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Background:Despite advances in therapy, lung adenocarcinoma (LUAD) remains

a leading cause of cancer mortality. Angiogenesis and immune evasion critically

influence LUAD progression and treatment resistance, yet epithelial-derived

regulatory mechanisms and causal genes remain unclear.

Methods: We employed single-cell transcriptomics (scRNA-seq) to identify

angiogenesis-related epithelial-specific genes in LUAD. Mendelian randomization

(MR) analyses utilizing large-scale genomic databases (eQTLGen, FinnGen)

established genetic causality. A prognostic risk model was developed and

validated using GEO and TCGA cohorts. Western blotting in clinical specimens

and functional assays (gene knockdown, proliferation, migration, and invasion)

verified core gene functions.

Results: Aspartate b-hydroxylase (ASPH) and Pituitary tumor-transforming gene

1 (PTTG1) were identified as causal genes linked to LUAD risk and poor prognosis.

Elevated protein expression of ASPH and PTTG1 was confirmed in LUAD tissues.

ASPH knockdown significantly inhibited LUAD cell proliferation, migration, and

invasion. The ASPH/PTTG1-based risk model robustly predicted prognosis. High-

risk patients demonstrated “cold” immune microenvironments characterized by

increased stromal infiltration and reduced immune effector cells. These patients

also showed heightened sensitivity to several chemotherapeutic and targeted

agents, including Cisplatin and Crizotinib.

Conclusion: Integrating single-cell sequencing, MR-based causality, clinical

validation, and functional experiments, we identified ASPH and PTTG1 as key

regulators of LUAD angiogenesis and immune evasion. These findings

substantiate ASPH/PTTG1 as promising biomarkers and therapeutic targets,

offering new insights into precision therapies integrating anti-angiogenic and

immunomodulatory strategies.
KEYWORDS

lung adenocarcinoma (LUAD), ASPH, PTTG1, angiogenesis, single-cell RNA-seq,
Mendelian randomization, prognostic model
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1 Introduction

Recent epidemiological data on cancer worldwide indicates that

lung cancer impacts approximately two million people annually,

with close to half of these cases occurring within Asian

demographics (1). Among the different histological types, LUAD

stands out as the most prevalent subtype, accounting for nearly 40%

of all lung cancer diagnoses (2). Despite the progress made in

diagnostic methods, targeted treatments, and immunotherapy,

individuals diagnosed with LUAD still encounter a poor overall

prognosis. As reported by the American Cancer Society in 2023, the

five-year survival rate for lung cancer is only 23.6% (3). Therefore,

elucidating the key pathogenic mechanisms underlying LUAD and

developing precise and reliable prognostic biomarkers and risk

assessment models are critical for accurately predicting disease

progression, guiding individualized treatment strategies, and

playing a significant role in improving survival rates as well as

enhancing the overall quality of life for individuals affected by

the condition.

Angiogenesis is defined as the development of new capillary

networks originating from existing blood vessels. This process is

essential for tumor initiation, aggressive growth, and distant

metastasis, and represents a hallmark of advanced-stage cancers

(4). Hypoxia within the tumor microenvironment is one of the

major driving forces of angiogenesis. It stabilizes hypoxia-inducible

factors (such as HIF-1a and HIF-2a), consequently resulting in the

augmented expression of essential genes that play a crucial role in

angiogenesis, such as VEGF and its receptors (VEGFR), neuropilin

(NRP), epidermal growth factor (EGF), and angiopoietins (ANG),

among others (5). Among these, VEGF is considered a central

regulator of angiogenesis, as it not only significantly increases

vascular permeability within tumors but also directly promotes

neovascularization (6).

In addition to its angiogenic functions, VEGF is also

acknowledged for its crucial role in regulating immune interactions

within the tumor microenvironment (TME) (7, 8). While VEGF is

primarily secreted by vascular endothelial cells, various immune cells

in the TME—including tumor-associated macrophages and

neutrophils (9), natural killer (NK) cells and mast cells (MCs)-also

contribute to VEGF production (10–14). In non-small cell lung

cancer, tumor-associated macrophages (TAMs) predominantly

exhibit an M2 polarization. This specific phenotypic orientation

promotes tumor proliferation and metastasis by increasing the

secretion of VEGF (7). Concurrently, VEGF secreted by lung

cancer cells themselves can activate several pro-proliferative

signaling pathways, such as the MEK/ERK and PI3K/AKT

pathways, further enhancing tumor cell invasion and growth (15).

Over the past two decades, anti-angiogenic drugs (AADs)

targeting VEGF-A have been widely applied in therapeutic

strategies targeting multiple tumor types (16, 17). However, due to

the complex mechanisms of tumor angiogenesis and the high

heterogeneity of the TME, current AADs face significant

challenges, including limited applicability and the development of

resistance (18–20). Therefore, elucidating the regulatory mechanisms

of tumor angiogenesis and identifying novel key modulators and
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biomarkers are of great clinical significance for optimizing anti-

angiogenic strategies and overcoming current therapeutic limitations.

LUAD is a malignant epithelial tumor in which epithelial cells

secrete various growth factors, cytokines, and chemokines that

directly or indirectly regulate essential biological processes in the

TME, including angiogenesis. Although a number of studies have

explored the relationship between LUAD and angiogenesis, few

have systematically focused on epithelial cell–specific angiogenic

regulators in LUAD, particularly from a multidimensional

perspective integrating causality and clinical relevance. To address

this gap, the present study employs an integrative approach

combining scRNA-seq, MR, and bulk RNA sequencing to identify

and validate key epithelial cell–derived angiogenic regulators in

LUAD and to construct a prognostic evaluation model. This multi-

omics strategy not only enhances the robustness and biological

relevance of the findings but also facilitates the identification of

clinically meaningful biomarkers, providing a strong foundation for

future therapeutic and prognostic applications.
2 Materials and methods

2.1 Data acquisition and preprocessing

Transcriptomic data (TPM format) and corresponding clinical

information for LUAD were downloaded from TCGA using the R

package TCGAbiolinks (v2.26.0), and served as the training cohort.

This dataset included 59 adjacent normal tissue samples and 541

tumor samples. Meanwhile, the Gene Expression Omnibus (GEO)

datasets GSE37745 (n=106) and GSE41271 (n=182) were obtained

as validation cohorts. Preprocessing steps included: (1) excluding

samples with missing or zero survival information; (2) removing

genes with >50% missing expression values; and (3) filtering out

genes not expressed in more than 50% of the samples.
2.2 eQTL data collection and filtering

Cis-expression quantitative trait loci (cis-eQTL) datasets

derived from whole blood were sourced from the publicly

accessible eQTLGen Consortium resource. For the purpose of

conducting MR analysis, instrumental variables were determined

by choosing single nucleotide polymorphisms that satisfied the

genome-wide significance criterion (p < 5 × 10-8) and underwent

linkage disequilibrium filtering, with a clumping distance set at

10,000 kb and an r² threshold of less than 0.1.
2.3 GWAS summary statistics for LUAD
outcomes

Summary statistics pertaining to a genome-wide association study

(GWAS) focused on LUAD were obtained from the FinnGen

Consortium (Release 12, https://www.finngen.fi/en). The

dataset comprises 2,219 individuals diagnosed with LUAD
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alongside a control group consisting of 378,749 individuals of

European ancestry.
2.4 scRNA-seq data processing

The scRNA-seq dataset GSE131907, which includes paired

LUAD tumor and adjacent normal tissues from 11 patients, was

downloaded from the GEO database. Data processing was

performed using the Seurat R package (v5.1.0) following standard

workflows, including log-normalization, identification of highly

variable genes, dimensionality reduction via principal component

analysis (PCA), and cell clustering. Cell type annotation was

subsequently performed using the SingleR package (v2.4.1).
2.5 Angiogenesis gene set activity (AUC)
analysis

A total of 5,928 angiogenesis related genes were compiled from

the GeneCards database. The AUCell R package (v1.24.0) was used

to calculate the AUC score for each cell based on this gene set. AUC

values were visualized on the t-SNE plot to assess angiogenesis

activity at the single-cell level.
2.6 Cell–cell communication analysis

The interaction dynamics between epithelial cells and various

cellular elements within their microenvironment. Ligand–receptor

interaction strength was computed and visualized using heatmaps.

