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Immune cell communication
networks and memory CD8+ T
cell signatures sustaining
chronic inflammation in
COVID-19 and Long COVID
Hengrui Liu1,2†, Zewen Xu2†, Ilayda Karsidag3, Panpan Wang2,4*

and Jieling Weng1*

1Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University,
Guangzhou, China, 2San Diego School of Biological Sciences, University of California, San Diego,
CA, United States, 3Guangdong Provincial Key Laboratory of Traditional Chinese Medicine
Informatization, Guangzhou, China, 4Department of Traditional Chinese Medicine, The First Affiliated
Hospital of Jinan University, Guangzhou, China
Background: COVID-19, including its post-acute sequelae (Long COVID), is

increasingly recognized as involving persistent immune dysregulation and

chronic inflammation. Severe and prolonged disease states are often

accompanied by sustained cytokine release, immune cell exhaustion, and

ongoing cell-cell communication that shapes the inflammatory milieu. Among

immune subsets, CD8+ T cells play a central role in antiviral defense, yet the

molecular mechanisms linking their dysfunction to prolonged inflammation

remain incompletely understood.

Methods:We analyzed 73,110 peripheral blood mononuclear cells (PBMCs) from

individuals across four disease states (Healthy, Exposed, Infected, and

Hospitalized) using single-cell RNA sequencing. Immune cell subsets were

annotated, and T cell heterogeneity was profiled. Cytokine and inflammatory

scores were calculated to assess immune activation. Differentially expressed

genes (DEGs) underwent Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) enrichment analysis. Cell-cell communication was

evaluated to map ligand-receptor networks. Additionally, nine machine

learning models were trained on a bulk RNA-seq cohort, and the SHapley

Additive exPlanations (SHAP) framework was applied to interpret key

predictive genes.

Results: Progressive disease severity was associated with a decline in T cell

proportions, enrichment of pro-inflammatory myeloid cells, and elevated

cytokine expression, particularly IL-32. Memory CD8+ T cells showed

increased exhaustion and inflammatory scores while maintaining a central

position in MHC-I-mediated communication networks. Persistent activation of

immune and metabolic pathways, including antigen presentation and oxidative

phosphorylation, was observed in prolonged disease states. Seven genes (RPS26,

RPS29, RPL36, RPL39, RPS28, RPS21, and CD3E) were identified as strong

predictors of chronic immune dysregulation, with the XGBoost model

achieving the highest AUC. SHAP analysis confirmed their contributions to

disease classification.

Conclusion: This study maps the immune landscape of COVID-19 and Long

COVID at single-cell resolution, revealing that persistent immune cell
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communication, particularly involving memory CD8+ T cells, may sustain chronic

inflammation beyond the acute phase. The identified molecular signatures offer

potential biomarkers and therapeutic targets for mitigating post-viral

inflammatory syndromes.
KEYWORDS

single-cell RNA sequencing, immune cell communication, chronicinflammation,
COVID-19, long covid, machine learning, SHAP model
Introduction

Coronavirus Disease 2019 (COVID-19), caused by Severe Acute

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has resulted in

over 767 million confirmed cases and more than 6.9 million deaths

worldwide as of June 2023 (WHO) (1). Although widespread

vaccination has significantly reduced infection rates and mortality,

the emergence of new variants with enhanced transmissibility and

pathogenicity continues to pose serious challenges, making the

pandemic far from fully contained (2–4). The impact of COVID-19

is profound, affecting multiple systems and contributing to a

substantial disease burden (5). Its clinical manifestations are highly

variable, ranging from asymptomatic or mild infections to severe

cases and even death, depending on individual immune responses

and other risk factors. Studies have identified age, sex, and

comorbidities (e.g., hypertension and diabetes) as key determinants

of disease progression (6–8). Common symptoms in asymptomatic

or mild cases include fever, dry cough, and fatigue, with relatively

short disease durations (9). However, in some patients, the condition

may rapidly worsen, leading to severe pneumonia, acute respiratory

distress syndrome (ARDS), or multi-organ failure (10, 11).

