis and Hedgehog

signaling pathway were significantly downregulated (Figure 5D). The

results suggest that the CAF-based risk signature prediction model

provides valuable insights for exploring the molecular mechanisms

underlying HCC progression.
FIGURE 5

Pathway enrichment analysis of DEGs in the CAF-based risk signature model (A) Volcano plot of gene expression differences between low- and
high- risk groups in the TCGA HCC cohort. (B) Heatmap of gene expression differences between low- and high- risk groups in the TCGA HCC
cohort. (C, D) GO-BP and KEGG enrichment analysis of DEGs.
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3.6 Association between CAF-related risk
and the immune landscape in HCC
patients

To further evaluate the clinical utility of the CAF-based risk

signature model, we assessed its predictive value for

immunotherapy responsiveness. ESTIMATE analysis revealed
Frontiers in Immunology 10
significantly elevated stromal, immune, and combined (stromal +

immune) scores in the high-risk group of the TCGA cohort

(Figures 6A, B). Furthermore, TIMER analysis indicated an

increase in various cell types in the high-risk HCC group,

including regulatory T cells regulatory and M0 macrophages,

compared to the low-risk group, whereas CD4 resting memory T

cells were significantly more abundant in the low-risk group
FIGURE 6

CAFs-based risk signature model predicts immunotherapy response in HCC patients. (A) Comparison of the proportions of 22 immune cell types in
HCC tissues from the TCGA cohort. (B) Stromal, immune and estimate scores between low- and high-risk groups. (C, D) Proportions and differences
of 22 immune cell types between low- and high-risk groups. *P<0.05, **P<0.01 compared to the low-risk group.
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(Figures 6C, D). In summary, these findings suggest that high-risk

patients are characterized by an immunosuppressive TME, which

may influence their responsiveness to immunotherapy.
3.7 OLFML2B knockdown in CAFs
attenuates its tumor-promoting effects on
HepG2 cell proliferation and invasion

Given the strong association between OLFML2B overexpression

in CAFs and poor prognosis in HCC, we next evaluated its functional

role using siRNA-mediated knockdown. Among the three siRNAs

used, siRNA2 and siRNA3 significantly reduced OLFML2B protein

levels in primary CAFs (Figure 7A). CM collected from control CAFs

and OLFML2B-silenced CAFs were used to treat HepG2 cells. CCK-8

assays revealed that OLFML2B-silenced CAFs significantly

suppressed HepG2 cell proliferation compared to control CM

(Figure 7B). Similarly, Transwell invasion assays demonstrated that

control CAF-CM promoted HepG2 invasiveness, whereas OLFML2B

knockdown abrogated this effect (Figures 7C, D). These results

demonstrate that OLFML2B is a key mediator of CAF-driven

tumor progression, underscoring its potential as a therapeutic

target for disrupting CAF–cancer cell crosstalk in HCC.
4 Discussion

HCC ranks among the most prevalent malignancies globally

worldwide and is characterized by high morbidity and mortality
Frontiers in Immunology 11
rates. Despite significant therapeutic advances in recent years, the

prognosis of HCC patients remains poor, highlighting the need for

novel therapeutic strategies (18, 19). Increasing evidence indicates

that the TME, particularly CAFs, plays a pivotal role in

hepatocarcinogenesis and disease progression (20, 21). However,

the lack of validated CAF signature genes has limited the

development of effective CAF-targeted interventions. Therefore, it

is of critical importance to construct a new CAF risk model for

predicting the prognosis of HCC patients and exploring potential

therapeutic targets. In this study, we employed multi-omics analysis

to identify four CAF signature genes and established a CAF-based

risk model that showed significant prognostic value for HCC

patients. Furthermore, functional validation confirmed OLFML2B

as a key regulator of CAFs-mediated HCC progression, indicating

its potential as a therapeutic target.

CAFs, as the most abundant component in HCC, play a crucial

role in tumor progression and patient prognosis by regulating

intercellular communication and remodeling the extracellular

matrix (ECM). Recently, integrated multi-omics analyses have

been employed to unravel the heterogeneity of CAF clusters in

HCC and to construct various CAF-based prognostic models for

predicting patient outcomes. Previous studies have constructed

CAF-related genes based on RNA-seq data and Microarray data,

utilizing algorithms xCell and MCPcounter, as well as WGCNA,

and subsequently validated their potential in prognostic assessment

of HCC (22, 23). Yu et al. identified six candidate genes associated

with CAF clusters using scRNA-seq and bulk RNA-seq data and

constructed a CAF-related risk model for prognostic prediction in

HCC (24). These studies have provided valuable insights into the
FIGURE 7

Knockdown of OLFML2B attenuates CAF-induced proliferation and invasion of HepG2 cells. (A) Immunofluorescence staining of a-SMA, VIMENTIN
and DAPI in CAFs isolated from HCC mice. Scale bars = 100 mm. (B) Western blot analysis of OLFML2B expression in CAFs transfected with
OLFML2B-targeting siRNAs. (C) Quantification of OLFML2B expression (n =3). (D) CCK-8 assay showing the proliferation of HepG2 cells cultured
with CM from control or OLFML2B-silenced CAFs (n =3). (E, F) Transwell assay demonstrating the invasion of HepG2 cells cultured with CM from
control or OLFML2B-silenced CAFs. Scale bars = 20 mm. (n =3). Data are presented as mean ± S.D., *P < 0.05, ***P < 0.001 compared to the control
group.
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role of CAFs in HCC. However, the identification of CAF-related