The relative strength of both outgoing and ingoing signaling

pathways across different cell populations was assessed.
2.7 Pseudotime trajectory analysis

Pseudotime analysis was conducted using the Monocle2

(v2.30.1) R package, focusing on genes with high expression and

dispersion. Cellular trajectory mapping was performed to infer

dynamic transitions, particularly within epithelial subpopulations.
2.8 Differential expression analysis

In order to discern differentially expressed genes (DEGs) between

LUAD tumor specimens and their corresponding adjacent normal

tissues in the TCGA dataset, we utilized the DESeq2 R package

(version 1.42.1). A gene was classified as significantly dysregulated if
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it demonstrated an absolute log2 fold change of at least 1,

accompanied by a false discovery rate (FDR) of less than 0.05.
2.9 Key gene selection

Venn diagram analysis was conducted to identify overlapping

genes among three gene sets: (1) TCGA-derived DEGs; (2)

epithelial cell–specific marker genes from the scRNA-seq analysis;

and (3) angiogenesis-related genes from GeneCards. Genes in the

intersection were defined as “angiogenesis-related DEGs specific to

epithelial cells in LUAD.”
2.10 Two-sample mendelian randomization
analysis

In order to explore the possible causal relationships

between the candidate genes identified in Section 2.9 and the

susceptibility to LUAD, a TSMR approach was utilized,

employing the TwoSampleMR R package (version 0.6.10). Cis-

expression quantitative trait loci (eQTLs) functioned as

instrumental variables for gene expression (the exposure variable),

while the outcome dataset comprised genome-wide association

summary data for LUAD obtained from the FinnGen consortium.

Variables deemed weakly influential, characterized by an F-statistic

of less than 10, were excluded from the analysis. The primary

analytical technique employed was the inverse variance weighted

(IVW) method. To assess horizontal pleiotropy, the MR-Egger

intercept test was conducted, whereas Cochran’s Q statistic

was used to evaluate heterogeneity. Additionally, a leave-one-out

(LOO) analysis was carried out to verify the robustness of the

causal estimates.
2.11 Construction and validation of the
prognostic risk model

In the TCGA training dataset, both multivariate Cox and

univariate Cox proportional hazards regression analyses were

performed to identify genes that exhibit significant correlations

with overall survival (OS), drawing from the candidates delineated

in Section 2.9. Subsequently, a prognostic risk score model was

formulated utilizing the following equation: Risk Score=b1 ×X1

+b2×X2 +…+bn ×Xn , where b signifies the regression coefficient

and X indicates the expression level of the respective gene.

Using the median risk score, patients diagnosed with LUAD

were categorized into high and low risk subgroups. To evaluate the

prognostic relevance of this model, Kaplan–Meier survival analysis
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was conducted within the TCGA dataset, as well as in two external

GEO validation cohorts (GSE37745 and GSE41271), utilizing the

survival R packages (version 0.4.9).
2.12 Association between clinical features
and Risk Score

Associations between the Risk Score and clinicopathological

characteristics of TCGA_LUAD patients (e.g., age, TNM stage)

were analyzed using t-tests, Wilcoxon rank-sum tests, or chi-square

tests as appropriate.
2.13 Nomogram construction and
evaluation

The independent prognostic factors determined through

multivariate Cox regression—comprising both the risk score and

various clinical parameters—were utilized to develop a nomogram

aimed at forecasting OS at 1, 3, and 5 years. This was accomplished

using the rms R package (version 67.1). The efficacy of the model

and its clinical applicability were assessed by means of calibration

plots, time-dependent receiver operating characteristic (ROC)

curves, and decision curve analysis (DCA).
2.14 Tumor immune microenvironment
analysis

The variations in immune infiltration between groups

categorized as high and low-risk were analyzed using the

CIBERSORT and ssGSEA algorithms, which were executed

through the GSVA R package (version 1.50.5). In addition, the

ImmuneScore, StromalScore, and ESTIMATEScore were utilized

the ESTIMATE R package (version 1.0.13) and were subsequently

compared across different risk categories.
2.15 Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was conducted utilizing

the c2.all.v2024.1. Hs.symbols gene sets to investigate hallmark

pathways that exhibit differential enrichment between high and

low-risk cohorts. Pathways were considered statistically significant

if they met the criteria of |normalized enrichment score (NES)| > 1

and p < 0.05.
2.16 Analysis of immunotherapy-related
biomarkers

To evaluate the possible efficacy of immunotherapy, a

comparative analysis was conducted on tumor mutational burden
Frontiers in Immunology 04
(TMB), cytolytic activity, as well as immune checkpoint genes

between groups classified as high-risk and low-risk.
2.17 Drug sensitivity prediction

The oncoPredict R package was utilized to forecast drug

sensitivity in samples from TCGA, leveraging information

sourced from the Genomics of Drug Sensitivity in Cancer

database (https://www.cancerrxgene.org/). The estimated half-

maximal inhibitory concentration (IC50) values, as well as

response scores for both chemotherapeutic and targeted therapies,

were analyzed and compared between groups categorized as high-

risk and low-risk.
2.18 Clinical sample collection and
Western blot analysis

Specimens comprising six paired LUAD tumors alongside

adjacent normal tissues were procured from pathologically

verified patients at The First Affiliated Hospital of Chengdu

Medical College. The Institutional Ethics Committee granted

ethical approval for the study (Approval No.: 2025CYFYIRB-SQ-

81), and all participants provided written informed consent.