Based on the severity of the disease, COVID-19 can be classified

into four states: Healthy (uninfected individuals), Exposed (contacts

not yet diagnosed), Infected (confirmed cases without severe

progression), and Hospitalized (severe cases) (12). Exposed

individuals often exhibit mild or no symptoms but may carry the

virus and contribute to its transmission (13, 14). Infected patients,

however, experience more significant immune dysregulation,

including elevated cytokine levels and mild lymphopenia (15).

Hospitalized patients frequently present with a “cytokine storm”,

characterized by marked increases in inflammatory cytokines (e.g.,

IL-6, IL-8, TNF-a), neutrophilia, lymphopenia, and severe immune

dysfunction. This excessive and sustained inflammatory response is

increasingly recognized as a key contributor to chronic immune

dysregulation, driving disease progression and multi-organ damage

in Hospitalized patients (16).

Single-cell RNA sequencing (scRNA-seq), a high-resolution

gene expression analysis technology, provides a powerful tool for

uncovering the immunological mechanisms of COVID-19 (17, 18).

The heterogeneity and dynamic changes in immune cells induced

by viral infection are difficult to capture using traditional bulk
02
analysis methods. By analyzing gene expression at the single-cell

level, scRNA-seq allows for a comprehensive exploration of the

functional states and molecular characteristics of specific cell

subsets. COVID-19 severity is closely linked to immune

dysregulation, particularly inflammation and CD8+ T cell

dysfunction. Studies have shown that during the infection phase,

the peripheral blood shows significant reductions in T and B cells,

coupled with increases in highly inflammatory monocytes and

neutrophils (15, 19, 20). Through scRNA-seq, researchers can

analyze the transcriptional dynamics of these immune cells in

detail, elucidating the mechanisms of cytokine storm and immune

paralysis (21). Furthermore, scRNA-seq enables the identification of

specific CD8+ T cell subsets, assessing their antiviral capacity and

exhaustion status, and offering potential targets for immune

restoration interventions (22).

Machine learning models are widely used to analyze complex

datasets, particularly high-dimensional data in genomics and

transcriptomics. By leveraging diverse algorithmic frameworks

and mathematical approaches, these models uncover intricate

relationships between patient characteristics and clinical

outcomes (23). In clinical applications, models based on the

SHAP (SHapley Additive exPlanations) framework are commonly

used to quantify the contribution of individual features to predictive

outcomes (24, 25). This excessive and sustained inflammatory

response is increasingly recognized as a key contributor to

chronic immune dysregulation, driving disease progression and

multi-organ damage in Hospitalized patients. In this study, we

applied SHAP-based models to identify and interpret key molecular

markers associated with COVID-19-related immune dysfunction,

offering novel insights into inflammatory mechanisms and

improving the accuracy of predictive modeling (26).
Materials and methods

Collection of RNA sequencing data

Single-cell RNA sequencing (scRNA-seq) data (27) of PBMCs

from COVID-19 patients with varying disease severities were

retrieved from Data of 197 patients admitted to Yale New Haven

Hospital with COVID-19 between 18 March and 5 May 2020 which
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were previously described (28). This dataset includes samples from

four groups: Healthy controls, Exposed individuals (close contacts

not yet diagnosed), Outpatients (Infected), and Hospitalized

patients (Severe), with two samples per group. The validation

Bulk RNA-seq transcriptomic cohort was previously described

and generated on the GPL24676 Illumina NovaSeq 6000

platform, encompassing 100 COVID-19 samples and 26 non-

COVID-19 controls (29).
Unsupervised clustering and cell
annotation of scRNA data

The raw unique molecular identifier (UMI) count matrix was

processed using the R package Seurat (version 5.1.0) and converted

into a Seurat object (30). Cells were filtered based on the following

criteria: fewer than 1,000 detected RNA molecules, fewer than 200

or more than 10,000 detected gene features, mitochondrial gene

proportions (percent.mt) exceeding 20%, and hemoglobin gene

proportions (percent.hb) exceeding 90%. After filtering, 73,110

cells were retained for downstream analysis. The dataset was

normalized using the ScaleData() function, and the top 2,000

highly variable genes were identified with FindVariableFeatures().

