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Background: COVID-19, including its post-acute sequelae (Long COVID), is
increasingly recognized as involving persistent immune dysregulation and
chronic inflammation. Severe and prolonged disease states are often
accompanied by sustained cytokine release, immune cell exhaustion, and
ongoing cell-cell communication that shapes the inflammatory milieu. Among
immune subsets, CD8" T cells play a central role in antiviral defense, yet the
molecular mechanisms linking their dysfunction to prolonged inflammation
remain incompletely understood.

Methods: We analyzed 73,110 peripheral blood mononuclear cells (PBMCs) from
individuals across four disease states (Healthy, Exposed, Infected, and
Hospitalized) using single-cell RNA sequencing. Immune cell subsets were
annotated, and T cell heterogeneity was profiled. Cytokine and inflammatory
scores were calculated to assess immune activation. Differentially expressed
genes (DEGs) underwent Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis. Cell-cell communication was
evaluated to map ligand-receptor networks. Additionally, nine machine
learning models were trained on a bulk RNA-seq cohort, and the SHapley
Additive exPlanations (SHAP) framework was applied to interpret key
predictive genes.

Results: Progressive disease severity was associated with a decline in T cell
proportions, enrichment of pro-inflammatory myeloid cells, and elevated
cytokine expression, particularly IL-32. Memory CD8* T cells showed
increased exhaustion and inflammatory scores while maintaining a central
position in MHC-I-mediated communication networks. Persistent activation of
immune and metabolic pathways, including antigen presentation and oxidative
phosphorylation, was observed in prolonged disease states. Seven genes (RPS26,
RPS29, RPL36, RPL39, RPS28, RPS21, and CD3E) were identified as strong
predictors of chronic immune dysregulation, with the XGBoost model
achieving the highest AUC. SHAP analysis confirmed their contributions to
disease classification.

Conclusion: This study maps the immune landscape of COVID-19 and Long
COVID at single-cell resolution, revealing that persistent immune cell
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communication, particularly involving memory CD8" T cells, may sustain chronic
inflammation beyond the acute phase. The identified molecular signatures offer
potential biomarkers and therapeutic targets for mitigating post-viral
inflammatory syndromes.

single-cell RNA sequencing, immune cell communication, chronicinflammation,
COVID-19, long covid, machine learning, SHAP model

Introduction

Coronavirus Disease 2019 (COVID-19), caused by Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has resulted in
over 767 million confirmed cases and more than 6.9 million deaths
worldwide as of June 2023 (WHO) (1). Although widespread
vaccination has significantly reduced infection rates and mortality,
the emergence of new variants with enhanced transmissibility and
pathogenicity continues to pose serious challenges, making the
pandemic far from fully contained (2-4). The impact of COVID-19
is profound, affecting multiple systems and contributing to a
substantial disease burden (5). Its clinical manifestations are highly
variable, ranging from asymptomatic or mild infections to severe
cases and even death, depending on individual immune responses
and other risk factors. Studies have identified age, sex, and
comorbidities (e.g., hypertension and diabetes) as key determinants
of disease progression (6-8). Common symptoms in asymptomatic
or mild cases include fever, dry cough, and fatigue, with relatively
short disease durations (9). However, in some patients, the condition
may rapidly worsen, leading to severe pneumonia, acute respiratory
distress syndrome (ARDS), or multi-organ failure (10, 11).

Based on the severity of the disease, COVID-19 can be classified
into four states: Healthy (uninfected individuals), Exposed (contacts
not yet diagnosed), Infected (confirmed cases without severe
progression), and Hospitalized (severe cases) (12). Exposed
individuals often exhibit mild or no symptoms but may carry the
virus and contribute to its transmission (13, 14). Infected patients,
however, experience more significant immune dysregulation,
including elevated cytokine levels and mild lymphopenia (15).
Hospitalized patients frequently present with a “cytokine storm”,
characterized by marked increases in inflammatory cytokines (e.g.,
IL-6, IL-8, TNF-0), neutrophilia, lymphopenia, and severe immune
dysfunction. This excessive and sustained inflammatory response is
increasingly recognized as a key contributor to chronic immune
dysregulation, driving disease progression and multi-organ damage
in Hospitalized patients (16).