Fresh-frozen tissue samples were subjected to pulverization in

liquid nitrogen, followed by total protein extraction utilizing RIPA

lysis buffer that was augmented with protease and phosphatase

inhibitors. The quantification of protein concentrations was

performed using a BCA assay kit (Thermo Fisher Scientific,

USA). For analysis, equal quantities of protein (30 mg) were

subjected to separation using 10% SDS-PAGE, and the proteins

were subsequently transferred to PVDF membranes (Millipore,

USA). The membranes were then blocked with a 5% non-fat milk

solution in TBST at ambient temperature for one hour, before being

incubated overnight at 4 °C with the designated primary antibodies:

rabbit anti-ASPH (1:1000, 14116-1-AP, China), and rabbit anti-

PTTG1 (1:1000, 18040-1-AP. After washing with TBST,

membranes were incubated with HRP-conjugated goat anti-rabbit

secondary antibody, the membranes were incubated for 1 hour at

room temperature, and protein bands were visualized using

enhanced chemiluminescence (ECL) reagents (Millipore, USA)

and captured by a gel imaging system (Bio-Rad, USA). Semi-

quantitative analysis was performed using ImageJ software.
2.19 Cell culture and gene knockdown

Human LUAD cell lines SW1573 and A549 were procured from

the Cell Bank of the Chinese Academy of Sciences. These cell lines

were selected as they are well-established and commonly used

models for LUAD research, representing distinct molecular and

phenotypic characteristics. These cell lines were supplemented with

10% fetal bovine serum, maintained in RPMI-1640 medium
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(Corning, CN), penicillin at a concentration of 100 U/mL, and

streptomycin at 100 mg/mL. The cultures were incubated at 37 °C in

a humidified environment with 5% CO2.

For the purpose of ASPH knockdown, lentiviral vectors that

express short hairpin RNAs (shRNAs) targeting ASPH (specifically

shASPH-1 and shASPH-2) alongside a negative control (shCtrl)

were fabricated by GeneChem (Shanghai, China). The cells

underwent transduction at an appropriate multiplicity of infection

(MOI) for a duration of 48 hours, after which stable transfectants

were selected using 2 mg/mL puromycin. The efficacy of the

knockdown was subsequently verified through Western

blot analysis.
2.20 Western blot analysis (cell protein
detection)

Cells in the logarithmic growth phase were harvested, and total

protein extraction was conducted utilizing RIPA lysis buffer that

was enriched with protease and phosphatase inhibitors. Protein

concentrations were determined employing a BCA assay kit, and

equal quantities (30 mg) of protein were subjected to SDS-PAGE

and subsequently transferred onto PVDF membranes (Millipore,

USA). The membranes underwent blocking with 5% skim milk in

TBST at ambient temperature for one hour, followed by an

overnight incubation at 4°C with rabbit anti-ASPH and rabbit

anti-GAPDH primary antibodies. Post-washing, the membranes

were treated with an HRP-conjugated secondary antibody at room

temperature for one hour. Signal detection was executed utilizing

ECL reagents, and images were acquired with a gel documentation

system. Band intensity quantification was carried out using

ImageJ software.
2.21 CCK8 cell proliferation assay

Cell viability was determined using a CCK-8 assay. Briefly,

stably transduced shCtrl and shASPH cells were seeded at 3,000

cells/well in 96-well plates. At specified time points (0, 24, 48, and

72 hours), 10 μL of CCK-8 solution was added to each well, followed

by a 2-hour incubation. The absorbance at 450 nm was then

measured using a microplate reader to assess cell viability.
2.22 Transwell invasion assay

Cellular invasion was assessed through the utilization of

Transwell chambers coated with Matrigel (8 mm pore diameter,

Corning, USA). Briefly, 5×104 cells suspended in 200 mL serum-free

medium were seeded into the upper chamber, with 20% FBS in the

lower chamber acting as the chemoattractant. After 24 hours, non-

invading cells were removed from the upper membrane, while

invaded cells on the lower surface were fixed in 4%

paraformaldehyde for 15 minutes before being stained with 0.1%
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crystal violet for 20 minutes. Invasion was quantified by averaging

the cell count from five random microscopic fields.
2.23 Wound-healing assay

Cells were inoculated into 6-well plates and allowed to grow

until they achieved 90-100% confluence. A linear scratch was

created with a sterile 200 mL pipette tip, and subsequent washing

with phosphate-buffered saline (PBS) was performed to eliminate

any dislodged cells. The cells were then preserved in a serum free

medium, and the process of wound healing was assessed by taking

photographs at 0, 24, and 48 hours. Wound widths were measured

using ImageJ, and migration rates (%) were calculated as follows:

Migration rate (%)=[(initial wound width − wound width at time t)/

initial wound width] × 100%.
2.24 Statistical analysis

All statistical analyses were performed using R software (version

4.3.3) and GraphPad Prism (version 9.0). For comparisons between

two groups, Student’s t-test was used for normally distributed data,

while the Wilcoxon rank-sum test was applied for non-normally

distributed data. Associations between categorical variables were

assessed using the chi-square test. Survival curves were generated

using the Kaplan-Meier method and compared with the log-rank

test. Univariate and multivariate Cox proportional hazards

regression models were used to identify prognostic factors. A

two-sided P-value < 0.05 was considered statistically significant.

Significance levels in figures are denoted as follows: * P < 0.05, ** P <

0.01, and *** P < 0.001.
3 Results

3.1 Single-cell transcriptomics reveals the
tumor microenvironment landscape of
LUAD

3.1.1 Cell subpopulation identification and
annotation

To investigate the cellular heterogeneity of LUAD, we

performed scRNA-seq analysis on the GSE131907 dataset. Using

t-SNE for dimensionality reduction and visualization, cells were

clearly clustered into 11 distinct groups. Cell populations were

classified into 11 primary types, which encompass fibroblasts,

epithelial cells, and macrophages, utilizing the expression patterns

of well-characterized marker genes specific to each cell type

(Figure 1A). The activity of the angiogenesis-related gene set was

assessed using the AUCell algorithm, revealing relatively high

enrichment scores in macrophages, fibroblasts, smooth muscle

cells, and epithelial cells (Figure 1B). We further constructed
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pseudotime trajectories to explore gene expression dynamics during

LUAD progression (Figure 1C). Specifically, a pseudotime

trajectory was successfully reconstructed for epithelial cell

subpopulations (Figure 1D).
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3.1.2 Cell–cell communication network analysis
Intercellular communication networks were inferred using the

CellChat package. Significant signaling interactions were observed

among epithelial cells, macrophages, T cells, and tissue stem cells,
FIGURE 1

Single-cell transcriptomic analysis of LUAD. t-SNE visualization of cell clusters, annotated into 11 major cell types based on canonical marker genes.
(B) Angiogenesis Activity Visualization. Visualization of angiogenesis-related AUC scores on the t-SNE plot; color indicates the relative score
intensity. (C) Pseudotime trajectory analysis of all analyzed cell populations. (D) Pseudotime trajectory of epithelial subpopulations showing potential
differentiation paths. (E) Global overview of intercellular communication networks among all cell types. (F) Cell-cell interaction network centered on
epithelial cells. (G) Heatmap showing interaction intensity among cell types. (H) Outgoing and incoming signaling patterns of key pathways across
cell types, with emphasis on epithelial cells.
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with these populations acting as both major signal senders and

receivers (Figures 1E, G). Notably, epithelial cells served as a central

communication hub within the network (Figure 1F). Analysis of

incoming and outgoing signaling patterns revealed that epithelial

cells were key recipients and transmitters of multiple signaling

pathways—including MIF, TENASCIN, OCLN, LAMININ, THBS,

and FN1—all of which are known to play roles in angiogenesis

regulation (Figure 1H).
3.2 Identification of angiogenesis-related
differentially expressed genes in LUAD
epithelial cells

Differential expression analysis between LUAD normal and

tumor tissues in the TCGA cohort identified 14,953 DEGs, with

3,296 downregulated and 11,657 upregulated in tumors (Figure 2A).