Principal component analysis (PCA) was performed using RunPCA

(), selecting the top 10 principal components for dimensionality

reduction. t-SNE and UMAP analyses were then conducted using

RunTSNE() and RunUMAP(), respectively (31). Clustering was

performed with FindNeighbours() and FindClusters(), with the

resolution set to 0.3. Cluster-specific marker genes were identified

using FindAllMarkers(), applying thresholds of |log2FC| > 0.25 and

p-value < 0.05 (32). Finally, cluster marker genes were annotated

using the scMayoMap package, integrating scMayoMap Database

and lung tissue-specific data (tissue = ‘lung’) (33, 34).
Analysis of tissue preferences of cell types

To evaluate the distribution preferences of cell types across

different tissue states (Healthy, Exposed, Infected, and

Hospitalized), the calTissueDist() function from the sscVis

package (version 0.1.0) was used to calculate the R_o/e ratio,

which quantifies differences in cell type distribution among

tissues. The statistical significance of these differences was

assessed using the chi-squared test (method = “chisq”), and a cell

type ratio matrix associated with tissue states was extracted. The

results were visualized as a heatmap created with the

ComplexHeatmap package (version 2.18.0). Color gradients were

used to intuitively represent changes in R_o/e values, and symbolic

annotations were added to heatmap cells to indicate the degree of

preference: “+++” for R_o/e > 1, “++” for 0.8 < R_o/e ≤ 1, “+” for 0.2

≤ R_o/e ≤ 0.8, “+/-” for 0 < R_o/e < 0.2, and “-” for R_o/e = 0. This

approach provided a clear visualization of the significant differences

in cell type distribution across tissue states (35).
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Single-cell gene set scoring and
visualization

To assess the activity of the Cytokine and Inflammatory gene

sets at the single-cell level, the AddModuleScore() function was

applied to calculate module scores for each cell, which were then

mapped onto UMAP plots. Using the ggplot2 package (version

3.5.1), pie charts were generated to illustrate the activity proportions

of these two gene sets across different cell types. To compare

Cytokine Score and Inflammatory Score among different tissue

states (Exposed, Infected, Hospitalized, and Healthy), boxplots were

created, and statistical significance was evaluated using the

Wilcoxon test. Additionally, T cell subpopulations were analyzed

for their scores in Cytokine, Exhaustion, Inflammatory, and

Regulatory Effector gene sets, with boxplots used to visualize

score comparisons among different T cell subtypes (30).
T cell subset annotation and gene set
scoring

T cell subpopulations were extracted using the subset function

and reclustered into eight clusters. The sctype package (version 1.0)

was used to annotate these clusters based on gene set scoring of

specific T cell markers, identifying Effector CD8+ T cells, Memory

CD4+ T cells, Memory CD8+ T cells, Naive CD4+ T cells, and

Naive CD8+ T cells (36, 37).
Single-cell enrichment analysis

To explore the functional characteristics of different T cell

subpopulations, differential expression analysis and functional

enrichment analysis were performed based on single-cell

transcriptomic data. Differentially expressed genes (DEGs) for each T

cell subset were calculated using the FindAllMarkers function in the

Seurat package, with the top 1,000 genes showing significant

upregulation selected based on average fold-change values. The

selected DEGs were then subjected to Gene Ontology (GO; biological

processes and cellular components) and KEGG pathway enrichment

analysis using the compareCluster function in the ClusterProfiler

package (38). Gene names were converted to ENTREZ IDs using the

org.Hs.eg.db database, and statistically significant enriched terms (p-

value < 0.05) were identified. Finally, the enrichment results were

visualized as dot plots using the enrichplot package.
Cell-cell communication analysis

This study employed the CellChat R package, a specialized tool

for inferring, analyzing, and visualizing cell-cell communication

from single-cell RNA sequencing data (39). The analysis focused on

T cell subsets, including Effector CD8+ T cells, Memory CD8+ T
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cells, Memory CD4+ T cells, and Naive CD8+ T cells.