Single-cell RNA sequencing (scRNA-seq), a high-resolution
gene expression analysis technology, provides a powerful tool for
uncovering the immunological mechanisms of COVID-19 (17, 18).
The heterogeneity and dynamic changes in immune cells induced
by viral infection are difficult to capture using traditional bulk
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analysis methods. By analyzing gene expression at the single-cell
level, scRNA-seq allows for a comprehensive exploration of the
functional states and molecular characteristics of specific cell
subsets. COVID-19 severity is closely linked to immune
dysregulation, particularly inflammation and CD8+ T cell
dysfunction. Studies have shown that during the infection phase,
the peripheral blood shows significant reductions in T and B cells,
coupled with increases in highly inflammatory monocytes and
neutrophils (15, 19, 20). Through scRNA-seq, researchers can
analyze the transcriptional dynamics of these immune cells in
detail, elucidating the mechanisms of cytokine storm and immune
paralysis (21). Furthermore, scRNA-seq enables the identification of
specific CD8+ T cell subsets, assessing their antiviral capacity and
exhaustion status, and offering potential targets for immune
restoration interventions (22).

Machine learning models are widely used to analyze complex
datasets, particularly high-dimensional data in genomics and
transcriptomics. By leveraging diverse algorithmic frameworks
and mathematical approaches, these models uncover intricate
relationships between patient characteristics and clinical
outcomes (23). In clinical applications, models based on the
SHAP (SHapley Additive exPlanations) framework are commonly
used to quantify the contribution of individual features to predictive
outcomes (24, 25). This excessive and sustained inflammatory
response is increasingly recognized as a key contributor to
chronic immune dysregulation, driving disease progression and
multi-organ damage in Hospitalized patients. In this study, we
applied SHAP-based models to identify and interpret key molecular
markers associated with COVID-19-related immune dysfunction,
offering novel insights into inflammatory mechanisms and
improving the accuracy of predictive modeling (26).

Materials and methods
Collection of RNA sequencing data

Single-cell RNA sequencing (scRNA-seq) data (27) of PBMCs
from COVID-19 patients with varying disease severities were

retrieved from Data of 197 patients admitted to Yale New Haven
Hospital with COVID-19 between 18 March and 5 May 2020 which
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were previously described (28). This dataset includes samples from
four groups: Healthy controls, Exposed individuals (close contacts
not yet diagnosed), Outpatients (Infected), and Hospitalized
patients (Severe), with two samples per group. The validation
Bulk RNA-seq transcriptomic cohort was previously described
and generated on the GPL24676 Illumina NovaSeq 6000
platform, encompassing 100 COVID-19 samples and 26 non-
COVID-19 controls (29).

Unsupervised clustering and cell
annotation of scRNA data

The raw unique molecular identifier (UMI) count matrix was
processed using the R package Seurat (version 5.1.0) and converted
into a Seurat object (30). Cells were filtered based on the following
criteria: fewer than 1,000 detected RNA molecules, fewer than 200
or more than 10,000 detected gene features, mitochondrial gene
proportions (percent.mt) exceeding 20%, and hemoglobin gene
proportions (percent.hb) exceeding 90%. After filtering, 73,110
cells were retained for downstream analysis. The dataset was
normalized using the ScaleData() function, and the top 2,000
highly variable genes were identified with FindVariableFeatures().
Principal component analysis (PCA) was performed using RunPCA
(), selecting the top 10 principal components for dimensionality
reduction. t-SNE and UMAP analyses were then conducted using
RunTSNE() and RunUMAP(), respectively (31). Clustering was
performed with FindNeighbours() and FindClusters(), with the
resolution set to 0.3. Cluster-specific marker genes were identified
using FindAllMarkers(), applying thresholds of |log2FC| > 0.25 and
p-value < 0.05 (32). Finally, cluster marker genes were annotated
using the scMayoMap package, integrating scMayoMap Database
and lung tissue-specific data (tissue = Tung’) (33, 34).