By integrating 1,576 epithelial cell marker genes identified from

scRNA-seq analysis and 5,928 angiogenesis-related genes from the

GeneCards database, a Venn diagram was used to identify 187

overlapping genes that were differentially expressed, epithelial cell–

specific, and angiogenesis-related (Figure 2B).
3.3 MR and identification of hub genes

Among the 187 intersecting genes, 118 had available cis-eQTL

data in the eQTLGen database. TSMR analysis was conducted to

evaluate the causal relationship between gene expression and LUAD

risk. This analysis identified 21 genes whose genetically predicted

expression levels were significantly associated with LUAD risk (P <

0.05). Of these, higher expression of 10 genes was associated with

increased LUAD risk, while higher expression of 11 genes was

associated with decreased risk (Figure 2C).

To further refine these candidates, we first performed a

univariate Cox regression analysis on these 21 genes, which

identified 8 genes significantly associated with OS (P < 0.05)

(Figure 2D). From this subset, we selected genes where the

direction of effect was consistent between the MR and survival

analyses. Specifically, we required genes identified as risk factors in

MR (OR > 1) to also be associated with poorer survival (HR > 1),

and protective factors (OR < 1) with better survival (HR < 1). This

stringent criterion ultimately pinpointed Aspartate b-hydroxylase
(ASPH) and Pituitary tumor-transforming gene 1 (PTTG1) as the

core hub genes. The primary IVW results indicated that genetically

predicted higher expression of ASPH (OR=1.174, 95% CI: 1.047–

1.316, P < 0.05) and PTTG1 (OR=1.748, 95% CI: 1.239–2.468, P <

0.05) was significantly associated with an increased risk of LUAD.

Primary MR results showed that genetically predicted higher

expression levels of ASPH and PTTG1 were significantly associated

with increased LUAD risk (Figures 2E, H). Leave-one-out

sensitivity analysis showed that the estimated causal effect of

ASPH and PTTG1 on LUAD risk remained stable when omitting

any single SNP, confirming the robustness of the results (Figures 2F,

I). Results from multiple MR methods, including weighted median
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and IVW, were consistent. MR-Egger regression didn’t detect

significant horizontal pleiotropy (intercept P > 0.05) (Figures 2G, J).
3.4 Validation of hub gene expression

In the single-cell t-SNE plot, ASPH and PTTG1 expression was

predominantly enriched in epithelial cell and macrophage

subpopulations (Figure 3A). Western blot analysis revealed that

the protein expression levels of ASPH and PTTG1 were significantly

higher in tumor tissues compared to adjacent normal tissues across

all six paired LUAD samples (P < 0.001) (Figure 3B). This

consistent upregulation observed in all cases further supports the

potential clinical value of ASPH and PTTG1 as important

molecular markers in LUAD.
3.5 Knockdown of ASPH inhibits malignant
phenotypes of LUAD cells in vitro

To directly validate the functional role of ASPH in LUAD cells,

we knocked down its expression in SW1573 and A549 cell lines

using lentivirus-mediated shRNA. Western Blot results confirmed

that, compared to the shCtrl control group, two independent

shRNAs (shASPH-1 and shASPH-2) effectively reduced ASPH

protein levels. The more efficient shASPH-1 was selected for

subsequent functional experiments (Figure 4A). The CCK8

proliferation assay, visualized as a line graph, revealed that ASPH

knockdown led to a significant, time-dependent inhibition of

proliferative capacity in both A549 and SW1573 cells compared

to the control group (Figure 4B). Subsequently, we assessed the

impact of ASPH on cell invasion and migration using wound-

healing and Transwell assays. The results showed that ASPH

knockdown significantly reduced the number of cells that invaded

through the Matrigel matrix (Figure 4C) and markedly delayed the

closure of the scratch area (Figure 4D). Collectively, these in vitro

results confirm that ASPH is a critical molecule required for

maintaining the proliferation, migration, and invasion of LUAD

cells, providing strong functional support for our bioinformatics

analyses and clinical association findings.
3.6 Validation and development of a
prognostic risk model utilizing hub genes

A prognostic risk scoring model was developed that incorporated

ASPH and PTTG1, which were determined through multivariate Cox

analysis within the TCGA cohort (refer to Figure 5A). The formula

for the model is defined as follows: Risk Score=(0.151 × Expression

level of ASPH)+(0.236 × Expression level of PTTG1). Patients were

categorized into high and low risk groups based on the median risk

score. Kaplan–Meier survival analysis indicated a significantly

diminished OS in the high-risk cohort when compared to the low-

risk cohort, observed in both the TCGA training dataset (illustrated

in Figure 5B) and two external GEO validation cohorts, namely
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FIGURE 2

Identification of angiogenesis-related hub genes in LUAD epithelial cells and MR analysis. (A) A volcano plot demonstrating the genes that are DEGs
when comparing lung adenocarcinoma tissues to corresponding adjacent normal samples within the TCGA-LUAD dataset. (B) A Venn diagram
illustrating the intersection of DEGs identified from the TCGA dataset, epithelial cell-specific marker genes, and genes linked to angiogenesis.
(C) Forest plot of significantly associated genes from MR analysis among intersecting genes with cis-eQTL data, evaluating the causal relationship
between their expression and LUAD risk. (D) Forest plot of positively associated genes identified by univariate Cox regression analysis of MR-
significant genes, assessing their correlation with OS. (E-G) Equivalent plots for ASPH, including forest plot (E), leave-one-out analysis (F), and MR
scatter plot (G). (H-J) Equivalent plots for PTTG1, including forest plot (H), leave-one-out analysis (I), and MR scatter plot (J).
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GSE37745 (depicted in Figure 5C) and GSE41271 (shown in

Figure 5D) (all P < 0.05). These findings underscore the robust

prognostic significance and generalizability of the model.
3.7 Association between
clinicopathological features and Risk Score

In the TCGA cohort, associations between the clinical features

and risk score were analyzed. High risk scores were significantly

associated with deceased status, advanced tumor stage, higher N

stage, and T stage (all P < 0.05) (Figures 6A–D). These associations

were further visualized using a heatmap integrating clinical features

with the risk score (Figure 6E).
3.8 Assessment and development of a
prognostic nomogram

In order to create a customized prognostic instrument, a

nomogram was developed that integrated the risk score along

with various independent clinical prognostic factors identified

through univariate Cox regression analysis (refer to Figures 7A,

B). The nomogram displayed a high degree of concordance between
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the predicted survival outcomes and the actual survival data, as

evidenced by the calibration curves (illustrated in Figure 7C). The

decision curve analysis (DCA) indicated a significant clinical net

benefit across a wide spectrum of threshold probabilities (depicted

in Figure 7D). Furthermore, time-dependent ROC analysis

indicated that the nomogram achieved area under the curve

(AUC) values of 0.746, 0.720, and 0.685 for predicting OS at 1

years, 3 years, and 5 years, respectively (shown in Figure 7E).
3.9 Tumor immune microenvironment and
Risk Score