genes was primarily based on statistical associations, lacking

experimental validation. In this study, we integrated scRNA-seq,

stRNA and bulk RNA-seq to systematically define marker genes.

Through rigorous DEG intersection analysis and survival-

association screening, we identified four key CAF-signature genes

(NDUFA4L2, OLFML2B, SEMA5B, and RASL12). Furthermore, we

validated their expression at the protein level using IHC. Previous

studies have reported that high expression of these genes is

associated with poor prognosis in multiple cancers, including

glioma, gastric cancer and colorectal cancer, and mediates

resistance to HER2-positive breast cancer (25–29). In addition,

knockdown of NDUFA4L2 in HCC cells has been shown to

suppress tumor growth and metastasis (30), which is consistent

with our findings of elevated NDUFA4L2, OLFML2B, SEMA5B,

and RASL12 expression in HCC tissues and their significant

negative correlation with patient survival. In summary, our

findings highlight the value of these CAF-signature genes as

potential therapeutic targets in HCC. The multi-dimensional data

integration and experimental validation provide evidence to

support the practical application of a CAF-based risk model for

predicting HCC prognosis.

Our GO and KEGG enrichment analysis revealed pathways

such as ECM–receptor interaction, response to hypoxia and Wnt

signaling, all of which are functionally relevant to HCC. The ECM–

receptor interaction pathway has been shown to promote ECM

remodeling and enhance invasive capacity of HCC cells (31).

Hypoxia-related responses are also critically involved in HCC, as

hypoxic stress induces HIF-1a–dependent transcriptional

programs that facilitate angiogenesis, metabolic reprogramming

and immune evasion, ultimately contributing to poor prognosis

(32). In addition, dysregulated Wnt/b-catenin signaling has been

linked to stemness, tumor initiation, and therapy resistance in HCC

(33). Taken together, these findings indicate that the enriched

pathways are mechanistically linked to HCC progression, thereby

reinforcing the biological relevance of our CAF-based signature.

CAFs closely interact with immune cells in the HCC stroma to

stimulate their pro-tumorigenic capacity. Studies have found that

CAFs promote immune tolerance in HCC by conferring tolerogenic

characteristics on Dendritic Cells, promoting T cell anergy, and

inducing regulatory T cells (Tregs) differentiation (34, 35). In this

study, the high-risk group exhibited higher levels of immune cell

infiltration and a more significant infiltration of immunosuppressive

Tregs, aligning with previous findings by Dong et al (36). These

findings may be beneficial for the development of personalized

immunotherapy strategies.

OLFML2B is an extracellular matrix protein containing an

olfactomedin-like domain, which plays a critical role in intercellular

adhesion and tumorigenesis. Studies have shown that OLFML2B is

upregulated in multiple cancers, and its high expression is closely

associated with poor prognosis, tumor stage, TME remodeling, and

immune cell infiltration (37–39). In recent years, OLFML2B has been

found play a significant role in the progression of HCC. It holds

promise as a diagnostic biomarker, particularly showing potential in

predicting incidence of HCC during the cirrhotic stage (40).
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Moreover, the latest research has revealed that OLFML2B is

upregulated in senescent CAFs and identified as one of the key

prognostic genes associated with senescent CAFs. A CAF senescence

score model, constructed based on OLFML2B and nine other genes,

can accurately predict the prognosis of HCC patients (41). Although

previous studies have identified the association between OLFML2B

and the malignant progression of HCC, its underlying oncogenic

mechanisms remain unclear. In the present study, we demonstrate

that knockdown of OLFML2B in CAFs attenuates its tumor-

promoting effects on HepG2 cell proliferation and invasion,

suggesting that OLFML2B is a potential therapeutic target in HCC.

In summary, we used open scRNA-seq and stRNA data to

identify four CAF signature genes (NDUFA4L2, OLFML2B,

SEMA5B and RASL12) significantly negatively associated with

HCC. The CAF-based risk signature model predicts survival and

reflects the immune landscape of the TME. Furthermore, functional

validation revealed that OLFML2B is a key regulator of CAF-

mediated HCC progression. Together, our findings provide novel

insights into CAF-driven mechanisms and potential therapeutic

targets in HCC.
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