Overexpressed genes and ligand-receptor pairs were identified to

calculate intercellular communication probabilities and infer

signaling pathway networks. Visualizations, such as circular and

bubble plots, were used to depict communication frequencies and

strengths among subsets. Key pathways, particularly MHC-I, were

analyzed in-depth, revealing the central role of Memory CD8+ T

cells in immune modulation. These findings provide critical insights

into the mechanisms of T cell-mediated immune regulation and

their implications in COVID-19 progression (40).
Single-cell differential analysis

Differential expression analysis was conducted onMemory CD8+

T cells to investigate gene expression differences across various

pathological states (Healthy, Exposed, Infected, and Hospitalized).

The analysis employed the Seurat package and the MAST method,

comparing each of the three experimental groups to the Healthy

control group. The process involved extracting the Memory CD8+

T cell subset, identifying differentially expressed genes (DEGs)

using the FindAllMarkers function in Seurat, and filtering genes

with adjusted p-values (p_val_adj) less than 0.05 and average log

fold-change (avg_log2FC) greater than 0. Results were visualized

using the ggplot2 package, generating volcano plots, bubble plots, and

lollipop plots to depict the distribution, expression proportions, and

commonly upregulated genes among groups (41).
Machine learning screening

Nine commonly used machine learning methods were applied

to model COVID-19-related data, including Linear Discriminant

Analysis (LDA), Flexible Discriminant Analysis (FDA), Logistic

Regression, Naive Bayes, Support Vector Machine (SVM), Random

Forest, Gradient Boosting Machine (GBM), Mixture Discriminant

Analysis (MDA), and XGBoost (42). Through multiple randomized

experiments assessing AUC in both training and testing datasets,

XGBoost demonstrated the best stability and performance.

Consequently, XGBoost was selected as the final diagnostic model

(43). The xgboost package was employed to train the model, using

70% of the data for training and 30% for testing. Additionally, the

rmda package was utilized for Decision Curve Analysis (DCA) to

evaluate the model’s net benefits at varying risk thresholds,

highlighting its clinical application potential.
SHAP-based diagnostic model
interpretation

The shapviz package was employed to analyze SHAP values,

providing interpretability for the XGBoost model. Key diagnostic
Frontiers in Immunology 04
genes, such as RPS26, RPS29, and RPL41, were identified through

feature importance bar plots and beeswarm plots, quantifying their

contributions to the prediction results. Furthermore, a force plot

was generated for the highest-scoring positive sample, visualizing

the positive and negative contributions of individual genes to the

prediction outcome.
Results

Single-cell transcriptomic analysis of
COVID-19 patients

We obtained peripheral blood mononuclear cells (PBMCs)

from eight individuals with confirmed COVID-19, covering a

range of disease severities. After quality control procedures,

including filtering based on mitochondrial gene content,

transcript counts, and the number of detected genes, we retained

73,110 high-quality cells for downstream single-cell RNA

sequencing (scRNA-seq) analysis (Figures 1A, B). Uniform

Manifold Approximation and Projection (UMAP) embedding

revealed 15 distinct cell clusters (Figure 1D). These clusters were

assigned to 10 major immune and epithelial cell types based on

canonical marker gene expression (Figures 1C, E), including T cells

(CD3D, CD3G, CD3E), B cells (MS4A1, CD79A, CD79B), myeloid

cells (CD14, LYZ, ITGAM), neutrophils (S100A8, S100A9, CSF3R),

macrophages (CD68, CD163, MRC1), secretory cells (SCGB1A1,

SCGB3A2), alveolar epithelial type I cells (AGER, HOPX, PDPN),

alveolar epithelial type II cells (SFTPC, SFTPB, SFTPA1), plasma

cells (MZB1, JCHAIN, TNFRSF17), and basal cells (KRT5,

KRT14, TP63).
Characterization of cell types across
disease states

UMAP analysis compared T cell distributions across four

disease states (Healthy, Exposed, Infected, Hospitalized), revealing

a progressive decline in T cell proportions with increasing disease

severity (Figure 2A). Analysis of cell-type enrichment ratios (R_o/e)

showed significant enrichment of macrophages, neutrophils, and

secretory cells in severe disease states, while T cells were notably

depleted in the Infected and Hospitalized groups (Figure 2B). T cell

enrichment values exhibited a marked decline from Healthy to

Hospitalized states (Figure 2C), underscoring their potential role in

disease progression. Cytokine expression analysis identified IL32,

LTB, and MIF among the top 10 cytokines highly expressed in

pathological conditions, with IL32 showing the highest expression

across all groups, suggesting its pivotal role in inflammatory

responses (Figure 2D). These findings collectively demonstrate

dynamic changes in cell-type composition and highlight their

functional implications in disease progression.
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Single-cell transcriptomic analysis of
cytokine and inflammatory characteristics
across cell types