The implementation of the ESTIMATE algorithm indicated

that patients classified as high-risk presented with markedly lower

ImmuneScore and ESTIMATEScore, while exhibiting a heightened

StromalScore (P < 0.05) (see Figures 8A–C). This suggests a tumor

microenvironment that is rich in stroma but lacking in immune cell

presence. Additional immune profiling conducted using

CIBERSORT and single sample Gene Set Enrichment Analysis

(ssGSEA) revealed a higher infiltration of activated memory

CD4+ T cells, M0 macrophages, and resting natural killer (NK)

cells within the high-risk cohort. In contrast, the levels of plasma

cells, activated NK cells, resting mast cells, activated B cells,
FIGURE 3

Validation of ASPH and PTTG1 expression. (A) t-SNE plots overlaid with expression densities of ASPH, PTTG1, and their combined signature. Color
intensity reflects expression levels. (B) Western blot analysis of ASPH and PTTG1 protein expression in Lung Adenocarcinoma Tissue and Normal
Adjacent Tissue.
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FIGURE 4

The impact of ASPH knockdown on the biological behavior of lung adenocarcinoma cells in vitro. (A) Western blot and corresponding grayscale
analysis demonstrating ASPH expression levels in A549 cells that were transfected with shCtrl, shASPH-1, or shASPH-2. (B) CCK8 assay assessing the
proliferation rates of A549 and SW1573 cells post-ASPH knockdown. (C) Transwell assay results indicating a reduction in invasion capabilities of
ASPH-silenced A549 and SW1573 cells (scale bar=100 mm). (D) Wound-healing assay results revealing impaired migratory abilities following ASPH
knockdown (scale bar=200 mm). Data are expressed as mean ± SD. ** P < 0.01, *** P < 0.001.
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activated CD8+ T cells, and eosinophils were significantly reduced

(all P < 0.05) (illustrated in Figures 8D–G).
3.10 Analysis of TMB, CYT scores, immune
checkpoints, and GSEA

Subsequent analysis revealed that patients categorized as high-

risk exhibited significantly elevated cytolytic activity (CYT) scores

and tumor mutational burden (TMB) in comparison to their low-
Frontiers in Immunology 11
risk counterparts (P < 0.05; Figures 9A–C). Importantly, a notable

decrease in the expression of several immune checkpoint genes,

including BTLA, CD47, CTLA4, and ICOS, was observed within the

high-risk cohort (P < 0.05) (Figure 9D).

Furthermore, the GSEA demonstrated that various hallmark

pathways were notably enriched within the high-risk cohort,

achieving a FDR of less than 0.05, including cell cycle regulation

(e .g . , KEGG_CELL_CYCLE) , DNA repl ica t ion (e .g . ,

REACTOME_DNA_REPLICATION), hypoxia response (e.g.,

PID_HIF1_TFPATHWAY, WINTER_HYPOXIA_UP), angiogenesis
FIGURE 5

Validation and development of a prognostic model based on key genes. (A) Forest plot generated from multivariate Cox regression analysis,
showcasing the hazard ratios and 95% confidence intervals for ASPH and PTTG1, thereby affirming their roles as independent prognostic indicators.
(B–D) Assessment of the prognostic model using data from the TCGA (B), GSE37745 (C), and GSE41271 (D) datasets. Each subsection contains a
Kaplan–Meier survival analysis (top), distribution plots of risk scores and survival outcomes (middle), as well as expression heatmaps for ASPH and
PTTG1 (bottom).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1689275
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2025.1689275
(e.g., WP_VEGFAVEGFR2_SIGNALING), epithelial-mesenchymal

transition (EMT) (e.g., GOTZMANN_EPITHELIAL_TO_ME

SENCHYMAL_TRANSITION), extracellular matrix remodeling

(e.g., NABA_ECM_REGULATORS), and oncogenic KRAS signaling

(e.g., SWEET_KRAS_TARGETS_UP) (Figure 9E).
3.11 Drug sensitivity prediction

The prediction of drug responses utilizing the Genomics of Drug

Sensitivity in Cancer database alongside the oncoPredict algorithm

suggested that patients classified with elevated risk scores are more

inclined to demonstrate increased sensitivity towards various

chemotherapeutic and targeted treatment options. These results

indicate that individuals within the high-risk cohort could

potentially exhibit a more advantageous response to therapeutic

agents such as Paclitaxel, Docetaxel, Vinorelbine, Cisplatin,

Gemcitabine, Crizotinib, Savolitinib, Vincristine, and 5-

Fluorouracil, as indicated by lower predicted IC50 values (Figure 10).
4 Discussion

This study first employed scRNA-seq to dissect the cellular

composition of LUAD samples, identifying 11 major cell types and

revealing that angiogenesis-related gene sets were significantly
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enriched in epithelial cells and macrophages. Through the novel

combination of MR analysis and Cox regression modeling, ASPH

and PTTG1 were pinpointed as core hub genes. These genes showed

a positive genetic association with LUAD risk and were closely

correlated with OS outcomes. To validate the biological relevance of

these findings, ASPH and PTTG1 were confirmed to be significantly

upregulated in LUAD through multi-level evidence, including

scRNA-seq data, TCGA bulk RNA expression profiles, and

protein-level validation by Western blotting. Based on their

prognostic significance, a two-gene risk score model was

constructed: Risk Score=0.151 × ASPH+0.236 × PTTG1, which

demonstrated robust prognostic performance in both the TCGA

dataset and two independent GEO cohorts. Furthermore, by

analyzing TME immune characteristics, immune checkpoint

expression, and chemotherapy drug IC50 data across different

risk groups, we further investigated the immune landscape and

potential therapeutic responses in LUAD patients with varying risk

profiles. In summary, this study innovatively integrates bulk RNA-

seq, scRNA-seq validation, and MR analysis, offering novel insights

and potential clinical implications for prognostic assessment and

therapeutic decision-making in LUAD.

ASPH is an a-ketoglutarate–dependent dioxygenase that

promotes tumorigenesis through mechanisms such as enhancing

angiogenesis, inhibiting apoptosis, and suppressing antitumor

immunity (21–23). Elevated expression of ASPH has been

observed in multiple malignancies, including non-small cell lung
FIGURE 6

Correlation between risk score and clinical characteristics. (A–D) Violin plots illustrating variations in risk scores among different subgroups:
(A) survival status, (B) pathological stage, (C) T classification, and (D) N classification. (E) Heatmap depicting the relationships between risk score and
clinical variables such as sex, stage, and prognosis. * P < 0.05, ** P < 0.01, *** P < 0.001.
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cancer, where its levels are significantly increased in

bronchoalveolar lavage exosomes (24), as well as in pancreatic

cancer, colorectal cancer, breast cancer, and hepatocellular

carcinoma (25–28). Additionally, high ASPH expression has been

linked to tumor recurrence, such as in retroperitoneal liposarcoma

(RPLS), where it serves as an independent risk factor for recurrence
Frontiers in Immunology 13
(29), and has been identified as a potential target regulating tumor

cell migration and invasion (30).

