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Background: Despite advances in therapy, lung adenocarcinoma (LUAD) remains
a leading cause of cancer mortality. Angiogenesis and immune evasion critically
influence LUAD progression and treatment resistance, yet epithelial-derived
regulatory mechanisms and causal genes remain unclear.

Methods: We employed single-cell transcriptomics (scRNA-seq) to identify
angiogenesis-related epithelial-specific genes in LUAD. Mendelian randomization
(MR) analyses utilizing large-scale genomic databases (eQTLGen, FinnGen)
established genetic causality. A prognostic risk model was developed and
validated using GEO and TCGA cohorts. Western blotting in clinical specimens
and functional assays (gene knockdown, proliferation, migration, and invasion)
verified core gene functions.

Results: Aspartate B-hydroxylase (ASPH) and Pituitary tumor-transforming gene
1 (PTTG1) were identified as causal genes linked to LUAD risk and poor prognosis.
Elevated protein expression of ASPH and PTTG1 was confirmed in LUAD tissues.
ASPH knockdown significantly inhibited LUAD cell proliferation, migration, and
invasion. The ASPH/PTTG1-based risk model robustly predicted prognosis. High-
risk patients demonstrated “cold” immune microenvironments characterized by
increased stromal infiltration and reduced immune effector cells. These patients
also showed heightened sensitivity to several chemotherapeutic and targeted
agents, including Cisplatin and Crizotinib.

Conclusion: Integrating single-cell sequencing, MR-based causality, clinical
validation, and functional experiments, we identified ASPH and PTTG1 as key
regulators of LUAD angiogenesis and immune evasion. These findings
substantiate ASPH/PTTGL as promising biomarkers and therapeutic targets,
offering new insights into precision therapies integrating anti-angiogenic and
immunomodulatory strategies.
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lung adenocarcinoma (LUAD), ASPH, PTTG1, angiogenesis, single-cell RNA-seq,
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1 Introduction

Recent epidemiological data on cancer worldwide indicates that
lung cancer impacts approximately two million people annually,
with close to half of these cases occurring within Asian
demographics (1). Among the different histological types, LUAD
stands out as the most prevalent subtype, accounting for nearly 40%
of all lung cancer diagnoses (2). Despite the progress made in
diagnostic methods, targeted treatments, and immunotherapy,
individuals diagnosed with LUAD still encounter a poor overall
prognosis. As reported by the American Cancer Society in 2023, the
five-year survival rate for lung cancer is only 23.6% (3). Therefore,
elucidating the key pathogenic mechanisms underlying LUAD and
developing precise and reliable prognostic biomarkers and risk
assessment models are critical for accurately predicting disease
progression, guiding individualized treatment strategies, and
playing a significant role in improving survival rates as well as
enhancing the overall quality of life for individuals affected by
the condition.

Angiogenesis is defined as the development of new capillary
networks originating from existing blood vessels. This process is
essential for tumor initiation, aggressive growth, and distant
metastasis, and represents a hallmark of advanced-stage cancers
(4). Hypoxia within the tumor microenvironment is one of the
major driving forces of angiogenesis. It stabilizes hypoxia-inducible
factors (such as HIF-1a and HIF-2a), consequently resulting in the
augmented expression of essential genes that play a crucial role in
angiogenesis, such as VEGF and its receptors (VEGFR), neuropilin
(NRP), epidermal growth factor (EGF), and angiopoietins (ANG),
among others (5). Among these, VEGF is considered a central
regulator of angiogenesis, as it not only significantly increases
vascular permeability within tumors but also directly promotes
neovascularization (6).

In addition to its angiogenic functions, VEGF is also
acknowledged for its crucial role in regulating immune interactions
within the tumor microenvironment (TME) (7, 8). While VEGF is
primarily secreted by vascular endothelial cells, various immune cells
in the TME—including tumor-associated macrophages and
neutrophils (9), natural killer (NK) cells and mast cells (MCs)-also
contribute to VEGF production (10-14). In non-small cell lung
cancer, tumor-associated macrophages (TAMs) predominantly
exhibit an M2 polarization. This specific phenotypic orientation
promotes tumor proliferation and metastasis by increasing the
secretion of VEGF (7). Concurrently, VEGF secreted by lung
cancer cells themselves can activate several pro-proliferative
signaling pathways, such as the MEK/ERK and PI3K/AKT
pathways, further enhancing tumor cell invasion and growth (15).

Over the past two decades, anti-angiogenic drugs (AADs)
targeting VEGF-A have been widely applied in therapeutic
strategies targeting multiple tumor types (16, 17). However, due to
the complex mechanisms of tumor angiogenesis and the high
heterogeneity of the TME, current AADs face significant
challenges, including limited applicability and the development of
resistance (18-20). Therefore, elucidating the regulatory mechanisms
of tumor angiogenesis and identifying novel key modulators and
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biomarkers are of great clinical significance for optimizing anti-
angiogenic strategies and overcoming current therapeutic limitations.

LUAD is a malignant epithelial tumor in which epithelial cells
secrete various growth factors, cytokines, and chemokines that
directly or indirectly regulate essential biological processes in the
TME, including angiogenesis. Although a number of studies have
explored the relationship between LUAD and angiogenesis, few
have systematically focused on epithelial cell-specific angiogenic
regulators in LUAD, particularly from a multidimensional
perspective integrating causality and clinical relevance. To address
this gap, the present study employs an integrative approach
combining scRNA-seq, MR, and bulk RNA sequencing to identify
and validate key epithelial cell-derived angiogenic regulators in
LUAD and to construct a prognostic evaluation model. This multi-
omics strategy not only enhances the robustness and biological
relevance of the findings but also facilitates the identification of
clinically meaningful biomarkers, providing a strong foundation for
future therapeutic and prognostic applications.