Analysis of tissue preferences of cell types

To evaluate the distribution preferences of cell types across
different tissue states (Healthy, Exposed, Infected, and
Hospitalized), the calTissueDist() function from the sscVis
package (version 0.1.0) was used to calculate the R_o/e ratio,
which quantifies differences in cell type distribution among
tissues. The statistical significance of these differences was
assessed using the chi-squared test (method = “chisq”), and a cell
type ratio matrix associated with tissue states was extracted. The
results were visualized as a heatmap created with the
ComplexHeatmap package (version 2.18.0). Color gradients were
used to intuitively represent changes in R_o/e values, and symbolic
annotations were added to heatmap cells to indicate the degree of
preference: “+++” for R_o/e > 1, “++” for 0.8 <R_o/e < 1, “+” for 0.2
<R_o0/e<0.8, “+/-” for 0 < R_o/e < 0.2, and “-” for R_o/e = 0. This
approach provided a clear visualization of the significant differences
in cell type distribution across tissue states (35).
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Single-cell gene set scoring and
visualization

To assess the activity of the Cytokine and Inflammatory gene
sets at the single-cell level, the AddModuleScore() function was
applied to calculate module scores for each cell, which were then
mapped onto UMAP plots. Using the ggplot2 package (version
3.5.1), pie charts were generated to illustrate the activity proportions
of these two gene sets across different cell types. To compare
Cytokine Score and Inflammatory Score among different tissue
states (Exposed, Infected, Hospitalized, and Healthy), boxplots were
created, and statistical significance was evaluated using the
Wilcoxon test. Additionally, T cell subpopulations were analyzed
for their scores in Cytokine, Exhaustion, Inflammatory, and
Regulatory Effector gene sets, with boxplots used to visualize
score comparisons among different T cell subtypes (30).

T cell subset annotation and gene set
scoring

T cell subpopulations were extracted using the subset function
and reclustered into eight clusters. The sctype package (version 1.0)
was used to annotate these clusters based on gene set scoring of
specific T cell markers, identifying Effector CD8+ T cells, Memory
CD4+ T cells, Memory CD8+ T cells, Naive CD4+ T cells, and
Naive CD8+ T cells (36, 37).

Single-cell enrichment analysis

To explore the functional characteristics of different T cell
subpopulations, differential expression analysis and functional
enrichment analysis were performed based on single-cell
transcriptomic data. Differentially expressed genes (DEGs) for each T
cell subset were calculated using the FindAllMarkers function in the
Seurat package, with the top 1,000 genes showing significant
upregulation selected based on average fold-change values. The
selected DEGs were then subjected to Gene Ontology (GO; biological
processes and cellular components) and KEGG pathway enrichment
analysis using the compareCluster function in the ClusterProfiler
package (38). Gene names were converted to ENTREZ IDs using the
org.Hs.eg.db database, and statistically significant enriched terms (p-
value < 0.05) were identified. Finally, the enrichment results were
visualized as dot plots using the enrichplot package.

Cell-cell communication analysis

This study employed the CellChat R package, a specialized tool
for inferring, analyzing, and visualizing cell-cell communication
from single-cell RNA sequencing data (39). The analysis focused on
T cell subsets, including Effector CD8+ T cells, Memory CD8+ T
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cells, Memory CD4+ T cells, and Naive CD8+ T cells.
Overexpressed genes and ligand-receptor pairs were identified to
calculate intercellular communication probabilities and infer
signaling pathway networks. Visualizations, such as circular and
bubble plots, were used to depict communication frequencies and
strengths among subsets. Key pathways, particularly MHC-I, were
analyzed in-depth, revealing the central role of Memory CD8+ T
cells in immune modulation. These findings provide critical insights
into the mechanisms of T cell-mediated immune regulation and
their implications in COVID-19 progression (40).