To investigate the role of various cell types in immune

regulation and inflammatory responses, we conducted an analysis

of cytokine and inflammatory scores. T cells exhibited the highest

cytokine scores, constituting 34.7% of the spatial distribution

(Figure 3A), underscoring their pivotal role in immune responses.

Myeloid cells (27.9%) and lymphocytes (18.3%) also displayed

significant cytokine activity, indicating their critical involvement
Frontiers in Immunology 05
in the pathological states. Inflammatory score analysis (Figure 3B)

revealed that myeloid cells had the highest contribution (35.4%),

followed by T cells (31.2%). Comparative analysis across different

disease states (Figures 3C, D) showed that T cells’ cytokine and

inflammatory scores were significantly elevated compared to the

Healthy group (p < 0.05), with the highest increase observed in the

Hospitalized group. Additionally, neutrophils, macrophages, and

secretory cells showed a progressive rise in scores from Exposed to

Infected and Hospitalized states, suggesting their amplified

activation in exacerbating inflammation. Conversely, alveolar

epithelial and basal cells demonstrated minimal variations.
1FIGURE

scRNA data quality control and cell type annotation. (A) Quality control metrics of scRNA data from four groups (Healthy, Exposed, Infected,
Hospitalized), including mitochondrial gene ratio (percent_mt), transcript counts (nCount_RNA), and detected gene numbers (nFeature_RNA). (B) Bar
plot displaying the total cell counts (log10 scale) per sample, grouped and compared across the four conditions. (C) Bubble plot showing the expression
of characteristic genes across different cell types; bubble size represents the proportion of cells expressing the gene, and color indicates the average
expression level. (D) UMAP dimensionality reduction of 14 unsupervised clusters, with each dot representing a cell and colored by cluster ID. (E) UMAP
clustering annotated with cell type labels, identifying clusters as specific cell types (e.g., T cells, macrophages, and secretory cells).
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T cell subtype clustering and functional
scoring

Through UMAP analysis, T cells were subdivided into eight

clusters (Figure 4A) and annotated into classical subtypes based on

specific markers (Figure 4C), including Effector CD8+ T cells,

Memory CD8+ T cells, Naive CD8+ T cells, Memory CD4+ T

cells, and Naive CD4+ T cells (Figure 4B). Enrichment analysis

across disease groups (R_o/e values) revealed a higher proportion of

naive T cells in Healthy individuals, while effector and memory T

cells were significantly enriched in diseased groups, with Memory

CD8+ T cells showing the strongest enrichment in the Hospitalized

group (Figure 4D).

Functional scoring of gene sets further elucidated subtype-

specific characteristics. Effector CD8+ T cells displayed the

highest cytotoxic scores, reflecting their critical killing functions

during disease progression (Figures 5A, E). Memory T cells showed

elevated exhaustion and inflammatory scores, suggesting functional
Frontiers in Immunology 06
impairment during prolonged immune responses (Figures 5B, F).

Moreover, regulatory effector scores highlighted the role of Memory

CD4+ T cells in immune modulation (Figures 5C, D, G, H).