2 Materials and methods
2.1 Data acquisition and preprocessing

Transcriptomic data (TPM format) and corresponding clinical
information for LUAD were downloaded from TCGA using the R
package TCGAbiolinks (v2.26.0), and served as the training cohort.
This dataset included 59 adjacent normal tissue samples and 541
tumor samples. Meanwhile, the Gene Expression Omnibus (GEO)
datasets GSE37745 (n=106) and GSE41271 (n=182) were obtained
as validation cohorts. Preprocessing steps included: (1) excluding
samples with missing or zero survival information; (2) removing
genes with >50% missing expression values; and (3) filtering out
genes not expressed in more than 50% of the samples.

2.2 eQTL data collection and filtering

Cis-expression quantitative trait loci (cis-eQTL) datasets
derived from whole blood were sourced from the publicly
accessible eQTLGen Consortium resource. For the purpose of
conducting MR analysis, instrumental variables were determined
by choosing single nucleotide polymorphisms that satisfied the
genome-wide significance criterion (p < 5 X 10°®) and underwent
linkage disequilibrium filtering, with a clumping distance set at
10,000 kb and an r* threshold of less than 0.1.

2.3 GWAS summary statistics for LUAD
outcomes

Summary statistics pertaining to a genome-wide association study
(GWAS) focused on LUAD were obtained from the FinnGen
Consortium (Release 12, https://www.finngen.fi/en). The
dataset comprises 2,219 individuals diagnosed with LUAD
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alongside a control group consisting of 378,749 individuals of
European ancestry.

2.4 scRNA-seq data processing

The scRNA-seq dataset GSE131907, which includes paired
LUAD tumor and adjacent normal tissues from 11 patients, was
downloaded from the GEO database. Data processing was
performed using the Seurat R package (v5.1.0) following standard
workflows, including log-normalization, identification of highly
variable genes, dimensionality reduction via principal component
analysis (PCA), and cell clustering. Cell type annotation was
subsequently performed using the SingleR package (v2.4.1).

2.5 Angiogenesis gene set activity (AUC)
analysis

A total of 5,928 angiogenesis related genes were compiled from
the GeneCards database. The AUCell R package (v1.24.0) was used
to calculate the AUC score for each cell based on this gene set. AUC
values were visualized on the t-SNE plot to assess angiogenesis
activity at the single-cell level.

2.6 Cell-cell communication analysis

The interaction dynamics between epithelial cells and various
cellular elements within their microenvironment. Ligand-receptor
interaction strength was computed and visualized using heatmaps.
The relative strength of both outgoing and ingoing signaling
pathways across different cell populations was assessed.

2.7 Pseudotime trajectory analysis

Pseudotime analysis was conducted using the Monocle2
(v2.30.1) R package, focusing on genes with high expression and
dispersion. Cellular trajectory mapping was performed to infer
dynamic transitions, particularly within epithelial subpopulations.

2.8 Differential expression analysis

In order to discern differentially expressed genes (DEGs) between
LUAD tumor specimens and their corresponding adjacent normal
tissues in the TCGA dataset, we utilized the DESeq2 R package
(version 1.42.1). A gene was classified as significantly dysregulated if
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it demonstrated an absolute log, fold change of at least 1,
accompanied by a false discovery rate (FDR) of less than 0.05.

2.9 Key gene selection

Venn diagram analysis was conducted to identify overlapping
genes among three gene sets: (1) TCGA-derived DEGs; (2)
epithelial cell-specific marker genes from the scRNA-seq analysis;
and (3) angiogenesis-related genes from GeneCards. Genes in the
intersection were defined as “angiogenesis-related DEGs specific to
epithelial cells in LUAD.”

2.10 Two-sample mendelian randomization
analysis

In order to explore the possible causal relationships
between the candidate genes identified in Section 2.9 and the
susceptibility to LUAD, a TSMR approach was utilized,
employing the TwoSampleMR R package (version 0.6.10). Cis-
expression quantitative trait loci (eQTLs) functioned as
instrumental variables for gene expression (the exposure variable),
while the outcome dataset comprised genome-wide association
summary data for LUAD obtained from the FinnGen consortium.
Variables deemed weakly influential, characterized by an F-statistic
of less than 10, were excluded from the analysis. The primary
analytical technique employed was the inverse variance weighted
(IVW) method. To assess horizontal pleiotropy, the MR-Egger
intercept test was conducted, whereas Cochran’s Q statistic
was used to evaluate heterogeneity. Additionally, a leave-one-out
(LOO) analysis was carried out to verify the robustness of the
causal estimates.

2.11 Construction and validation of the
prognostic risk model

In the TCGA training dataset, both multivariate Cox and
univariate Cox proportional hazards regression analyses were
performed to identify genes that exhibit significant correlations
with overall survival (OS), drawing from the candidates delineated
in Section 2.9. Subsequently, a prognostic risk score model was
formulated utilizing the following equation: Risk Score=f; xX,
+B,xX; +...+B, xX,, , where B signifies the regression coefficient
and X indicates the expression level of the respective gene.

Using the median risk score, patients diagnosed with LUAD
were categorized into high and low risk subgroups. To evaluate the
prognostic relevance of this model, Kaplan-Meier survival analysis
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was conducted within the TCGA dataset, as well as in two external
GEO validation cohorts (GSE37745 and GSE41271), utilizing the
survival R packages (version 0.4.9).

2.12 Association between clinical features
and Risk Score

Associations between the Risk Score and clinicopathological
characteristics of TCGA_LUAD patients (e.g., age, TNM stage)
were analyzed using t-tests, Wilcoxon rank-sum tests, or chi-square
tests as appropriate.

2.13 Nomogram construction and
evaluation

The independent prognostic factors determined through
multivariate Cox regression—comprising both the risk score and
various clinical parameters—were utilized to develop a nomogram
aimed at forecasting OS at 1, 3, and 5 years. This was accomplished
using the rms R package (version 67.1). The efficacy of the model
and its clinical applicability were assessed by means of calibration
plots, time-dependent receiver operating characteristic (ROC)
curves, and decision curve analysis (DCA).