Single-cell differential analysis

Differential expression analysis was conducted on Memory CD8+
T cells to investigate gene expression differences across various
pathological states (Healthy, Exposed, Infected, and Hospitalized).
The analysis employed the Seurat package and the MAST method,
comparing each of the three experimental groups to the Healthy
control group. The process involved extracting the Memory CD8+
T cell subset, identifying differentially expressed genes (DEGs)
using the FindAllMarkers function in Seurat, and filtering genes
with adjusted p-values (p_val_adj) less than 0.05 and average log
fold-change (avg_log2FC) greater than 0. Results were visualized
using the ggplot2 package, generating volcano plots, bubble plots, and
lollipop plots to depict the distribution, expression proportions, and
commonly upregulated genes among groups (41).

Machine learning screening

Nine commonly used machine learning methods were applied
to model COVID-19-related data, including Linear Discriminant
Analysis (LDA), Flexible Discriminant Analysis (FDA), Logistic
Regression, Naive Bayes, Support Vector Machine (SVM), Random
Forest, Gradient Boosting Machine (GBM), Mixture Discriminant
Analysis (MDA), and XGBoost (42). Through multiple randomized
experiments assessing AUC in both training and testing datasets,
XGBoost demonstrated the best stability and performance.
Consequently, XGBoost was selected as the final diagnostic model
(43). The xgboost package was employed to train the model, using
70% of the data for training and 30% for testing. Additionally, the
rmda package was utilized for Decision Curve Analysis (DCA) to
evaluate the model’s net benefits at varying risk thresholds,
highlighting its clinical application potential.

SHAP-based diagnostic model
interpretation

The shapviz package was employed to analyze SHAP values,
providing interpretability for the XGBoost model. Key diagnostic
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genes, such as RPS26, RPS29, and RPL41, were identified through
feature importance bar plots and beeswarm plots, quantifying their
contributions to the prediction results. Furthermore, a force plot
was generated for the highest-scoring positive sample, visualizing
the positive and negative contributions of individual genes to the
prediction outcome.

Results

Single-cell transcriptomic analysis of
COVID-19 patients

We obtained peripheral blood mononuclear cells (PBMCs)
from eight individuals with confirmed COVID-19, covering a
range of disease severities. After quality control procedures,
including filtering based on mitochondrial gene content,
transcript counts, and the number of detected genes, we retained
73,110 high-quality cells for downstream single-cell RNA
sequencing (scRNA-seq) analysis (Figures 1A, B). Uniform
Manifold Approximation and Projection (UMAP) embedding
revealed 15 distinct cell clusters (Figure 1D). These clusters were
assigned to 10 major immune and epithelial cell types based on
canonical marker gene expression (Figures 1C, E), including T cells
(CD3D, CD3G, CD3E), B cells (MS4A1, CD79A, CD79B), myeloid
cells (CD14, LYZ, ITGAM), neutrophils (S100A8, SI00A9, CSF3R),
macrophages (CD68, CD163, MRC1), secretory cells (SCGB1A1,
SCGB3A2), alveolar epithelial type I cells (AGER, HOPX, PDPN),
alveolar epithelial type II cells (SFTPC, SFTPB, SFTPA1), plasma
cells (MZB1, JCHAIN, TNFRSF17), and basal cells (KRTS5,
KRT14, TP63).

Characterization of cell types across
disease states

UMAP analysis compared T cell distributions across four
disease states (Healthy, Exposed, Infected, Hospitalized), revealing
a progressive decline in T cell proportions with increasing disease
severity (Figure 2A). Analysis of cell-type enrichment ratios (R_o/e)
showed significant enrichment of macrophages, neutrophils, and
secretory cells in severe disease states, while T cells were notably
depleted in the Infected and Hospitalized groups (Figure 2B). T cell
enrichment values exhibited a marked decline from Healthy to
Hospitalized states (Figure 2C), underscoring their potential role in
disease progression. Cytokine expression analysis identified IL32,
LTB, and MIF among the top 10 cytokines highly expressed in
pathological conditions, with IL32 showing the highest expression
across all groups, suggesting its pivotal role in inflammatory
responses (Figure 2D). These findings collectively demonstrate
dynamic changes in cell-type composition and highlight their
functional implications in disease progression.
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FIGURE 1

scRNA data quality control and cell type annotation. (A) Quality control metrics of scRNA data from four groups (Healthy, Exposed, Infected,