Collectively, these findings emphasize significant functional

heterogeneity among T cell subtypes, particularly the roles of

e ff ec tor and memory T ce l l s in immune responses

and pathophysiology.
Core role of memory CD8+ T cells in cell
communication networks

Interaction strength analysis revealed that Memory CD8+ T

cells exhibited the highest interaction intensity with other subtypes,

such as Effector CD8+ T cells and Memory CD4+ T cells

(Figures 6A, B). Further exploration of MHC-I signaling

pathways underscored the critical involvement of Memory CD8+

T cells (Figure 6C). Quantitative analysis of interaction strength
FIGURE 2

Cell enrichment and key factor analysis across groups. (A) UMAP plots for the four groups (Healthy, Exposed, Infected, Hospitalized). (B) Heatmap of
relative enrichment (Ro/e) for cell types by group. Colors from blue to red reflect enrichment levels; “+” and “–” indicate significant increases or
decreases. (C) Line plot illustrating the relative enrichment values (R_o/e) of T cells across the four groups, with red points indicating mean values
and error bars representing standard deviation. (D) Bar plot of the top 10 cytokines’ distribution, highlighting IL32, LTB, and MIF as the most
abundantly expressed cytokines across groups.
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(Figures 6D, E) highlighted their significant contribution to all

pathways, particularly MHC-I signaling. At the transcriptional

level, Memory CD8+ T cells demonstrated prominent expression

of MHC-I-related genes (e.g., HLA-A, HLA-B, HLA-C) (Figure 6F),

reinforcing their pivotal role in antigen presentation and immune

response regulation.
Frontiers in Immunology 07
Pathway enrichment analysis of memory
CD8+ T cells

KEGG and GOBP analyses revealed the crucial functional roles

of Memory CD8+ T cells under pathological conditions. In KEGG

pathways, these cells were significantly enriched in immune-related
frontiersin.o
FIGURE 3

Distribution of cytokine and inflammatory scores. (A) UMAP plot of cytokine score spatial distribution, with color gradients indicating score intensity.
The pie chart on the right shows the proportion of different cell types within the total population. (B) UMAP plot of inflammatory score distribution
with a similar pie chart for inflammatory scores. (C) Boxplots comparing cytokine scores across cell types in Exposed, Infected, and Hospitalized
groups versus Healthy controls (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not significant). (D) Boxplots showing inflammatory score
differences among cell types across the groups.
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processes such as natural killer cell-mediated cytotoxicity, antigen

processing and presentation, chemokine signaling, and COVID-19-

related pathways (Figure 7A). Additionally, metabolic pathways like

oxidative phosphorylation and ribosome-related pathways were

prominently enriched, highlighting their potential role in energy

metabolism under active immune states. GOBP analysis further

emphasized their involvement in immune regulation, including

leukocyte-mediated cytotoxicity, T cell activation, and immune

response regulation (Figure 7B). These enriched pathways

illustrate the essential functions of Memory CD8+ T cells in

antigen recognition, immune responses, and inflammation control.
Differential analysis of single-cell groups

By comparing Exposed, Infected, and Hospitalized groups

against the Healthy group, volcano plots depicted significant

differential gene expression (Figures 8A–C). The Hospitalized

group exhibited the highest number of upregulated genes,

indicating that severe pathological states are associated with
Frontiers in Immunology 08
substantial transcriptional changes. A cross-group comparison

identified seven key genes (RPS26, RPS29, RPL36, RPL39, CD3E,

RPS28, RPS21) (Figure 8E). Their expression patterns across groups

(Figure 8D) revealed substantial upregulation in the Hospitalized

group, suggesting their involvement in immune responses and

protein synthesis during disease progression.
Multi-model diagnostics and SHAP-based
interpretation

Among nine machine learning models, the XGBoost algorithm

demonstrated superior performance in both training and testing

datasets, achieving the highest average AUC and stable results

(Figures 9A, B). Decision Curve Analysis (DCA) validated the

model’s clinical utility, with standardized net benefits significantly

surpassing baseline models (“All” and “None”) across various risk

thresholds (Figure 9C). SHAP-based analysis identified key predictive

genes (e.g., RPS26, RPS29, RPL36), highlighting their significant

contributions to disease diagnostics (Figure 9D). Additionally, force
FIGURE 4

T Cell clustering and subtype distribution. (A) UMAP plot displaying T cell clustering into eight distinct clusters. (B) Annotated UMAP plot for T cell
subtypes. (C) Bar plot showing gene set scores for each T cell cluster. (D) Heatmap comparing T cell subtype distributions across groups, with Ro/e
scores visualized through a blue-to-red gradient. Significant enrichment or depletion is marked with “+” and “–”, respectively.
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plots illustrated how these genes cumulatively influenced the

prediction outcomes of specific positive samples (Figure 9E).
Discussion

In this study, we systematically characterized the composition

and dynamic changes of peripheral immune cells in COVID−19
Frontiers in Immunology 09
patients using single-cell transcriptomic analysis. We profiled