2.14 Tumor immune microenvironment
analysis

The variations in immune infiltration between groups
categorized as high and low-risk were analyzed using the
CIBERSORT and ssGSEA algorithms, which were executed
through the GSVA R package (version 1.50.5). In addition, the
ImmuneScore, StromalScore, and ESTIMATEScore were utilized
the ESTIMATE R package (version 1.0.13) and were subsequently
compared across different risk categories.

2.15 Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was conducted utilizing
the c2.all.v2024.1. Hs.symbols gene sets to investigate hallmark
pathways that exhibit differential enrichment between high and
low-risk cohorts. Pathways were considered statistically significant
if they met the criteria of [normalized enrichment score (NES)| > 1
and p < 0.05.

2.16 Analysis of immunotherapy-related
biomarkers

To evaluate the possible efficacy of immunotherapy, a
comparative analysis was conducted on tumor mutational burden
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(TMB), cytolytic activity, as well as immune checkpoint genes
between groups classified as high-risk and low-risk.

2.17 Drug sensitivity prediction

The oncoPredict R package was utilized to forecast drug
sensitivity in samples from TCGA, leveraging information
sourced from the Genomics of Drug Sensitivity in Cancer
database (https://www.cancerrxgene.org/). The estimated half-
maximal inhibitory concentration (ICs,) values, as well as
response scores for both chemotherapeutic and targeted therapies,
were analyzed and compared between groups categorized as high-
risk and low-risk.

2.18 Clinical sample collection and
Western blot analysis

Specimens comprising six paired LUAD tumors alongside
adjacent normal tissues were procured from pathologically
verified patients at The First Affiliated Hospital of Chengdu
Medical College. The Institutional Ethics Committee granted
ethical approval for the study (Approval No.: 2025CYFYIRB-SQ-
81), and all participants provided written informed consent.

Fresh-frozen tissue samples were subjected to pulverization in
liquid nitrogen, followed by total protein extraction utilizing RIPA
lysis buffer that was augmented with protease and phosphatase
inhibitors. The quantification of protein concentrations was
performed using a BCA assay kit (Thermo Fisher Scientific,
USA). For analysis, equal quantities of protein (30 pUg) were
subjected to separation using 10% SDS-PAGE, and the proteins
were subsequently transferred to PVDF membranes (Millipore,
USA). The membranes were then blocked with a 5% non-fat milk
solution in TBST at ambient temperature for one hour, before being
incubated overnight at 4 °C with the designated primary antibodies:
rabbit anti-ASPH (1:1000, 14116-1-AP, China), and rabbit anti-
PTTG1 (1:1000, 18040-1-AP. After washing with TBST,
membranes were incubated with HRP-conjugated goat anti-rabbit
secondary antibody, the membranes were incubated for 1 hour at
room temperature, and protein bands were visualized using
enhanced chemiluminescence (ECL) reagents (Millipore, USA)
and captured by a gel imaging system (Bio-Rad, USA). Semi-
quantitative analysis was performed using Image] software.

2.19 Cell culture and gene knockdown

Human LUAD cell lines SW1573 and A549 were procured from
the Cell Bank of the Chinese Academy of Sciences. These cell lines
were selected as they are well-established and commonly used
models for LUAD research, representing distinct molecular and
phenotypic characteristics. These cell lines were supplemented with
10% fetal bovine serum, maintained in RPMI-1640 medium
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(Corning, CN), penicillin at a concentration of 100 U/mL, and
streptomycin at 100 ug/mL. The cultures were incubated at 37 °C in
a humidified environment with 5% CO,.

For the purpose of ASPH knockdown, lentiviral vectors that
express short hairpin RNAs (shRNAs) targeting ASPH (specifically
shASPH-1 and shASPH-2) alongside a negative control (shCtrl)
were fabricated by GeneChem (Shanghai, China). The cells
underwent transduction at an appropriate multiplicity of infection
(MOI) for a duration of 48 hours, after which stable transfectants
were selected using 2 pg/mL puromycin. The efficacy of the
knockdown was subsequently verified through Western
blot analysis.

2.20 Western blot analysis (cell protein
detection)

Cells in the logarithmic growth phase were harvested, and total
protein extraction was conducted utilizing RIPA lysis buffer that
was enriched with protease and phosphatase inhibitors. Protein
concentrations were determined employing a BCA assay kit, and
equal quantities (30 pg) of protein were subjected to SDS-PAGE
and subsequently transferred onto PVDF membranes (Millipore,
USA). The membranes underwent blocking with 5% skim milk in
TBST at ambient temperature for one hour, followed by an
overnight incubation at 4°C with rabbit anti-ASPH and rabbit
anti-GAPDH primary antibodies. Post-washing, the membranes
were treated with an HRP-conjugated secondary antibody at room
temperature for one hour. Signal detection was executed utilizing
ECL reagents, and images were acquired with a gel documentation
system. Band intensity quantification was carried out using
Image] software.

2.21 CCK8 cell proliferation assay

Cell viability was determined using a CCK-8 assay. Briefly,
stably transduced shCtrl and shASPH cells were seeded at 3,000
cells/well in 96-well plates. At specified time points (0, 24, 48, and
72 hours), 10 uL of CCK-8 solution was added to each well, followed
by a 2-hour incubation. The absorbance at 450 nm was then
measured using a microplate reader to assess cell viability.

2.22 Transwell invasion assay

Cellular invasion was assessed through the utilization of
Transwell chambers coated with Matrigel (8 um pore diameter,
Corning, USA). Briefly, 5x10* cells suspended in 200 uL serum-free
medium were seeded into the upper chamber, with 20% FBS in the
lower chamber acting as the chemoattractant. After 24 hours, non-
invading cells were removed from the upper membrane, while
invaded cells on the lower surface were fixed in 4%
paraformaldehyde for 15 minutes before being stained with 0.1%
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crystal violet for 20 minutes. Invasion was quantified by averaging
the cell count from five random microscopic fields.