Hospitalized), including mitochondrial gene ratio (percent_mt), transcript c
plot displaying the total cell counts (log10 scale) per sample, grouped and

ounts (nCount_RNA), and detected gene numbers (nFeature_RNA). (B) Bar
compared across the four conditions. (C) Bubble plot showing the expression

of characteristic genes across different cell types; bubble size represents the proportion of cells expressing the gene, and color indicates the average
expression level. (D) UMAP dimensionality reduction of 14 unsupervised clusters, with each dot representing a cell and colored by cluster ID. (E) UMAP
clustering annotated with cell type labels, identifying clusters as specific cell types (e.g., T cells, macrophages, and secretory cells).

Single-cell transcriptomic analysis of
cytokine and inflammatory characteristics
across cell types

To investigate the role of various cell types in immune
regulation and inflammatory responses, we conducted an analysis
of cytokine and inflammatory scores. T cells exhibited the highest
cytokine scores, constituting 34.7% of the spatial distribution
(Figure 3A), underscoring their pivotal role in immune responses.
Myeloid cells (27.9%) and lymphocytes (18.3%) also displayed
significant cytokine activity, indicating their critical involvement
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in the pathological states. Inflammatory score analysis (Figure 3B)
revealed that myeloid cells had the highest contribution (35.4%),
followed by T cells (31.2%). Comparative analysis across different
disease states (Figures 3C, D) showed that T cells’ cytokine and
inflammatory scores were significantly elevated compared to the
Healthy group (p < 0.05), with the highest increase observed in the
Hospitalized group. Additionally, neutrophils, macrophages, and
secretory cells showed a progressive rise in scores from Exposed to
Infected and Hospitalized states, suggesting their amplified
activation in exacerbating inflammation. Conversely, alveolar
epithelial and basal cells demonstrated minimal variations.
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T cell subtype clustering and functional
scoring

Through UMAP analysis, T cells were subdivided into eight
clusters (Figure 4A) and annotated into classical subtypes based on
specific markers (Figure 4C), including Effector CD8+ T cells,
Memory CD8+ T cells, Naive CD8+ T cells, Memory CD4+ T
cells, and Naive CD4+ T cells (Figure 4B). Enrichment analysis
across disease groups (R_o/e values) revealed a higher proportion of
naive T cells in Healthy individuals, while effector and memory T
cells were significantly enriched in diseased groups, with Memory
CD8+ T cells showing the strongest enrichment in the Hospitalized
group (Figure 4D).

Functional scoring of gene sets further elucidated subtype-
specific characteristics. Effector CD8+ T cells displayed the
highest cytotoxic scores, reflecting their critical killing functions
during disease progression (Figures 5A, E). Memory T cells showed
elevated exhaustion and inflammatory scores, suggesting functional

10.3389/fimmu.2025.1689507

impairment during prolonged immune responses (Figures 5B, F).
Moreover, regulatory effector scores highlighted the role of Memory
CD4+ T cells in immune modulation (Figures 5C, D, G, H).
Collectively, these findings emphasize significant functional
heterogeneity among T cell subtypes, particularly the roles of
effector and memory T cells in immune responses
and pathophysiology.

Core role of memory CD8+ T cells in cell
communication networks

Interaction strength analysis revealed that Memory CD8+ T
cells exhibited the highest interaction intensity with other subtypes,
such as Effector CD8+ T cells and Memory CD4+ T cells
(Figures 6A, B). Further exploration of MHC-I signaling
pathways underscored the critical involvement of Memory CD8+
T cells (Figure 6C). Quantitative analysis of interaction strength
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FIGURE 3

Distribution of cytokine and inflammatory scores. (A) UMAP plot of cytokine score spatial distribution, with color gradients indicating score intensity.
The pie chart on the right shows the proportion of different cell types within the total population. (B) UMAP plot of inflammatory score distribution
with a similar pie chart for inflammatory scores. (C) Boxplots comparing cytokine scores across cell types in Exposed, Infected, and Hospitalized
groups versus Healthy controls (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not significant). (D) Boxplots showing inflammatory score
differences among cell types across the groups.