Mechanistically, ASPH enhances angiogenesis and metastasis by

interacting with ADAM12/15, activating SRC kinase signaling, and

facilitating MMP-mediated ECM degradation (31, 32). It also

modifies the EGF-like repeats of the Notch receptor and its ligands,
FIGURE 7

Development and assessment of the prognostic nomogram. (A) Forest plot from univariate Cox regression analysis identifying clinical factors linked
to OS in LUAD patients. (B) Prognostic nomogram integrating risk score and significant clinical characteristics to predict 1-, 3-, and 5-year OS
probabilities. (C) Calibration curves evaluating the alignment between predicted and actual OS at 1, 3, and 5 years. (D) Decision curve analysis
assessing the net clinical benefit provided by the nomogram at various time points. (E) Time-dependent ROC curves along with associated AUC
values illustrating the predictive efficacy of the model.
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thereby activating the Notch signaling pathway (33). The ASPH–

Notch axis promotes exosome secretion and facilitates the transfer of

proteins associated with invasion, metastasis, metabolism, and

immunosuppression (26, 28). Furthermore, ASPH inhibits GSK3b
Frontiers in Immunology 14
phosphorylation, interfering with upstream kinase communication,

delaying cellular senescence, and promoting tumor progression (34).

These mechanisms are highly consistent with the features we

observed in high-risk LUAD patients, including enhanced
FIGURE 8

Relationship between characteristics and Risk Score of the tumor microenvironment. (A-C) Violin plots demonstrating variations in StromalScore (A),
ESTIMATEScore (B), and ImmuneScore (C) among low- and high-risk cohorts. (D) Boxplots illustrating the patterns of immune cell infiltration
assessed by ssGSEA across the different risk groups. (E) Boxplots presenting the disparities in immune cell infiltration as derived from CIBERSORT
between the two groups. (F-G) Heatmaps that reveal correlations between the risk score, expression of hub genes, and immune cell populations
evaluated through CIBERSORT (F) and ssGSEA (G). * P < 0.05, ** P < 0.01, *** P < 0.001.
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angiogenesis, reduced immune infiltration, high TMB, and

suppressed immune checkpoint expression. Our study provides

direct experimental evidence for these findings through in vitro

functional assays. We demonstrated that specific knockdown of

ASPH expression in two different LUAD cell lines significantly

impaired their capacity for proliferation, migration, and invasion.
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This directly indicates that ASPH plays a critical, cell-autonomous

role in maintaining the malignant phenotype of LUAD cells,

thereby robustly complementing and validating the conclusions

drawn from our multi-omics data and causal inference, and further

solidifying the reliability of ASPH as a therapeutic target in LUAD.

Currently, ASPH has emerged as a focal point in the research of
FIGURE 9

Immune therapy markers and pathway enrichment linked to Risk Score. (A-C) Violin plots examining the differences in cytolytic activity (CYT) scores
(A), tertiary lymphoid structure (TLS) scores (B), and tumor mutational burden (TMB) (C) between risk categories. (D) Boxplots highlighting the
expression variations of essential immune checkpoint molecules across the risk groups. (E) GSEA findings that display representative pathways that
are significantly enriched in the high-risk category. * P < 0.05, ** P < 0.01, *** P < 0.001.
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several novel therapeutic targets. Inhibitory molecules targeting its

enzymatic activity have been developed and have demonstrated

anti-metastatic effects in preclinical models (22, 26, 35).

PTTG1, also known as human securin, is a multifunctional

protein involved in angiogenesis, mitotic regulation, apoptosis,

EMT, and MAPK signaling (36, 37). Overexpression of PTTG1

has been observed in multiple cancers—including pancreatic (38),

prostate (39), LUAD (40), and hepatocellular carcinoma (41)—and

is strongly associated with tumor progression and poor prognosis

(42). Our study confirmed elevated PTTG1 expression in LUAD

tumor tissues and its association with worse OS.

PTTG1 promotes angiogenesis by activating HIF-1a signaling,

maintaining cancer stem cell (CSC) survival, and regulating

vascular niche formation and metastasis (43, 44). It also

upregulates angiogenesis-related proteins such as VEGF, p-PI3K/

PI3K, p-eNOS/eNOS, and p-AKT/AKT, which are crucial for

endothelial barrier remodeling (37, 45). As a b-catenin–
interacting protein, PTTG1 stabilizes b-catenin and enhances its

nuclear accumulation, leading to hyperactivation of the Wnt/b-
Frontiers in Immunology 16
catenin pathway (44), which plays a pivotal role in oncogenic

transformation. In addition, PTTG1 can inhibit the TGF-b1/
SMAD3 signaling pathway, thereby suppressing apoptosis and

promoting tumor cell growth (46).

The study also revealed a complex and paradoxical immune

phenotype in the high-risk group characterized. ESTIMATE analysis

indicated lower immune scores but higher stromal scores in this

group, while immune cell infiltration analysis showed significantly

increased infiltration of activated memory CD4+ T cells, M0

macrophages, and resting natural killer cells. This suggests that the

high risk group may harbor a microenvironment enriched with

stromal components that support tumor growth, whereas the

functionality of effector immune cells is likely suppressed or

insufficiently activated. As a result, an immunosuppressive

microenvironment emerges—one that appears immunologically

active on the surface but is functionally impaired—facilitating tumor

immune evasion. This observation is consistent with findings by Hong

et al. (47). Such a “cold tumor” microenvironment is typically

unresponsive to immune surveillance, allowing tumors to escape
FIGURE 10

Projected drug sensitivity across risk categories. Boxplots contrasting the estimated half-maximal inhibitory concentration (IC50) values for a
selection of chemotherapeutic and targeted agents between high- and low-risk populations. *** P < 0.001.
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recognition and elimination by the immune system (48). Clinically,

immune “hot tumors” typically exhibit higher immune activity, lower

disease stages, and better survival outcomes compared to “cold

tumors” (49).

Notably, tumors in the high risk group exhibit elevated CYT

and TMB, yet show downregulation of several key immune

checkpoint genes, such as CTLA4, CD47, BTLA, and ICOS. This

paradoxical phenotype of high TMB coexisting with low immune

infiltration suggests a sophisticated immune escape mechanism.

Tumors in the high-risk group, despite possessing a high number of

neoantigens that should trigger an immune response, appear to

have established an immunosuppressive microenvironment. This

aligns perfectly with the known functions of ASPH and PTTG1.

Both genes are implicated in promoting aberrant tumor

angiogenesis, which creates a physical barrier and a hypoxic,

acidic milieu that hinders T-cell infiltration and function.

Furthermore, they can drive the secretion of immunosuppressive

cytokines and recruit regulatory immune cells, thereby actively

dampening anti-tumor immunity and uncoupling mutational load

from effective immune surveillance (44, 50). Therefore,

conventional immune monotherapy may have limited efficacy in

high-risk patients, and combination strategies involving anti-

angiogenic therapies should be considered to remodel the tumor

immune microenvironment and enhance the effectiveness of

immunotherapy (5). This hypothesis is consistent with the

emerging trend of combining anti-angiogenic agents with

immunotherapy in LUAD treatment.