2.23 Wound-healing assay

Cells were inoculated into 6-well plates and allowed to grow
until they achieved 90-100% confluence. A linear scratch was
created with a sterile 200 pL pipette tip, and subsequent washing
with phosphate-buffered saline (PBS) was performed to eliminate
any dislodged cells. The cells were then preserved in a serum free
medium, and the process of wound healing was assessed by taking
photographs at 0, 24, and 48 hours. Wound widths were measured
using Image]J, and migration rates (%) were calculated as follows:
Migration rate (%)=[(initial wound width — wound width at time t)/
initial wound width] x 100%.

2.24 Statistical analysis

All statistical analyses were performed using R software (version
4.3.3) and GraphPad Prism (version 9.0). For comparisons between
two groups, Student’s t-test was used for normally distributed data,
while the Wilcoxon rank-sum test was applied for non-normally
distributed data. Associations between categorical variables were
assessed using the chi-square test. Survival curves were generated
using the Kaplan-Meier method and compared with the log-rank
test. Univariate and multivariate Cox proportional hazards
regression models were used to identify prognostic factors. A
two-sided P-value < 0.05 was considered statistically significant.
Significance levels in figures are denoted as follows: * P < 0.05, ** P <
0.01, and *** P < 0.001.

3 Results

3.1 Single-cell transcriptomics reveals the
tumor microenvironment landscape of
LUAD

3.1.1 Cell subpopulation identification and
annotation

To investigate the cellular heterogeneity of LUAD, we
performed scRNA-seq analysis on the GSE131907 dataset. Using
t-SNE for dimensionality reduction and visualization, cells were
clearly clustered into 11 distinct groups. Cell populations were
classified into 11 primary types, which encompass fibroblasts,
epithelial cells, and macrophages, utilizing the expression patterns
of well-characterized marker genes specific to each cell type
(Figure 1A). The activity of the angiogenesis-related gene set was
assessed using the AUCell algorithm, revealing relatively high
enrichment scores in macrophages, fibroblasts, smooth muscle
cells, and epithelial cells (Figure 1B). We further constructed

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1689275
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Yang et al. 10.3389/fimmu.2025.1689275
A B e
50 tSNE: Angiogenesis Activity
50
25 ® Bcell (n=1609) :
® DC (n=289) ®
©  Endothelial cells (n-847)
® Epithelial cells (n=7928)
~ ®  Fibroblasts (n=898)
Yo ©  Macrophage (n=15614) Y o high_anoikis
72} Monocyte (n=3977) z 0 o low_anoikis
Smooth muscle cells (n=1476) -
T cells (n=1789)
Tissue stem cells (n=204)
25 ® NA
-25
50
0 25 50
tSNE_1
Number of interactions
¢ ° Sl
iml e i oml
o |
by e I
5 L J— . H
. H &
D 5 e I i,
Epithelial cells
1 0 Smooth muscle cells .
0 T | |
-10
Tile st clls T
Monooyte i 8 2 H ) B ] g%
SI—E—— 3 :
H
MIF signaling pathway network TENASCIN signaling pathway network OCLN signaling pathway network
Sender 1 Sender - 1 Sender 1
Receiver 8 Receiver [V 8 Receiver 8
Mediator 8 Mediator . 8 Mediator 8
Influencer § Influencer [ NN T é Influencer g
L I IS = =
HFEFF O & SFEFFSLFEF O &S FFFSILFFF O
RO PR GTFTE S T PR T T T
& ¢ S T & @ S T & &
S < < S < < S«
o EN
THBS signaling pathway network FN1 signaling pathway network
Sender Sender [ | N E Sender N K
Receiver Receiver [N S Receiver g
Mediator Mediator 8 Mediator g
Influencer Influencer I3 Influencer S
E [
BRI N IR CF 0 ARSI I I R I SO 0
s o TEFFE S PSP f T EFE S PP
Ear g s@ <$°Q \}é‘ &a@ %\06\ & \Q@ <§°Q \}é\ \\?bo a}"’&
S T & & S T & &
s S < @ & <&
2 2
FIGURE 1
Single-cell transcriptomic analysis of LUAD. t-SNE visualization of cell clusters, annotated into 11 major cell types based on canonical marker genes.
(B) Angiogenesis Activity Visualization. Visualization of angiogenesis-related AUC scores on the t-SNE plot; color indicates the relative score
intensity. (C) Pseudotime trajectory analysis of all analyzed cell populations. (D) Pseudotime trajectory of epithelial subpopulations showing potential
differentiation paths. (E) Global overview of intercellular communication networks among all cell types. (F) Cell-cell interaction network centered on
epithelial cells. (G) Heatmap showing interaction intensity among cell types. (H) Outgoing and incoming signaling patterns of key pathways across
cell types, with emphasis on epithelial cells.

pseudotime trajectories to explore gene expression dynamics during
LUAD progression (Figure 1C). Specifically, a pseudotime

3.1.2 Cell-cell communication network analysis
Intercellular communication networks were inferred using the
trajectory was successfully reconstructed for epithelial cell — CellChat package. Significant signaling interactions were observed

subpopulations (Figure 1D). among epithelial cells, macrophages, T cells, and tissue stem cells,
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with these populations acting as both major signal senders and
receivers (Figures 1E, G). Notably, epithelial cells served as a central
communication hub within the network (Figure 1F). Analysis of
incoming and outgoing signaling patterns revealed that epithelial
cells were key recipients and transmitters of multiple signaling
pathways—including MIF, TENASCIN, OCLN, LAMININ, THBS,
and FN1—all of which are known to play roles in angiogenesis
regulation (Figure 1H).