(Figures 6D, E) highlighted their

significant contribution to all

pathways, particularly MHC-I signaling. At the transcriptional

level, Memory CD8+ T cells demonstrated prominent expression
of MHC-I-related genes (e.g., HLA-A, HLA-B, HLA-C) (Figure 6F),
reinforcing their pivotal role in antigen presentation and immune

response regulation.
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Pathway enrichment analysis of memory

CDS8+ T cells

KEGG and GOBP analyses revealed the crucial functional roles
of Memory CD8+ T cells under pathological conditions. In KEGG

pathways, these cells were significantly enriched in immune-related

07

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1689507
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Liu et al. 10.3389/fimmu.2025.1689507
B
o0
o1 o Effector CD8+T
°2 » Memory CD4+T
*3 + Memory CD8+T
°4 » Naive CD4+T
5 « Naive CD8+T
* 6
.7
-4 0 4 -4 0 4
umap_1 umap_1
C
Cluster 0 Clustor 1 Cluster 2 Clustor 3
- 4000 - Memory CD8+T
9000 1500+
2000
....... ‘°°°lll.... °°|| 5°°lll.... St couT
’\ t? N A '\ ’\ '\ ’\ ’\ A R ole
«°§«°°°§§: 5 @\o y::‘oc’oa& 3 %\‘&&‘PE& Oh%%%‘.% wave cosvr ]
S AT *’f S SR, 1.5
(\0%49 é%&‘\‘@ st’ SN |
b Hws e Naive CD4+T | 05
Cluster 4 Cluster 5 CIuster 6 Cluster 7 0
3000- 2500~ 1200-
£ 2000- f% 800. Memory CD4+T
31000- 1283‘ 400-
O o O O E s 3 5
@,\oio::oiofoo &og‘é, X o?\c:qy& o°(:o°to°;o°$ T ¥ £ 'g.
R O I o
@““;o@oe@e”e"’ *eo%g“‘g%%% o @0@ RO 600,\(9@ &P 2
Type
FIGURE 4

T Cell clustering and subtype distribution. (A) UMAP plot displaying T cell clustering into eight distinct clusters. (B) Annotated UMAP plot for T cell
subtypes. (C) Bar plot showing gene set scores for each T cell cluster. (D) Heatmap comparing T cell subtype distributions across groups, with Ro/e
scores visualized through a blue-to-red gradient. Significant enrichment or depletion is marked with “+" and "-",

processes such as natural killer cell-mediated cytotoxicity, antigen
processing and presentation, chemokine signaling, and COVID-19-
related pathways (Figure 7A). Additionally, metabolic pathways like
oxidative phosphorylation and ribosome-related pathways were
prominently enriched, highlighting their potential role in energy
metabolism under active immune states. GOBP analysis further
emphasized their involvement in immune regulation, including
leukocyte-mediated cytotoxicity, T cell activation, and immune
response regulation (Figure 7B). These enriched pathways
illustrate the essential functions of Memory CD8+ T cells in
antigen recognition, immune responses, and inflammation control.

Differential analysis of single-cell groups

By comparing Exposed, Infected, and Hospitalized groups
against the Healthy group, volcano plots depicted significant
differential gene expression (Figures 8A-C). The Hospitalized
group exhibited the highest number of upregulated genes,
indicating that severe pathological states are associated with
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substantial transcriptional changes. A cross-group comparison
identified seven key genes (RPS26, RPS29, RPL36, RPL39, CD3E,
RPS28, RPS21) (Figure 8E). Their expression patterns across groups
(Figure 8D) revealed substantial upregulation in the Hospitalized
group, suggesting their involvement in immune responses and
protein synthesis during disease progression.