Our study, in conjunction with previous literature, reveals

that high risk patients are not necessarily more resistant to

all treatments; on the contrary, they may exhibit increased

sensitivity to certain therapies. Drug sensitivity predictions

suggest that the high risk group may be more responsive to

various chemotherapeutic agents (such as cisplatin, gemcitabine,

and 5-fluorouracil) as well as targeted therapies (including

crizotinib and savolitinib). GSEA results indicate enrichment of

pathways related to cell cycle regulation, DNA replication, and

hypoxic response in the high risk group, suggesting that tumor cells

in this group are highly proliferative and thus more vulnerable to

DNA-targeting agents. For example, cisplatin induces apoptosis by

forming DNA crosslinks at purine bases and disrupting DNA repair

mechanism (51),which may explain the higher sensitivity of the

high-risk group to this drug. Moreover, ASPH and PTTG1 may

themselves play regulatory roles in drug response pathways, thereby

influencing tumor cell sensitivity to specific treatments. These

findings provide a potential rationale for precision therapy in

high-risk patients, and future studies integrating drug sensitivity

databases, experimental data, and functional assays are warranted

to further validate the relationship between these mechanisms and

treatment responses.

This study is the first to validate, at the protein level, the

significant overexpression of ASPH and PTTG1 in LUAD tumor

tissues, which is consistent with previous findings based on single-

cell transcriptomics and bioinformatic analyses. This experimental

confirmation enhances the reliability of our conclusions and

suggests that ASPH and PTTG1 may play oncogenic roles in
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LUAD pathogenesis. Future research should expand the sample

size and incorporate longitudinal clinical follow-up to further

evaluate the potential of these markers in LUAD diagnosis,

prognosis, and personalized therapeutic decision-making.

One of the key strengths of this study lies in the integration of

MR with multi-omics data to identify potential therapeutic targets

and elucidate underlying mechanisms, particularly in exploring

causal relationships between genes and LUAD. This approach

offers a clear advantage over traditional studies that rely on single

data sources. However, several limitations remain to be addressed in

future research. First, while our in vitro assays provide initial

functional support, the study lacks in vivo validation using animal

models, which is essential to confirm the roles of ASPH and PTTG1

in a physiological tumor microenvironment. Second, although we

performed rigorous batch effect correction and external cohort

validation, the integration of datasets from different platforms

and cohorts may still introduce batch effects and heterogeneity,

potentially affecting the robustness of our findings. Lastly, while MR

supports a causal relationship between ASPH/PTTG1 and LUAD

phenotypes, the underlying genetic data are largely derived from

European populations, which may limit the generalizability of the

results. Moreover, the use of whole-blood eQTL data from the

eQTLGen Consortium, rather than lung tissue-specific data, may

not fully capture the tissue-specific regulatory patterns of gene

expression, which could influence the causal estimates. Future

studies should focus on validating the functional roles of ASPH

and PTTG1 in angiogenesis and immune evasion through in vitro

and in vivo experiments and exploring their potential as combined

immunotherapy targets. Specifically, the absence of direct

experimental validation for PTTG1’s function is a significant gap

that we plan to address in subsequent studies. Similarly, while our

multi-omics analysis strongly implicates these genes in

angiogenesis, direct phenotypic validation through assays such as

tube formation was not performed and remains an important area

for future investigation.
5 Conclusion

ASPH and PTTG1 not only play critical roles in angiogenesis

and immune regulation in LUAD, but also demonstrate strong

prognostic predictive capabilities. This study provides a potential

biological foundation and therapeutic targets for personalized

treatment of LUAD, particularly offering promising avenues for

the development of combined immunotherapy and anti-

angiogenic strategies.
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Vascular endothelial growth factor (VEGF) - key factor in normal and pathological
angiogenesis. Rom J Morphol Embryol. (2018) 59:455–67.
7. Zhao Y, Guo S, Deng J, Shen J, Du F, Wu X, et al. VEGF/VEGFR-targeted therapy
and immunotherapy in non-small cell lung cancer: targeting the tumor
microenvironment. Int J Biol Sci. (2022) 18:3845–58. doi: 10.7150/ijbs.70958

8. Liu H, Xue H, Guo Q, Xue X, Yang L, Zhao K, et al. Ferroptosis meets
inflammation: A new frontier in cancer therapy. Cancer Lett. (2025) 620:217696.
doi: 10.1016/j.canlet.2025.217696

9. Ke H, Zhang Z, Yu Z, Zhang B, Chen R, Zhou Q, et al. Characteristics of adverse
reactions of three anti-glioma drugs in WHO-VigiAccess. Front Pharmacol. (2024)
15:1485067. doi: 10.3389/fphar.2024.1485067

10. De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour
angiogenesis. Nat Rev Cancer. (2017) 17:457–74. doi: 10.1038/nrc.2017.51

11. Guan Y, Chambers CB, Tabatabai T, Hatley H, Delfino KR, Robinson K, et al.
Renal cell tumors convert natural killer cells to a proangiogenic phenotype. Oncotarget.
(2020) 11:2571–85. doi: 10.18632/oncotarget.27654

12. Hwang I, Kim JW, Ylaya K, Chung EJ, Kitano H, Perry C, et al. Tumor-
associated macrophage, angiogenesis and lymphangiogenesis markers predict
prognosis of non-small cell lung cancer patients. J Transl Med. (2020) 18:443.
doi: 10.1186/s12967-020-02618-z
frontiersin.org

https://www.finngen.fi/en
https://www.eqtlgen.org
https://github.com/KaiyangCH1/kaiyangch1.git
https://doi.org/10.1016/j.jpba.2024.116514
https://doi.org/10.3389/fimmu.2022.850745
https://doi.org/10.1016/j.heliyon.2020.e05452
https://doi.org/10.1016/j.jare.2017.06.006
https://doi.org/10.1172/JCI169671
https://doi.org/10.7150/ijbs.70958
https://doi.org/10.1016/j.canlet.2025.217696
https://doi.org/10.3389/fphar.2024.1485067
https://doi.org/10.1038/nrc.2017.51
https://doi.org/10.18632/oncotarget.27654
https://doi.org/10.1186/s12967-020-02618-z
https://doi.org/10.3389/fimmu.2025.1689275
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2025.1689275
13. Komi D, Khomtchouk K, Santa Maria PL. A review of the contribution of mast
cells in wound healing: involved molecular and cellular mechanisms. Clin Rev Allergy
Immunol. (2020) 58:298–312. doi: 10.1007/s12016-019-08729-w

14. Zhang J, Lu T, Lu S, Ma S, Han D, Zhang K, et al. Single-cell analysis of multiple
cancer types reveals differences in endothelial cells between tumors and normal tissues.
Comput Struct Biotechnol J. (2023) 21:665–76. doi: 10.1016/j.csbj.2022.12.049

15. Barr MP, Gray SG, Gately K, Hams E, Fallon PG, Davies AM, et al. Vascular
endothelial growth factor is an autocrine growth factor, signaling through neuropilin-1 in
non-small cell lung cancer. Mol Cancer. (2015) 14:45. doi: 10.1186/s12943-015-0310-8

16. Guo Z, Jing X, Sun X, Sun S, Yang Y, Cao Y. Tumor angiogenesis and anti-
angiogenic therapy. Chin Med J (Engl). (2024) 137:2043–51. doi: 10.1097/
CM9.0000000000003231

17. Guo Q, Zhong X, Dang Z, Zhang B, Yang Z. Identification of GBN5 as a
molecular biomarker of pan-cancer species by integrated multi-omics analysis. Discov
Oncol. (2025) 16:85. doi: 10.1007/s12672-025-01840-9