3.2 Identification of angiogenesis-related
differentially expressed genes in LUAD
epithelial cells

Differential expression analysis between LUAD normal and
tumor tissues in the TCGA cohort identified 14,953 DEGs, with
3,296 downregulated and 11,657 upregulated in tumors (Figure 2A).
By integrating 1,576 epithelial cell marker genes identified from
scRNA-seq analysis and 5,928 angiogenesis-related genes from the
GeneCards database, a Venn diagram was used to identify 187
overlapping genes that were differentially expressed, epithelial cell-
specific, and angiogenesis-related (Figure 2B).

3.3 MR and identification of hub genes

Among the 187 intersecting genes, 118 had available cis-eQTL
data in the eQTLGen database. TSMR analysis was conducted to
evaluate the causal relationship between gene expression and LUAD
risk. This analysis identified 21 genes whose genetically predicted
expression levels were significantly associated with LUAD risk (P <
0.05). Of these, higher expression of 10 genes was associated with
increased LUAD risk, while higher expression of 11 genes was
associated with decreased risk (Figure 2C).

To further refine these candidates, we first performed a
univariate Cox regression analysis on these 21 genes, which
identified 8 genes significantly associated with OS (P < 0.05)
(Figure 2D). From this subset, we selected genes where the
direction of effect was consistent between the MR and survival
analyses. Specifically, we required genes identified as risk factors in
MR (OR > 1) to also be associated with poorer survival (HR > 1),
and protective factors (OR < 1) with better survival (HR < 1). This
stringent criterion ultimately pinpointed Aspartate B-hydroxylase
(ASPH) and Pituitary tumor-transforming gene 1 (PTTG1) as the
core hub genes. The primary IVW results indicated that genetically
predicted higher expression of ASPH (OR=1.174, 95% CI: 1.047-
1.316, P < 0.05) and PTTG1 (OR=1.748, 95% CI: 1.239-2.468, P <
0.05) was significantly associated with an increased risk of LUAD.

Primary MR results showed that genetically predicted higher
expression levels of ASPH and PTTGI were significantly associated
with increased LUAD risk (Figures 2E, H). Leave-one-out
sensitivity analysis showed that the estimated causal effect of
ASPH and PTTG1 on LUAD risk remained stable when omitting
any single SNP, confirming the robustness of the results (Figures 2F,
I). Results from multiple MR methods, including weighted median
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and IVW, were consistent. MR-Egger regression didn’t detect
significant horizontal pleiotropy (intercept P > 0.05) (Figures 2G, J).

3.4 Validation of hub gene expression

In the single-cell t-SNE plot, ASPH and PTTG1 expression was
predominantly enriched in epithelial cell and macrophage
subpopulations (Figure 3A). Western blot analysis revealed that
the protein expression levels of ASPH and PTTG1 were significantly
higher in tumor tissues compared to adjacent normal tissues across
all six paired LUAD samples (P < 0.001) (Figure 3B). This
consistent upregulation observed in all cases further supports the
potential clinical value of ASPH and PTTGI as important
molecular markers in LUAD.

3.5 Knockdown of ASPH inhibits malignant
phenotypes of LUAD cells in vitro

To directly validate the functional role of ASPH in LUAD cells,
we knocked down its expression in SW1573 and A549 cell lines
using lentivirus-mediated shRNA. Western Blot results confirmed
that, compared to the shCtrl control group, two independent
shRNAs (shASPH-1 and shASPH-2) effectively reduced ASPH
protein levels. The more efficient shASPH-1 was selected for
subsequent functional experiments (Figure 4A). The CCKS8
proliferation assay, visualized as a line graph, revealed that ASPH
knockdown led to a significant, time-dependent inhibition of
proliferative capacity in both A549 and SW1573 cells compared
to the control group (Figure 4B). Subsequently, we assessed the
impact of ASPH on cell invasion and migration using wound-
healing and Transwell assays. The results showed that ASPH
knockdown significantly reduced the number of cells that invaded
through the Matrigel matrix (Figure 4C) and markedly delayed the
closure of the scratch area (Figure 4D). Collectively, these in vitro
results confirm that ASPH is a critical molecule required for
maintaining the proliferation, migration, and invasion of LUAD
cells, providing strong functional support for our bioinformatics
analyses and clinical association findings.

3.6 Validation and development of a
prognostic risk model utilizing hub genes

A prognostic risk scoring model was developed that incorporated
ASPH and PTTG1, which were determined through multivariate Cox
analysis within the TCGA cohort (refer to Figure 5A). The formula
for the model is defined as follows: Risk Score=(0.151 x Expression
level of ASPH)+(0.236 x Expression level of PTTG1). Patients were
categorized into high and low risk groups based on the median risk
score. Kaplan-Meier survival analysis indicated a significantly
diminished OS in the high-risk cohort when compared to the low-
risk cohort, observed in both the TCGA training dataset (illustrated
in Figure 5B) and two external GEO validation cohorts, namely
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FIGURE 2

Identification of angiogenesis-related hub genes in LUAD epithelial cells and MR analysis. (A) A volcano plot demonstrating the genes that are DEGs
when comparing lung adenocarcinoma tissues to corresponding adjacent normal samples within the TCGA-LUAD dataset. (B) A Venn diagram
illustrating the intersection of DEGs identified from the TCGA dataset, epithelial cell-specific marker genes, and genes linked to angiogenesis.

(C) Forest plot of significantly associated genes from MR analysis among intersecting genes with cis-eQTL data, evaluating the causal relationship
between their expression and LUAD risk. (D) Forest plot of positively associated genes identified by univariate Cox regression analysis of MR-
significant genes, assessing their correlation with OS. (E-G) Equivalent plots for ASPH, including forest plot (E), leave-one-out analysis (F), and MR
scatter plot (G). (H-J) Equivalent plots for PTTGL, including forest plot (H), leave-one-out analysis (I), and MR scatter plot (J).
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Adjacent Tissue.