Multi-model diagnostics and SHAP-based
interpretation

Among nine machine learning models, the XGBoost algorithm
demonstrated superior performance in both training and testing
datasets, achieving the highest average AUC and stable results
(Figures 9A, B). Decision Curve Analysis (DCA) validated the
model’s clinical utility, with standardized net benefits significantly
surpassing baseline models (“All” and “None”) across various risk
thresholds (Figure 9C). SHAP-based analysis identified key predictive
genes (e.g., RPS26, RPS29, RPL36), highlighting their significant
contributions to disease diagnostics (Figure 9D). Additionally, force
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FIGURE 5

Functional scores of T Cells. (A-D) UMAP plots depicting the spatial distri
inflammatory (Inflammatory Scores), and regulatory effector (Regulatory
scores across different T cell subtypes.

plots illustrated how these genes cumulatively influenced the
prediction outcomes of specific positive samples (Figure 9E).

Discussion

In this study, we systematically characterized the composition
and dynamic changes of peripheral immune cells in COVID-19

Frontiers in Immunology

ibution of cytotoxic (Cytotoxic Scores), exhaustion (Exhaustion Scores),
Effector Scores) scores in T cells. (E-H) Boxplots comparing functional

patients using single-cell transcriptomic analysis. We profiled
73,110 high-quality PBMCs from eight individuals, constructing
immune landscapes across four clinical groups: Healthy, Exposed,
Infected, and Hospitalized. UMAP clustering and canonical marker
annotation identified ten major immune cell types. Among these, T
cells were predominant in Healthy donors but exhibited a
significant and progressive decline in Infected and Hospitalized
patients, a pattern consistent with prior reports describing T cell
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Interaction analysis between T Cell subtypes. (A) Interaction weight/intensity network based on all pathways, showing interaction strengths between
T cell subtypes. Line color indicates interaction direction, and line thickness represents intensity. (B) Network plot of interaction counts between T
cell subtypes. (C) Role-based heatmap of T cell involvement in MHC-I pathway signaling, with communication importance scaled from 0 to 1. (D)
Scatterplot of interaction weights across all pathways, with dot sizes representing interaction counts. (E) Distribution of interaction weights based on
the MHC-| pathway, highlighting the dominance of memory CD8+ T cells in interactions. (F) Violin plots of MHC-| pathway-associated gene

expression levels across T cell subtypes.

lymphopenia and dysfunction in COVID-19 cases (44).
Conversely, myeloid cells and neutrophils were significantly
enriched with increasing disease severity, indicating a shift from
adaptive to innate immune responses. Furthermore, expression
levels of pro—inflammatory cytokines such as IL-32, LTB, and
MIF were markedly elevated in the severe group, with IL-32
persistently upregulated across all disease stages, reinforcing its
known pro-inflammatory role in viral infections and lung
pathology (45, 46). Despite elevated cytokine and inflammation
scores, T cells likely experience functional exhaustion in severe
cases, while continuous myeloid cell accumulation may drive
amplified inflammatory cascades characteristic of cytokine storms
in critical COVID-19 patients (47, 48).

Detailed functional profiling of T cells revealed subtype-specific
activity changes across disease stages. Through clustering and gene-
set scoring, T cells were classified into eight subpopulations, including
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effector CD8", memory CD8", naive CD8", and memory CD4" T
cells. Effector CD8" T cells exhibited the highest cytotoxicity scores,
whereas memory T cell subsets displayed elevated exhaustion and
inflammatory scores, suggesting impaired activation during
persistent antiviral response, mirroring T cell fatigue phenomena
reported by Snyder et al. and others in COVID-19 immunotypes
studies (49). Notably, memory CD4" T cells demonstrated strong
regulatory signatures, suggesting an immunomodulatory role.
CellChat-based intercellular communication analysis identified
memory CD8" T cells as central hubs in the MHC-I-mediated
antigen presentation network, with strong interactions involving
memory CD4" and effector CD8" subsets. Pathway enrichment
further revealed that memory CD8" cells are engaged in both
immune-related (e.g., antigen processing, NK-mediated
cytotoxicity) and metabolic pathways (oxidative phosphorylation
and ribosomal activity), supporting the concept of
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Functional pathway enrichment analysis of memory CD8+ T cells (A) KEGG pathway analysis showing functional enrichment in memory CD8+ T
cells across groups. (B) GOBP analysis of biological process enrichment in memory CD8+ T cells. Bubble size represents the proportion of genes,
and bubble color indicates adjusted p-values, with darker green signifying higher significance.
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FIGURE 9