73,110 high-quality PBMCs from eight individuals, constructing

immune landscapes across four clinical groups: Healthy, Exposed,

Infected, and Hospitalized. UMAP clustering and canonical marker

annotation identified ten major immune cell types. Among these, T

cells were predominant in Healthy donors but exhibited a

significant and progressive decline in Infected and Hospitalized

patients, a pattern consistent with prior reports describing T cell
FIGURE 5

Functional scores of T Cells. (A-D) UMAP plots depicting the spatial distribution of cytotoxic (Cytotoxic Scores), exhaustion (Exhaustion Scores),
inflammatory (Inflammatory Scores), and regulatory effector (Regulatory Effector Scores) scores in T cells. (E-H) Boxplots comparing functional
scores across different T cell subtypes.
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lymphopenia and dysfunction in COVID−19 cases (44).

Conversely, myeloid cells and neutrophils were significantly

enriched with increasing disease severity, indicating a shift from

adaptive to innate immune responses. Furthermore, expression

levels of pro−inflammatory cytokines such as IL−32, LTB, and

MIF were markedly elevated in the severe group, with IL−32

persistently upregulated across all disease stages, reinforcing its

known pro−inflammatory role in viral infections and lung

pathology (45, 46). Despite elevated cytokine and inflammation

scores, T cells likely experience functional exhaustion in severe

cases, while continuous myeloid cell accumulation may drive

amplified inflammatory cascades characteristic of cytokine storms

in critical COVID−19 patients (47, 48).

Detailed functional profiling of T cells revealed subtype-specific

activity changes across disease stages. Through clustering and gene-

set scoring, T cells were classified into eight subpopulations, including
Frontiers in Immunology 10
effector CD8+, memory CD8+, naïve CD8+, and memory CD4+ T

cells. Effector CD8+ T cells exhibited the highest cytotoxicity scores,

whereas memory T cell subsets displayed elevated exhaustion and

inflammatory scores, suggesting impaired activation during

persistent antiviral response, mirroring T cell fatigue phenomena

reported by Snyder et al. and others in COVID−19 immunotypes

studies (49). Notably, memory CD4+ T cells demonstrated strong

regulatory signatures, suggesting an immunomodulatory role.

CellChat-based intercellular communication analysis identified

memory CD8+ T cells as central hubs in the MHC−I-mediated

antigen presentation network, with strong interactions involving

memory CD4+ and effector CD8+ subsets. Pathway enrichment

further revealed that memory CD8+ cells are engaged in both

immune-related (e.g., antigen processing, NK-mediated

cytotoxicity) and metabolic pathways (oxidative phosphorylation

and r ibosomal ac t iv i ty) , support ing the concept of
FIGURE 6

Interaction analysis between T Cell subtypes. (A) Interaction weight/intensity network based on all pathways, showing interaction strengths between
T cell subtypes. Line color indicates interaction direction, and line thickness represents intensity. (B) Network plot of interaction counts between T
cell subtypes. (C) Role-based heatmap of T cell involvement in MHC-I pathway signaling, with communication importance scaled from 0 to 1. (D)
Scatterplot of interaction weights across all pathways, with dot sizes representing interaction counts. (E) Distribution of interaction weights based on
the MHC-I pathway, highlighting the dominance of memory CD8+ T cells in interactions. (F) Violin plots of MHC-I pathway-associated gene
expression levels across T cell subtypes.
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FIGURE 7

Functional pathway enrichment analysis of memory CD8+ T cells (A) KEGG pathway analysis showing functional enrichment in memory CD8+ T
cells across groups. (B) GOBP analysis of biological process enrichment in memory CD8+ T cells. Bubble size represents the proportion of genes,
and bubble color indicates adjusted p-values, with darker green signifying higher significance.
FIGURE 8