GSE37745 (depicted in Figure 5C) and GSE41271 (shown in
Figure 5D) (all P < 0.05). These findings underscore the robust
prognostic significance and generalizability of the model.

3.7 Association between
clinicopathological features and Risk Score

In the TCGA cohort, associations between the clinical features
and risk score were analyzed. High risk scores were significantly
associated with deceased status, advanced tumor stage, higher N
stage, and T stage (all P < 0.05) (Figures 6A-D). These associations
were further visualized using a heatmap integrating clinical features
with the risk score (Figure 6E).

3.8 Assessment and development of a
prognostic nomogram

In order to create a customized prognostic instrument, a
nomogram was developed that integrated the risk score along
with various independent clinical prognostic factors identified
through univariate Cox regression analysis (refer to Figures 7A,
B). The nomogram displayed a high degree of concordance between

Frontiers in Immunology

the predicted survival outcomes and the actual survival data, as
evidenced by the calibration curves (illustrated in Figure 7C). The
decision curve analysis (DCA) indicated a significant clinical net
benefit across a wide spectrum of threshold probabilities (depicted
in Figure 7D). Furthermore, time-dependent ROC analysis
indicated that the nomogram achieved area under the curve
(AUC) values of 0.746, 0.720, and 0.685 for predicting OS at 1
years, 3 years, and 5 years, respectively (shown in Figure 7E).

3.9 Tumor immune microenvironment and
Risk Score

The implementation of the ESTIMATE algorithm indicated
that patients classified as high-risk presented with markedly lower
ImmuneScore and ESTIMATEScore, while exhibiting a heightened
StromalScore (P < 0.05) (see Figures 8A-C). This suggests a tumor
microenvironment that is rich in stroma but lacking in immune cell
presence. Additional immune profiling conducted using
CIBERSORT and single sample Gene Set Enrichment Analysis
(ssGSEA) revealed a higher infiltration of activated memory
CD4* T cells, MO macrophages, and resting natural killer (NK)
cells within the high-risk cohort. In contrast, the levels of plasma
cells, activated NK cells, resting mast cells, activated B cells,
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The impact of ASPH knockdown on the biological behavior of lung adenocarcinoma cells in vitro. (A) Western blot and corresponding grayscale
analysis demonstrating ASPH expression levels in A549 cells that were transfected with shCtrl, sShASPH-1, or shASPH-2. (B) CCK8 assay assessing the
proliferation rates of A549 and SW1573 cells post-ASPH knockdown. (C) Transwell assay results indicating a reduction in invasion capabilities of
ASPH-silenced A549 and SW1573 cells (scale bar=100 um). (D) Wound-healing assay results revealing impaired migratory abilities following ASPH
knockdown (scale bar=200 pum). Data are expressed as mean + SD. ** P < 0.01, *** P < 0.001.
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Validation and development of a prognostic model based on key genes. (A) Forest plot generated from multivariate Cox regression analysis,
showcasing the hazard ratios and 95% confidence intervals for ASPH and PTTG1, thereby affirming their roles as independent prognostic indicators.
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PTTG1 (bottom).

activated CD8" T cells, and eosinophils were significantly reduced
(all P < 0.05) (illustrated in Figures 8D-G).

3.10 Analysis of TMB, CYT scores, immune
checkpoints, and GSEA

Subsequent analysis revealed that patients categorized as high-
risk exhibited significantly elevated cytolytic activity (CYT) scores
and tumor mutational burden (TMB) in comparison to their low-

Frontiers in Immunology

11

risk counterparts (P < 0.05; Figures 9A-C). Importantly, a notable
decrease in the expression of several immune checkpoint genes,
including BTLA, CD47, CTLA4, and ICOS, was observed within the
high-risk cohort (P < 0.05) (Figure 9D).

Furthermore, the GSEA demonstrated that various hallmark
pathways were notably enriched within the high-risk cohort,
achieving a FDR of less than 0.05, including cell cycle regulation
(e.g., KEGG_CELL_CYCLE), DNA replication (e.g.,
REACTOME_DNA_REPLICATION), hypoxia response (e.g.,
PID_HIF1_TFPATHWAY, WINTER_HYPOXIA_UP), angiogenesis
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Correlation between risk score and clinical characteristics. (A—D) Violin plots illustrating variations in risk scores among different subgroups:
(A) survival status, (B) pathological stage, (C) T classification, and (D) N classification. (E) Heatmap depicting the relationships between risk score and
clinical variables such as sex, stage, and prognosis. * P < 0.05, ** P < 0.01, *** P < 0.001.

(e.g., WP_VEGFAVEGFR2_SIGNALING), epithelial-mesenchymal
transition (EMT) (e.g., GOTZMANN_EPITHELIAL_TO_ME
SENCHYMAL_TRANSITION), extracellular matrix remodeling
(e.g, NABA_ECM_REGULATORS), and oncogenic KRAS signaling
(e.g, SWEET_KRAS_TARGETS_UP) (Figure 9E).

3.11 Drug sensitivity prediction

The prediction of drug responses utilizing the Genomics of Drug
Sensitivity in Cancer database alongside the oncoPredict algorithm
suggested that patients classified with elevated risk scores are more
inclined to demonstrate increased sensitivity towards various
chemotherapeutic and targeted treatment options. These results
indicate that individuals within the high-risk cohort could
potentially exhibit a more advantageous response to therapeutic
agents such as Paclitaxel, Docetaxel, Vinorelbine, Cisplatin,
Gemcitabine, Crizotinib, Savolitinib, Vincristine, and 5-
Fluorouracil, as indicated by lower predicted IC50 values (Figure 10).