18. Jiang YF, Yang ZH, Hu JQ. Recurrence or metastasis of HCC:predictors,
early detection and experimental antiangiogenic therapy. World J Gastroenterol.
(2000) 6:61–5. doi: 10.3748/wjg.v6.i1.61

19. Liu ZL, Chen HH, Zheng LL, Sun LP, Shi L. Angiogenic signaling pathways and
anti-angiogenic therapy for cancer. Signal Transduct Target Ther. (2023) 8:198.
doi: 10.1038/s41392-023-01460-1

20. Zhou L, Zhou Q, Guo Q, Lai P, Rui C, Li W, et al. Dual role of Cathepsin S in
cutaneous melanoma: insights from mendelian randomization and bioinformatics
analysis. BMC Cancer. (2025) 25:104. doi: 10.1186/s12885-025-13481-w

21. Huyan T, Li Q, Ye LJ, Yang H, Xue XP, Zhang MJ, et al. Inhibition of human
natural killer cell functional activity by human aspartyl b-hydroxylase. Int
Immunopharmacol. (2014) 23:452–9. doi: 10.1016/j.intimp.2014.09.018

22. Huang CK, Iwagami Y, Aihara A, Chung W, de la Monte S, Thomas JM, et al.
Anti-tumor effects of second generation b-hydroxylase inhibitors on
cholangiocarcinoma development and progression. PloS One. (2016) 11:e0150336.
doi: 10.1371/journal.pone.0150336

23. Kanwal M, Smahel M, Olsen M, Smahelova J, Tachezy R. Aspartate b-
hydroxylase as a target for cancer therapy. J Exp Clin Cancer Res. (2020) 39:163.
doi: 10.1186/s13046-020-01669-w

24. Zhu H, Liu H, Wen J, Yuan T, Ren G, Jiang Y, et al. Overexpression of human
aspartyl (Asparaginyl) b-hydroxylase in NSCLC: its diagnostic value by means of
exosomes of bronchoalveolar lavage. Appl Immunohistochem Mol Morphol. (2021)
29:720–7. doi: 10.1097/PAI.0000000000000963

25. Kadota M, Sato M, Duncan B, Ooshima A, Yang HH, Diaz-Meyer N, et al.
Identification of novel gene amplifications in breast cancer and coexistence of gene
amplification with an activating mutation of PIK3CA. Cancer Res. (2009) 69:7357–65.
doi: 10.1158/0008-5472.CAN-09-0064

26. Lin Q, Chen X, Meng F, Ogawa K, Li M, Song R, et al. ASPH-notch Axis guided
Exosomal delivery of Prometastatic Secretome renders breast Cancer multi-organ
metastasis. Mol Cancer. (2019) 18:156. doi: 10.1186/s12943-019-1077-0

27. Benelli R, Costa D, Mastracci L, Grillo F, Olsen MJ, Barboro P, et al. Aspartate-b-
hydroxylase: A promising target to limit the local invasiveness of colorectal cancer.
Cancers (Basel). (2020) 12:971. doi: 10.3390/cancers12040971

28. Ogawa K, Lin Q, Li L, Bai X, Chen X, Chen H, et al. Prometastatic secretome
trafficking via exosomes initiates pancreatic cancer pulmonary metastasis. Cancer Lett.
(2020) 481:63–75. doi: 10.1016/j.canlet.2020.02.039

29. Xiao M, Chen X, Chen W, Wang L, Rao X, Luo C. Overexpression of ASPH
protein predicts poor outcomes in retroperitoneal liposarcoma patients. Chin Med J
(Engl). (2023) 136:2113–5. doi: 10.1097/CM9.0000000000002597

30. Ince N, de la Monte SM, Wands JR. Overexpression of human aspartyl (asparaginyl)
beta-hydroxylase is associated withMalignant transformation. Cancer Res. (2000) 60:1261–6.

31. Paz H, Pathak N, Yang J. Invading one step at a time: the role of invadopodia in
tumor metastasis. Oncogene. (2014) 33:4193–202. doi: 10.1038/onc.2013.393
Frontiers in Immunology 19
32. Ogawa K, Lin Q, Li L, Bai X, Chen X, Chen H, et al. Aspartate b-hydroxylase
promotes pancreatic ductal adenocarcinoma metastasis through activation of SRC
signaling pathway. J Hematol Oncol. (2019) 12:144. doi: 10.1186/s13045-019-0837-z

33. Dong X, Lin Q, Aihara A, Li Y, Huang CK, Chung W, et al. Aspartate b-
Hydroxylase expression promotes a Malignant pancreatic cellular phenotype.
Oncotarget. (2015) 6:1231–48. doi: 10.18632/oncotarget.2840

34. Iwagami Y, Huang CK, OlsenMJ, Thomas JM, Jang G, KimM, et al. Aspartate b-
hydroxylase modulates cellular senescence through glycogen synthase kinase 3b in
hepatocellular carcinoma. Hepatology. (2016) 63:1213–26. doi: 10.1002/hep.28411

35. Aihara A, Huang CK, Olsen MJ, Lin Q, ChungW, Tang Q, et al. A cell-surface b-
hydroxylase is a biomarker and therapeutic target for hepatocellular carcinoma.
Hepatology. (2014) 60:1302–13. doi: 10.1002/hep.27275

36. Suarez-Carmona M, Lesage J, Cataldo D, Gilles C. EMT and inflammation:
inseparable actors of cancer progression. Mol Oncol. (2017) 11:805–23. doi: 10.1002/
1878-0261.12095

37. Cui L, Ren T, Zhao H, Chen S, Zheng M, Gao X, et al. Suppression of PTTG1
inhibits cell angiogenesis, migration and invasion in glioma cells. Med Oncol. (2020)
37:73. doi: 10.1007/s12032-020-01398-2

38. Fraune C, Yehorov S, Luebke AM, Steurer S, Hube-Magg C, Büscheck F, et al.
Upregulation of PTTG1 is associated with poor prognosis in prostate cancer. Pathol Int.
(2020) 70:441–51. doi: 10.1111/pin.12938

39. Bai L, Li LH, Liang J, Li EX. Prognostic significance of PTTG1 and its
methylation in lung adenocarcinoma. J Oncol. (2022) 2022:3507436. doi: 10.1155/
2022/3507436

40. Zhou Q, Li L, Sha F, Lei Y, Tian X, Chen L, et al. PTTG1 reprograms asparagine
metabolism to promote hepatocellular carcinoma progression. Cancer Res. (2023)
83:2372–86. doi: 10.1158/0008-5472.CAN-22-3561

41. Gong S, Wu C, Duan Y, Tang J, Wu P. A comprehensive pan-cancer analysis for
pituitary tumor-transforming gene 1. Front Genet. (2022) 13:843579. doi: 10.3389/
fgene.2022.843579

42. Nobes CD, Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of
multimolecular focal complexes associated with actin stress fibers, lamellipodia, and
filopodia. Cell. (1995) 81:53–62. doi: 10.1016/0092-8674(95)90370-4

43. Yang Y, Guo J, Li M, Chu G, Jin H, Ma J, et al. Cancer stem cells and
angiogenesis. Pathol Res Pract. (2024) 253:155064. doi: 10.1016/j.prp.2023.155064
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