Machine learning model performance and SHAP visualizations (A, B) Comparison of average AUC (area under the curve) for nine machine learning
models in training and test sets. (C) Decision curve analysis (DCA) evaluating the clinical net benefit of the XGBoost model across different risk
thresholds. (D) SHAP-based feature importance plot highlighting key genes contributing to model predictions, with color indicating feature values.
(E) Force plot illustrating the predictive mechanism for a positive sample, showing the cumulative contributions of key genes to the model's output.
(F) Force plot illustrating the predictive mechanism for a negative sample, showing how key gene features contribute to driving the model output

toward a low prediction probability.

immunometabolic coordination in activated T cells during viral
infection (20).

In additon, through multi-omic integration and XGBoost-based
diagnostic modeling, we identified several key genes, RPS26, RPS29,
RPL36, RPL39, RPS28, RPS21, and CD3E, with high SHAP values,
indicating strong associations with COVID-19 immune pathology.
These genes predominantly encode ribosomal proteins involved in
protein synthesis and cellular metabolism. Notably, RPS26 has been
shown to regulate specific mRNA translation and maintain T cell
development and homeostasis in vivo, with knockout leading to
peripheral T cell deficits (50, 51). CD3E, a core component of the T
cell receptor complex, is vital for T cell activation and signal
transduction, and its downregulation may impair immune
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recognition efficiency. These findings not only offer mechanistic
insights but also suggest potential therapeutic targets aimed at
enhancing T cell function via metabolic or ribosomal modulation.
While our study is limited by sample size and lacks direct functional
validation, it provides a robust framework for understanding
immune reprogramming in COVID-19 and highlights critical cell
subsets and molecular markers. Future investigations should
prioritize larger cohorts and functional assays to elucidate causal
mechanisms linking these genes to T cell dynamics.

Importantly, our findings have direct implications for
understanding chronic inflammation in post-viral syndromes such
as Long COVID. The persistence of elevated cytokine expression,
enrichment of pro-inflammatory myeloid cells, and sustained MHC-I-
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mediated interactions involving memory CD8" T cells suggest that the
immune system remains in a state of low-grade but continuous
activation well beyond the acute infection. This prolonged immune
communication network—centered on metabolically active yet
functionally exhausted memory CD8" T cells—may drive unresolved
tissue inflammation. Notably, comorbidities such as diabetes or
hypertension may further exacerbate this immune dysregulation,
amplifying chronic inflammatory signaling. Our model aligns with
emerging evidence that sustained antigen presentation and
maladaptive cross-talk between adaptive and innate immune
compartments underlie long-term symptoms. Therapeutically,
targeting key communication nodes—through modulation of ligand-
receptor pathways or restoration of T cell metabolic balance—may
help disrupt this cycle and offer new strategies for managing Long
COVID and related inflammatory comorbidities.

Conclusions

This study applied single-cell transcriptomics to map the immune
landscape across COVID-19 disease stages, revealing that memory
CD8" T cells act as central hubs in sustained immune cell
communication networks. These cells, despite signs of functional
exhaustion, maintained strong MHC-I-mediated interactions that
may perpetuate chronic inflammation, particularly in prolonged
disease and Long COVID. Multi-model diagnostic analysis identified
seven key genes linked to persistent immune dysregulation, offering
potential biomarkers and therapeutic targets. Together, these findings
provide mechanistic insight into the maintenance of post-viral
inflammatory states and lay the groundwork for precision strategies
aimed at restoring immune balance.
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