4 Discussion

This study first employed scRNA-seq to dissect the cellular
composition of LUAD samples, identifying 11 major cell types and
revealing that angiogenesis-related gene sets were significantly
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enriched in epithelial cells and macrophages. Through the novel
combination of MR analysis and Cox regression modeling, ASPH
and PTTGI1 were pinpointed as core hub genes. These genes showed
a positive genetic association with LUAD risk and were closely
correlated with OS outcomes. To validate the biological relevance of
these findings, ASPH and PTTG1 were confirmed to be significantly
upregulated in LUAD through multi-level evidence, including
scRNA-seq data, TCGA bulk RNA expression profiles, and
protein-level validation by Western blotting. Based on their
prognostic significance, a two-gene risk score model was
constructed: Risk Score=0.151 x ASPH+0.236 x PTTGI1, which
demonstrated robust prognostic performance in both the TCGA
dataset and two independent GEO cohorts. Furthermore, by
analyzing TME immune characteristics, immune checkpoint
expression, and chemotherapy drug IC50 data across different
risk groups, we further investigated the immune landscape and
potential therapeutic responses in LUAD patients with varying risk
profiles. In summary, this study innovatively integrates bulk RNA-
seq, SCRNA-seq validation, and MR analysis, offering novel insights
and potential clinical implications for prognostic assessment and
therapeutic decision-making in LUAD.

ASPH is an o-ketoglutarate-dependent dioxygenase that
promotes tumorigenesis through mechanisms such as enhancing
angiogenesis, inhibiting apoptosis, and suppressing antitumor
immunity (21-23). Elevated expression of ASPH has been
observed in multiple malignancies, including non-small cell lung
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values illustrating the predictive efficacy of the model.

cancer, where its levels are significantly increased in
bronchoalveolar lavage exosomes (24), as well as in pancreatic
cancer, colorectal cancer, breast cancer, and hepatocellular
carcinoma (25-28). Additionally, high ASPH expression has been
linked to tumor recurrence, such as in retroperitoneal liposarcoma
(RPLS), where it serves as an independent risk factor for recurrence
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(29), and has been identified as a potential target regulating tumor
cell migration and invasion (30).

Mechanistically, ASPH enhances angiogenesis and metastasis by
interacting with ADAM12/15, activating SRC kinase signaling, and
facilitating MMP-mediated ECM degradation (31, 32). It also
modifies the EGF-like repeats of the Notch receptor and its ligands,
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Relationship between characteristics and Risk Score of the tumor microenvironment. (A-C) Violin plots demonstrating variations in StromalScore (A),
ESTIMATEScore (B), and ImmuneScore (C) among low- and high-risk cohorts. (D) Boxplots illustrating the patterns of immune cell infiltration
assessed by ssGSEA across the different risk groups. (E) Boxplots presenting the disparities in immune cell infiltration as derived from CIBERSORT
between the two groups. (F-G) Heatmaps that reveal correlations between the risk score, expression of hub genes, and immune cell populations
evaluated through CIBERSORT (F) and ssGSEA (G). * P < 0.05, ** P < 0.01, *** P < 0.001.

thereby activating the Notch signaling pathway (33). The ASPH-
Notch axis promotes exosome secretion and facilitates the transfer of
proteins associated with invasion, metastasis, metabolism, and
immunosuppression (26, 28). Furthermore, ASPH inhibits GSK3[3
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phosphorylation, interfering with upstream kinase communication,
delaying cellular senescence, and promoting tumor progression (34).

These mechanisms are highly consistent with the features we
observed in high-risk LUAD patients, including enhanced
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expression variations of essential immune checkpoint molecules across the risk groups. (E) GSEA findings that display representative pathways that
are significantly enriched in the high-risk category. * P < 0.05, ** P < 0.01, *** P < 0.001.

angiogenesis, reduced immune infiltration, high TMB, and
suppressed immune checkpoint expression. Our study provides
direct experimental evidence for these findings through in vitro
functional assays. We demonstrated that specific knockdown of
ASPH expression in two different LUAD cell lines significantly
impaired their capacity for proliferation, migration, and invasion.
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This directly indicates that ASPH plays a critical, cell-autonomous
role in maintaining the malignant phenotype of LUAD cells,
thereby robustly complementing and validating the conclusions
drawn from our multi-omics data and causal inference, and further
solidifying the reliability of ASPH as a therapeutic target in LUAD.
Currently, ASPH has emerged as a focal point in the research of
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Projected drug sensitivity across risk categories. Boxplots contrasting the estimated half-maximal inhibitory concentration (IC50) values for a
selection of chemotherapeutic and targeted agents between high- and low-risk populations. *** P < 0.001.

several novel therapeutic targets. Inhibitory molecules targeting its
enzymatic activity have been developed and have demonstrated
anti-metastatic effects in preclinical models (22, 26, 35).

PTTGI, also known as human securin, is a multifunctional
protein involved in angiogenesis, mitotic regulation, apoptosis,
EMT, and MAPK signaling (36, 37). Overexpression of PTTGI
has been observed in multiple cancers—including pancreatic (38),
prostate (39), LUAD (40), and hepatocellular carcinoma (41)—
is strongly associated with tumor progression and poor prognosis
(42). Our study confirmed elevated PTTGI1 expression in LUAD
tumor tissues and its association with worse OS.

PTTGI promotes angiogenesis by activating HIF-1c signaling,
maintaining cancer stem cell (CSC) survival, and regulating
vascular niche formation and metastasis (43, 44). It also
upregulates angiogenesis-related proteins such as VEGF, p-PI3K/
PI3K, p-eNOS/eNOS, and p-AKT/AKT, which are crucial for
endothelial barrier remodeling (37, 45). As a [-catenin-
interacting protein, PTTGI stabilizes B-catenin and enhances its
nuclear accumulation, leading to hyperactivation of the Wnt/f3-

and
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catenin pathway (44), which plays a pivotal role in oncogenic
transformation. In addition, PTTG1 can inhibit the TGF-B1/
SMAD?3 signaling pathway, thereby suppressing apoptosis and
promoting tumor cell growth (46).