Differential gene analysis and expression characteristics (A-C) Volcano plots showing differentially expressed genes (DEGs) between Exposed,
Infected, and Hospitalized groups versus Healthy controls. Red dots represent upregulated genes, while blue dots represent downregulated genes.
(D) Bubble plot of key marker gene expression across groups, with bubble size indicating expression proportion and color denoting average
expression levels. (E) Lollipop plot displaying the average log2 fold change of significant genes identified across Exposed, Infected, and Hospitalized
groups.
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immunometabolic coordination in activated T cells during viral

infection (20).

In additon, through multi-omic integration and XGBoost-based

diagnostic modeling, we identified several key genes, RPS26, RPS29,

RPL36, RPL39, RPS28, RPS21, and CD3E, with high SHAP values,

indicating strong associations with COVID−19 immune pathology.

These genes predominantly encode ribosomal proteins involved in

protein synthesis and cellular metabolism. Notably, RPS26 has been

shown to regulate specific mRNA translation and maintain T cell

development and homeostasis in vivo, with knockout leading to

peripheral T cell deficits (50, 51). CD3E, a core component of the T

cell receptor complex, is vital for T cell activation and signal

transduction, and its downregulation may impair immune
Frontiers in Immunology 12
recognition efficiency. These findings not only offer mechanistic

insights but also suggest potential therapeutic targets aimed at

enhancing T cell function via metabolic or ribosomal modulation.

While our study is limited by sample size and lacks direct functional

validation, it provides a robust framework for understanding

immune reprogramming in COVID−19 and highlights critical cell

subsets and molecular markers. Future investigations should

prioritize larger cohorts and functional assays to elucidate causal

mechanisms linking these genes to T cell dynamics.

Importantly, our findings have direct implications for

understanding chronic inflammation in post-viral syndromes such

as Long COVID. The persistence of elevated cytokine expression,

enrichment of pro-inflammatory myeloid cells, and sustained MHC-I-
FIGURE 9

Machine learning model performance and SHAP visualizations (A, B) Comparison of average AUC (area under the curve) for nine machine learning
models in training and test sets. (C) Decision curve analysis (DCA) evaluating the clinical net benefit of the XGBoost model across different risk
thresholds. (D) SHAP-based feature importance plot highlighting key genes contributing to model predictions, with color indicating feature values.
(E) Force plot illustrating the predictive mechanism for a positive sample, showing the cumulative contributions of key genes to the model’s output.
(F) Force plot illustrating the predictive mechanism for a negative sample, showing how key gene features contribute to driving the model output
toward a low prediction probability.
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mediated interactions involving memory CD8+ T cells suggest that the

immune system remains in a state of low-grade but continuous

activation well beyond the acute infection. This prolonged immune

communication network—centered on metabolically active yet

functionally exhausted memory CD8+ T cells—may drive unresolved

tissue inflammation. Notably, comorbidities such as diabetes or

hypertension may further exacerbate this immune dysregulation,

amplifying chronic inflammatory signaling. Our model aligns with

emerging evidence that sustained antigen presentation and

maladaptive cross-talk between adaptive and innate immune

compartments underlie long-term symptoms. Therapeutically,

targeting key communication nodes—through modulation of ligand-

receptor pathways or restoration of T cell metabolic balance—may

help disrupt this cycle and offer new strategies for managing Long

COVID and related inflammatory comorbidities.
Conclusions

This study applied single-cell transcriptomics to map the immune

landscape across COVID-19 disease stages, revealing that memory

CD8+ T cells act as central hubs in sustained immune cell

communication networks. These cells, despite signs of functional

exhaustion, maintained strong MHC-I-mediated interactions that

may perpetuate chronic inflammation, particularly in prolonged

disease and Long COVID. Multi-model diagnostic analysis identified

seven key genes linked to persistent immune dysregulation, offering

potential biomarkers and therapeutic targets. Together, these findings

provide mechanistic insight into the maintenance of post-viral

inflammatory states and lay the groundwork for precision strategies

aimed at restoring immune balance.
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