The study also revealed a complex and paradoxical immune
phenotype in the high-risk group characterized. ESTIMATE analysis
indicated lower immune scores but higher stromal scores in this
group, while immune cell infiltration analysis showed significantly
increased infiltration of activated memory CD4+ T cells, MO
macrophages, and resting natural killer cells. This suggests that the
high risk group may harbor a microenvironment enriched with
stromal components that support tumor growth, whereas the
functionality of effector immune cells is likely suppressed or
insufficiently activated. As a result, an immunosuppressive
microenvironment emerges—one that appears immunologically
active on the surface but is functionally impaired—facilitating tumor
immune evasion. This observation is consistent with findings by Hong
et al. (47). Such a “cold tumor” microenvironment is typically
unresponsive to immune surveillance, allowing tumors to escape
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recognition and elimination by the immune system (48). Clinically,
immune “hot tumors” typically exhibit higher immune activity, lower
disease stages, and better survival outcomes compared to “cold
tumors” (49).

Notably, tumors in the high risk group exhibit elevated CYT
and TMB, yet show downregulation of several key immune
checkpoint genes, such as CTLA4, CD47, BTLA, and ICOS. This
paradoxical phenotype of high TMB coexisting with low immune
infiltration suggests a sophisticated immune escape mechanism.
Tumors in the high-risk group, despite possessing a high number of
neoantigens that should trigger an immune response, appear to
have established an immunosuppressive microenvironment. This
aligns perfectly with the known functions of ASPH and PTTGI.
Both genes are implicated in promoting aberrant tumor
angiogenesis, which creates a physical barrier and a hypoxic,
acidic milieu that hinders T-cell infiltration and function.
Furthermore, they can drive the secretion of immunosuppressive
cytokines and recruit regulatory immune cells, thereby actively
dampening anti-tumor immunity and uncoupling mutational load
from effective immune surveillance (44, 50). Therefore,
conventional immune monotherapy may have limited efficacy in
high-risk patients, and combination strategies involving anti-
angiogenic therapies should be considered to remodel the tumor
immune microenvironment and enhance the effectiveness of
immunotherapy (5). This hypothesis is consistent with the
emerging trend of combining anti-angiogenic agents with
immunotherapy in LUAD treatment.

Our study, in conjunction with previous literature, reveals
that high risk patients are not necessarily more resistant to
all treatments; on the contrary, they may exhibit increased
sensitivity to certain therapies. Drug sensitivity predictions
suggest that the high risk group may be more responsive to
various chemotherapeutic agents (such as cisplatin, gemcitabine,
and 5-fluorouracil) as well as targeted therapies (including
crizotinib and savolitinib). GSEA results indicate enrichment of
pathways related to cell cycle regulation, DNA replication, and
hypoxic response in the high risk group, suggesting that tumor cells
in this group are highly proliferative and thus more vulnerable to
DNA-targeting agents. For example, cisplatin induces apoptosis by
forming DNA crosslinks at purine bases and disrupting DNA repair
mechanism (51),which may explain the higher sensitivity of the
high-risk group to this drug. Moreover, ASPH and PTTG1 may
themselves play regulatory roles in drug response pathways, thereby
influencing tumor cell sensitivity to specific treatments. These
findings provide a potential rationale for precision therapy in
high-risk patients, and future studies integrating drug sensitivity
databases, experimental data, and functional assays are warranted
to further validate the relationship between these mechanisms and
treatment responses.

This study is the first to validate, at the protein level, the
significant overexpression of ASPH and PTTGI in LUAD tumor
tissues, which is consistent with previous findings based on single-
cell transcriptomics and bioinformatic analyses. This experimental
confirmation enhances the reliability of our conclusions and
suggests that ASPH and PTTGI1 may play oncogenic roles in
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LUAD pathogenesis. Future research should expand the sample
size and incorporate longitudinal clinical follow-up to further
evaluate the potential of these markers in LUAD diagnosis,
prognosis, and personalized therapeutic decision-making.

One of the key strengths of this study lies in the integration of
MR with multi-omics data to identify potential therapeutic targets
and elucidate underlying mechanisms, particularly in exploring
causal relationships between genes and LUAD. This approach
offers a clear advantage over traditional studies that rely on single
data sources. However, several limitations remain to be addressed in
future research. First, while our in vitro assays provide initial
functional support, the study lacks in vivo validation using animal
models, which is essential to confirm the roles of ASPH and PTTG1
in a physiological tumor microenvironment. Second, although we
performed rigorous batch effect correction and external cohort
validation, the integration of datasets from different platforms
and cohorts may still introduce batch effects and heterogeneity,
potentially affecting the robustness of our findings. Lastly, while MR
supports a causal relationship between ASPH/PTTGI and LUAD
phenotypes, the underlying genetic data are largely derived from
European populations, which may limit the generalizability of the
results. Moreover, the use of whole-blood eQTL data from the
eQTLGen Consortium, rather than lung tissue-specific data, may
not fully capture the tissue-specific regulatory patterns of gene
expression, which could influence the causal estimates. Future
studies should focus on validating the functional roles of ASPH
and PTTGI in angiogenesis and immune evasion through in vitro
and in vivo experiments and exploring their potential as combined
immunotherapy targets. Specifically, the absence of direct
experimental validation for PTTG1’s function is a significant gap
that we plan to address in subsequent studies. Similarly, while our
multi-omics analysis strongly implicates these genes in
angiogenesis, direct phenotypic validation through assays such as
tube formation was not performed and remains an important area

for future investigation.

5 Conclusion

ASPH and PTTGI not only play critical roles in angiogenesis
and immune regulation in LUAD, but also demonstrate strong
prognostic predictive capabilities. This study provides a potential
biological foundation and therapeutic targets for personalized
treatment of LUAD, particularly offering promising avenues for
the development of combined immunotherapy and anti-
angiogenic strategies.
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